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CHAPTER 1

INTRODUCTION

1.1 Research Motivation

A bicycle was first introduced in the 19th century [1] and still popular over the world up to now. The
bicycle has attractive performances. It has light-weightynarrow body, ability to travel to a steeper
and rough terrain with also lower installation and maintenance costs. In the environment-friendly
aspect, bicycles produce low noise pollution and 1o COy emission from the organic fuel. Various
types of bicycles have been conventionally manufactured without consideration on their dynamics.
However, as the advent and evolution"of.the computer and clectronic sensors, the complex control
system becomes more feasible. _

Bicycle researches induce a‘rich problem-in t’hg area of mechanics (modeling technique) and
nonlinear control (control technique). Moreover, the'-_;nethod to control the bicycle can be divided by
taking the actuator type into acceunt, For example, ;1 is obvious to see how we control the bicycle
by steering the handlebar and balaneing our bodies. 'Airiother method which cannot be realized by a
human rider is to use the flywheel with high spinning Ijaf&and precessing about another perpendicular
axis. By exploiting the gyroscopic effect; the ﬁywhé’éi 3génerates the torque to help stabilize the
bicycle. Since the technique is possible both when tht_:_.-Tbj_(_JYpl_e stands at zero-speed and on moving,
we decide to tackle this bicycle control pf;)blem with this t;/pe of actuator.

The derivation of the biey¢lé control has 2 main approaches which are the Newtonian approach
(Force/Torque balance) and the Lagrangian approach (Conservationof Energy). We have selected
the model that mostly fits our aim of research. Our model is from Spry and Girard (2008) [2] which
is mainly concerning the model derivation and verification. This model describes the dynamics of
bicycle at a constant forward and rotating speed of the bicycle with gyroscopic flywheel and was
derived through the Lagrangian method. For our research, the parameter size is on the larger scale
comparing with, the experiment in [2]. Our parameters are.based on.the human.size bicycle, not a toy
size as presented in'[2]. The proposed controlmethod was a simple|s¢lection ofi the appropriate gain
to satisfy the stability condition of the linearized model. This motivates our research to develop the
nonlinear control algorithm for this model.

The bicycle with gyroscopic flywheel model is in fact nonlinear and usually linearized about
its operating point to make it possible for using linear control method. To our knowledge, there is no
effective result on the nonlinear control of this model type. Therefore, it is an advantage to extend the
operating range of bicycle rolling angle while keeping less model error as much as possible by using
the new method based on linear models. This results in our proposed control method, the Piecewise
Affine (PWA) Control.

PWA systems belongs to the promising class of representation of nonlinear systems by approx-



imating the nonlinearity with linear or affine functions. It can be considered as a natural model class
for nonlinear systems since it has been used to represent a range of nonlinearities such as dead zones,
saturations, and hysteresis with arbitrary accuracy. Our research will focus on approximating the
nonlinear model to PWA model and deriving the control law based on Piecewise Quadratic (PWQ)

criteria. We mainly refer the theory of PWA control to the results in [3].

1.2 Literature Review

The structure of the literature review will be presented in 2 parts: the bicycle part and the PWA control
part.

Many researches on the bicycle dynamics model and stability analysis and control were done
since the late of 19th century. Many papers discussed about the analysis of bicycle with rider control
qualitatively. Some did the analysis_with.a bunch of equations to study its dynamics. The nearly
perfect review of bicycle model'histosy was done by A. Schwab et al-[4].

Various types of the bicyele modelwere presented along the century. Every type is concern-
ing with the rolling angle or leaning angle because we are talking about the stability of the upright
standing bicycle. Human exploits the advantage (of 2{ ‘steering handlebar and body leaning himself to
control the path and stabilize thesrolling angle. Mos"tlz_of researchers present the interaction between
rolling angle and steering angle and.use the'rolling angle to act like a feedback controller for stabiliz-
ing the bicycle. N. Getz presented the nonlinear dynamic model with steering and forward velocity
input [5], [6], [7], [8]. His model was derived by constrained Lagrangian method and improved in [9]
with additional issue of non-zero front forkiangle. M?p‘c_foort [10] applied sliding-mode control
scheme to Getz’s model. Othér works in [1 1], [12], [13] -ngglécted the front fork angle. Franke et al.
derived the equation of motion-by-Newton’sformulation [14]- 112005, Astrom [15] released a good
summary of bicycle dynamic and control and also the simple linearized second-order model with
derivation. One year later, Limebeer and Sharp [16] wrote the moré-exhaustive models for bicycles
and motorcycles including inside‘analysis of pneumatic/tire deflation, flexible frame, etc. A series
of paper from Guo showed the different types of control method to this kKind of model; nonlinear
stabilization [17], LQR §18], fuzzy sliding-mode [19], DFL nonlinear control [20]. Moreover, it was
proved that the bicycle with.a positive front-fork can be self-stabilized at a specific interval of speed
where the real'part of eigenvalues were investigated to'stay in the left-half plane [4], [21].

The bicycle robot with balancer control was presented in [22] and also balancer together with
steering control [23], [24] to enlarge the region of stability. This type of model is not widely investi-
gated as well as the gyroscopic stabilization [2], [25], [26], [27], [28]. Parnichkun (2008) [25] applied
the particle-swarm optimization to the proposed model from Gallaspy (1999) [27]. This model cap-
tures the bicycle dynamics at the zero forward velocity. The model in [28] incorporated the forward
moving velocity but lacked of simulation to verify the model validation. The recent gyroscopic stabi-
lization from [2] is more reliable since it is presented with the clear derivation and model validation
by both simulation and real hardware implementation. It included the forward moving velocity and

rotating velocity, and left the higher-level study in control part for further development.



The guideline for bicycle project and hardware design can be found in Michini (2006) [29]
and a very completed instructive hardware project report “Experimental Validation of a Model for the
Motion of an Uncontrolled Bicycle” by Kooijman (2006) [30].

The Piecewise Affine Control or sometimes called Piecewise Linear Control are presented as
a kind of hybrid system and the model is varied according to the region which the state is staying.
The circuit theory community was said to be the first who recognized PWA systems as an interesting
system class [3]. At the beginning, the research on PWA systems considered the model representation
[31], [32], especially on the electric network [33]. ,Model approximation of Nonlinear system by
linear model in each region is still be an interesting problem as well. This problem tends to be more
complicated when the number of partitioned states is inereasing and also more constraints are added
to made the smooth continuity at the boundary. The rescareh”on PWA model approximation can be
found in [34], [35], [36]. To guaranteesthe stability of the PWA systems, the studies on finding the
Quadratic Lyapunov function were.propoesed by Hassibi and Boyd [37]. This stability problem was
also covered the hybrid system and.solved via LMIS approach [38]. The PWA optimal control can be
found in [39]. The summarize of Piceewise Linear Control was done by Johansson [3]. Besides, one
interesting branch of research onPWA'is PWA Identiﬁcation which can be found in [40], [41], [42].

The applications of PWA control ace continué“,to"release: Anti-Wind up controller [43], PWA
control of a boiler-turbine unit [44], MPC [45]; etc. T‘here is not much papers published about PWA
applying with vehicle dynamics control appliéation. H-(’.)v&;:ever, we have found some application to a
vehicle yaw control in [46], [47]. “ -

This thesis mainly follows the PWA-system theoré_&ﬁlr'ésented extensively in [3].

1.3 Thesis Objective

The main objective of this research is to design a piecewise affine-controller based on piecewise
quadratic stability criteria for the autonomous bicycle with gyroscopic flywheel stabilization and to
build a start-up prototype bicyclefor:the future impleraentation work on the bicycle robot. We first
obtain the bicycle dynamics model from the previous work and then approximate the nonlinear model
into the form of a piecéwise affine model. The controller based on a global piecewise quadratic

Lyapunov function is derived by solving the semidefinite programming problem.

