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A triangle in the Euclidean plane has various kinds of centres. For
example the centroid G, the circumcentre O, the incentre /, the orthocentre A,
and the cleavance centreJ. In this paper, we find higher dimensional
analogous of these centres for simplices in Euclidean n-space and also in
spherical n-space. Each centre is described as the point of intersection of
certain hyperplanes (or great hyperspheres in the spherical case). Several of the
theorems relating the various kinds of centres for triangles are generalized to
higher dimensions, for example we show that the centres O, G and H are
colinear and similarly, that the centres J, G and [ are colinear for any simplex
in Euclidean n-space. Finally, we obtain some new characterizations for several

of these centres.
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INTRODUCTION

A triangle in the Euclidean plane has various kinds of centres. For
example; the centroid G (the point of intersection of the medians), the
circumcentre O (the point of intersection of the perpendicular bisectors, which
is the centre of the circumcircle), the incentre I (the point of the intersection
of the angle bisectors, and also the centre of the inscribed circle), the
orthocentre H (which is the common point of the altitudes), the cleavance
centre J (which is the intersection of the cleavers), and the nine-point centre
(which is the centre of the circle passing through the midpoints of the sides,
the midpoints of the lines joining the orthocentre to the vertices, and the feet
of the altitudes).

In this paper, we find higher dimensional analogous of these centres for
simplices in Euclidean n-space and also in spherical n-space. Each centre is
described as the point of intersection of certain hyperplanes (or great
hyperspheres in the spherical case). For example; the medial plane at a given
edge of a simplex is the hyperplane which passes through the midpoint of an
edge of the simplex and through the other vertices of the simplex. We show
that the medial planes meet at a point G, called the centroid. The perpendicular
bisector of a given edge is the hyperplane which passes through the midpoint
of an edge of the simplex and is perpendicular to this edge. We show that the
perpendicular bisectors meet at a point O, called the circumcentre. The
altitudinal plane at a given edge of a simplex is the hyperplane which passes
through the centroid of a face opposite the edge and is perpendicular to this
edge. We show that the altitudinal planes meet at a point H. The incentre/ is
the point of intersection of the hyperplanes each of which is the interior angle
bisector of two faces of the simplex. The cleavance centreJ is the point of
intersection of the hyperplanes each of which passes through the midpoint of
an edge of the simplex and is parallel to the interior angle bisector of the two
opposite faces.

Several of the theorems relating the various kinds of centres for

triangles are generalized to higher dimensions, for example, we show that the



centres O, G and H are colinear and similarly, that the centres /, G and J are
colinear for any simplex in Euclidean n-space.

Moreover, we define the medial simplex of a given simplex in
Euclidean n-space to be the simplex each of whose vertices is the centroid of
an edge of the given simplex. We compare the centres of the given simplex
with those of its medial simplex. For example, we shall generalize the nine-
point centre theorem to higher dimensions.

Finally, we present characterization theorems of the centroid and the
circumcentre of simplices in Euclidean n-space. The centroid of an r-simplex
has the property that for any (n+1)-simplex, the lines from each vertex to the
centroid of the opposite face all meet. We show that this property
characterizes the centroid. The circumcentre of an n-simplex has the property
that in any (n+1)-simplex, the lines through the circumcentre of each face and
perpendicular to the face all meet. We show that this property characterizes

the circumcentre.



CHAPTER 1
VARIOUS KINDS OF CENTRES OF SIMPLICES IN R"

Simplices in R"
The following definitions and theorems may be found in [3].

Definition 1.1. A set {ao, ai, ..., a,} of points in R" is said to be affinely

n
independent if and only if it,.a,:o and .¢; =0 imply that ;=0 for all i.
i=0 i=0

Theorem 1.2. Let {ag, ay, ..., an} be a set of points in R". For each pair of -
indices, i,j let u; denote the vector w;=a;—a; Then the following are
equivalent.

(1) {ao, ar, ..., an} is affinely independent

) {ux|i =k} is linearly independent for some fixed index k

(3) {uw|i#k} is linearly independent for any fixed index k

(4) There exists a unique n-plane which contains {ag, a1, ..., an}.

When these conditions hold, the vector space V =span{uy|i #k} is

independent of k, and the n-plane containing {ao, ai, ..., an} is the plane
P= ag + V.
Definition 1.3. A convex combination of points ay, ai, ..., a, of RN is a linear

n n
combination of the form 3} #;aq; such that }¢; =1 and £20 for all i.
i=0 i=0

Theorem 1.4. 4 subset S of R" is convex if and only if S contains every

convex combination of points of S.

Definition 1.5. The convex hull of a subset S of R" is defined to be the
intersection [S] of all the convex subsets of R" containing S. If S is a finite

set, say S= {ao, ay, ..., a,}, then we shall write [S] as [ao, @), ..., a,].



Theorem 1.6. [S] is the set of all convex combinations of points of S.

Definition 1.7. An n-simplex is the convex hull of a set of n+1 affinely
independent points. A 1-simplex is called a line segment, a 2-simplex is called
a triangle and a 3-simplex is called a tetrahedron.

By theorem 1.4, the n-simplex [ao, ai, ..., @s] 18 the set

n

[@o, @ty ..., Qy] = {
i

t;a; nZt,- =1,t; 20 for allz}.
0 i=0

Notation. Given an n-simplex T=[ay, ai, ..., a,], we shall use the following
notation :

We let u; or ui(7T) denote the edge vector

u; = a—a.
U3
125
Hp2, 2%)
Uup3 Uy
Up U uo2 u
Ug , 01
uo

The edge vectors ugy;

We let V' or V(7) denote the vector space
WT) = span{ug| i#k)
for any fixed £ and we let <T ) denote the n-plane
(T) = ay+ span{ug| i#k}

for any fixed k.

Definition 1.8. Let 7=[ay, a, ..., a,] be an n-simplex in RY. A k-face of T is
a simplex of the form [by, by, ..., by] where each b; €{ayp, ai, ..., a,}. A 0O-face
[a;] is caled a vertex of T and a l-face [a;, q;] is called an edge of T. For k

€{0, 1, ...,n}, we let T} denote the (n— 1)-face of T which is opposite the

vertex ay, that is T, =[ag, ay, ...,4y , ..., @), Where a; indicates omission of



the vertex a;. Similarly for k#1[, we let Ty denote the (n—2)-face of T

~ A

opposite the edge [ax, a/], that is [ao, a1, ..., 4 5 .oy Gy s ..oy Q).
The Centroid

In Rz, it can be shown that the three medians of any triangle meet at
a point G, called the centroid of the triangle. We would like to obtain an
analogous result for n-simplices. We shall define the medial hyperplanes of an

n-simplex, and we shall show that they have a unique point of intersection.

Definition 1.9. Given an n-simplex T = [aq, ai,..., a,] in RY, and given i #j
with 0 <4,j<n, let M; be the (n - 1)-plane which passes through the midpoint
of [a;, a;] and through all the other vertices ax, k+#1,j. My is called the medial

plane of T at the edge [a;, a;]. Note that if T is a triangle, then its medial

hyperplanes are in fact its medians.

al

ap

a;

The medial plane My,

The medial plane Mj is given by

1
Mlj =5(ai +aj) +Span{uk | kila.]}

1 ) )
where u, =5(a,- +aj)—ak .Or, if we fix k#1i,j, we can write My as
My = ai +span{y, | [ #i,/}

1
where v; = wuy =a;-a; for I#k and v, =—2—(a, +ta;)-a; .



In other words x e M; iff x- ;—(ai +a;) e spanf{u| k#1,j}

ff x —q; € span{v, | / ii,j}.

Lemma 1.10. Let T = [ay, ai,..., a,| be an n-simplex in R . Then a;, a; & M

for all i+j.

Proof. Suppose that a; € Mj;. Let k €{0, 1,..., n}\{i,j}. Then a;-ax e

1
span{v; | [ # i, j} where v;=a;-a; where [#k and v, = E(ai +a;)—ay. Thus
there exist B, a; € R where /#1,j, k such that

1
ai-ar = 2 oy(a _ak)+B[—'(ai +aj)_ak]'
[#i,] .k 2

B

So 0= Yo, (a —ak)+g(aj —ak)+(5—l)(a[- —ay ). Since {a;-ay|l#k}

l#i,j,k

is linearly independent, B =0 =B-1, this is a contradiction. Hence a; ¢ M. #

Theorem 1.11. The medial planes M;; of any n-simplex T = [ao, ai,..., a,] have

a unique point of intersection G, called the centroid ( or the barrycentre) of

h
T. It is given by (n+1)G = Zai.
i=0

Proof. Existence. Let i,j € {0, 1,...,n},i#j. Let G be the point in RN

1

which 1s defined by G =——
n+1

n
Za,- o Pix k<1, j. Since
i=0

G-a; = ! Y(a; —ay) > ! (a; —ay) + 2 |2ty
— = — — —_ —-a
¢ n+17z ! k [#i,j k1 +1 ! k n+1 2 k

. . 1
which lies in span{v;| /=i, j} where v,=a;—ay and v, = E(a, +a;)-a;, we

have G € Mj; for all i#].



