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Chapter I

Introduction

In order to study the structure of the ring of integers of a number field K,
an integral basis of K and its discriminant play an important role. Although
they are difficult to compute, some kind of number fields, e.g., the quadratic
field Q[v/m] where m is a square free integer, the set of algebraic integers is

{a+b/m:a,beZ}ifm=20r3 (mod4)

and
{w:a,bez,as b (mod 2)} ifm=1 (mod4).

We know that if the degree of a number field K is greater than 2, it is
difficult to determine the structure of the ring of integers. There are several
raethods to compute an integral basis of a number field. Most of themn are
difficult to calculate and apply for every number field.

In [1], Saban Alaca developed theorems about p-integral bases of a number
field K and used them to obtain an integral basis of K and its discriminant.
The procedure used here is to find a p-integral basis, for every rational prime
p, of the number field K, and then an integral basis of X and its discriminant
are obtained from its p-integral bases. He applied these results to cubic fields
in (2]. Like other methods, p-integral basis, for every rational prime p, of K
cannot be found easily if K is a complicated number field.

In this research, we wish to use the results in [1] to find an integral basis
of the number field K = Q(6) where 6 is a root of the irreducible polynomial
z° +a in Z{z). Therefore, the main work is to compute a p-integral basis, for
every rational prime p, of eur number field K. After that we consider only
p-integral bases of K for each rational prime p dividing discy/q(d) (if any)
and construct from them an integral basis of K.

The next chapter covers the basic definitions and theorems in algebraic
number theory, p-integral elements and their properties and p-integral bases
of number fields. In the last chapter, we give theorem concerning p-integral
bases, for every rational prime p, of our number field K.



Chapter 11
p-Integral Bases of Number Fields

In this chapter, we discuss briefly & number of basic concepts that will
be used in our subsequent development of p-integral bases of quintic fields.
These include fundamentel definitions and theorems of algebraic number the-
ory, p-integral elements and their properties and p-integral bases of number
fields. All of these results are appeared in [1], [3] and [4).

2.1 Algebraic Integers, Discriminant and In-
tegral Bases ‘

This section covers basic definitions and theorems of algebraic number theory.
Definition 2.1.1. A number field K is a finite extension of Q.

Remark 2.1.2. Since char(Q) = 0, every number field is separable, i.e. there
is an # € K such that K = Q(6).

Definition 2.1.3. Let K be a field and A be a subring of K. a € K
is integral over A if and only if there exist ag,ai,...,an_y € A such that
A+ 0y 10" 4+ aja+ay=0. f A=Z, K is a number field and o € K
i8 integral over Z, then « is called an algebraic integer in K.

Theorem 2.1.4. Let R be an integral domain and A be a subring of R
containing 1. Then the set of all elements in R integral over A forms a ring.

Definition 2.1.5. In a number field K, the ring of all algebraic integers in
K is called the ring of integers in K and it is denoted by Og.

Definition 2.1.6. Let ay,...,0,.€ K. The discriminaent in K over Q of
@1, - - -, 0y, denoted by discg/qlon, - . ., o), is given by disckg(on, . . ., an) =
det[o"]2, where {o; = !V, a£2),...,a§n)} is the set of all conjugates of o
(1 £ i < n) with respect to K. For o € K, we denote discyg{e) =
diSC}{/Q(l, Oy vy a"‘l).

Definition 2.1.7. Let f be a monic irreducible polynomial of degree n in
Z[z], 8 a root of f and K = Q(f). The discriminant of f, denoted by discf,
is defined by discf = discy,o{0).

Remark 2.1.8. discf = (—1)3) Ny so(f/(6)).

Theorem 2.1.9. Let K be a number field of degree n. Then OKI s a free
abelian group of rank n.



Definition 2.1.10. A basis {a1,...,a,} of Ok is called an integral basis of
K.

Proposition 2.1.11. Let {on,...,an} and {By,- .-, Bn} be any integral bases
of K. Then discr/g(a, ... ,on) = disck/o(B, - - -, Bn)-

Definition 2.1.12. The discriminant of a number field K, denoted by d(K),
is given by d(K') = discg/q(au, - .., an) where {¢, ..., a5} is an integral basis
of K. '

Proposition 2.1.13. Let K = Q(f) where 6 is a root of an irreducible
polynomial f. Ifi(6) = Ok : Z[6)], then we have

discf = discy/g(9) = d(K)i(f)>.
Definition 2.1.14. The number i(6) is called the indez of 8 in Ok.

2.2 p-Integral Bases of Number Fields

In this section, we give results concerning p-integral elements and p-integral
bases of number fields, quoted from [1]. Let K = Q(6) be a number field of
degree n. We know that Ok is a Dedekind domain, so every nonzero proper
ideal can be decomposed uniquely as a product of prime ideals.

Definition 2.2.1. Let I be an Og-submodule of K. I is a fractional ideal
of K if there exists a d € Og — {0} such that dI C Og. For each prime ideal
P and each nonzero fractional ideal I of K, vp(I) denotes the exponent of
P in the prime ideal decomposition of I. If @ € K, then vp(«o) = vp(aOk).
If K = Q, p is a rational prime and a € K, then y,(a) = v,z(a).

Definition 2.2.2. Let P be a prime ideal of Ok, p be a rational prime and
let @ € K. If vp(a) > 0, then ¢ is called a P-integral element of K. If « is
P-integral for each prime ideal P of K in the prime ideal decomposition of
pOg, then « is called a p-integral element of K.

Remark 2.2.3. We note that
(1) the set of all p-integral elements of K ,-denoted by O,, forms a ring and

(2) {a/bla,b € Z, (a,b) =1 and p* b} is the set of all p-integral elements
of Q.

Definition 2.2.4. Let o € K and o = oV, 0, ..., o™ be the conjugates
of o with respect to K. The characteristic polynomial C, of o in K is

Cal@) = [] (=0 = 3 (-1 sns(e)s’

1<i<n 0<i<n

and si(c) is called the k* elementary symmetric function of @ € K.

3



We have that Cu(z) = det(z] — M,) where M, is the matrix of the
endomorphism of the Q-vector space K obtained by multiplication of o with
respect to the basis {1,6,...,6"" '} of K.

Theorem 2.2.5. Let p be a rational prime. Let a« € K and let a =
a, @ .. o be the conjugates of o with respect to K. Then o is a
p-integral element of K if and only if the elementary symmetric functions of
o are p-integral elements of Q.

Definition 2.2.6. Let p be a rational prime and let {w,,...,w,} be a basis
of K over Q, where each w; (1 < i < n) is a p-integral element of K. If every
p-integral element o of K can be written as o = ayw; + - - - + apwy, Where the

a; are p-integral elements of Q, then {wy,...,w,} is called a p-integral bosis
of K. .