1.4 Scope of Thesis

1. To derive Piecewise affine bicycle with gyroscopic flywheel model
2. To design the feedback controller based on the Piecewise Quadratic criteria

3. To build a physical prototype of the bicycle robot for retrieving the practical bicycle parameters

and for a future research



1.5 Methodology

1. Literature review on Bicycle model and PWA systems.

2. Select an autonomous bicycle robot model with gyroscopic stabilization.

3. Do parameter measurement from the real bicycle.

4. Derive the PWA model from the selected nonlinear dynamics bicycle model.

bicycle model.

5. Design the Piecewise Quadratic contr Iy/

1.6 Contributions

1. A Piecewise Affine bicycl{

2. A Piecewise Affine controll

3. A start-up prototype of exp

1.7 Structure of Thesis

The organization of the thesis is T the' ne hapter, the related theories, which are
the primary knowledge and some ar 0 ' ered tc b bicycle robot environment, are presented.
Chapter 3 presents Experimental Bicycle. er 4 presents the bicycle dynamic model. Chapter
5 presents PWA model for the bic :

robot. In the last chapter, co nclusions are given. :

piecewise affine control for bicycle
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CHAPTER 1I

RELATED THEORIES

In this chapter, an overview of the fundamental theory used in modeling and designing PWA control

systems is given.

2.1 Bicycle Properties

In this section, we describe the 1 w that affect the stability of the
bicycle. - .

2.1.1 Nature of the Bicycle

The bicycle is naturally unstabl
right. However, it is not too hard t g a _ We turn the steering to the right
when the bicycle seems to roll

That is a mean of dynamic control

2.1.2 The Trail

Figure 2.1: The position of the trail distance of the bicycle [48].

At the beginning, the bicycle has no trail or front fork. That means the handle bar axis is
perpendicular to the ground. This type of bicycle has no effect of trail to the rolling angle when we
steer the handlebar. The non-zero trail distance produce a major impact to the dynamics of the bicycle.
D.E.H. Jones [48] studied this effect by constructing the bicycle with different kinds of trail distance.

The interesting case is the positive trail which we are always familiar with. Positive trail provides a



torque about the steering axis that counteracts angular momentum when the bike body leans to the
left or the right. This counteracting torque causes the front wheel to turn in the direction opposite to
the direction of lean, and thus enhances the stability of the bike. This torque does not appear only

when the bicycle is moving but it is also generated when the bicycle is tilting.

2.1.3 Self-stability

Imagine when the bicycle is running forward along a road with non-zero speed and no maneuvering.
We know that the bicycle is an unstable system. However, it was proved that the bicycle that has
the positive front fork trail is itself stable in an intervalofspeed [15,16,21]. David E.H. Jones [48]
emphasized that the steering geometry dramatically infiicaces the stability. When the bicycle is
tilting, its center of gravity is loweiFhens the front wheelsieeis-to the tilting direction to minimize
its gravitational potential energy.Fhis§ Willnot occur if the trail is zero. In addition, Astrom presented
in another perspective. The ground reaction force exerts a torque on the front fork assembly to made
the front fork steer. The analysis'through the sirf'iple second order linearized model is discussed
in [15]. X

It is essential to understand the self—stablhzatloh behav10r of the bicycle. To control the bicycle
upright and running on a straight path, we do nos need‘any inputs to stabilize the bicycle in a particular
speed range unless we have a curvature path. Here We,show our analysis using the experimental
bicycle parameters that we measure ourselvee The' moment of inertias are retrieved via CATIA
CAD-software. The analysis is based on the lmear 4th ordP; equation (The Whipple model) in [21].

The equation of motion is —_—

? @ ' Pl LT
M } +0Cq + (gKg+ ’UQKz) [ = [ i 2.1
5 B B x s
With our real measured and CAD-program calculated parameters in Table 2.1, we have
M — 8.6551¢ 0:9466 & 0 9.3019
o1 (0.9466/ 0.83165 WAT QL7705 “3,4885
(2.2)

K, - [—14.7837 —2.0400] K, :[0 14.0139]

—2.040 —0.7164 0 1.9743

The result is that the'self-stable'speed range'is 3.60 < v < 10.26 m/s..Note ‘that the range is wider
than a bicycle with the rider which has more weight.

We will take this advantage of self-stability to leave the steering bar move freely when we
want the bicycle to run on a straight path at that particular speed range. Also, it is not necessary to
control the roll angle by precessing the gyroscopic flywheel when the bicycle is self-stabilized. The

explanation about how to control the bicycle roll angle will be discuss in the section 4.



2.1.4 Gyroscopic Effect at the Front Wheel

The gyroscopic action at the front wheel affect the stability of the bicycle. In Figure 2.3, we assume
the bicycle is running with forward speed. According to our earth fixed coordinate frame, the spinning
axis is perpendicular to the direction of the bicycle and have a positive wgpeeq- To say, it points to the
same direction as y-axis. Next, when we steer the handlebar to the left, wgicer vector points vertically
with the z-axis. This will result to the bicycle to roll to the right side. The rolling direction can be

found mathematically by Tyon1 = (Ls2Wspeed®2) X Wsteer€3 = Wron€1 Where I is the moment of

E cial axis es.

.J
T——

inertia of the steering handlebar with respect to

10

Eigenvalue
o

Unstable

Figure 2.3: Gyroscopic effect at the front wheel coordinate and notation.



Table 2.1: Parameters of the Experimental Bicycle for Self-stability Analysis.

Parameter Symbol Value Unit
Wheelbase w 1.07 m
Trail c 0.12 m
Front fork angle A 20.56 degree

Front wheel
Mass mp 2.234 kg

Mass center (1.07,0,0.32) m
Radius \ m
0
Moment of inertia 0 kg- m?
0.099
Rear wheel
Mass kg
Mass center m
Radius m
0
Moment of inertia 0 kg- m?
0.099
Body (with battery)
Mass kg
Mass center m
| == —0.053
Moment of inertia 0 kg- m?
0.487

Front fork & Handlebar

M coner AU EII p) jﬁffﬂ;ﬂ 3 WO;E};’? ﬂ»gﬁ) .
- LALL I etat UR

Gyroscoplchlywheel

Mass ma 9.0329 kg

Mass center (xa,ya, 2¢) (0.49,0,0.88) m
Igez Gy IGa- 0.138 0 0

Moment of inertia Igyz Iayy Icy- 0 0.138 0 kg- m?
Ig.: Igzy Ig:: 0 0 0.274

Nevertheless, the effect on the bicycle is very small compared to the gravitational torque and



gyroscopic flywheel unless the wheel spinning speed is very high. Our model therefore neglects this
effect.