Uniqueness. Let P(m) be the statement “the intersection of the medial

planes My with j=1,2,...,m is the (n- m)-plane in R which passes through

1 m . v ) .
1( > aj-) and the other vertices au+1, Am+2,.--, @& - We claim that P(m) is
m+1 =0

true for m=1,2,...,n. We will prove this by induction. It is clear that P(1) is

k
true. Suppose that P(k) is true, that is, (] My, is the (n-k)-plane in R" which
j=

1 k 4 )
passes through ——( > a j) and the other vertices @i+1, @x+2,..., dy. Since
Jj=0

k k +1
ae1 € N Moj but ap+1 € Mog+1, dim( MOJ- )<n—k. By the definition of
. oy

J=l i
. , - k+1
Mo+ and the induction hypothesis, we have that ay., G+, ..., an € [} M Iz
j=1
Let [ €{1,2,...,k+1}. Then
1 kil k+1 1
a;|—a = a;—a
ke 2\ B ) e Eok+2( j T Ge2)
- 2 [1(a +a)-a J+z (a )
= —_— e = . —-a
1ol k+2 Ve J k+2

€ span {v;|j#0,1}

where v; =a;—ay+y for j#k+2,0,] and vy = %(ao+a1)—ak+2. This shows that

1 k+1 ) )
——[ x aj]e M. Since [ €{l,2,..., k+1} was arbitrary, we have that

k+2 j=0

1 k+1 k+1
— Zaj € ﬂMO_[

k+2 j=0 j=1

J

k+1
a; |—Qp2,a — Qo | =k+3,..,n, is linearl
k+2{ . j] k+2>Q1 ~Apyr | } y

We claim that {

independent. Let o, otg+3, g4, ..., &, € R be such that



1 k+1 n
a a;)—a + a.(a; —a = 0. Then
{k+2(j§0 i) k+2] j=%:+3 jla; —ag,2)

k+1 n ‘ |
zOk +2(aj _ak+2)+ . % 3a’j(aj —ak+2) = (. Since {aj_ak+2|]=0, L,...,
J= j=k+

k+1,k+3, ..., n } is linearly independent, o« =0=o; for all j € {k+3, k+4,..., n}.
Thus we have the claim and P(k+1) is true. So P(m) is true for m=1,2,..., n.
Hence G is the unique point of intersection of the medial planes My where

J#0 and hence also of all the medial planes M; where j #i. #

Definition 1.12. Given an n-simplex T = [aq, a1,...,a,] in RY, let M; be the

line through a; and the centroid g; = l( >.a; ) of the opposite face 7. M; is
n ki

called the medial line of T at a; in RN,

as

M,

The medial line M,

Note that the equation of M; is

x = g+ (gi-a)t ,te R

: 1 : .
Since g, =—(2a;), the equation of M; can be written as

N ki
1
X =a; +|—| Xa; |—a; |t ,teR
o\ k #i
or x=a,+[2ak —na,}s ,seR
k =i

or x =(1—ns)a,+[Zak]s ,s € R

k #i



Theorem 1.13. Given an n-simplex T =[ay, ai, ..., ay] in RN, the medial lines M;

meet at the centroid G of T.

Proof. Let 4,7 €{0, 1,...,n},i#j. First we shall show that M;# MJ By
definition, we have a; eM;. Suppose that, we also have a; eM,. Since qeM;,

there exists some feR such that a;=a;+ (g;-a;) t. Then

a; —a; =(g; —a;)t

(l ap —a[]Z
R ki

> & i(ak ~a;)

k#i 1

5 [i(ak —a,.)j|+%(aj—ai).

k=i, jLR

t t )
So (1-=)a; —a;)= ¥ —(ay —a;), and a; —a; = % (ap —a;).
n k=i, jh k=i, j B —1

This is a contradiction since {a,-a;|k =i} is linearly independent. Thus a; ¢ M;

but aje M; so M;# M;. So the intersection of M; and M; is the empty set or a

singleton.
. 1 n
Next, let G be the point defined by G = >a;, fix ie{0,1,...,n}.
n+1r=o
. 1 on 1 1 n 1
Since G = a, = a; + a, =|1- a; + a ,
n+1k§0k n+l "' n+1k§,-k [ n+1j’ n+1k§,-k
we have that G = (1 -¢)aq; +t— >.a; where ¢ = © . So G € M;. Hence the
N fowi n+1

medial lines M; meet at the point G.#
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The Circumcentre

In R?, the three perpendicular bisectors of the sides of any triangle
meet at a point O, called the circumcentre, which is the centre of the
circumscribed circle. We shall show that an analogous result holds for any

n-simplex in R™.

Definition 1.14. Given an n-simplex T = [ao, a@i,..., @] In RN, et Py be the
(n—1)-plane in <T> which is perpendicular to the edge [a;, a;] and which
passes through the midpoint of [a;, @] Py is called the perpendicular bisector
of the edge [a;, a;] In <T>

as
aq

a

9

The perpendicular bisector P,;
Note that

Py = {x e (T )| <x —%(a,- +a;),a —aj>=o}

= {x ()| (2r.0, -a,)=(e; +a;.a, -a, )}
{x e (T)| <x —a; +%(aj —a;),a —aj>:0}
b 0] (s -0y, -a,) =3 e, - 1

i

or 5

fl

We shall show that the perpendicular bisectors P; meet at a point O,

called the circumcentre, which is the centre of the circumscribed (n — 1)-sphere.
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Notation. Given an n-simplex T = [ag, @i,..., 4], choose an orthonormal basis
for the vector space V(T) spanned by 7. Set u;=a;—a; For fixed k with
0<k<n, let A(T) denote the nxn matrix whose rows are the vectors wuy=

a;— a, with respect to the chosen basis.

Theorem 1.15. Given an n-simplex T = [ay, a\,..., Qn] in RN , the perpendicular
bisectors Py of the edges [a;, aj] meet at a unique point O. If we fix k with
0<k<n then O is given by

0 =a+ ;—A—‘P

where A = A(T) and P is the nx] matrix whose rows are |uk,-|2.

Proof. Let T=[ao, ai,..., a,] be an n-simplex in RY, fix ke {0, 1, ..., n}.
Existence. Let O be the point in R" which is defined by O = a; +%A"]P or

24(0 —a;) = P. Since A is the matrix with rows a;—ax and P is the matrix

whose rows | u|>, this means that <a,- =&y (G —ak)> = <al- ~ay,a; —ak>
(a; —a; 200 —ag) ~(a; ~ay)) = 0.

So (a; —ay 20) = {a; —ay,a; +a; ) for all i For all i,j e {0,1,2,...,n}

2

1#J, we have

<ai’ai>—<ai>ak>+<ak ’ai>+<ak ’ak>

- <a/ ,aj>—<a,-,a,->

This shows that O is a point of intersection of the perpendicular bisectors P .



We shall show that O is the only point of intersection of the perpendicular

bisectors Pj.

Uniqueness. Suppose that xe Pj; for all i,j € {0,1,2,...,n}, i#].

Then <a ~a,—,2x> = <aj —a;,a; +a,-> for all i,j e {0,1,2,...,n}, i #].

J J
and in particular, if we fix £ then
<al- —ay ,2x> = <a,- —-ay,a; +ak> for all i#k.

Thus (a,- —ay,2(x —-ak)> = <a,~ —ay,a; —ak> for all i=#k,

or equivalently, 2A(x—ax) = P. Since A is invertible, x =q; + %A_1P= 0.

This shows that the point O is the unique point of intersection of the

perpendicular bisectors Py . #

12

Theorem 1.16. Given an n-simplex T=[ay, ai,..., @n] in RN , the perpendicular

bisector Py of the edge [a;, aj] is the set of all x <T > such that dg(x, a;)
= dg(x, a)).

.Proof. Let T=[ao, a1,..., @y] be an n-simplex in R". For any x € <T>,
x € Pyiff (2x —(a; +a;).a; ~a;) =0
iff <(x ~a;)+(x —a;),a, ~aj> =0
iff <(x —a)+(x —a;), (x —a;) - (x —a,.)> =

iff <x —a;,x —aj> —(x —a;,x —a,-> +
<x —aj,x —aj>—<x /% —a,-> =0
iff <x -a;,x —a,-> = <x —a;,x —aj>
iff |x-—a;|% = |xq;|°
Ut dr(x, a;) = dr(x, a)).
Hence the perpendicular bisector of [a; a;] is the set of all x such that

dR(X, a,-) = dR(X, aj). #

0
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Definition 1.17. Combining the above two theorems, we see that the
circumcentre O 1s the unique point with the property that dr(O, a;) = dr(0O, @;)
for all 7, j. We define the circumradius of T to be R =dg(0, a;) for any
fixed k.

Corollary 1.18. Given an n-simplex 7 = [ay, ai,..., @], there is a unique (n—1)-
sphere in <T ), called the circumscribed sphere of T, which passes through

each of the points a;. It is the sphere with centre O and radius R.

The Orthocentre

In R% it can be shown that the three altitudes of any triangle meet at
a point H, called the orthocentre of the triangle. In RY , however the altitudes
of an n-simplex do not always intersect, so we shall give an alternate

definition for the orthocentre.