Theorem 2.2.7. Let p be a rational prime. For eachi (1 <i<n—1), let

k; be the largest integer for which there ezist i integers zg"),:z:g’.),. . :c?_)l such
that ' '

sz) o x&i)f) +ee 4 :rgi_)LG"‘l + 6

fi =
pks

15 p-integral. Then

() 0< ki Sha < vov S honey,

(1) a p-integral basis of K 1s {Bo=1,B1,B2,-..,Bn-1} and
(i46) vp(d(K)) = vp(discr/q(f)) — 2(k1 + ka + - -+ + knn).-

Theorem 2.2.8. Let p be a rational prime. Ifi(0) =1, then {1,6,...,0™'}

is an integral basis of K. Otherwise, let py,ps,...,ps be the distinct primes
dividing 1(8). Let

040 a4l g e g
1) kr.l yrrty pgfr‘n—-l

be a p,-integral basis of K (r =1,2,...,s) as given in Theorem 2.2.7. Define
integers X (1<j<n—-1,0<i<j—1) by

X =al) (modpl) (r=1,2,...,9),

and let T; = Hiﬂpf"f(j =1,2,...,n—1). Then an integral basis of K is

X040 XPTV X004 X000 4 0
) T.1 1ty Tn—), ; .
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Chapter 111
p-Integral Bases of Some Quintic Fields

The main theme of this chapter is a p-integral basis, for every rational prime
p, of a number field K = Q(f) where 8 is aroot of the irreducible polynomial 5+
a in Z[z] with v,(e) < 5. First, we introduce preliminary theorems which have
been restated as they apply specifically to our number field K from Theorems
2.2.5, 2.2.7 and 2.2.8. In the second section, we state and prove theorems about
p-integral elements, for every rational prime p, of K. After that we apply those
theorems to obtain tables giving p-integral bases and v, (d(K)), for every rational
prime p, of K. Finally, we give examples to illustrate how to use p-integral bases
to find an integral basis and the discriminant of K-

3.1 Properties of p-Integral Elements in Some
Quintic Fields | '

Let K = Q(f) where 8 is a root of the irreducible polynomial z* + a in Z|[z]
with vp(a) < 5.

The following four theorems are special cases in which K is our number
field, of Theorem 2.2.5. All of them are restated by computing the elementary
symmetric functions of ¢, £, 7, and 4, respectively.

Theorem 3.1.1. Let p be a rational prime, and let o = (1+0)/p* wheret,k € Z
and k > 0. Sel

A =5t,

B = 10,

C = 10¢®,

D = 5t* and
E=—a+1t%.

Then o 5 a p-integral element if and only if
A=0 (modp*),B=0 (modp*),C=0 (mod p*),
D=0 (modp'*)and E=0 (mod p*).

Theorem 3.1.2. Let p be a rational prime, and let = (¢ + uf + 62)/p* where
t,uk€Z and k > 0. Set

A = 5t,
B = 10¢%,
C = 10t® - 5au,

D = 5t* — 10atu + 5av° and
E = a® + t* — 5at%u + Satu® — au®.



Then B is a p-integral element if and only if
A=0 (modp*),B=0 (modp*),C=0 (modp*),
D=0 (modp*) and E=0 (mod p*).

Theorem 3.1.3. Let p be a rational prime, and let v = (¢ + uf + v8? + 63) /p*
where t,u,v,k € Z and k > 0. Set

A =5t
B = 10t* + 5av,
C = 10t* — 5au® + 15atv — Sauv?,
D = 5t* — 502y — 10atu® + 15at%v + 5auv + 56%v* — 10atuv? and
E = —a® + t° — 5a%tu — 5at*u — au® + 5at®v + 5auv + Satu’v + 5a’tv?
— 5atuv? — 5a%uv® + a*’.
Then v is a p-integral element if and only if
A=0 (modp*),B=0 (modp*),C=0 (modp*),
D=0 (modp*)and E=0 (mod p*).

Theorem 3.1.4. Let p be a rational prime, and let 6 = (t+ubf+v82+wdd+0%) /p*
where t,u,v,w,k € Z and k > 0. Set

A = 5,

B = 10¢? + 5au + 5avw, _

C = 10t* + 15atu + 5a%v — Sauv? — Sav’w + 15atvw + 5aw?,

D = —5t! — 15at?u — 5a%u® — 10a*tv — Saudv + 10atuv?® + 5a%v® — 50w
+ 10atu’w — 15at?vw + S5auvw — 10a’tw? — 5a%v°w? + 5a2uw®

E = a" + % + 5at®u + 5a’tu® — au® + 5a%t* + 5a*uv + Satu’v — 5at*uv?
+ 5a2u?v? — 5a?tv® + 0% + 5a%tw — Sat?ulw — 5a%udw + SatPvw
— 5atuvw — 5av*w — 5a%udw + 5a22w? — 5aduw? + Satutvw?

+ 5a’tv*w? — 5atuw® + 5advw® — adwb.

and

Then & is a p-integral element if and only if
A=0 (modp*),B=0 (modp*),C=0 (modp*),
D=0 (modp™) and E=0 (mod p*).

Theorems 3.1.5 and 3.1.6 are special cases for n = 5 of Theorem 2.2.7 and
Theorem 2.2.8, respectively.

Theorem 3.1.5. Let p be a rational prime. For each i (1< < 4), let k; be
the largest integer for which there ezist ¢ integers a:g‘), x(f), R z,@_)r such that
_ I(()i) + zgﬂ)g 4. +IE?19‘E—-1 _l_ 92

pka

[V



i p-integral. Then {1,w|, w2, ws,ws} 18 a p-integral basis of K and
Vp(d(K)) = l/p(diSC[(/Q(())) —2(ky + ko + k3 + k4).
Theorem 3.1.6. If there are no rational primes dividing i(9), then {1,0,6?,

63,64} is an integral basis of K. Let py,ps, . .., s be the distinct rational primes
dividing i(6). Let

PR

{1 o0 heailosdle el o }
PT' Pr

be a p--integral basis of K (r =1,2,...,5) as given in Theorem 3.1.5. Define
integers X (3=0,1,...,5—1,5=1,2,3,4) by
X0 = o) (mod ) (r=12,..,9)

and let Ty = [['2, pv (j = 1,2,3,4). Then an integral basis of K is

xP 4+ xP +xP0+x00 + x{¢ + ¢
T T4

We will apply Theorems 3.1.1 to 3.1.6 to find a p-integral basis, for every
rational prime p, of K in the next section.

In order to obtain such a k;, for every ¢ € {1,2,3, 4}, in Theorem 3.1.5, we
need a remark which can be proved by contradiction.

Remark 3.1.7. For each i € {1,2,3,4}, if there exists m; € Z* such that

2 + 2004 420 gt 4 0

w;i = .

is not a p-integral element, for all 3:0 ,x&'), (’) | € Z, then for every I; > m;,
W+t ("16’ L g
= p"‘

is not a p-integral element, for all yo N ), Y € Z.

By means of this remark, for each i € {1,2,3,4}, if we begin trying with
m; = 1,2,3,..., then we will stop whenever we get the first m; such that w; is
not a p-integral element, and we have k; = m; — 1.