2.2 Lagrangian Mechanics

Lagrangian mechanics is a re-formulation of classical mechanics that combines conservation of mo-
mentum with conservation of energy [49]. The Lagrangian is an efficient method to derive the equa-

tion of motion through the energy aspect. The Lagrangian function L is defined as

L(g:4) =T(q ) ¥ (a)
where T' is the Kinetic energy, V' is the Potential energy, and-¢is the generalized coordinate. Accord-
ing to the derivation in [50], the resultluagrangian’s equations.is then

d (0L or (nc)
dt ( an: ) an y : N 7 .

where Q7€ is the nonconservative géneralized foices. -

The Kinetic energy of the rigid body/can be cﬂcqlated by

d

i 4 1
r- imv(’ e —T-iHC e (2.4)
or in the matrix form 3 i .
T = émvac s %gllicw (2.5)

where v, is the linear velocity of the rigid-body, w is the angular velocity about its mass center, H, is
the angular momentun about the mass center, and I.. is the moment of ingrtia of the rigid body.
The Potential energy may be caused by gravitational force, elasiic spring force, elastic force

between two charges, etc. It can be represented as
F=-VV(¥) (2.6)

In this thesis, the instrumental force for the potential energy is from the gravity near the Earth’s
surface. It is given by

E =l—mge., V =mgz

2.3 Piecewise Affine System

The Piecewise Affine system is a kind of nonlinear system which is linear in each local cell/partition
where each partition has its own dynamics. The fascinating advantage of this type of control is that it
is linear, however in a region, but provides more accuracy than a linearized model and the controller
synthesis based on Piecewise Quadratic Lyapunov function is global. One time solving a batch LMIs

problem, the obtained gain can be used to stabilize the system in overall operating point.
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2.3.1 Model Representation

Consider piecewise affine systems on the form

et R SELEALE @
Here, x(t) is the continuous state vector, u(t) is an exogenous signal (control or disturbance, depend-
ing on the context), { X; };cr C R is a partition of the state space into a number of closed polyhedral
cells and I is the set of cell indices. Assume that the cells have disjoint interior (so that any two
cells can only share a common boundary) and that they form a partition of some compact subspace
X = Ujer X; of R™. Let z(t) be a continuous piecewise fiinetion on the time interval [0, 7). We say
that x(t) is a trajectory of (2.7), if for every ¢ € [0, 7'/ "sueh that the derivative & (¢) is defined, the
equation &(t) = A;x(t) + a; + B;u(t) holds for all i with x(t) € X;. Note that for a given system
there may be initial values such that a eerresponding trajectory only exists for small 7.

Focus on properties of the equilibsium z :.IO, and let /g C T be the index set for cells that
contain the origin, let I; = I \ Iy, and‘assume that E.zi =0, ¢; = 0fori € Iy. For convenient, we use

the notation z = | = 1 }T , .

- Al a; 5 l'z'a-: A
Ai:|:0 O},Bi:[%_]’ci:[ci ci]

and re-write (2.7) as ' =

llt) =8B (t) 08
Y(t) = Chr(t) = Diu(t) '
Each polyhedral cell of the system (2.8) is partitioned WK hyperplanes
aHk:{a:?‘ka—i-hk:O} Vhi <0, k:l_,...,K (2.9)
For convenient, all hyperplanes are represented as a hyperplane matrix™
H=[H, h] . (2.10)
The polyhedral cells are represeinted on the form
X; = {z|Giz + g = 0} @.11)

where >~ denotes elementwise inequality, To made it'more compact, we consttuét matrices
Gi=[Gi gi

where G is called a cell identifier.

2.3.2 Quadratic Stability

The term quadratic stability refers to stability that can be established using a quadratic Lyapunov
function. It is possible to prove stability of piecewise linear systems using a globally quadratic Lya-

punov function V (z) = z Pz. In particular, if a; = 0 Vi € I and there exists P > 0 such that

ATP 4+ PA; <0 Viel (2.12)
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Then every trajectory of (2.7) tends to zero exponentially. The stability of a family of linear system
depends on each cell partition. The equation (2.12) are linear matrix inequalities in P which can be
solved as a convex optimization problem.
To verify that there exists no matrix P satisfying (2.12), it is a dual problem to find a positive
definite matrices R; , ¢ € I such that
> ATRi + RiA; >0 (2.13)
iel
If the condition (2.13) is satisfied, then the Lyapunoev function P in (2.12) will not be admitted.

2.3.3 Piecewise Quadratic Stability

We consider functions that are continuous and pi¢cewise quadratic. This condition must be satisfied

with all cell X, so it is sufficient'to require that

:J:T(AiTP £ PA)x ¥ 0, for me X, (2.14)

To obtain a relaxed conditions for quadgatic stability, one applies the S-procedure and construct pos-
itive definite matrices 5;, ¢ € I stich ghat -

WIP + PATE S; <0 (2.15)

Matrices S; in S-procedure can be gonstruct from the_:s-g/stJém description, in this case are cell bound-
ing matrices E; and E;. With nonnegative entries matﬁf‘:’és__ (JJ,-, we have
TEIU Em =0, ZZ:EJXZ eI
T ET U Eir 20 - e Kyic Iy (2.16)
The cell boundings are impeortant parameters from the partition information to enforce the positivity
of the quadratic Lyapunov fur;ctjons for all z € Xj;. The polyhedralcell bounding matrices can be
defined as

E; : [EZ ei] and Elii‘ > 0, :L‘(t) E Xi

The next step is to make|the quadratic [Lyapunov/functions to'be valid-in all regions and continuous

across cell boundaries. Let T
P, = Fz TF;,, 1€l
Pi = FzTTFi, e Iy 2.17)
where F; and F} are called the continuify matticés'with their pioperties
F,=[F, fi] and Fa(t)=Fz(t) for z(t) € X;NX;

Since the expression for P; is linear in a symmetric matrix 7, it will be possible to state the search
for a piecewise quadratic Lyapunov function as a set of linear matrix inequalities. The constructed
Lyapunov function will in general have the form

T Px, ze€X;, i€l

V(l’) - { :fTPZ'f, reX,;,, 1€l (2.18)

Next, we formulate LMIs for finding an existence of piecewise quadratic Lyapunov function of the
system (2.7).
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Theorem 2.1 (Piecewise Quadratic Stability). [3]
Consider symmetrics T, U; and W; have nonnegative entries, while P; = FiTTFi,Z' € Iyand P; =
F Z-TTFi,i el

0> ATP, + PA, + ETU,E;

g JFT i 8 Vil i€l (2.19)
0<Pi_Ei Wi E;
0> ATP, + PA; + E'U,E;

t Z_“LT’TL LTV el (2.20)
0<Pi_EZ' W, E;

then every trajectory x(t) of (2.7) with u = 0 fort = Oitends to zero exponentially.

2.3.4 Piecewise Quadratic Stabilization of PWA system

This section will show how to obtain the-globally linear state feedback that stabilizes a PWA system.

This can be cast as a convex optimization.problem! Let us consider the state feedback

o= —le
which results in the closed loop.system _a |
z(t) = (A; 4BL)x(t)+ a;-_ | ceX; icl. 2.21)
to be asymptotically stable for all region. | J, _;.

For the quadratic stabilization problems we need,toij’}nd a gain L that admits a quadratic Lya-

punov function V (z) = 2T Pz. For each cell X, we u@he ellipsoid cell boundings

o el

’ ;vHSw + silla < 1 | R, (2.22)
or
1— (Siz + s)T (S + 55) > 0 Vre X; (2.23)
Or it 1 —STg.d L5Fs ik
s PR fe VD LLL S, 22

and the condition in'(2.14) te derive the sufficient condition for PWA system stability via S-procedure.
Then, the closed-loop system is quadratically stable if we can find a positive definite matrix P =

PT > 0and positive scalars u; > 0 such that

0> (4; — B;L)TP + P(A; — B;L) i€ Iy
(A; — BiL)T P+ P(A; — B;L) Pa; =SS —STs; . (2.25)
0> al'pP 0 + U —sI'S; 1—sls; veh

The above condition is bilinear in L and P and not efficient to be solved, however the problem

can be transformed and resulted in Theorem 2.2.
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Theorem 2.2 (Quadratic Stabilization). [3]

If there exists a positive definite matrix Q = QT > 0, positive scalars v; > 0 and a matrix Y such
that

0> QAT + 4;Q - Y"B] — B;Y
QAT + A,Q - YIB! — B;Y —via;al’ QS — viaisg’] (2.26)

0<
(QSiT — 'viaisZT)T v (I — siszT)

where j € Iy and i € Iy. Then, the feedback v = — Lz with L = Y Q™! renders the piecewise linear
system exponentially stable.

In this thesis, we will use this criter state feedback control laws.