Definition 1.19. Given an n-simplex 7 = [ag, a},..., @) 1D RN, let A; denote the
(n— 1)-plane in (T > which is perpendicular to the edge [a;, a;] and which
passes through the centroid g; of the opposite (n—2)-face Tj; = [ao, a1,..., 4

IEXERT)

&j .- @n). We shall call 4; the altitudinal plane of T at [a;, aj]. Note that if

T is a triangle then the altitudinal planes are in fact its altitudes.

a)

a

a

The altitudinal plane A
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The altitudinal plane 4; 1s given by

4y = () {xr -gg.a; —a;)=0

We shall show that these altitudinal planes 4; have a unique point of

intersection H, which we shall call it the orthocentre of T.

Theorem 1.20. Given an n-simplex T = [ay, ay,..., ax] In RN, the altitudinal
planes Ay have a unique point of intersection H. If we fixed k with 0 <k <n
and let A =AT) then H is given by

H=aq+4'K

where K is the nx1 matrix whose rows are <”ki 8k —ag >

Proof. Let T=[ao, ai, ..., a,] be an n-simplex in R", fix k €{0, 1, ..., n}.
Existence. Let A be the point in RN which is defined by H =a; + A'K.

Then A(H—ay) = K. Since A4 is the matrix whose rows are a;—«; and K is

the matrix whose rows are <uk,- S8k — Ay >, this means that <u ki »H —ak> =
<uk,~,g,~k —ak> for all i#k. So <uk,,H—g,~k>=O for all i# k. This shows

that A lies on each of the altitudinal planes Ay. It remains to show that H

lies on the altitudinal planes with 7, j# k. We have

1

gj = 2 a;
n—=1igij
1
- Za[ —a; +ay
n—=1\r=k,j
= 8y~ (ai—ay) for all i, j,
n_

and so

() —ai.H-gy) = {a; ~ap.H-gy)*{ax ~a;.H-gy)
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1
= <aj —ay ,H —gy +ﬁ(ai "ak)>

1
_<ai —ak,H—g,d +nj(aj —ak)>

1
= c—ap H—gu)tla; —ay, a; —a
<aj k gk_[> < J k n—l( i k)>

1
—(a; —a; ,H-gp) +<ai —a/w:(aj _ak)>

1 1
= <aj _Clk,n > (al- —Clk)> —<a[ ‘ak,m(aj —ay )>

1
n—1

1
n-—1
= 0,

This shows that A is a point of intersection of all the altitudinal planes A;.

<aj —ak,ai—ak>— <al-—ak,aj —ak>

Uniqueness. We shall now show that A is the only point of

intersection of the altitudinal planes Ay, i # k£ (hence also of all the altitudinal

planes A;) . Suppose that x € Ay, for all i# k. Then <a,- —ay,x —gik> =0

for all i# k. That is <a,- — gk —ak> = <a, —ay,8i —ak> for all i+ k.
Or equivalently, A(x—ay) = K. Since A is invertible, x =a, + A'K = H. This
shows that the point H is the unique point of intersection of the altitudinal

planes A;. #

In Rz, the circumcentre O, the centroid G, and the orthocentre H of a
triangle, all lie on a line called the Euler line of the triangle, and H + 20 =
3G. We shall show more generally that the points O, G and H of an

n-simplex in RN all lie on a line, also called the Euler line.

Theorem 1.21. O, G and H are colinear and (n—1)H + 20 = (n+1)G.
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Proof. Let 4 = Ay(7).

a, —ap, -a
By Theorem 1.20, H—ao = (2 ~a,802 = o)

<a| —dgy,ay ‘ao>

By Theorem 1.15, O —a, :;—A“ (42 —a0,02 =a0) | oy

<an —dp,a, _a0>



-
—ao, Za —(n +1)ay

a _(}’l +1)a0

—ao, Za —(n +1a,

(n-1)(H-ag) +2(0—ap) = A~ < ‘ao’.

= A4 nZai —(n +1)a0j
i=0

= (m+1)}G-ap) .
Therefore (n—1)H +20 = (n+1)G. #

;
;
;

17
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The Incentre

In R%, the three angle bisectors of a triangle meet at a point I, called
the incentre, which is the centre of the inscribed circle. We shall show that an

analogous result holds for any n-simplex in R

Notation. Given an n-simplex T=[ao, ai,..., a@y] In RN, fix £ with 0<k<n.
Recall that <T > = a, + V(T), where V(T) =spanf{uy | i# k}. Similarly, for i#k,
we have <Tl~> =a, + V(T;) where WV(T;) = span{u| j# k, i}. There are two
normal vectors # m; for the face T}, that is there are two vectors +m; e V(T)
such that | m;|=1 and <ml-,ukj > =0 forall k,j#i. Let m; or m(7T) denote the
inward normal vector for the face T;, in other words m; is the normal vector

such that <mi,u ki> >0 for all k=i, then —m; is the outward normal vector.

Note that <m,-,uj,-> = <m,,uk,.> >0 for all k,j+1i, since <m,-,uﬂ> =
<m,~,a[~ —aj> = <mi,a[ —'ak +ak —aj> — <I7’li,uki> - <ml,ulg> = <mi,Ukl'>.
We defing the angle between two (1 — 1)-faces of an n-simplex 7 in RY
as follows ;
Definition 1.22. Given an n-simplex T=[aq, ai,..., a,] in RN, the angle between

the two faces <T,-> and <Tj> is the angle O(7, 7})=arccos|<m (M >' € (0,%)

where m; and m; are normal vectors of 7; and 7}, respectively.
Definition 1.23. Given an n-simplex T=[aq, ay,..., a,] in R", an angle bisector

of T; and T; is an (n— 1)-plane B in <T> which contains 7j; such that 6(B, T;) =
0(B, T)).
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Theorem 1.24. Given an n-simplex T=[ay, a\, ..., a,] in RN, there are two angle
bisectors of T; and T;. They are the two (n— 1)-planes in <T > with orthogonal

vectors m; + m; and m;— m;.

Proof. Let B be an angle bisector of 7; and 7;. Then B is an (n—1)-
plane in <T > which contains Ty, and (B, T;) = 6(B, 7). Let b be a normal
vector for B. We have that

0(B, T;) =6(B, T)) 1iff arccos Kb,m ; >l = arccost,mj >‘

= |(.m; )

iff <b,mi> = <b,mj> or <b,m,~> =~<b,mj>

iff (b, m;)

iff <b,m[ —mj> =0 or <b,m,~ +mj> = 0.

Case 1. <b,m, —mj> =0

Since <m,- +m i —mj> =|m;| > ~|m;|* =0, m;+m; is orthogonal to
m;— m;. Since m; 1s a normal vector of 7; and T; < T;, m; is orthogonal to
<sz>- Similarly, m; is orthogonal to <T,-j>. So we have <m,- +m ,uk,> =0 =
<ml- —m a“kl> for all k,7/#i,j. This show that m;+ m; and m,;—m; are both
orthogonal to <T U> Since m;—m; 1s an orthogonal vector of <T [-j> ,
<V(T jroim, —m; }> i1s an (n — 1)-dimensional vector subspace of V(7), and
{m; + m;} is a basis for <V(T,~j)u {m; —m }>l in (7). So if b is a normal
vector of Tj; and b is orthogonal to m;—m;, then be span{m; + m;}. Hence b is

m. +m . m, +m .
{ l
J_or to — J

‘m,-+mj‘ \mi+mj|

either equal to

Case 2. <b,m,- +mj> =0

The proof of this case is similar to of case 1. We have that b is equal
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m; —m; m; —m;
[4 {
I or to — L

0}
imi~mj‘ im,-—mj‘

t

Therefore the two angle bisectors of 7; and 7; are the planes through

Ty in <T> with orthogonal vectors m; +m; or m;—m;. #

Definition 1.25. Given an n-simplex T = [ay, ai, ..., a,] I RN, the internal angle
bisector By of T; and T; is the angle bisector of the faces 7; and 7; with
orthogonal vector m;—m;. The external angle bisector E; of T; and T; is the

angle bisector of the faces 7T; and 7; with orthogonal vector m; + m;.

‘The internal angle bisector B and the external angle bisector £

Note that if we fix k#1i, j then
i = {x e(T>| <x —a,.,m; —mj>

= {x e<T>|<x —ay.,m; +mj>

o~
I

0

and

&
|

0

Il

Remark 1.26. <ak,m,- —mj>=<a,,m,- —mj> for all k,/+#1, j since
<a1 —a, ,m; —mj>=<uk,,m,- —mj>:<uk,,m,->—<uk,,mj> = 0.
Notation. Given an n-simplex T=[ag, a, ..., a,], fix an orthonormal basis for

W(T). Given k with 0 <k<n, let B=ByT) denote the matrix whose rows are

the vectors m; —my, i #k with respect to the chosen basis.



Theorem 1.27. Given an n-simplex T = [ay, ay, ..., @y Iin RN, fix ke {0, 1, ..., n}.

Then the matrix B=By(T) is invertible.