3.2 p-Integral Bases of Some Quintic Fields

In this section, we state and prove theorems about p-integral elements and bases,
for every rational prime p, of K. According to Theorem 3.1.6, we will consider
only the rational prime p dividing discx/q(f). We note that if discx/g(f) =
5%! = 0 (mod p) and p # 5, then v,(a) > 1. Thus it is not necessary to
consider the case vy(a) =0 if p # 5.

The next remark will be used in this section. It is readily obtained from the
Division Algorithm.

Remark 3.2.1. If there exist integers s,f,u,v,w,k with &k > 0 such that
€ = (5 +t0 + ub® + v6® + wh")/p* is a p-integral element, then there exist
50, to, %0, Vo, wo € {0,1,...,p* — 1} and an a € Z[f) such that e, = (so + 18 +
2082 + 18 + wob*) /p* = € — @ and so £ is a p-integral element. And also if
p is odd and k& = 1, then we can consider s, %o, ug, Vg, wo € {—(p — 1)/2,—(p —
1)/2+1,...,0,...,(p— 1)/2—1,(p — 1)/2} instead.

We now give theorems concerning p-integral elements, for every rational
prime p, in our number fields K by applying Theorems 3.1.1 to 3.1.4.

Theorem 3.2.2. The largest nonnegative integer k for which there ezists an
integer t such that a = (t + 0)/pF is a p-integral element is k = 0.

Proof. Let k € Z§. Suppose that there exists an integer ¢ such that o =
(t+0) /7" is a p-integral element. Let A, B,C, D and E be as in Theorem 3.1.1.

Consider k£ = 1. Since A = 0 (mod p), v,(t) > 1. Since E = 0 (mod ),
vp(a) > 5, a contradiction. Hence & = 0. O

Theorem 3.2.3. Let k be the largest nonnegative integer for which there exist
integers t and u such that B = (t + ub + 6%)/p* is a p-integral element. Then:

(0) If vp(a) =0, then k = 0.
(1) Ifvy(a) = 1, then k = 0.
(2) If vy(a) =2, then k = 0.
(3) Ifvy(a) =3, then k = 1.
(4) If vp(a) =4, then k =1.

Proof. Let k € Z§. Suppose that there exist integers ¢ and u such that g =

(t+ub +6%)/p* is a p-integral element. Let A, B,C, D and E be as in Theorem
3.1.2.

(0) and (1) Assume that v,(a) = 0 or 1. Consider ¥ = 1. Since B = 0
(mod p?), vp(t) > 1. Since C =0 (mod p®), vp(u) > 1. Since E =0 (mod p°),
a® =0 (mod p°) contradicting vp(a) < 1. Hence &k = 0.

8



(2) Assume that vy(a) = 2. Consider £ = 1. Since B = 0 (mod p?),
vp(t) > 1. Since D = 0 (mod p*), vy(u) > 1. Since £ = 0 (mod p°), a2 = 0
(mod p®) contradicting v,{a) = 2. Hence k& = 0.

For vp(a) = 3 or 4, 6?/p is a p-integral element. Hence k > 1.

(3) Assume that vy(a) = 3. Consider k¥ = 2. Since B = 0 (mod p*),
vp(t) > 2. Since C = 0 (mod 7°), vp(u) > 2. Since E = 0 (mod p'%), o® =
(mod p'%) contradicting v,(a) = 3. Hence k = 1.

(4) Assume that vp(a) = 4. Consider £ = 2. Since B = 0 (mod p*),
vp(t) > 2. Since D = 0 (mod p?), vp(u) > 2. Since E = 0 (mod p'?), a® =
(mod p'?) contradicting v,(a) = 4. Hence k = 1. 0

The next two theorems are stated and proved for p # 5, so they do not have
the case vs(a) = 0.

Theorem 3.2.4. Let k be the largest nonnegative integer for which there exist

integers t,u and v such that v = (t + uf + v6% + 63)/p* is a p-integral element
where p # 5. Then:

(1) If vp(a) = 1, then k = 0.
(2) If v{a) =2, then k = 1.
(3) If u,,(;z) =3, thenk=1.
(4) If v,(a) = 4, then k =2.

Proof. Let k € Z§. Suppose that there exist integers f,u and v such that

v = (t + uf + v8% + 6%)/p* is a p-integral element where p # 5. Let A, B,C, D
and F be as in Theorem 3.1.3.

(1) Assume that vp(a) = 1. Consider k = 1. Since A = 0 (mod p), vp(t) > 1.
Since B = 0 (mod p?), yp(v) > 1. Since C = 0 (mod p®), v,(u) > 1. Since
E =0 (mod p°), v,(a) > 2 contradicting vp(a) = 1. Hence &k = 0.

For v,(a) =2 or 3, 8% /p is a p-integral element. Hence k > 1

(2) Assume that y,(a) = 2. Consider ¥ = 2. Since 4 = 0 (mod p?),
Vp(t) > 2. Since B =0 (mod p?), v,(v) > 2. Since C =0 (mod p°), vp(u) > 2.
Since F =0 (mod p"?), vp(a) > 3 contradicting vp(a) = 2. Hence k = 1.

(3) Assume that v,(a) = 3. Consider ¥ = 2. Since A =0 (mod p?), y(t) >
2. Since B = 0 (mod p?), 1,(v) > 1. Since C = 0 (mod p?), au? + aur® =
(mod p%), so u(u + v%) = 0 (mod p). Since v,(v) > 1, yp(u) > 2. Since E =0
(mod p'?), vp(a) > 4 contradicting v,(a) = 3. Hence k = 1.

(4) Assume that vp(a) = 4. Then 6° /p? is a p-integral element, so k > 2.
Consider £ = 3. Since 4 = 0 (mod p*), vp(t) > 3. Since B = 0 (mod p°),

9



vp(v) > 2. Since C = 0 (mod p®), au? + auv? = 0 (mod p°), so u(u + v*) = 0
(mod p°). Since v,(v) > 2, v,(u) > 3. Since D =0 (mod p'?), v,(u) > 4. Since
E =0 (mod p'%), v,(a) > 5 contradicting v,(a) = 4. Hence k = 3. 0

Theorem 3.2.5. Let k be the largest nonnegative integer for which there exist
integers t,u,v and w such that § = (t + uf + v6? + wh® + 6*) /p* is a p-integral
element where p # 5. Then:

(1) Ifvy(a) =1, then k = 0.
() Ifvp(a) =2, then k = 1.
(3) If vy(a) = 3, then k = 2.
(4) If vp(a) = 4, then k = 3.

Proof. Let k € Zj. Suppose that there exist integers ¢,u,v and w such that
§ = (t+ uf + v8% + wb + ¢*)/p* is a p-integral element where p # 5. Let
A,B,C,D and E be as in Theorem 3.1.4. According to Remark 3.2.1, we may
consider 0 < ¢, u, v, w < pk.