AULINENINYINS
ARIAN TN INY Y



CHAPTER 111

EXPERIMENTAL BICYCLE

In this chapter, we focus on the parameter measurement of the prototype autonomous bicycle with

gyroscopic flywheel. the critical issues are the l"c'\/ile dimensions and the gyroscopic flywheel pa-

rameters. \g& //{/1

3.1 Bicycle — —

T—
This bicycle is the adult size by ‘ ‘ WyRobo Thailand competition.
The wheel base length is morethan 50 cm, 3 eter of each w eel is more than 50 cm, and the

yith fhe < ' K gure 3.1. The body is a rigid

tire width is less than 5 cm. W

frame without suspension.

. W :
1 o -
TL o e

2 el
Y WTRITIHEAARTINE QL

To desigHQhe new features and estimate the parameters from the real world model, we draw the
3D CAD graphic in CATIA'. Figure 3.2 shows the 3D CAD of bicycle robot with the actual measured
dimension. The pedal, saddle, barrel adjuster and rear deraileur will be removed from this original
bike.

The measured bicycle parameters are collected in Table 2.1. Some parameters such as the
moment of inertia is needed to calculated indirectly. Here, we let the CATIA software to calculate
them all by inputing the mass that we can simply measure it and the type of part material (to figure

out the mass density). These data are used for the whole simulation in this project.

'CAD software for designing mechanical part.
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Figlii: 3.3: Bicycle robot e;}tached with gyroscopic flywheel.

2 cmBIARIN TUUNINYAE

The flywheel is treated as an actuator for controlling the bicycle rolling angle. We consider the critical

case that this actuator can generate the moment to resist the moment produced by the gravitational
torque when the bicycle is tilting. While the bicycle rolling angle is larger, the gravitational moment
becomes larger too.

From Figure 3.4, xyz is the global axes and e;ezes is the principal axes of the flywheel. The

basis vector {e1, 3, e3} rotate together with the gyroscopic flywheel at the angular velocity we.

We = €1 + (res (3.1



16

the flywheel spin at a constan

The angular momentum of the fl

where I,, I2,, I3, are the moment

the midpoint between the ground

of of the flywheel pass through this 5= (because we assume that the gravitational

moment is equal to the moment generatedrpy—vrhe 1;? .}:: n torque from the gyroscopic effect. By

the way, we should note that Et}i ﬂywheel w1ll precéss to ge_r%n?ment with magnitude greater
than the gravitational torque fo-pulltheb bicycle back to stand upright = (O rad. Yet, we calculate
the least moment that the ﬂywlﬁl must be able to s, 1tﬁduces to
f
H, = lrdes, + IgOQeg (3.3)

Carrying out the detalﬁ‘u ﬂ?ﬂ[} w EJ ’] ﬂ ﬁ
200082 + I2oCk 3082€3 + '

i Ipoties + Iooi(we' < €2) + I3,2eg + I3,Q(we X €3)

nes—onll 1NN S EH HATINUTIRE

H, = I3,Qae; + Ir,0e9 3.4)

This change in H,; must equal to the gravitational moment M,; around z-axis. The produced mo-

ment is given by

M, = zpesx (—mpgk)+ zges x (—mggk) (3.5)
= (mpzp + maza)gsin e ’
From the Euler’s equation for rigid-body dynamics M,; = H,1, (3.4), and (3.5), we have
I3,Q4 = (mpzp + maza)gsin ¢ (3.6)

Lot — I3,0¢ =0 (3.7)
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Torque component ey of H, will result at the ground contact point of front and rear wheel and it is
resisted by the reaction torque of the ground contact. Therefore, there is no rotational motion for this
axis (The bicycle does not tip over to the front or back). The important role to stabilize the bicycle
is at the e axis. Its relationship is shown in (3.6). We need an excessive moment to pull the bicycle
in the reverse direction. The gyroscopic flywheel should be designed in order to satisfy the equation
below

(mpzp + mgzg)gsiny < I3,Qa (3.8)
Note that I3, = I3 where I3 is the moment of inertia of the flywheel about its principal axis. For

simplicity to manage the calculation, we introduce

Mrgg=-(mpzp 4+ maese)gsin (3.9
Mgen= Isgf)c (3.10)

Take the parameter value in Table 3 Jrand the formula in Table 3.2 to find M,e¢q and M ey, we finally
get Myeq = 20.5481 kg-m anddWge, = 29 8311 kg:m. The DIY? Gyroscopic Flywheel can produce

the moment in which its magnitude is greater than the 'required value with the factor of 1.4518.

Table 3.1: Parameters for Gyroscopi'c’;FlyWheel Design Calculation.

Parameter 'Sfynibol Value Unit
Disk mass ~mg 33929 kg
Circular tube mass __m: 5.6400 kg
Flywheel mass == - mg . 9.0329 kg
Bicycle bodyimass mp S0.L. ) kg
Outer radius rq 020 | m
Inner radius e 0.18 m
Disk thickness hq 00T m
Circular tube thickneéss h. 003 m
Height of bicycle center of mass ZB 0.50° | m
Heightlof flywheel center of mass z2G 1.00 m
Rolling angle ) 5 degree
Spinning angular velogity Q 3000" | rpm
Precessing angular velocity @ 20 degree/s
Gravitational acceleration g 9.81 m/s?
Iron mass density PFe 7874  kg/m?
Aluminium mass density PAl 2700  kg/m?

Do It Yourself
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Moment of Inertia of Flywheel

The Flywheel is assigned to spin about e3 axis and precess about ey axis. Figure 3.5 shows the
dimension and other description for the calculation of the flywheel moment of inertia. Refer to the
“List of moments of inertia” from [51], we obtain the moment of inertia in two parts - Disk and
Cylindrical tube about the point D and C. Then, we take them to rotate about O using Parallel axis
theorem and combine them together by addition. The summary of the Flywheel moment of inertia is
in Table 3.2. The mass calculation here are mq = pa;Vy, me = preVe, and mg = mg + m. where

Iy,

p 4 is the density of Aluminium and pp. is the ity of iron.

garior TN
Figure 3.5: Side/Vie 05 sqﬁt Flywheel configuration.

ai.

ent of Inertia.

Object " Volume

D

Dik bt D ﬂugj@'ﬂgﬂ{ WEART o |vo- i
W N;Nﬂ'im Nﬂ']'lﬂiﬂﬂ t

Cylindrical tube o | Vo = 77(7"2 _ 7"2) h

Ic——mr—i-r Ic——m3r +732) + h? d teJie
Gyroscopic Is¢ = Isp + Isc I = Iop +mgh} + e+ | Va=Vp + Ve
Flywheel (about O) hqg  he

mc(hf-i- 5 + 2)




CHAPTER 1V

BICYCLE DYNAMIC MODEL

The equation of motion of 3D rigid body can be derived in 3 aspects. Those are the conservation of
force (torque), momentum (angular momentum), and energy. The model of a bicycle with gyroscopic
stabilization is mostly derived by the Lagrangian method (Energy aspect) because it is easy to obtain
the linear and angular velocity while the internal force.orany ether workless forces can be ignored.
From the literature review, we have inspeeted many types-and complicated levels of the bicycle. We
end up with the nonlinear dynamic medel from Spry [2] and extend the model to PWA model.

We next define the bicycle geomeiury, the assumption and limitation of the model, the notation

of the parameters and lastly the nonlinear model wiih neglecting relatively small-value terms.

4.1 Bicycle Geometry

Figure 4.1: The Bicycle Geometry.