Proof. Let X= {mi —my ‘i:&k}. We shall show that X 1s linearly

independent. Suppose that Y o, (m; —m,) = 0. We claim that > o; = 0,

i#k i#k
dom; “

suppose not. Then m, =2k Set r; =—<—. Then X¢, = 1 and
i#k i#k

i+k i#k

my = >.t;m; . For each i#k, <m,(,uki>:<Zt,~mi,uki> = t,-<ml~,uki>.

My Uy _ _
Thus ¢; = M < 0 which contradicts the fact that 3¢, = 1. Hence
Qni,uki ik

2.o; = 0.

ik
Since Y a;(m; —m;) =0 and > a; =0, we have Y o;m;=0 and
ik i#k i=k
so for any j#k, 0=<Zoa,-m,-,uk,>=ocj<mj,ukj>. Since <mj,ukj> #0,
ik :

o; =0 for each j# k. Hence X is linearly independent, so B is invertible. #

Theorem 1.28. Given an n-simplex T=[ay, ay, ..., a,] in RN, the internal angle
bisectors By have a unique point of intersection I If we fix k and let B =
BW(T) then I is given by

I=a +B'M

where M is an nx1 matrix whose rows are <m,~ —-my,a; —ay >, where
i

l,'i I k.

Proof. Let T=[ay, a), ..., @y] be an n-simplex in RN, fix ke {0, 1,..., n}.

Existence. Let / be the point in R which is defined by [ = a, + B 'M.
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Since B is an nxn matrix whose rows are m;—my and M is an nxn matrix
whose rows are <m[ —my,a —ak->, this means that (m,- -my I —ak> =
(mi—my,ay, —ay) forall Lz ik
For all i,7€{0,1,2,...,n}, i#j, we have
<m,- —mj,l—ak> = <m,- —my tmy —m;, I —ak>

= <mj =y o —ak>—<m,- —my I —ak>

= <mj —my.ap —ak>—<m,- —Mmp,ay —ak> Sy # Lk

= <mJ —ml’a[p _ak> ,lp¢l,],k-
This shows that [ is a point of intersection of the angle bisectors Bj;.
Uniqueness. We shall now show that 7 1s the only point of intersection

of the angle bisectors By, i#k (hence also of all the angle bisector By ).

Suppose that xeBy for all i#4 Then <m,. —My X —aj[> =0 for all j; # i, k.
-That 1s <m,- — Mgk =T By —aj(> =0 for all j; # ik, so

(m,- —my ,x —ak>= <m,~ —my,a; —ak> for all j; # i, k. Or equivalently,

B(x —a;) =M. Since B is invertible, x =a; + B'M = I. Hence the point / is

the unique point of intersection of the angle bisectors Bj;. #

Theorem 1.29. Given an n-simplex T=[ay, ai,..., a,] in RY and given any point
xe <T>, we have a’R(x,<Ti >) = dR(x,<Tj>) if and only if x lies on one of the

two angle bisectors B and Ej of T; and T;.

y

dR(x,<T,>)=dR(x,<Tj>) iff ‘<x —a,m,>~ = Kx —a,mj>‘

iff <x —a,mi>=i<x —a,mj->

Proof. Let ac <T> For each xe (T), we have

iff (x —a,m, +m )= 0
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iff x lies on one of the two angle bisectors of 7; and 7} #

Definition 1.30. Since / € By for all i, j, by Theorem 1.28, dp (],(T,- >) =
dR(I,<Tj >) for all i, j. We define the inradius to be r=dp (I,(T,- >), which is

dependent of i. The (n— 1)-sphere S(I,7) = {xe(T)|dR(1,x)=r} is called the
inscribed sphere of T.

The Cleavance Centre

Definition 1.31. Given a triangle [ay, a1, a2] In RN, and given an index i, we
define the cleaver from a; to be the line L; which is parallel to the angle bisector

at a; and which passes through the midpoint of [ay, a/] .

a;

Ak t + a

The cleaver L,

Theorem 1.32. Given a triangle [ao, a\, a>] in RY, the cleavers L; meet at a point
J, called the cleavance centre. This point lies on the line which passes through I

and G, and is given by 2J =3G -1

Proof. Let b; be the midpoint of the edge opposite the vertex a;.
Case 1. If /=G, then each median bisects the respective angle, and the
triangle 1s “isoceles three ways”, that is, equilateral.

Case 2. If a triangle [ao, a1, az] 1s not equilateral, then there 1s a unique
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line which passes through 7/ and G. Consider a point J such that (/- G)=
2(G-J). Since (G—ap)=-2(G-by), the edge [ag, I] is parallel to the edge
[bo, J]. Since [ao, [] is the angle bisector at aq, [bg, J] is parallel to the angle
bisector at ag. Similarly, [b1,J] and [b;,J] are parallel to the angle bisector at a,

and a,, respectively. #

We would like to find a higher dimensional analog for the cleavance

centre of any n-simplex in RM.

Definition 1.33. Given an n-simplex 7=[ay, ai,..., @,] In RN, let Qi denote the
(n—1)-plane which passes through the midpoint of [a;, a;] and is parallel to the
mternal angle bisector of T; and 7;. Oy is called the cleavance plane of T at the

edge [ai;, aj]. Note that the cleavance planes of a triangle are its cleavers.

Note that Oy = {x e<T>| <x —%(a[ +aj),m,- —mj>:0}

= {x e<T>|<x =T +%(aj —a,-),m,-—mj>=0}

= {x e<T>| <2(x —aj),m,- —mj>=<al- —a;,m; —mj>}.
We shall show that the cleavance planes Q; meet at a unique point J,

called the cleavance centre.

Theorem 1.34. Given an n-simplex T =[ay, ai,..., a,] in RN, the cleavance planes
Qi have a unique point of intersection J. If we fix k€{0,1,2,...,n} and let
B= Bk(T) then

| -
J=a + —B
k 2 Q

where Q) is the nx1 matrix whose rows are <m,~ -my,a; —ay >
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Proof. Let T =[ay, ai,..., a,] be an n-simplex in RN, fix ke{0,1,2,...,n}.
Existence. Let J be the point in RY which is defined by J=a; +

1 . i .
EB_IQ. Then 2B(J—ax) =Q. Since B is the matrix whose rows are m; — my

and Q is the matrix whose rows are <m,~ —-my,a; —ay >, this means that
<m,- —mk,Z(J—_ak)> = (m,- -my ,a; —-ak> for all i#k.
So <m,-—mk,2J>= <m,-—mk,a,~+ak> for all i+ k.

This shows that J lies on each of the cleavance planes Oy for all i+ k.

For all i,j €{0,1,2,...,n}, i#Jj, we have

(mj —m20) = (m; —m2J) = {m; —m; 2J)
=<mj ~ M 48 +ak>—<m,- — My ,a; +ak>
= (mj —mp.a; vag)+(my,a —ag)=n e, -ay)-
<ml-,aj —ak>+<’”k7"j —ak>—<m,- —my.a; tay)
( since <mj’”ki>20=<mi’ukj> and (m,uy ) = <mk’u/‘f>)
= <mj My By +(lk>+<mj SN Gy _a/‘>_
<ml —ak>—<mi —my .,a; +ak>
= <mj —My,a; +ai>—<mi—mk’ai+ai>
= <mj i2a; +a; >

This shows that J is a point of intersection of all the cleavance planes Q.

Uniqueness. Suppose that x € Q; for all i=.

Then <m —m,-,2J>= <mj m;,a +a> for all i/,

J J
and in particular, for fixed &, <m, —my ,2J> = <m,- ~-my ,a; +a,(> for all i # k.
Thus <m,- —-my,2(x —ay )> = <m,~ —my ,a; —ak> for all i+#k,

. .. : |-
or equivalently, 2B(x —a;) = Q. Since B is invertible, x =a; + EB ‘0=
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This shows that the point J is the unique point of intersection of the

cleavance planes Q. #

Theorem 1.35. The centres G, I, and J of any n-simplex in R" are colinear

and (n-DI+2J = (n+1)G.

Proof. Let B = Bo(T).

By Theorem 1.28, I—ay = i

<m1 —mo,ajl —a0>

<m2 —mo,ajz —a0>

_<mn —mo,aj" —a0>—

where j; # 0, i. Since

<m,- —mo,aj>=<m,- —mo,a1> for all j,/#1i,0, we have

(n—1)<m,- —mo,aji> =<m,- -my, Zak>.

So (n-1)(I—ag) = (n—-1)B"

k #0,i

<m] —mo,ajl —a0>

<m2 '—fno,ajz —a0>

<mn —mo,aj" —a0>

-mgy, »a; —(n —1)a0>

i#0,1

—mg, 2a; —(n —1)ao>

1¢02

<m —-mgy, 2.4; —(n—l)a0>

i#0,n
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<ml —Mmo,aq —a0>
By Theorem 1.34, 2(J— ao) =B (m2 ~Mo.%2 ~ao) |
(mn —my,a, _a0>

<m1 —mg, Ya; ~(n +1)ao>

i=0

Thus (n~ 1)({I - ao) + 2(J— ao) =B <’"z —mg, 2a; —(n +1)ao>

1=

L<m,, =g %ja,— —(n +1)a0>

i=0 i

=B“B[_"za,. —(n +1)a0] = (n+1)(G - ag)

Hence (n— 1) +2J = (n+1)G. #



CHAPTER II
MEDIAL SIMPLICES

Given an n-simplex 7=[ay, ay, ..., a,] in RV, let g; be the centroid of the
face T;. We have that T'=[go, g1, ..., 2+] iS an r-simplex in RN, since
Vo, -80= [Zak —Zak] —(ao —a;) and since {uy; | u;=a;—ap,i#0}
ki k=0
is linearly independent, and so { vy; | vo;=gi—go, i # 0} is linearly independent.