(1) Assume that v,(a) = 1. Consider k = 1. Since A =0 (mod p), v,(¢) > 1,
80 t = 0. Since B =0 (mod p?),

ut+vw=0 (modp). (3.1)

Since € =0 (mod 7°),
av — uv? —v*w +aw? =0 (mod p?). (3.2)

Sin@ D =0 (mod p?),
—au? — u¥v + av® — A®w + auwvw — e +auw® =0 (mod p%).  (3.3)

Since E =0 (mod p%),

a® — v® 4 5a’uv + Sau’v? + av® — Savdw — 5atviw—

Sauvdw — 5a’uw? + Sautvw® + Satvw® — d®w® =0 (mod p?). (3:4)
Casel. u=0. By (3.1}, v =00r w=0.

1.1. v =0and w # 0. By (3.3), a>w = 0 (mod p*), a contradiction.

1.2. v# 0 and w = 0. By (3.3), av® =0 (mod p*), a contradiction.

1.3. vp(v) =1 = vp{w). By (3.4), a® =0 (mod p*), a contradiction.
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Case 2. vp(u) = 0. By (3.1), v,(v) = vp(w) = 0. By (3.3), u3v = 0 (mod p), a
contradiction.

Hence £ = 0.

(2) Assume that v,(a) = 2. Then 8/p is a p-integral element, so k > 2.
Consider £ = 2. Since A = 0 (mod p?), 1,(¢) > 2,50 ¢t = 0. Since B = 0
(mod p*),

u+vw=0 (mod p?). (3.5)

Since C =0 (mod p%),
av—uw® —vw+aew?=0 (mod p*). (3.6)

Since D =0 (mod p®),

—av?® — ubv + av® — &*w + awvw — aw*v? +auw® =0 (mod p°).  (3.7)

Since E =0 (mod p'?),

@® — u¥ + 5a’uv + 5auv’® + av® — 5avw — 5avPw— _

Saustw — 5a%uw? + SauPvw? + 5a’vw® — a®wP =0 (mod pP).
Case 1. u = 0. By (3.5), y,(vw) > 2. By (37) av® = 0 (mod p%), so v =0
(mod p*). Then y,(v) > 1. By (3.6), aw? = 0 (mod'p?). By (3.8), a®> =0
(mod 7%), a contradiction.

Case 2. vp(u) = 0. By (3.5), v,(v) = yp(w) = 0. By (3.7), «*» =0 (mod p?), a
contradiction.

Case 3. vp(u) = 1. By (3.5), vp(v) =1 or vp(w) =1 but not both.
3.1. vp(v) =1 and v,(w) = 0. By (3.7), auw® = 0 (mod p*), a contradiction.

3.2. yp(v) =0 and yy(w) = 1. By (3.6), uv® =0 (mod p?), a contradiction.
Hence k = 1.

(38)

(3) Assume that v,(a) = 3. Then 6*/p? is a p-integral element, so k > 2.
Consider £ = 3. Since A = 0 (nod p®), vp(t) > 3,50t = 0. Since -B =0
(mod 7°),

u+ow=0 (modp®). (3.9)

Since C =0 (mod p°),
av —w? —v*w+aw’ =0 (mod p°). (3.10)

Since D =0 (mod p'?),

—au? — u3v 4+ av® — a®w + avvw — av?w? +auw® =0 (mod p®).  (3.11)
Since £ =0 (mod p®),
a® — u® + 5a%uv + 5au*v? + av® — Sautw — Saviw

Sauviw — 5a’uw? + Sautvw® + 5020w’ — a*w® = (mod p'%).

Case 1. w = 0. By (3.10), v +w? = 0 (mod p®). Then v,(v) # 1.

(3.12)
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1.1. vp(v) = 0. Then v,(w) = 0 contradicting (3.9).
1.2. v =0o0ry,(v) > 2. Then v,{w) > 1. By (3.12), v,(a) > 3, a contradiction.

Case 2. vp(u) = 0. By (3.9), vp(v) = 0 = v,(w). By (3.11), w¥» =0 (mod p?),
a contradiction.

Case 3. vp(u) = 1. By (3.9), v5(v) < 2,v,(w) < 2 and vp(v) = 1 or vy(w) = 1
but not both.

3.1. »,(v) =1 and yp(w) = 0. By (3.10), »*w =0 (mod p®), a contradiction.
3.2. v(v) =0 and y,(w) = 1. By (3.10), uv® =0 (mod p?), a contradiction.
Case 4. vp(u) = 2. By (3.9), yp(vw) = 2. By (3.11), vp(v) > 1.

4.1. yp(v) = L. Then yp(w) = 1. By (3.12), ya) > 3, a contradiction.

4.2. vp(v) = 2. Then y,(w) = 0. By (3.10), aw? = 0 (mod p?), a contradiction.
Hence k = 2. ' \

(4) Assume that vp(a) = 4. Then 6*/p* is a p-integral element, so k
Consider £k = 3. Since 4 = 0 (mod p*), 1,(t) > 4,s0 ¢t = 0. Since B
(mod p%),

> 3.
=0

u+ovw=0 (modp?). (3.13)
Since ¢ =0 (mod p?),
av —uw? —vPw+aw? =0 (mod p°). (3.14)
Since D =0 (mod p'%),
—au? — udv + av® — a*w + awvw — av*w? + auw® =0 (mod p?).  (3.15)
Since E = 0 (mod p*),
a® — u® + 5a’uv + 5au*v? + av® — Savdw ~ Satviw—

3.16
2ow® + 5a’vw® — @*w® =0  (mod p'®). (3.16)

Sauv w — 5aluw? + Sau
Casel. u= 0. By (3.14), v + w? = 0 (mod p*). Then v =0 or ué(v) is even.
1.1. v =0. Then yp(w) > Z. By (3.16), v,(a) > 4, a contradiction.
1.2. vy(v) = 0. Then v,(w) = 0 contradicting (3.13).
1.3. vp(v) = 2. Then vp(w) = 1 contradicting (3.13).

Case 2. vp(u) = 0. By (3.13), v,(v) = vp(w). = 0. By (3.15), u3v = 0 (mod p*),
a contradiction.

Case 3. vp(u) = 1. By (3.13), vp(v) < 2,vp(w) < 2 and v,(v) =1 or yp(w) =1
but not both.
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3.1. yy(v) =1 and yp{w) = 0. By (3.14), u®>w =0 (mod p?), a contradiction.
3.2. 1p(v) =0 and y,(w) = 1. By (3.14), uw2? = 0 {mod p®), a contradiction.
Case 4. v,(v) = 2. By (3.13), yp(vw) = 2. By (3.15), v,(v) > 1.

4.1. vp(v) = 1. Then vy(w) = 1. By (3.14), uv®* =0 (mod p®), a contradiction.

4.2. vp(v) = 2. Then vy(w) = 0. By (3.15), avw® = 0 (mod p®), a contradic-
tion.

Case 5. v,(v) = 3. By (3.13), yp(vw) = 3. By (3.15), v,(v) > 2.

5.1. vp(v) = 2. Then yp(w) = 1. By (3.15), a®>w = 0 (mod p*?), a contradic-
tion.