Parameter Definition

The parameter notations here are also consistent with the measured parameter in Tables 2.1 and
3.1. We present them separately to emphasize each component; the bicycle dimension, the flywheel
(for design calculation), and the bicycle with gyroscopic flywheel model parameters. These are shown
in Table 4.1. The constant mass, moment of inertia, and height of the center of mass are obtained via
CATIA CAD software. These values in Table 4.1 may differ from Tables 2.1 and 3.1 since we consider

the model here in two parts; the body and the flywheel. See more in the bicycle model assumption.
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Table 4.1: Parameters for Bicycle Gyroscopic Flywheel Dynamic Model.

Parameter Symbol Value Unit
Bike roll angle © - rad
Flywheel precession angle «a - rad
Bike rotation rate w - rad/s
Flywheel spinning rate Q - rad/s
Track radius curvature r - m
The midpoint of track segment s - m
The distance between s and wheelbase midpoint h - m
The wheelbase midpoint speed o - m/s
Disturbance force Fy - N
Bicycle body mass mp 30 kg
Flywheel mass mea 9 kg
Height of Bicycle center of mass ) 26 0.39 m
Height of Flywheel center of mass i 4 ZB 0.88 m
Bike Moment of inertia I Bros Ipyys I p2z) (5.947.8.083,2.295) kg -m

Flywheel Moment of inertia QIGJ;CI,Iny,IGZZ) (0.138,0.138,0.274) kg-m

§ TTemmmme > F

Figure.4.2; The bicycle curvature path.

To explain more-about the curvature-path.of the,bicycle, see Figure, 4.2, In Figure, F is the
front wheel ground contactpoint, R is the rear wheel ground contact point, and O lis/the center point
of rotation. The distance between R and F' is called “wheelbase length ” (w). We can find the relation

between $ and v is o = §(r — h) /r = (r — h). For straight path running, » — oo, h = 0 and o = 5.

4.2 Model Assumptions

It is much more complex to treat the bicycle model as a 3D rigid body. The simplified model that
captured the major effects on the bicycle and is well enough to describe the bicycle dynamics is a
better choice. However, we should be careful to define the assumption and its limitation as shown

below.
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e The steering axis has no trail.

e The bicycle is rolling on a flat plane

e The tires has no width and no deformation.

o The longituditional and lateral slips at the front and rear wheel are neglected.

e The bicycle is considered as a point mass at the center of mass height zp

e The flywheel is considered as a point center of mass height z¢g

e The mass moment of inertia of e neglected.

d
4.2.1 Nonlinear Dynamic MOV ‘-‘
The model derivation is done b{ 0¢ \ \ -}i rivation in [2] but we combine

the load and flywheel cage into ~.\»~ he kinetic energy of the system
is

Llgwe 4.1)

(4.2)

where .
‘ BN /N o+ (Ysinp)zp
wp = |[Ysing R Vzp

[ cos @; ‘] 0 :

m (¢ sin ) z¢
sinp + « gbzG
| psina —i—‘i}cosgocosa +Q

From the Lagraﬁ%ﬁ ang&l Wfﬁv@ﬁuﬁrq ﬂL%range s equations in the

wa —

o (f—;j’ (4.3)
where the genal;ﬁ ,ltaeﬂsﬂ ds ’]Cﬁ ﬂ EI ’] a E]
{ @1 : ¢ (Bike roll angle)
q (Flywheel precession angle)

and the generalized forces are
{ Q1 = Fyzpcosp
Q2 = T
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According to (4.3), the equation of motions are obtained as follow:

Bicycle rolling equation

(kg + ky cos® a + kg sin? o)

—2k10pcsin o cos o

+1pér cos (k1o (sin® o — cos? a) — k)

1/12 COS (p sin ‘P(kll — kysin® a — kg cos? a) %= k)70"(/) cos + Fyzp cos ¢ 4.4)

+(Qg,, cosa)d

+¢QIGZZ cos asin ’,ﬂ
—krgsinp &

Flywheel precessing equatlon

kso
+ks1p cos
. =T, 4.5

+k10(p? cos asin v — cos® a)) o @49
+Q (1) cos psina — ¢ cos
where

kl = IB:cx

k3 - IBzz

ks = Igyy

k7 =mpzp +1 = = BZE +mazd

kg = k1 + kg :

ki1 =ks+ ko — k "'»’,

4.3 Linearized Dynamic M X

The conventional simple way Bdeal with the nonlinear system is Elinearize the nonlinear system

around its equilibrium point. We'withuse this linearized model for a comparison with our reduced
nonlinear in the next sﬁ %

uma%e@rw 9 'W &7
vtz e gl na QJOM i '12 NYNa Y

(ko + kg)@ — krot) + Q.+ Qgabe = krgp (4.6)
ks + Qo — @) .. = T 4.7)

Rewrite the above two equations in a state space form

© 0 0 1 07Ty 0
dilaf 0 0 0 1]]a 0 @8)
dt |¢ az1 0 0 asgf| [¥ ok [ (kg + ka) .
leY 0 a42 QA43 0 Q Ta/k5



where

oo Frg = 00a s = ~Mez
o kg + k4 T ko + ky
1 . Q1
ago = —k—(¢QIGzz) as3 = szz
5 5

AULINENINYINS
AR TN TN
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CHAPTER V

PIECEWISE AFFINE MODEL FOR BICYCLE ROBOT

In order to synthesis the controller by PWQ stabilization technique, one needs to model the nonlinear
system dynamics to be the PWA model with the error.as small as possible. In this chapter, we describe
how to obtain the PWA model by a simple. trigonometri¢ terms approximation method, least-square-
error without boundary constraints, and least-square-erzor.witheut boundary constraints.

We starts with defining the regions that will be approximated by PWA model. The bicycle
roll angle is partitioned into 3 regions;the flywheel precession.angle does so. Thus, the operating
regions were split into 9 regions owpolyhedral cells, see Fig. 5.1. X5 is considered to be in [y or
the steady state point region where the sgate trajectory rest at the point (0,0, 0, 0) when the system is
made stable. The other cells X are dn the set /;. Note that these 9 regions is not the best choice to
reduce model error. More regions lead to/more accuEate model but more calculation is needed.

The nonlinear differential equations (4.4) and-';(4.‘5) can be approximated by continuous PWA

functions into the state-space form (2:7) /We défine the parameters for our bicycle robot model as

PN 0 0
0 /20 02524l 0 B 0
i 7: i (1 a; = i P =
e = Nl
) e i byl Ly - [ )
Ay T Ay Ay A4€1 ay By

a

u:Ta Az:

8
|
-6 2 €6

Next, the PWA model appioxiination-methods-will-be-showi-from a simple method (fast cal-
culation but roughly accuracy) to the more complex (longer time forcalculation but more accuracy)

method. All constant terms are.taken from Table 4.1.

5.1 Trigonometri¢ Terms Approximation

We approximate the nonlinear terms sin and ces by least square error method in each interval, while

the other nonlingat terms ate approximated-by linearization about the operationd pvint (0, 0,0, 0).

e Approximate the nonlinear terms sin and cos by least square error method and use ‘0’ to repre-

sent ¢ and « only for this occasion as follow

— When 6 < —0.1745, we approximate sin) ~ m1(6 + 0.1745) and cos ~ mq(f +
0.1745),

—0.1745
my = argmin/ (m1 (6 + 0.1745) — 0.1745 — sin 0)?d0
—1.0472

—0.1745
mo = argmin/ (mz (0 + 0.1745) + 1 — cos §)2d6
—1.0472
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s288 .
X
X
X

precession angle (rad)

-0.2
-0.4
-0.6
-0.8¢
-1t ]
-1 1
Figure 5.1: Polyhedral partiti _' \ bicycle state space model.

*The calculation is done
—10°.