The n-simplex T” is called the medial simplex of T in R™.

Note that <T >= <T ’>.

Notation. Given a € RN and ke R with k=0, let H,x denote the homothety
centred at a of ratio k. Recall that H,, is given by

Huyr(p) = a+k(p—a)
for all p € RY. The homothety maps any k-plane through the point a to itself.

Theorem 2.1. Let T=[ay, ai, -.., @y] be an n-simplex in RN with medial simplex

T’ =[go, g1 ..-» 8n)- Let Hg :<T > — <T > denote the homothety

Hg (x) = g—2(x—g).
Then
(1) Hgn(g)) = a; for all i€{0,1,...,n}
(2) HyT) = T

n
Proof. (1) Let i {0, 1,...,n}. Since a;— G = q;— ! e @; =
n+1;-o0
1 n
na; — 3 a; andg,G——Za-— Z

n(nl—+1)((n +1) ¥ a; -n Za J ;[Zaj —nai],we have

j#i j=0 n(n +1) i

-G =-n(g;— G). Hence Hy 4(g) = ai.
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h .
(2) (<) Let xeT’ Then x = 3t;g; for some fo, t, ..., € R such that
i=0

t; 20 for all i and %ti =1. Since
i=0
Hy n(x) = G—n(x-G)

1 r n 1 n
— 24 —n| 28— 24,
n =0 i=0 n+1;=9

h n
X=Xt e
j=l) i=0

- Sa,-514(3a))

i=0 J#i

3 %(1“21‘1')‘11‘

i=0 J#i
n

= Yt;a; €T,
i=0

we have H,_(T) < T.

n
(o) Let xeT. Then x = } t;a; for some %, t,...,t, € R with ; 20 for
i=0 .

n I n n
all i and >z, =1. Since Hy_o( 2t;8;) = 2t;a; = x and t,g,€ T’ we
i=0 i=0 i=0 i=0

have xe H,_,(T"). Thus Hg_(T) 2 T.
Hence Hy o(T) = T. #

We shall compare the centres of a given n-simplex with those of its

medial simplex.

Theorem 2.2. The n-simplex T =ay, ai, ...,a,) in R" and its medial simplex T’

have the same centroid.

Proof. Let G’ be the centroid of the medial n-simplex 7 Then



30

1 (a1
~n+1[i§0n[k§iak]]

S (an+DG—aJ

a5

(DG 1 &,

n n(n+1) =0

Hence T and 77 have the same centroid. #

Theorem 2.3. Let T=[ay, a1, ..., ay,] be an n-simplex in RN and O’ the
circumcentre of the medial n-simplex T' Then

nO’ = (n+1G- 0.
Proof. Let T=[ay, ai, ..., a,] be an n-simplex in RN and O’ the
circumcentre of the medial n-simplex 7 By theorem 1.15, we have
O’ = go+ ;—(A’)'IP' where A is the nxn matrix whose rows are g;—go,i#0
with respect to the chosen orthonormal basis for V(7) and P’ is the nx1

. . 1
matrix whose rows are <gl~ - 20,8, —g0>. Since gi—go= ——{(a;—ag) for all
n

) 1 . J .
i#0, A’= ——A where A is the matrix whose rows are a; —ag. Since
n

1
<g,- - 80,8 '—g0> = n—li—<a,- —ag,a; —a0> for all i#0, P’ = n—ZP where P

is the matrix whose rows are <a,- ~ag,q; —a0>. Thus

, 1 1y L
O = go+ 5(—'1/1 )(n—ZP)
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- Lo o 4p
n 0 2n
’ 1 -1
Then nQ’” = Ya, ——AP
i#0 2

= ()G —ao—(O—ag) (since (W1)G= Sa;)
i=0

= (nt)HG-0
Hence nO’ = (n+1)G-0. #

Remark 24.(1) O’= M By Theorem 1.21, (n—1)H +20 = (n+1)G,
n
o 0= (n +1)G2+(n -1)H AP TE (n —-1)H +0O \
n n

(2) let H” be the orthocentre of 7. Since (n— 1)H’+20’=(n+1)G, we

have o - (n =2)(n +1)G +20

2

n(n —1)
or H,z(n +1)G—H,
n
or H,=(n—2)H+20‘

n
(3) If T is a triangle, then O’ is the midpoint of the edge [O, H]
and H" = 0.
4) O,G,H,0O’ and H’ all lie on the Euler line.

Theorem 2.5. Let T = [ag, ay, ..., a,] be an n-simplex in RY, let S(O,R) be the
circumscribed sphere of T and let S(O',R’) be the circumscribed sphere of T’.

Then R’'= 1—R.
n

Proof. R’ = |O'-g;|

I[(n ~DH +(n +1)G]_(1_ Zak]‘
2n n ko=
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‘((n ~1)H +(n +1)Gj_{(n +1)G —a,.}\

2n n

_ (n =1)H —(n +1)G +2a;
2n

The nine-point theorem says that for any triangle, the midpoints of the
sides, the feet of the altitudes and the midpoints of the segments joining the
vertices to the orthocentre all lie on a circle which is called the nine-point
circle of the triangle. The centre N of this circle lies midway between the
orthocentre and the circumcentre. Note that N is the circumcentre of the
medial triangle.

We shall generalize the nine-point theorem to higher dimension.

Theorem 2.6. ( The 3(n+1)-point Theorem )
Given an n-simplex T = [ay, ay, ..., ay] in RN, et gi be the centroid

of the face Ty, let h; the point which lies (1/n)" of the way from H to a; and

let k; the point of intersection of <T I-> with the line H; which passes through

h; and which is perpendicular to <T,->. Then the points g;, h; and k; for all

ie€{0,1,..,n} all lie on the circumscribed sphere S(O, R of T"

Proof. Let T =[ao, a, ..., a,] be an n-simplex in RN, let g; be the
centroid of the face 7;. The circumscribed sphere S(O’ R’) of the medial

simplex 7= [go, &1, ..., &x] passes through g; for all ie {0,1,...,n}. Let h; the

th

point which lies (1/n)" of the way from H to a;, that is

el DY C “DH A goe o = (141G Za;
n n

h,'= a; +
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g +th;y (m-DH+(n +1)G

2 2n
h; lies on S(O, R’) for all i e {0, 1, ..., n}.

O'. So [gi, k] is a diameter of S(O’ R’). Thus

Next, we will show that k; € S(O’, R"). Since [A;, k;] is perpendicular to
(T;) and [g;, kil < (T} ), [hs k) is perpendicular to [g;, k). Thus the angle & in
the triangle [g;, 4, k] 1s ®/2. Since [g;, k] is a diameter of the circumscribed
sphere S(O, R’), we have k;e S(O’, R). Hence the points g;, A; and k; where
ie€{0,1,...,n} all lie on the circumscribed sphere S(O’, R’ of T’ #

Given an n-simplex 7=[ay, ay, ..., @] In RN, let ie{0,1,...,n}. Since

<m,.,vkj> = <m,.,gj —gk> = —%<m,,aj —ak> = —%<ml-,ukj>, we see that the
inward normal vector m; of the face T; is equal to the outward normal vector -
m;” of the face 7;” of the medial simplex.

Let B;” be the internal angle bisector of the two faces 7;” and 7;’.
Then By’ is the (n—1)-plane in <T ’) which contains 7;;" and which has
orthogonal vector m;"— m;" Since m;"=—m; for all i, m;— m; 1s an orthogonal .

vector of Bj’.

Theorem 2.7. Let T=[ay, ai, ..., ay] be an n-simplex in R and let J' be the
cleavance centre of its medial simplex T’ Then

n’ = (n+1)G-J.

Proof. Let 7=[ay, ay, ..., a,] be an n-simplex in RY and let J’ be the

cleavance centre of its medial simplex 7’ By Theorem 1.34, we have
J'=go+ %(B’)‘l Q' where B’ is the nxn matrix whose rows are m;—mg with

respect to the orthonormal basis for ¥(7) and Q7 is the nx1 matrix whose
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. 1 _ , 1
rows are <mi —my,8; —go>- Since g;—go= —(ag—a;) for all i#0, Q'= —;Q
n

where O 1s the matrix whose rows are (m,- —-mygy,q; —a0>. Thus

1 -
J =g - —B0
2n

L[ Za,-] - L(J —ag)
n

n\;j=z0
1 1

= —(n +1)G ~ay) ~ —(J —ay)
n {1

Thus nJ’ = Ya;,—(J—-ap)

i#0
= (nt1)G-J. #
Remark 2.8. (1) We have J’ = M By theorem 1.35, (n— 1)/ +2J =
n
2 -1)/
(n+1)G, so J' = (n + 1) 1 , or J* = (n-DI+J

2n n

(2) Since (n— 11"+ 2J” = (n+t1)G, We have that
(n =2)(n +1)G +2J

"= :
n(n —1)
or = (n+1)G -1 ,
n
or 7= (n =2)I +2J.

n

(3) The centres G, 1, J,1" and J’ of the n-simplex all lie on a line.