5.2. y(v) = 3. Then yp(w) = 0. By (3.14), aw® = 0 (mod p’), a contradiction.
~ Hence k =3. - a

The next two theorems are stated and proved for p = 5 of Theorems 3.2.4
and 3.2.5, respectively.

Theorem 3.2.6. Let k be the largest nonnegative integer for which there exist
integers t,u and v such that v = (t + ué + v6? + 6%) /5% is a 5-integral element.
Then.: '

(0) If vs(a) =0, then k = 0.
(1) Ifus(a) =1, then k=0,
(2) Ifvs(a) =2, then k = 1.
(3) If v5(a) =3, then k = 1.
(4) If vs(a) = 4, then k = 2.

Proof. Let k € ZF. Suppose that there exist integers f,u and v such that
v = (¢t +uf + v8? + 63)/5* is a 5-integral element. Let A, B,C,D and E be as
in Theorem 3.1.3.

(0) Assume that v5(a) = 0. Consider k = 1. According to Remark 3.2.1, we
may assume that t,u,v € {—2,-1,0,1,2}. Since B =0 (mod 5%),

2t = —av  (mod 5). (3.17)
Since C =0 (mod 5%),

2 — au’® + 3atv — aur® =0 (mod 5?). (3.18)
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Since D =0 (mod 5%),
t* — a’u — 2atu® + 3at®v + auv + a®® — 2atur?’ =0 (mod 5%). (3.19)

Case 1. t = 0. By (3.17) and vs(a) = 0, we have v = 0. By (3.18), u = 0. Since
E =0 (mod 5%), a®* =0 (mod 5%), a contradiction.
Case 2. t = 1. By (3.17), av = -2 (mod 5).

21.a = -1 (mod 5) and v = 2. By (3.18), v> —u +1 = 0 (mod 5), a
contradiction.

22. a = 2 (mod5) and v = —1. By (3.18), v’ + u+ 2 = 0 (mod 5), a
contradiction.

23. a= -2 (mod5) and v=1. By (3.18), v’ +u—2=(u—1)(u+2) =0
(mod 5), so u = —2 or u = 1. By substituting ¢, u,v and a in (3.19), we
have a contradiction.

= 1 (mod5) and v = —2. By (3.18), v? +4du+4 = (u+2)2 = 0
mod 5), so u = —2. By substituting {,u and v in A, B,C, D and E, we
ave A =5, B = 10— 10a, C = 10 — 10a, D = 5 + 90a + 30a? and
= 1+ 122a — 122a% — a®. Since D = 0 (mod 5%), 1 + 18a + 6a? = 0
(mod 5%). Since a = 1 (mod 5), @ = 5m + 1 for some m € Z. Then
1+ 18(5m + 1) + 6(5m + 1)? = 25 + 150m + 150m? = 0 (mod 5%), so

1+6m+6m? =0 (mod 5). Thus 1+m+m? =0 (mod 5), a contradiction.
Case 3. t = —1. By 3.17, av = —2 (mod 5).

3.1. a = -2 (mod 5) and v = 1. By (3.18), v’ + u+ 2 = 0 (mod 5), a
contradiction.

32.a =1 (mod 5) and v = —2. By (3.18), w’ + u — 1
contradiction.

0 (mod 5), a

33. a=2 (mod 5) and v =—1. By (3.18), v +u—2=(u—1){(u+2) =0
(mod 5), so u = —2 or 4 = 1. By substituting t,u,v and a in (3.19), we
have a contradiction.

3.4.a = —1 (mod 5) and v = 2. By (3.18), w +4u+4 = (u+2)? =
(mod 5), so u = —2. By substituting ¢,% and v in 4, B,C,D and E, we
have A =5, B = 10+ 10a, C = 10 + 10a, D = 5 — 80a + 30a® and
E = —1+122a + 122a* — a®. Since D =0 (mod 5%), 1 — 18a + 6a” =
(mod 5%). Since ¢ = —1 (mod 5), a = 5m — 1 for some m € Z. Then
1 —18(5m — 1) + 6(5m — 1)2 = 25 — 150m + 150m? = 0 (mod 5*), so
14+6m+6m? =0 (mod 5). Thus 1+m+m? =0 (mod 5), a contradiction.

Case 4. t = 2. By 3.17, av = 2 (mod 5).
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4.1.

4.2.

4.3.

4.4.

Case

5.1.

5.2.

3.3.

9.4.

a =1 (mod5) and v = 2. By (3.18), —v* + u— 2 = 0 (mod 5), a
contradiction.

a =2 (mod 5) and v = 1. By (3.18), u* +u + 1 =0 (mod 5), a contra-
diction.

a=—1 (mod 5) and v =—-2. By (3.18), v’ —u—2=(u+ 1)(u—-2)=0
(mod 5), so u = —1 or u = 2. By substituting ¢,u,v and a in (3.19), we
have a contradiction.

= —2 (mod 5) and v = —1. By (3.18), v ~4du+4 = (u—2)2 =
(mod 5), so 4 = 2. By substituting ¢,u and v in A, B,C,D and E, we
have A = 10, B = 40 — 5a, C = 80.— 60a, D = 80 — 220a — 5a® and
E = 32— 272a — 21a® — @3. Since a = —2 (mod 5), a = 5m — 2 for some
m € Z. Since E = 0 (mod 5%), 32—272(5m—2)—21(5m—2)2—(5m—2)% =
500 — 1000m — 375m? — 125m® = 0 (mod 5°), s0

4—-8m—3m>—m*=0 (mod5%) - (3.20)
Since D =0 (mod 5%), —80+220(5m—2)+5(5m—2)% = —500+1000m +
125m? = 0 (mod 5%), so m®* —2m +1 = (m — 1) = 0 (mod 5). Then
m =1 (mod 5), so :

m?>—-2m+1=0 (mod 3%). (3.21)

By (3.20) and (3.21), we have m® + 7m? = 0 (mod 5%). Since m = 1
(mod 5), m = —7 (mod 5%), so m = —2 (mod 5), a contradiction.

5.t = —2. By 3.17, av = 2 (mod 5).

= —1 (mod 5) and v = —2. By (3.18), v’ —u + 2 = 0 (mod 5), a
contradiction.

6 = —2 (mod 5) and » = —1. By (3.18), v’ + u +1 = 0 (mod 5), a

contradiction.

a=1 (mod5)and v=2 By (318),2*—u—-2=(u+1)(u—-2)=0
(mod 5), so u = —1 or » = 2. By substituting t,u,v and a in (3.19), we
have a contradiction.

a =2 (mod5)and v = 1. By (3.18), v? —du+4 = (u—2)> =0
(mod 5), so u = 2. By substituting ¢,u and v in A, B,C,D and E, we
have A = 10, B = 40 + 5a, C = 80 + 60a, D = 80 + 220a — 5a* and
E = —-32—272a + 21a® — a®. Since a =2 (mod 5), a = 5m + 2 for some
m € Z. Since E =0 (mod 5°), —32—272(5m + 2) +21(5m +2)% — (5m +
2)3 = —500 — 1000m + 375m?* — 125m3 = 0 (mod 5°), so

448m—3m*+m® =0 (mod 5?) (3.22)
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Since D =0 (mod 5%), 80 + 220(5m + 2) — 5(5m + 2)? = 500 + 1000m —
125m? = 0 (mod 5%), so m* +2m +1 = (m+ 1)? = 0 (mod 5). Then
= —1 (mod 5), so

m?+2m+1=0 (mod 5%, (3.23)

By (3.22) and (3.23), we have m® + 7m? = 0 (mod 5?). Since m = -1
(mod 5), m =7 (mod 5%), so m = 2 (mod 5), a contradiction.