0 < —0.1745 or —60° < 6 <

— When 0 > 0.174 "'1 and cos 0 ~ m4(0—0.1745),

EI’I 1. 0472
mg = argmin (m3(0 — 0.1745) 4 0.1745 — sin 0)%dh
ﬂ u/EJ qrﬂ&%j :E LEJM 1‘50050 2do
0 1745
Wﬁ“‘\“ﬁ%“‘ﬁm IRy =
Finally,
0.85580 — 0.02516 0 < —0.1745
sinf~< 0 —0.1745 < 0 <0.1745 5.1
0.855860 + 0.02516 0 >0.1745
0.49576 + 1.0865 0 < —0.1745
cosf~<¢ 1 —0.1745 < 6 < 0.1745 5.2)
—0.49576 + 1.0865 0 >0.1745

o Substitute the approximated functions from (5.1) and (5.2) shown below into (4.4) and (4.5).

sino &~ ay;¢0 + by; cos v & ag;iox + by;
sin @ & asz;p + bs; COS Y & ayip + by;
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Operating zone of sin

sind = 0.85586-0.02516 sine = 6 sin6 = 0.85586+0.02516

0.8f

0.6

0.4}

60

iangle A degrlg
;“wﬁﬁ;

c0s6 = 0.49570+1.086

0.2f -
COS U
— piecewise linear of cosf
0 I
-60 40 60
Figure A d cos
where ¢ = 1,.

,9 1ndlcate9 the region of approx1mat10n

e Approximate th@yog’!:ra Hﬂﬂﬂmjuﬁ ﬂnflﬂajw based on linearization

about the operating pom%a Q, = 0 0,0, 0) intecthe state-space form (2.7) where
) ﬂ?ﬂ'lﬁ i}‘iﬂmﬂ’]’mﬂ’]@ﬂm

A = —(KP + k) /KD A = (KW + KD) /s

A9 =0 A =
AL = (&Y + kD) K A =0

o) = (K- KO- KD afy = —(Ky + Ky ks

BY = 1/ks
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Table 5.1: Approximated trigonometric functions in each polyhedral cell.

af
sina =~ 0.8558c« + 0.02516 | sina ~ 0.8558ca 4+ 0.02516 | sina ~ 0.8558c + 0.02516
cosa ~ —0.4957a + 1.0865 | cosa ~ —0.4957a + 1.0865 | cosa ~ —0.4957a + 1.0865
sin g ~ 0.8558¢ — 0.02516 | sinp ~ ¢ sin p ~ 0.8558p + 0.02516
cos p =~ 0.4957¢ + 1.0865 cosp ~ 1 cosp ~ —0.4957¢ + 1.0865
10° sina & « sino ~ @ sina ~ «

cosa =~ 1 cos'a'~ 1 cosa ~ 1
sin o ~ 0.8558¢ — 0.02516. | sinp ~ ¢ sin ¢ ~ 0.8558 + 0.02516
cos ¢ ~ 0.4957¢ 4 1.0865 cos p ~ 1 cos @ ~ —0.4957¢p + 1.0865

—10° sina ~ 0.8558a — 0.02516 | sina ~ 0.8558a — 0.02516 | sinao ~ 0.8558a — 0.02516
cosa =~ 0.4957« + 1.0865 cosy ~ 0.4957a + 1.0865 cosa ~ 0.4957a + 1.0865
sin p &~ 0.8558p — 0.02516 4 sing ~. sin ¢ ~ 0.8558¢ 4 0.02516
cos ¢ ~ 0.4957¢ + 1.0865 gl ~~ 13 & cos p =~ —0.4957p + 1.0865

£10° v 10° =
)

K = (ko + kab3; + kob%,) U K= bai(kio(03; - b3) — ks)

K;'SZ) = —?(aziba; + asibz;) (ki) —Kabt = lceb%i)’_?‘:’Kf) = —)?bgibai(—2kga1;by; — 2kgaziba;)

Kg(,l) = Qg..by 7N K.G(l) = Q. (azibs;)

EY = gQlg..(asib). K& = L01G.. (byiby)

KggZ) = krgas; K ﬁ)) = L7 gbs;

K ﬁ) = krovay K %) = | krothby

Kfzg) = kstpby K&) = —k109?(2a4:baib1;ba;)

Kf? = —k100? (azboirtagib )by, K%) = = i bribaiby;

Kf? = —kiothbs (b3, —03;) Kflg) = "Wl (agibri)

K{) = Qplg..(biibs) Ky = —Qlg.bs

K = Qfleiarib) K U= 71 0%l (b — kab?; — kob3,)

e Substitute'the bicycle parameters in the Table 4.1 and get the resulting system matrices

5.2 Least-Square Error Approximation without Boundary Constraints

This approximation method gives a discontinuous model at the cell boundaries since the error is forced

to be minimized while nothing concerning with the boundary constraints are taken into account. To

approximate the nonlinear terms of & and ¢ into a state-space form, we formulate the least square

problem from the proposed approximated linear model :

YNx1 = GNxmOmx1 + HNx1

(5.3)



28

G = [acl To T3 X4 1]
. . . . 1T
b0 = [A AY AQ aG W]
. . . . 3T
o = [ AD AQ Al o]
9 is the exact value of ¢ or & obtained from the bicycle dynamic equation (4.4) and (4.5)
1 is the approximation error
xp, is the k" vector containing N realizations of a uniform random variable in the range
[Tk, > Thomas ) 10 €aCh X
is the number of realization (higher is better)
is the number the state plus a single affine term

3=

Then we can present the problem as 3

~

A =ty | i~ G0 HZ (5.4)
)

|
Solving (5.4) for each cell, we will getall9 sets of system matrices of the bicycle PWA model.

i

5.3 Least-Square Error Approximation Witli Boundary Constraints
\

This model is continuous across thetboundary. We !:c:e}gefully begin an approximation with the cell
X5 € Ij in order to made this cell the most iaccurat‘,e;.;_Tl-le benefit is that there is no constraint for
model continuity at the first approximatric‘)n'i_ﬁ P th-érb}he first cell has already been placed, it
introduces one more boundary constraint atits attached;ijafyhedral cell. This is in case II and in the

same manner for more constraints in case-i1k. -

e Case I: No constraint | ~= '
Formulate the least square problem (5.4) with the same methodblogy for the operating-point

region X5. The closed form solution is

A (G(5)T(;(5)>—1(;(5)T3‘/' (5.5)

e Case II: One constraint
One constraint of the problem is appeared when the approximation is dong in‘the nearby region
of X5 i.e.nX2, X4, Xg, Xg. Consider an example of X§g, the continuity the model at boundary
x1 = 7y connecting X5 to Xg. The solution for 0(®) can be obtained by solving the following
problem

minimize H i — G©)g©) Hg

(5.6)
subjectto G0 = G0
where G, = [fy Ty X3 T4 1]

For the rest of X5 connected regions Xo, X4, X4, X3, the approximation is applied in the sim-

ilar fashion.
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e Case IlI: Two constraints

Two constraints are taken into account when an approximation is done in the region X1, X3, X7, Xg.

Consider the continuity of the model in X3 at the boundary x; = ~ that connects the region X5
and X3 and the boundary zo = f that connects to the region X and X3, the problem can be
written in this form )

minimize || ij— GGG H2

subjectto G0 = G0 5.7
G56(3) = Gﬁg(ﬁ)

In 5.2 and 5.3, the range [x; ned upon the region X;. For the

min & L
angular velocities as represente ti ' egion given. Hence, we assign
an operating point (0, 0) for the
x3 and x4 will be fixed at (0,0) w

point.

o will be varied in each region but
N Y linearisation model around this
ers \ g constant parameters are shown

cycle rotating velocity and forward

A

i { other values from Table 4.1 are also

The example of system
in the next pages. They are calcula
velocity are very small and no stem. Also, the constant terms
¢ = 0.01 rad/s, 0 = 0 m/s, 2 =

included.