(4) If T is a triangle, then ['=J.



CHAPTER III
VARIOUS KINDS OF CENTRES OF SIMPLICES IN S"

Definition 3.1. The n-sphere in R™' 8", is the set of all points u in R™' such
that |u|=1,
S" = {ueR"™"| |u|=1}.

Given u € ", the point —u is called the antipodal point of u.

Definition 3.2. Given two points # and v in S", we define the distance between u

and v in S” to be equal to the angle between the vectors # and v in R,
that is ds(u,v) = 6(u,v) = arccos(u,v> )

Note that dg(u, v) <n with equality if and only if v is the antipodal point of u
and dg(u,v) +ds(u,—v)=m.

Theorem 3.3. The distance ds(u,v) between two point u and v inS" determines

and is determined by the distance |u—v| between u and v in R™".

Proof. We have 0<ds(u,v)<7m and 0<|u-v|<2. By the law of cosines,
lu—v|® = 2—2cos0(u, v).

0=0(w, v)

=\

Hence we see that

lu-v| = J2-2cosdg(u,v)

and ds(u,v) = arccos(l—%\u—wz).#
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Definition 3.4. We define a k-sphere in S" to be any set of the form, SP=Pn
S" for some (k+1)-plane P in R™' with dg(0,P)<1. For k=n-1, SP is called a
hypersphere in S".

If P is a (k+1)-dimensional vector subspace of R""', then SP is called the
great k-sphere in S" and if k=n-1, SP is called a great hypersphere in §", and
if k=1, SP is called a great circle in S".

Remark 3.5. If SP is a great hypersphere in S”, then we can write
SP = {uef§"| <u,m>=0}
for some vector m in S". We say that SP is the great hypersphere with pole m
and we denote it by SP,.
Notice that SP,, =S8P; if and only if m =+ /. The points m and —m are
called the poles of the great hypersphere SP,. Two great hyperspheres are said to

n+l

be perpendicular in S" if their poles are perpendicular in R, (or equivalently, if

their hyperspaces are perpendicular in R™'

). More generally, a great k-sphere SP
and a great /-sphere SQ are said to be perpendicular when the (k+1)-plane P and

the (I+1)-plane Q are perpendicular in R"".

Definition 3.6. Given uy, uy, ..., up+; in S", we define

(1, gy ooy Ups)) = {/H:t[ui e S” ‘t,- ZO} )
i=
If {uy,us, ..., up+1 } is linearly independent in R"™' then (), ua, ..., ugs)) is called a
k-simplex in S".

A 1-si«mplex is called an arc and a 2-simplex is called a spherical
triangle. An [-face of the simplex §=(uy, ua, ..., ue+1) 1S an [-simplex of the form

(vi, va, ..., vier) With each v, e{uy, ua, ..., g1 }.
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A O-face (u;) is called a vertex, and a 1-face (u;, u;) is called an edge.

Given an index i, the (n— 1)-face of S which is opposite the vertex u; is the
(k—1)-simplex S; = (w1, ua, ..., U, , ..., Ups1).

Given a k-simplex S= (uy, uy, ..., 1) in S”, we write [0, S] for the (k+1)-
simplex in R"™ given by [0, S]=1[0, u1, us, ..., u+1].

Definition 3.7. Given u;,u; in S", the midpoint of the edge (u;u;) in S" is the

U+

ul-+uj‘

Note that dg|u;,———| = dg|u;,———| since
|u; +u; | | u; +u; |
u; +u; u; +u;
delu;, —— arceesi @, —————
| u; +u; | Iu +u |

arccos{[—uii*M(Mpui +“j>]
arccos{ﬁ—l (<uirui>+<ul U >)]

point

I

I

u+u

= arccos(| — 1 + <u, U >)J and similarly
{ 1 +

ds[ ﬁj = arccos (u; uj>)]
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The Centroid

Definition 3.8. Given an n-simplex S=(u1, uy, ..., un+1) in S", let SM; be the great
hypersphere in S" which passes through the midpoint of the edge (w;, ;) and
through the points u, where k# i,j. We call SM; the medial great hypersphere of
S in S".

Lemma 3.9. Given an n-simplex S =(u1, uy, ..., upr1) in S, let My be the medial
hyperspace of the simplex [0,8] in R"™" and let SMy be the medial great
hypersphere of S in S". Then SM; = M;nS".

Proof. Let M; be the medial hyperplane of the (n+1)-simplex [0, §] in

R""!. By definition, My is the hyperspace which passes through the point

U+
€ M;;, we also have

and the points u; with k#4,j. Since 0 € Mj; and

U+

€ M;. So Mj is the hyperspace which passes through the midpoint of the

u,-+uj‘

arc (u;, u;) and through each w, with k=i, ;. Hence SM;=M;NS". #

Lemma 3.10. Given an n-simplex S = (uj, uy, ..., uz+1) in S" and given i#j, let

SMy; be the medial great hypersphere of S in S". The intersection of the
hypersphere SMy with i,j+#0 and i#j is the pair of points J_r'% where G is

the centroid of the simplex [0, S].
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Proof. Let G be the centroid of the (n+1)-simplex [0, ui, uy, ..., y+1] In

+1
R™'. Then G= ! 5 (nZu,-) and G lies on the line which passes through 0 and
n+2z =1
n+l
Yu;.Thus () SM; = [ (M;nS")
i=1 i#j i#j

n+1 :
(the line through 0 and Yu; ) S"
=1

=

= (the line through 0 and G)n §"

{ the two points -I_-li }

Gl

Hence the medial great hyperspheres SM; meet at the two points i%. #

n+1
1 2.u; , it is clear that ie S and —i&‘ S.
N 42 o | G| | G |

Remark 3.11. Since G =

We call the point |—g—|— the centroid of § and denote it by Gs.

The Circumcentre

Definition 3.12. Given an n-simplex §= (u1, ua,..., un+1) in S", let SP; be the great
hypersphere in 8" which is perpendicular to the edge (u; u) and which passes
through the midpoint of the edge (u;, u;). SPy is called the perpendicular bisector

of (u,-, uj) in §".

Theorem 3.13. Given an n-simplex S=(u\, uy,..., un+1) in S", let Py be the
perpendicular bisector of the edge (u;,u)) of [0,S] in R™' and let SP; be the
perpendicular bisector of the edge (u;, u)) in S". Then SP; = P;nS".
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Proof. By definition, SPy is the hypersphere in S" which is perpendicular
L Uy Tu; :
to the edge (u;, ¥;) and passes through the point I*I Thus SP; 1s the
u; +uj'
intersection with S” of the hyperspace P; in R™! which is perpendicular to span

u; +u;

v |}. Since span{ u;; u; }=span{ u;+ uj, u;— u; }
i j _

{ ui, u; } and contains span{

and span ﬁ = span{ w;+u; }, Py is the hyperspace in R"" which 1s
u; +u;

u; +u;
perpendicular to span{u; — u;} and passes through —[—2—1 Thus Py is the

- perpendicular bisector of [w, uj] of the simplex [0, 5] in R™" and SP; =
PUF\S" . H#

Theorem 3.14. Let u; and u; be two distinct points in S". Then the perpendicular

bisector of [u, u;] is the set of all point u in S" such that dy(u, u;) = ds(u, w).

Proof. Given u,u; € S", let u € S". Then
ueSP; iff uelPy by theorem 2.16
iff  dp(u, u) = dr(u, uj) by lemma 1.19
ff  ds(u, u;)) = ds(u, uj) . #

Lemma 3.15. Given an n-simplex S=(u\, ty,..., Un+1) in S", the intersection of the
perpendicular bisectors Py in R"*! where i#j is the line which passes through 0

and O where O is the circumcentre of the simplex[0,S] in R*"'.

Proof. It is clear that the circumcentre O of the simplex [0, S] lies on
each Py. Since dp(0,u;) = 1= dp(0, u;), by the Theorem 1.16, 0 lies on each P
Since dr(0,0) =0 but dr(0,w;) = 1, we have that 0 ¢ Py;. So 0+ O. Since the
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intersection of the perpendicular bisectors P;-is a line, it must be the line which

passes through 0 and O.#

Theorem 3.16. Given an n-simplex S = (uy, uy,..., up+1) in S", the perpendicular

bisectors SP; of the edges (u;, w) in S" meet at the two points *Os, where Os=

|—O— and O is the circumcentre of the simplex [0, S] in R™

Proof. Let O be the circumcentre of the (n+1)-simplex [0,.5] in R™'. Since

NSP; = N(P;nS")

i#j i#j
= (the line which passes through 0 and O)n S"
: 0
= {the point +——1} ,
| 0]

‘we see that the perpendicular bisectors SP; meet at the two point +Os. #

Definition 3.17. (1) Since Ose SP;, by Theorem 3.14, ds(Os, w;) = ds(Os, u;) for
all i, j with i#J.