Hence k£ = 0.

(1) Assume that vs(a) = 1. Consider k = 1. Since B = 0 (mod 5%),
vs(t) > 1. Since C =0 (mod 5%), u(u +v%) =0 (mod 5), s0 u =0 (mod 5) or
u+2v2 =0 (mod 5). '

Case 1. u = 0 (mod 5). Since D = 0 (mod 5%), vs(v) > 1. Since E = 0
(mod 5%), a® =0 (mod 5%), a contradiction.

Case 2. u+v? =0 (mod 5). Since E =0 (mod 5°%), vs(u) > 1. Then vs(v) > 1,
and so a® = 0 (mod 5%), a contradiction. '

Hence k = 0.

For vs(a) = 2 or 3, 63/5 is a 5-integral element. Hence k > 1.

(2) Assume that vs(a) = 2. Consider k = 2. Since A = 0 (mod 5?),
vs(t) > 1. Suppose that v5(t) > 1. Since B = 0 (mod 5*), vs(v) > 1. Since
C =0 (mod 5%), v(u) > 1. Since E =0 (mod 5'%), v5(a) > 2, a contradiction.
Thus we have vy(t) = 1. Since C =0 (mod 5°),

u(u+v*) =0 (mod 5) (3.24)

Assume that vs(u) > 1. Since E = 0 (mod 5'%), v5(v) > 1. Since D = 0
(mod 5%), vs(t) > 1, a contradiction. Then from (3.24), we have u = —v?
(mod 5) and so vs(u) = v5(v) = 0. Since D = 0 (mod 5%), vy = 0 (mod 5), a
contradiction. Hence k£ = 1.

(3) Assume that vs(a) = 3. Consider k = 2. Since B = 0 (mod 5%),
vs(t) > 2. Since C =0 (mod 5°),

u(u+2*) =0 (mod 52) (3.25)

Since D = 0 (mod 58), v*v = 0 (mod 5). Then u = 0 (mod 5) or v
(mod 5).

Case 1. w = 0 (mod 5). Since E = 0 (mod 5'°), vs(v) > 1, and so a® = 0
(mod 5'%), a contradiction.

Case 2. v = 0 (mod 5). By (3.25), « = 0 (mod 5). Since E = 0 (mod 5'°),
a®* =0 (mod 5%), a contradiction.

0

Hence k = 1.
(4) Assume that vs5(a) = 4. Then 6%/5% is a 5-integral element, so k > 2.
Consider ¥ = 3. Since A = 0 (mod 5°), vs(t) > 2. Suppose that vs(t) > 2.
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Since B =0 (mod 5°), vs(v) > 1. Since C =0 (mod 5°), u? = ~uv? (mod 5%),
so vs(u) > 2. Since E = 0 (mod 5'%), vs(a) > 4, a contradiction. Then we
have vg(t) = 2. Since B = 0 (mod 5%), vs(v) = 0. Since C = 0 (mod 59),
u? + w? = 0 (mod 5?), so vs(u) # 1. Since D = 0 (méd 5'%), u? = 24w
(mod 57), vs(u) = 1, a contradiction. Hence k = 2. 0

Theorem 3.2.7. Let k be the largest nonnegative integer for which there exist

integers t,u,v and w such that § = (L + uf + v8% + wh* 4 6*) /5% is a 5-integral
element. Then:

(0) Ifvs(a) =0, then k = 1 whenevera =1 (mod 5?) ora = —1 (mod 5%) or
(a=5m—2and m=—1 (mod 5)) or (a=5m+2 and m =1 (mod 3)),
and k = 0 otherwise.

(1) If vg(a) =1, then k = 0.

(2) If vs(a) =2, then k = 1.

(3) If vs(a) =3, then k = 2.

(4) If vs(a) = 4, then k = 3.

Proof. Let k € Z{. Suppose that there exist integers #,u,v and w such that
§ = (t +ub + v6% + w6 + 6*) /5% is a 5-integral element. Let A, B,C,D and E
be as in Theorem 3.1.4.

(0) Assume that vs(a) = 0. Consider k = 2. Since A = 0 (mod 5%), t = 0
(mod 5). Since B =0 (mod 5%),

u+vw=0 (mod5?). (3.26)
Since C =0 (raod 5°),

av —wv® —vw+aw® =0 (mod 5). (327)

Case 1. » =0 (mod 5). By (3.26), u = 0 (mod 5). By (3.27), w =0 (mod 5).
Since E =0 (mod 5'), vs(a) > 1, a contradiction.

Case 2.-v =1 (mod 5). By (3.26), u = —w (mod 5). By (3.27), vs(u) = 0.
2.1. u = +£1 (mod 5). By (3.27), 2 =0 (mod 5), a contradiction.
2.2. w=42 (mod 5). By (8.27), 1 =0 (mod 5), a contradiction.

Case 3. v = —1 (mod 5). By (3.26), u = w (mod 5). Since C = 0 (mod 5°%),
vs(u) = 0.

3.1. u= %1 (mod 5). By (3.27), £2 =0 (mod 5), a contradiction.
3.2. uw= =22 (mod 5). By (3.27), 2¢ = 0 (mod 5), a contradiction.
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Case 4. v = 2 (mod 5). By (3.26), u = —2w (mod 5). Since C = 0 (mod 58),
V5(U) = 0.

4.1. v =2 (mod 5) and w = —1 (mod 5). By (3.27), a = —2 (mod 5). Since
D =0 (mod 5%), 2 =0 (mod 5), a contradiction.

42. u = -2 (mod 5) and w = 1 (mod 5). By (3.27), a = 2 (mod 5). Since
D =0 (mod 5%), 2 =0 (mod 5), a contradiction.

Case 5. v = -2 (mod 5). By (3.26), « = 2w (mod 5). Since By (3.27),
2/5(U) =0.

51. v =2 (mod 5) and w = 1 (mod 5). By (3.27), @ = -2 (mod 5). Since
D =0 (mod 5%), 1 =0 (mod 5), a contradiction.

5.2. u = —2 (mod 5) and w = —1 (mod 5). By (3.27), e = 2 (mod 5). Since
D =0 (mod 5%), 1 =0 (mod 5), a contradiction.