-
L

ﬂﬂﬂ’.]“flﬂ‘ﬂ‘ﬁﬂﬁﬂ‘i
QW']&NﬂifLJ UAIINYAY



Trigonometric terms approximation model

0 0 1 0 0
0 0 0 1 0
Ar=1 9901 _0.0006 0 53011 9T |_o2r32| BT
|—0.0778  —5.8  677.723 0 —0.1705 |
[0 0 1 0 T 0 ] i
0 0 0 1 0
A2 = 110.8566 0 0 —5.3011| 2 0 By =
0 ~5.3383 677.7228 ~0.1569
0 0 0 ] i
0 0 0
As=19991  0.0006 — By =
0.0778  —5.8 /
- . i i
0 0
A4=19 3079 0 Ba =
0  —6.7773 |
[0
0
A5 =110 8762 Bs =
0 —6.
[0 0
0 0
46 =19 3079 0 Bs =
0 —6.777 PRISCEE= s
[0 0
0 0
A7=19991 0.0006 ~5.3011| o, @ =1_gor32| BT
FT]JEI”WIEI Wﬂﬁ;ﬂ
0
" wmﬁ m;ua:r T, &L Bt
1
0 0 0 0
Ao=1 9991  _0.0006 0 —53011| * 7 l0.2732 By =
|—0.0778  —5.8  677.723 0 0.1705 |
Ci =0 C; = 0 Di =0

I = {5}

I ={1,2,3,4,6,7,8,9}
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Least-square error approximation without boundary constraints model — Discontinuous model

Ay

Ag =

Ci=0
Iy = {5}

0
0
8.7185
| —1.6106

0
0

10.8284

| 0.717

0

0
8.7356
0.5886

0
0
8.7439
| —0.0724

0
0

10.8427

| —0.0354

0
0

8.7377

| —0.0269

0
0
8.7356
1.4033

0
0

10,7681

| 6.6803

0
0
8.7063

|—2.721

0 1 0
0 0 1
0.0357 —0.0015 —3.862
—3.7379  494.975  0.1775
0 1 0
0 0 1
0.0011  0.0053  —3.87
—5.586 495.2182 —0.671
0 1 0
0 0 1
—0.019 =0:0014- 3.8658
—3.0051 4959564-0.1435
0 1 a '\
0 0 L
—0.0007 _#0.0004 J+4.8606
—4.93444/620/5983" —0.0131 |
0 1 o]
0 0 - A
0.0001 40.0001" ¥ = 4861
—6.0111 6200611641=0.0106 |
0 1 =5
0 Qa2 1/ 08
—0.0044 -~ —0.0004 —4.8619
—4.9932—620:61:32—0:0047—
0 1 o
0 0 1
—0.0484 40.002 —3.8671
#5(4668 94763527 £0.22254
0 1 0 ]
0 0 1
0.074.9 0:0001 ¢+5.8668
—3.9871V 494.7090 4p.0053]
0 1 0
0 0 1
0.014 —0.0018 —3.8661
—6.1022 494.6512  0.0637

L ={1,2,3,4,6,7,8,9}

a4

az

as

ag

CZ':O

By =

0
0




Least-square error approximation with boundary constraints model — Continuous model

A =

Ay =

0 0 1 0

0 0 0 1
9.3186  0.0104 0.0001  —4.861
| 0.011 —6.2415 620.6116 —0.0106

0 0 1 0
0 0 0 1

0 0 1 0

0 0 0 1
9.3166  0.0104 0:0001—4.861
10.0088 —6.2415 62076116+ +0.0106 |

0 0 ! 0.I

0 0 0 I

9.3186  0.0001 00008 § 4361 ofi

10.8427  0.0104 0.0001  —4.861
| —0.0354 —6.2415 620.6116_ ~0.0106

| 0.011 —6.0111 620.6116 /—0.0106,

0 0 0 1

0 0 1 =5
0 0 0 _Z=2W3
9.3166  0.000T% .0:0001 —4.861
0.0088  —6.01 1 ~620:6146——0:0406+

[0 0 T 1 0 ]
0 0 = 0 1
9.3186  0.013  0.0001 —4.861

0 0 § §7 0"

10.8427  0.0001 J0.0001" -~ 1861 |
| —0.0354 —6.0111 62061164 40.0106 s

T —

™ -!j.,l

=

i "56‘ -

| 0.011  +2.9629 p620761167 #0.01064

0 0 1 0
0 0 0 1

0 0 1 0
0 0 0 1
9.3166  0.013 0.0001  —4.861

Ci=0

10.0088  —2.9629 620.6116 —0.0106

IO = {5} Il = {172733436777879}

10.8427 © 10013 0.000L- | —4.861
| —0.0354" —2:9629" 620.6116 +-0.0106

a7 =

CZ':O

0
By = 0
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5.4 Comparison of Model Error

The rms errors are calculated from the 10,000 uniform random points within the respected region.
The values are collected in the Table 5.4 and Table 5.4. The error in each partitioned region is shown
in three dimensions plot in Figures 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10. The model which
has the highest to the lowest error are linearized model, trigonometric terms approximation model,
continuous model, and discontinuous model, respectively. This happens to both the bicycle roll angle
and flywheel precessing angle. The approximation yields a good result for partitioning the roll angle

at +10°. Partitioning for more regions will possibly reduce the error.

Table 5.2: Summary of the root-mean-square ¢iroiof the approximated PWA model.

Bicycle angle

Model region  Linearized _Continuous  Discontinuous  trig. terms approx.

X 0.8168 00400 © |\ 0.1537 0.2116
X, 0.0026 00027 =" 0.0036 0.0054
X; 0.8147 02100 '\ 4 0.1528 0.2077
X, 0.8087 0.2101“4 01533 0.2123
X; 0.0015 00025, 00013 0.0013
X 0.8036 02101 — 50.1534 0.2124
X7 0.8175 02100 0.1532 0.2071
X 0.0026-7 " 0.0027¢ ' 0.0070 0.0067
X, 0.8169 0.2100 :4539—=1 02123
Average 0.5422 0.1409 0.1036 0.1419
Flywheel angle

Model region | Linearized: Continuous gDiscontinuous| [trig. terms approx.

X3 1.4861 1.0376 0.3231 1.1844
Xo 0.6506 0.1398 0.2099 (.4688
X3 1.4574 1.0376 0.4514 1.1873
Xy 0.1816 0.1880 0.0823 0.1117
X5 0.0310 0.0053 0.0183 0.0183
X6 0.1817 0.1880 0.0794 0.1118
X7 1.4642 1.0376 0.4358 0.6338
X3 0.6498 0.1398 0.9693 1.2216
Xy 1.4905 1.0376 0.6298 0.6384

Average 0.8437 0.5346 0.3555 0.6196




Table 5.3: Summary of the maximum absolute error of the approximated PWA model.

Bicycle angle

Model region  Linearized Continuous Discontinuous  trig. terms approx.

Xy 1.9624 0.6175 0.4319 0.6295
Xo 0.0114 0.0128 0.0117 0.0195
X3 1.9663 0.6175 0.4512 0.6459

X4 1.9333 0.6069
X5 0.0038 0.0041
X6 1.9332 0.6052
X7 1.96 0.6499
X3 0.0 0.0218
Xy 1.96 0.6255
Maximum 0.6499
Flywheel angle
Model region  Lineari l ont & ' «‘m‘» pus  trig. terms approx.
X, 41177 37983
Xy 1.4790 1.1821
X3 3.7934
X4 0.6119 0641303404 0.5110
X5 0.0346
Xs 0.6413 0.3385 0.5091

v AUEAENTWE NS

Xy o 4.1000 3.4018 1&19 h9914
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Figure 5.4: The precession angle error plane of the linearized model.
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Figure 5.6: The precession angle error plane of the trigonometic terms approximation PWA model.
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Figure 5.8: The precession angle error plane of the discontinuous PWA model.
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Figure 5.10: The precession angle error plane of the continuous PWA model.
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CHAPTER VI

PIECEWISE AFFINE CONTROL FOR BICYCLE ROBOT

The unstable nonlinear bicycle robot system has been already transformed to the PWA system de-
fined by the state-space matrices and cell boundings. This made the stability analysis for the actual
nonlinear system easier by searching for the PWQ Lyapunov candidate function of an approximated
PWA model. The problem can be cast as a convex optimization problem which has a powerful tool
for solving this kind of problem.