(2) Since <u,-,OS> = < L>

u'a

1o
= 2 (u[-,20>

2|10

1 )
= u;,u; since O € Py;

2|O|<[ ) ( o)
— 1 >O,

210

we have dg(Os, u;) = arccos<u,-,05> <

. Since dy(Os, u;) + ds(—Os, u;) =7, so

ds(—Os, uy) > g We let Rg=d«(Os, u;) for any i. The spher_e in "

S(Os, Rs) = {ueS"| di{Os,u) =Rs}
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= {uefS"| d{-Os,u)) =n—Rs}
is called the circumscribed sphere of S, Os is called the circumcentre of S

and Rg is called the circumradius of S.

The Incentre

Definition 3.18. Let SP and SO be two great hyperspheres in S", say SP =P n
S" and SO =0 N S" for some hyperspaces P and Q in R™"'. The angle
between SP and SQ in S", denoted by 0s(SP, SQ), is defined to be equal to
the angle between P and Q in R™! that is 8(P, Q).

Definition 3.19. Given a point u and a great hypersphere SP in S", the
distance between u and SP, denoted by ds(u, SP), is given by
ds(u, SP) = inf{ ds(u,v) | v € SP }.

Theorem 3.20. Given a point u and a great hypersphere SP in S", say SP =
PN S" for some hyperspace P in R"" the distance ds(u, SP) between u and
SP in S" determines and is determined by the distance dr(u, P) between the

point u and the hyperspace P in R™.

Proof. Let w be the point on P which is nearest to u. Then d(u, P) =
| u—w| and the vector u—w is an orthogonal vector of P (unless u =w in
which case dg(u, SP) =dr(u, P)=0). Let M= span{u, w} = span{w, u —w}. Then
M is perpendicular to P and M N P =span{w}. Let SM =M nS". Then SM N

W

%
and ———

SP=(Mn P)n S" which consists of two points, namely | ™
w w

(unless w=0, in which case dsu, SP) :% and dp(u, P)=1). Let v be the

point on SM N SP which is nearest to u in S".
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let z be any point of SP with z=w. We consider the spherical triangle

(u, v, z) with angles o at u, 3 at v, and y .at z and sides of spherical length a

opposite u, b opposite v and ¢ opposite z.

By the spherical law of cosines for angles, we have that
cosot = —cosP cosy + sinf siny cos a,
cosp = —cosa cosy + sina siny cos b,

and cosy = —cosa cosP + sina sinf cos c.

Since span{u, v} =span{u, w} =M which is perpendicular to P and span{v, z}c

P, we see that span{u, v} is perpendicular to {v,z}. Thus the angle B is equal

to n/2. So we have that

cos a
cosa = ——,
sin y
COS Ol COS
cosb = .—.—Y,
sin o sin ¥y
cos
and cosc = — Y .
sin o

Hence cosb = cosacosc and so b>c¢. This show that v is the point on SP

which is nearest to u. Hence ds(u, SP) = ds(u, v) = 6(u, v).

We consider the triangle Owu.

o

We have dg(u, P)=|u—w|=sin0(u, v) = sin ds(u, v) = sin ds(4, SP) and so

ds(u, SP) = arcsin d(u, P). #
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Definition 3.21. Let SP and SO be great hyperspheres in S%, say SP =P §"
and SO =0 N S" for some hyperspaces P, O in R™', and say SPNSQO=SL=
LNS" where L is an (n—1)-dimensional vector subspace of R™'. An angle
bisector SB of SP and SO at SL is a great hypersphere in S" which contains
SL such that 6s(SB, SP) = 0s(SB, SQ).

Equivalently, an angle bisector SB of SP and SQ at SL is the intersection of
S” with a hyperspace B in R which contains L such that 6(B, P) =6(B, O).

In other- words, an angle bisector SB of SP and SQ at SL is the intersection
of §" with an angle bisector B of P and Q at L.

Lemma 3.22. Let SP and SQ be great hyperspheres in S" with SPM SQ = SL,
and let u e S". Then dg(u, SP)=ds(u, SQ) if and only if u lies on one of the
two angle bisectors of SP and SQ at SL.

Proof. Say SP=P N S" and SQ =0 S", where P and Q are .
hyperspaces in R™'. Let u € S". Then
ds(u, SP) = dy(u, SQ) ift d(u, P) =d(u, Q) by theorem 2.23
iff u lies on the angle bisector of P and O
at L by theorem 1.32
iff u lies on one of the angle bisector of SP

and SO at SL. #

Definition 3.23. Given an n-simplex S = (uy, us, ..., upr1) In S”, the inward pole

of the face §; is the pole m; such that (m;,u;) > 0.

Note that m; is the inward normal vector for the (n— 1)-face [0, S];

which is opposite the vertex u; of the simplex [0, S] in R™'.
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Definition 3.24. Given an a-simplex S = (u1, 2, ..., uz+1) in S”, let m; and my;
be the inward poles of §; and S, respectively. The internal angle bisector SBy

of §; and §; is the great hypersphere which passes through u;, where k#1,;

m; —m;

with the pole
' i J |

Equivalently, SB; is the intersection of S” with the hyperspace which passes

through u, where k#1i,j with the orthogonal vector m;—m;.

In other words, SBj is the intersection of S” with the internal angle bisector

Bjj of the faces [0,S5]; and [0, S]; of the simplex [0, S] in R

Lemma 3.25. Given an n-simplex S = (ui, up, ..., Un+1) in S", the intersection of
the internal angle bisectors By of the simplex [0,S] in R™' is the line through
0 and I where I is the incentre of [0, S].

Proof. It is clear that the incentre / of the simplex [0, S] lies on each
By. By definition of By, 0 lies on each Bj. Since dg(0, (S)) = |(u;,m )| #0
but dg(0, F;) = 0 since 0 € F; where F; is the plane spanned by [0, S]; of the

simplex [0, §]. We have that 0 ¢ By;.. So 01 Since the intersection of the

internal angle bisectors By is the line, it must be the line which passes

through O and 1. #

Thoerem 2.27. Given an n-simplex S = (u, Uy, ..., upe1) in S", the internal angle

. 1 . :
bisectors SBj meet at the two points +Is where Is= — and [ is the incentre

| 7
of the (n+1)-simplex [0,S] in R™".

Proof. Let / be the incentre of the simplex [0, S] In R™'. Ther
NSB; = N(B;nS")

i#J i#J



( the line through O and 7)) S"
. I
= {two points i|—I-}.

Hence the internal angle bisectors SB; meet at the two points + [s. #
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CHAPTER IV
CHARACTERIZATION THEOREMS

Throughout this chapter, we shall use the following notations;

T = the n-simplex [ao, ai, -..,an]
[7, ape1] = the (ntl)-simplex [ao, ai, ..., An, Ap+1]
T; = the (n—1)-simplex [ao, a1, ...,4;,..., y)

R* = the (n — k)-simplex [ak, ai+1, - .., Ay]

[T, ape1]lo = the n-simplex [aj, a2, ..., Qn, Qne1]-

In chapter I, we showed that for any simplex 7 in R", the centroid of
T is unique. We can let g be the function from the collection of simplices in
R™ to R" which is defined by g(7) = G where G is the centroid of T

The centroid of an n-simplex has the property that for any (n+1)-
simplex, the lines from each vertex to the centroid of the opposite face all
meet. We shall show that this property characterizes the centroid.

We begin with the definitions of a regular simplex and a regular

function.

Definition 4.1. Let 7 be an n-simplex in R". T is regular if there exists d € R

such that |a;— a4 = d for all i, k with i#k.
Theorem 4.2. If T is a regular simplex, then G=0=I=H =J.

Proof. We claim that M= P;. Since dg(ar, a;) = dr(ax, aj) for all k#i,j,
Py is the (n—1)-plane in <T > which passes through the midpoint of [a,, aj]
and the other vertices a;, k#i,j so My;=P;. Hence O=G and H=0=G.

Next, we shall show that P;=B;. Fix i and j. Since dg(a, a;) =

drla, a;) for all k#1i,j, we have a, € By for all k=1i,j. Given x <Tij>’
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let B be the plane in <T > which passes through x and which is perpendicular

to <Ty> Then O(T;, 7)) is equal to the angle at x of the triangle [a;, x, a;]. For
all y e <Tij>, we have that dr(y, a;) = dr(y, a;). Let p be the point in <th>
such that dr(p, a;) = dr(p, @) =inf{ dr(y, @) |y € <Tij>} The plane which passes

through p, a; and a; is perpendicular to <T: ,j> and 6(7;, 7)) is equal to the angle

at p of the triangle [a;, p, a]]. We consider the triangle [a;, p, a/].

a;

" a;

Then the midpoint of [a; @] lies on the angle bisector Bj. Thus P; = Bj.
Hence /I=0=G=J=H #

Definition 4.3. An n-regular function is a function f: { n-simplices in R"}—>R"
such that A7) e<T> for every m-simplex T and f{7T) = g(7) for every regular

n-simplex 7.

Remark 4.4. If f: { n-simplices in R"}—R" is invariant under isometries, then

f must be n-regular.