Hence k£ < 1.
Consider £ = 1. According to Remark 3.2.1, we may assume that #,u,v,
w € {—2,-1,0,1,2}. Since B =0 (mod 5%),

2’ + au+avw =0 (mod 5). (3.28)
Since C = 0 (mod 5%),
283 + 3atu + a*v — auv® — auw + 3otvw + a®w? =0 (mod 5%).  (3.29)
Since D =0 (mod 5%),

— t* — 3at’u — a®u® — 20’ — auPv + 2atur?® + a®v® — Pw
+ 2atu’w — 3at?vw + aPuvw — 2a*tw? — a®v*w? + *uwd =0 (mod p*).
(3.30)

Case 1. t = 0. By (3.28),
vu+vw=0 (modS5). (3.31) |

- By (3.29),
av —w? — Pw+aw?’ =0 (mod 5%). (3.32)

1.1. v = 0. By (8.31), u = 0. By (3.32), w = 0. Since £ = 0 {mod 5%),
vs(a) > 1, a contradictiow.

1.2. v =1. By (3.31), u = —w. By (3.32), vs(u) = 0.

1.2.1. u = =1. Since C =0 (mod 5*), 22 = 0 (mod 5), a contradiction.
1.2.2. u = *2. Since C =0 (mod 5%), £1 = 0 (mod 5), a contradiction.
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1.3. v =—1. By (3.31), u = w. Since C =0 (mod 5°), v5(u) = 0.

1.3.1. w==£1. By (3.32), £2 =0 (mod 5), a contradiction.
1.3.2. u = £2. By (3.32), 2a =0 (mod 5), a contradiction.

1.4. v = 2. By (3.31), u = —2w. Since C =0 (mod 5°%), v5(u) = 0.

141 v = 2 and w = —=1. By (3.32), 2 = —2 (mod 5). Since D = 0
(mod 5%), 2= 0 (mod 5), a contradiction.

142 4 = -2 and w = 1. By (3.32), a = 2 (mod 5). Since D = 0
(mod 5*), 2=0 (mod 5), a contradiction.

15. v =—2. By (3.31), u = 2w. Since C =0 (mod 5%), v5(u) = 0.

15.1. u = 2 and w = 1. By (3.32), a = -2 (mod 5). Since D = 0
(mod 5%), 1 =0 (mod 5), a contradiction.

152 u = —2 and w = —1. ‘By (3.32), a = 2 (mod 5). Since D = 0

(mod 5%), 1 =0 (mod 5), a contradiction.
Case 2. £ =1. By (3.28), au + avw = —2 (mod 5).
2.1. a=1 (mod 5). Then u+vw = —2 (mod 5).

2.1.1. w=0. Then vw = -2 (mod 5).
2111, v=1and w=-2.
2112. v=—-1and w = 2.
21.13. v=2and w = --1.
2114. v=—-2andw=1.

The subcases 2.1.1.1 to 2.1.1.3 contradict (3.29). The subcase 2.1.1.4
contradicts (3.30).

2.1.2. w =1. Then vw =2 (mod 5).
21.21. v=1and w = 2.
2.1.2.2. v= -1 and w = 2.
2123. v=2and w=1.
2.1.24. v=—-2and w = —1.

The subcases 2.1.2.1, 2.1.2.3 and 2.1.2.4 contradict (3.29). The sub-
case 2.1.2.2 contradicts (3.30).

2.1.3. u=—1. Then vw = —1 (mod 5).
2.1.3.1. v=1and w=-—1.
2132. v=—-1landw=1.
2133. v=2and w=2.
2.1.34. v=-2and w = —-2.
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The subcases 2.1.3.2 to 2.1.3.4 contradict (3.29). For the subcase
2.1.3.1, we substitute ¢t,4,v and w in A, B,C, D and E, so we have
A=5 B=10-10a, C = 10-20a+10a? D = —5+15a— 1502+ 543
and £ = 1 — 4a + 6a® — 443 + a*. Since E = 0 (mod 5%), a = 1
_ {(mod 52). Then § is a 5-integral element, so k = 1.
2.1.4. u =2. Then vw =1 (mod 5).
214.1. v=1land w=1.
2142 v=-1and w=-1.
2.143. v =2and w=-2.
2.144. v=-2and w = 2.

The subcases 2.1.4.1 to 2.1.4.4 contradict (3.29).
2.1.5. w = —2. Then vw =0 (mod 5).
2.1.51. v =0. By (3.29), we have, w? — 4w — 4 = 0 (mod 5), a contra-
diction.

2.1.5.2. w = 0. By (3.29), we have, 202+ v — 4 = 0 (mod 5), a contra-
' diction.

2.2. a = -1 (mod 5). Then u+ vw =2 (mod 5).

2.2.1. v =0. Then vw =2 (mod 5).
22.1.1. v=1and w=2.
2.212. v=-1and w = -2.
2.21.3. v=2and w = 1.
2214. v=-2and w = -1.

The subcases 2.2.1.1 to 2.2.1.3 contradict (3.29). The subcase 2.2.1.4
contradicts (3.30).

2.2.2. u=1. Then vw =1 (mod 5).

222). v=land w=1.

2222 v=-1and w=-1.

2223. v=2and w=-2.

2224 v=-2and w=2.
The subcases 2.2.2.2 to 2.2.2.4 contradict (3.29). For the subcase
2.2.2.1, we substitute ¢,u,v and w in A, B,C, D and E, so we have
A=5,B=10+10a, C = 10+20a+10a%, D = ~5—15a—15a2 — 5a°
and E = 1+ 4a + 6a? -+ 4a® + ¢*. Since E = 0 (mod 5%), a = -1
(mod 5%). Then 4§ is a 5-integral element, so k = 1.

2.2.3. u=~1. Then vw = —2 (mod 5).

223.1. v=1and w=-2.
2232 . v=—=1and w=2.
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2233 v=2apd w=-1.
2234, v=—-2andw=1.

The subcases 2.2.3.1, 2.2.3.3 and 2.2.3.4 contradict (3.29). The sub-
case 2.2.3.2 contradicts (3.30).

2.2.4. u=2. Then vw =0 (mod 5).

2.24.1. v = 0. By (3.29), we have, w* — 4w — 4 = (mod 5), a contra-
diction.

2.2.4.2. w = 0. By (3.29), we have, 2v2+v —4 = (mod 5), a contradic-
tion.

2.2.5. u = —2. Then vw = —1 (mod 5).

2.251. v=1and w=-1.
2.252. v=-1and w=1.
2253 v=2and w=2.
2254. v=-2and w = -2.

The subcases 2.2.5.1 to 2.2.5.4 contradict (3.29).
2.3. a =2 (mod 5). Then u + vw = —1 (mod 5).

2.3.1. v =0. Then vw = —1 (mod 5).
2311. v=1and w=—1.
2312. v=—-landw=1.
2.313. v=2and w=2.
2314, v=—-2and w= -2

The subcases 2.3.1.1, 2.3.1.2 and 2.3.1.4 contradict (3.29). The sub-
case 2.3.1.3 contradicts (3.30).