In this chapter, we gather all.information so far from-the beginning to derive the globally

quadratic Lypunov function and thus'to generate the feedback control laws for system stabilization.

6.1 Problem Formulation

The problem is formulated according to Theorem 2—4.2, In this problem, we use the discontinuous
model which provides the smallgst ayerage ertor vaIllle. The system matrices will be brought from
Chapter 4. The quadratic cell boundings are compﬁtéd ‘via the minimum volume outer ellipsoid
covering polytopes (see Figure 6.1) problemssee the detail in Appendix B. This is the feasibility SDP
problem which will be solved using YALMIP{52]; thérh'b‘deling language for advanced modeling
and solution of convex and nonconvex optimization p_r_dl_a_l_e’_m; which is implemented in MATLAB.
The selected solver is SDPT3[53]. 7 i

6.2 Main Result

The outcome parameters of solving the problem (2.26),are shown below:
Y| = [-62.444 "116i74) 569.09 @ 6956.2]

0.33580 0:057914 —0.98225 1.2957
QS A7) . Q K € £ PASERBO A K047 O-pAYLE
SN TINT I . . 0.9852 | (12.037] 77

* * * 315.32

L= YQ'! =[-33798 —116.31 —28.303 23.165]
The globally quadratic Lyapunov function is V' (z) = 27 P2 where

9.7037 7.7934 2.6923 —0.051174
| % 1220 3.3681 —0.016343
P=@7 = | « 11013 —0.013572| = ©

* * * 0.003708
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Figure 6.1: Polyhedral partition withits.outer i umn ellipsoid approximation.
LTI,
The obtained gain L is used to.fee = system. We show the simulation
result of this control laws in the-oii 6.2) and the approximated
PWA model (Figure 6.3).
From the series of resultim plots in Figures 6.4-6.11, we concmie that the gain L can perfectly

stabilize the approximated PWA system and also the @riginal nonlinear bicycle system. Moreover,
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conditions (¢(0), a(0), ¢(0), &(0)).
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CHAPTER VII

CONCLUSIONS

7.1 Summary

This thesis has proposed the new idea of bicycle robot control using gyroscopic stabilization effect.
This idea encounters the nonlinear unstable bicycle system by modeling it into a set of linear model or
piecewise affine model. Then, the piecewise quadratic Stability. theorem can be applied and used for
searching for the globally quadratic Lyapunov function to guarantee the system stability. Furthermore,
this condition can be extended with the'ellipsoid cell boundings to derive the feedback stabilization
gain. The effectiveness of the proposed method has.lbeen illustrated through simulation examples. To
summarize the thesis, we highlight main iopics in the following.

Chapter 1 briefly introduces the/motiyation beﬂind the research. Next, the literature review is
given to cover an overview of‘bicyele model and it; control method as well as some application of
PWA systems. Afterward, we present the thesis objeétive, scope and research contributions.

In Chapter 2, a basic knowledge with-some i’rﬁpoﬁant concepts of a bicycle; its nature and
the effect of gyroscopic which can help stabilize the 1'El>i2:y(_:le. An important tool to be used to derive
the dynamic equation of the bicycle are tncluded in thi-S--cflfiApter. The overview of PWA system and
its representation of matrix parameterization has been?ﬁ_t_fp’_c_lqced. And it follows with the quadratic
stability condition that uses fotr'finding the 7quadratic Lyaphrl-.ov function‘and the feedback control gain.
In chapter 3, the parameter meaStirement and calculation on the éxperimental bicycle are performed.
The major apparatus are the bédy of the bicycle itself and the gyroscopi;: flywheel. Some parameters
are obtained by the real measurement and some are obtained through the CAD modeling program
based on the real bike parameters!

Chapter 4 and 5 'presents-the detail steps in deriving the nonlinear dynamic model of an au-
tonomous bicycle usinggyroscopic effect and an approximation of this model to be the PWA model.
The nonlinear . dynamic.model is derived by Lagrangian mechanics theory, The PWA model is ap-
proximated by the 3"proposed methods; i.e: \ttigonometric tepms|approximation, Least-square error
approximation without boundary constraints, and Least-square error approximation with boundary
constraints.

Finally, all information from the former chapters are gathered to formulate the quadratic sta-
bilization problem. The unconstrained was selected as a PWA model to solve for the feedback stabi-
lization gain. The graphical results are also shown in various initial conditions accompanied with the
comparison of the response of the nonlinear model and the approximated PWA model.

The conclusion and future work guideline are briefly described at the end.
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7.2 Future Work Guideline

1. Control of autonomous bicycle with bicycle velocity feedback
The result of bicycle control in this thesis starts from the simpler case which does not tackle the
problem of bicycle speed varying. As we saw in Chapter 2 that the bicycle gives a significant
effect on the bicycle stability, so it is expected to be easier to utilize the speed to help stabilize
the bicycle. However, the problem will be more complex in the bicycle modeling and the

mutual effect to the bicycle roll angle by the gyroscopic effect and bicycle velocity.

2. PWA Identification of an autonomous bi roscopic effect

There are another methods for deriving the f the bicycle. The PWA model pro-

to proceed to the more ad
[57], [58], [59], [60] and i
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APPENDIX A

Constraint Matrices Formulation

The constraints matrices are the crucial parameters to define the region of the state in a poly-
hedral partition, to perform the PWA stability analysis and the controller synthesis. This section will

show the summary how to construct the constraint matrices G, £;, F;, S;. It is instructive to first
formulate H, F;, G;, and E;, respectively. ’ ’/
Polyhedral Hyperplane § //

9) aiid th%mamx H (2.10), it is obvious to
ions and all of them are collected in H.

From the definition of the hyperpl

obtain OHy, from the linear equ

Each hyperplane induced two

(1)
(2)

with the convention hj, < O that: e K.

Continuity Matrix

_ . C +
kth row of F, { Xi < 8.%’“ 3)
otherwise

In order to make the contin ' atrices column ran| ve can augment them according to

4)

Cell Identifier

m@uq'm&mwmn‘z

) x kth row of H X; C 8Hk
cames {IAINTUNAVINYIA Y
The cell boundn?gs E; can be obtained by
e If i € Iy, delete all rows of G; whose the last entry is non-zero.
e If i € I, and X; is unbound, augment G; with the row [01xp, 1]

e Otherwise, £; = Gj.
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The Constraint Matrices for PWA Bicycle model
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APPENDIX B

Ellipsoid Cell Boundings

In mathematics, the ellipsoid can be written in different ways, e.g. the quadratic set, the shape
matrix with uncertainty, etc. We will not go further to those topics. The minimum volume ellipsoid

that cover each polyhedral cell in this thesis is suitable to define in this form

,ﬁ//llz <1}

ﬁ i 'The minimum volume ellipsoid is

5m've = {

Our interested parameter of polyhedr

obtained by solving the following

minimize lo

subject to .,m ®)

The computed parameter, polyhedral yertices, and the r ed ellipsoid cell bounding in all 9 regions

are listed below. —
0.174 zq = 100
Ty = 1.04 =100

2, and 2, denote the bounding point of parameter o ( 3

Y, and 1, denote the bounding paint o . a
zp denotes the bounding point of parameter ¢, ¢ (no bounding, so we assign a sufficiently high value).
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