Definition 4.5. Given an (n+1)-simplex T=[ay, ai, ..., @n, @y+1], given an
n-regular function f, and given an index i, let M{(f, 7) denote the line through

the point «@; and the point f77).

Theorem 4.6. If [ is an n-regular function with the property that for any
(nt+1)-simplex T the lines M{(f, T) meet, then f=g.
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Proof. Let f be an n-regular function with the stated property.

Let P(m) be the statement “If T'=[ao, ay, ..., a,], 1s an n-simplex such that the
(n — m)-simplex R™ = [am, am+1, -.., a,] is regular, then A7) lies on the m-plane
in <T> which passes through the point g(7,) and the points a; with j €{0, 1, ...,
m~—1}”. We claim that P(m) is true for m=0,1,..,n—1. We will prove this
by induction.

For m=0, we have R™ =T. If R™ is a regular n-simplex, then 7 is
regular and A7) =g(7T) since f is n-regular.

Next, suppose that P(k) is true. Let 7 be an n-simplex such that R“*' is
regular. Choose a point a,+; such that a,+ ¢<T > and such that the (n - k)-
simplex [RkH, an+1] = [@my Qmty ..., Qn, Gp+1] 18 rEgular .

Since [T, ay+1]o is an n-simplex such that [Rkﬂ,a,,ﬂ] is regular, by the
induction hypothesis, f{[7, as+1]o) lies on the k-plane P in <[T,a,l+1]0> which
passes through the point g( [R**!, a,+1]) and the points a; with je{l, 2, ..., k}.

If ap P, then there exist constants o; with je{l,2, ..., k} such that
k k+1 k
a—-ar= Y o;(a; —ay) toulg((R""",a,,4D) —a;) So X a;la;, —ay) +
j=2 _/22

oy

n—k +1{ =+

{ ”il (aj —al)) —(ap—a;) = 0. This is a contradiction since
{aj—ai| j#1} 1s linearly independent. Hence ag ¢P.

Let p be the point of intersection of the lines M;=M(f, [T, an+]) .

Since pe My, p lies on the line which passes through ay and the point
SULT, an+1]o)- Since fl[T, an+1]o) lies on the k-plane P and since ap ¢ P, we have
that p lies on the (k+1)-plane Q in ([T . +,]> which contains P and which
passes through ag. Note that Q passes through the point g( [R*! a,+1]) and
the points a; with je{0, 1, ..., k}.

If a,+1 €0, then there exist constants a; with je{0, 1, ..., k} such that

k k

k+1 _

a1 —ao= ). o;(a; —ag) +0¢o(g([R ha,al) _ao) = 2 a;(a; —ag)+
j=I J=l
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n+1 k
0‘70( > (a; —ao)]. So _Zlocj(aj —ag)t
J= .

n—k+1 j =k +1

e 2 (a; —ag) |+ _%0 4 (@n+1 —ao). Since {aj—ao| j# 0}

n—k +1;=k+1 n—-%k+1

. . . o) o) .. .o

is linearly independent, ————— =0= —————1. This is a contradiction,
n—k+1 n—k +1

SO au+ 20.

Also, p lies on the line which passes through A7) and a,+, or in other
words f{7) is on the line which passes through a,+; and p. Since p lies on the
(k+1)-plane O and since a,+12Q, A7) lies on the (k+2)-plane. K which contains
O and which passes through g(R®™") and a,+. Since g( [R*"', @,+1]) lies on the
line which passes through a,+;, we see that K is the (k+2)-plane which passes
through the point g(R**') and the points a; with je{0, 1, ..., k}u{ntl}.

Since A7) € KN(T ) and since dim(V(K) NI(T)) = dim V(K) +dim V(T) -
dim(M(K) +M(1)) = (k+2) + n— (nt1) = k+1, we see that A7) lies on the (k+1)-
plane which passes through the point g(Rk+') and the points a; with je{0, 1, ..,
k}. Thus P(m) is true for m=0,1,..,n—1.

In particular, P(n—1) holds. Since [a-1, a,] is automatically regular, A7)
lies on the (n—1)-plane in <T > through the point g( [a,_1, @,] ) ,which is the
midpoint of [a,.1, @,], and through all the other vertices a; with k<n-1. In
other words,

f(D) lies on the medial plane M, ,. A similar argument shows that A7) lies
on all the other medial planes also. Hence AT)=g(T) so f=g. #

In chapter I, we showed that for any simplex 7 in RM, the circumcentre

of T is unique. We can let o be the function from the collection of simplices

in R™ to RY which is defined by o(T) = O where O is the circumcentre of T.
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The circumcentre of an n-simplex has the property that in any (n+1)-
simplex, the lines through the circumcentre of each face and perpendicular to
the face all meet. We shall show that this property characterizes the

circumcentre.

Definition 4.7. Given an (n+1)-simplex T =[aq, ai, ..., Qn, dn+1], given an
n-regular function f, and given an index i, let P(f, T) denote the line which

passes through the point f7;) and is perpendicular to 7;.

Theorem 4.8. If f is an n-regular function with the property that for any
(n+1)-simplex T the lines P{f, T) meet, then f=o.

Proof. Let / be an n-regular function with the stated property.
Let P(m) be the statement “If 7'=[ay, ay, ..., a,], 1s an n-simplex such
that the (n—m)-simplex R"™ = [@m, Qm+1, -.., an] is regular, then A7) lies on the

m-plane in <T> which passes through the point g(R™) and which is

perpendicular to <Rm>”. We claim that P(m) is true for m=0,1,..,n—1. We

will prove this by induction.

For m=0, we have R" =T. If R" is a regular n-simplex, then T is

regular and A7) =g(7) since f is n-regular.

Next, suppose that P(k) is true. Let T be an n-simplex such that R**' is
regular. Choose a point a,+ such that a,: e(T), the (n— k)-simplex [Rk”,anﬂ]
= [, Am+1y -+ -> Qn, Ane1| 1S regular and ay. —g(Rk”) 1s perpendicular to <T>
Since [T, au+1]o is an n-simplex such that [R**', a,:1] is regular, by the

induction hypothesis, f{ [T, a,+1]o) lies on the k-plane K in <[T,a”+l]0> which

is perpendicular to <[Rk+l,an+l]> and passes through o([R* an1]).

Let p be the point of intersection of the lines P;= P{f, [T, an+1]).

Since pe Py, p lies on the line which passes through A [7, a,+1]0) and

is perpendicular to <[T,a”+]]o> . Since A [T, anei]o) lies in K, p lies on the



52

(k+1)-plane Q in <[T,an +1]> which contains K and is perpendicular to

<[T,an+1]0>. Note that Q is the (k+1)-plane in <[T,an+|]> which passes
through g( [R**!, a,+1]) and is perpendicular to <[Rk+1,an+] ]> .

Also, p lies on the line P, which passes through A7) and is

perpendicular to <T> in <[T,an +1]>, or in other words, A7) lies on the line
which passes through p and is perpendicular to <T> in <[T,an +1]>. Since p

lies on the plane Q, f(7) lies on the (k+2)-plane R which contains Q and
which is perpendicular to <T> Also, A{T) lies on <T> Thus fIT) € M, where M

=RN({T).
Since R is the plane which contains Q and is perpendicular to <T>, M=

R, where n is the orthogonal projection from R to <T> Since

g([R, apii] ) € [@ne1, gRED], g([RY, anei] ) = (R +1{ aper— g(R*'") } for

some ¢ € R. Since a,+; —g(R*"") is perpendicular to (T'), we have g(R*'")=

n( g( [R, @pe1])) € TR = M.
Let V be the (nt+l)-dimensional vector space V= V([T, a,+1]).

Since Q is the (k+1)-plane which passes through g( [Rk+l,an+l]) and is

perpendicular to <[R /‘”,an +1]>, for each ge O, we can write g =

g( [R*! a,41]) +v where ve Vis a vector which is perpendicular to

<[Rk+l,an+l]>. Since R is the plane which contains () and which is

perpendicular to <T>, R=Q +span{u} where u € V' is a normal vector for <T>

Thus for each r € R, we can write r =¢ + fu for some g€ Q and t € R. So r

=g( [RA" ' ay])+ v+ for some r e R. Since fu is perpendicular to <T>, m(r)
= n( g( [R"", ay+1] )+v). Since m( g( [R, apei]) = g(Rk”) and since v is

erpendicular to (R¥'), we see that n(r) = g(R*"") +w for some vector w €
perp g



53

W(T) which is perpendicular to V(Rk+l). Therefore for » € R, m(r) lies on the

(k+1)-plane in (I') which passes through g(R*"') and which is perpendicular to
<Rk+1>. Thus property P(k+1) holds, and by induction P(m) holds for m =0, 1,

coon—1.

Finally, given any n-simplex 7, the 2-simplex R =la,_1, a,] is regular,
and so by property P(n—1) we know that A7) lies on the (n— 1)-plane which
passes through the point g([a,-1, a,]) and which is perpendicular to [a,_1, a,].
In other words A(T) lies on the perpendicular bisector Py, A similar

argument shows that f{7) lies on all the other perpendicular bisectors, so we

must have AT)=o(T). #
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