2.3.2. u=1. Then vw = —2 (mod 5).
2321. v=1and w=-2.
2322 . v=-1land w=2
2.3.23. v=2and w = —1.
9.3.2.4. v = —2 and w=1.

The subcases 2.3.2.1 to 2.3.2.4 contradict (3.29).
2.3.3. u=—1. Then vw =0 (mod 5).

2.3.3.1. v = 0. By (3.29), we have, 4w? —2w—4 =0 (mod 5), a contra-
diction.

2.3.3.2. w = 0. By (3.29), we have, 20> + 4v — 4 =0 (mod 5), a contra-
diction.

2.3.4. u=2. Then vw =2 (mod 5).
2341 v=1and w=2.
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2.342. vy= -1 and w = —2.

2.343. v=2and w=1.

2.344. v=—-2and w=-1.
The subcases 2.3.4.1, 2.3.4.3 and 2.3.4.4 contradict (3.29). For the
subcase 2.3.4.2, we substitute ¢,u,v and w in A, B,C,D and E, so
we have A =5, B =10+ 20a, C = 2+ 18a + 32¢%, D = -1 —
16a — 2702 + 2a® and E =1 — 22a + 119a% + 22a% + a?. Since a = 2
(mod 5), a = 5m + 2 for some m € Z. Since E = 0 (mod 5%),

1+ 6m+ 11m? +6m® + m? =0 (mod 5), so m =1 (mod 5). Then
d is a 5-integral element , so k = 1.

2.3.5. u=~—2. Then vw =1 (mod 5).
2351. v=1and w=1.
23.5.2. v=—1and w=-1.
2.35.3. v=2and w=-2.
2.354. v=—-2and w=2.

The subcases 2.3.5.2 to 2.3.5.4 contradict (3.29). The subcase 2.3.5.1
contradicts {3.30).

2.4. a= -2 (mod 5). Then u+vw =1 (mod 5).

2.41. v =0. Then vw =1 (mod 5).
24.1.1. v=1and w=1.
24.12. v=-1and w=-1.
24.13. v=2and w= -2
2414, v=-2and w=2.
The subcases 2.4.1.1, 2.4.1.2 and 2.4.1.4 contradict (3.29). The sub-
case 2.4.1.3 contradicts (3.30). '
2.4.2. u=1. Then vw =0 (mod 5).

2.4.2.1. v = 0. By (3.29), we have, 40? + 2w —4 =0 (mod 5), a contra-
diction.

2.4.2.2. w=0. By (3.29), we have, 2v*> + 4v — 4 =0 (mod 5), a contra-
diction. .

2.4.3. u =—1. Then vw =2 (mod 5).
2431. v=1and w=2.
2432 v=~-1and w= -2
2433. v=2and w=1.
2434 v=-2andw=-1.
The subcases 2.4.3.1 to 2.4.3.4 contradict (3.29).
2.4.4. v =2. Then vw = -1 (mod 5).
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2441 v=1and w=--1.
2442 v=-1and w=1.
2443 v=2and w=2.
2444 v=~2and w = -2.

The subcases 2.4.4.2 to 2.4.4.4 contradict (3.29). The subcase 2.4.4.1
contradicts (3.30).

2.4.5. u = —2. Then vw = -2 (mod 5).
2451 v=1and w=-2.
2452 v=—-1and w = 2.
24.5.3. v=2and w=—1.
24.54. v=-2and w=1.

The subcases 2.4.5.1, 2.4.5.3 and 2.4.5.4 contradict (3.29). For the
subcase 2.4.5.2, we substitute {,%,v and w in A, B,C, D and E, so
we have A =5, B =10 — 20a, C =2 — 18a + 3a?, D = =1 + 16a —
270 — 2a% and E = 1 + 22a + 11902 — 22a® + a*. Since a = -2
(mod 5), @ = 5m — 2 for some m € Z. Since E = 0 (mod 3°%),
1~6m+11m2—6m®+m* =0 (mod 5),s0 m = —1 (mod 5). Then
0 is a 5-integral element, so k = 1.

In the cases t = —1, ¢ = 2 and £ = —2, we separate them into subcases as
same as we do in the case t = 1. All subcases of them have a contradiction
which is similar to the case ¢ = 1. Also they do not have any subcases in which
we can get kK = 1. Thus they are not mentioned here.

Hence we have k = 1 whenever a = 1 (mod 5%) or ¢ = —1 (mod 52) or
(e=5m—2and m= -1 (mod 5)) or (a=5m+2and m =1 (mod 5)), and
k = 0 otherwise.

(1) Assume that vs5(a) = 1. Consider ¥k = 1. Since B = 0 (mod 5?),

vs(t) > 1. Since C = 0 (mod 5°), u(v? — uw) =0 (mod 3), so u = 0 (mod 3)

or v —uw = 0 (mod 5).

Case 1. v =0 (mod 5). Since D = 0 (mod 3%), v?(v ~ w?) = 06 (mod 5), so
=0 (mod 5) or v — w? =0 (mod 3).

t.1. » = 0 (mod 5). Since E = 0 (mod 5°), a* — ¢®*w® = 0 (mod 5°), so

v
a = w® (mod 5%). Since vs(a) = 1, we have a contradiction.

12. v—w? =0 (mod 5). Since E =0 (mod 5°), v =0 (mod 5). Then w =0
(mod 5), so a®* =0 (mod 5°%), a contradiction.

Case 2. v> —uw =0 (mod 5).

2.1. uw = 0 (mod 5). Then (x = 0 (mod 5) or w = 0 (mod 5)) and v = 0
(mod 5).
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2.1.1. u = 0 (mod 5) and » = 0 (mod 5). Since £ = 0 (mod 5%), a* —
alw® =0 (mod 5%), s0 @ = w® (mod 5%). Since vs(a) = 1, we have a
contradiction.

2.1.2. w =0 (mod 5) and v = 0 (mod 5). Since D = 0 (mod 5*), u =0
(mod 5). Since E =0 (mod 5°%), a* = 0 (mod 5°), a contradiction.

2.2 vs(uw) = 0. Then vs(u) = vs(v) = vs(w) = 0. Since D = 0 (mod 5%),
23 = 0 (mod 5), a contradiction.

Hence k = 0.

(2) Assume that vs(a) = 2. Then 6*/5 is a 5-integral element, so k > 1.
Consider k = 2. According to Remark 3.2.1 we may consider 0 < ¢, u,v,w < 52
Since A = 0 (mod 5?%), vs(t) > 1. Suppose that vg(t) > 1. Then t = 0. Since
B =0 (mod 5%),

u+vw=0 (mod >5), (3.33)

Since C =0 (mod 5°),
w(@® +uw) =0 (mod 5%). (3.34)
Case 1. u = 0. By (3.33), vs(vw) > 1. Since E = 0 (mod 5'°),
o' +5a%w® —a®*w® =0 (mod 5°) (3.35)
and
SwP=0 (mod?5’). (3.36)
By (3.36), vs(w) > 1. By (3.35), vs(a) > 2, a contradiction.

Cuase 2. vg(u) = 0. Since E = 0 (mod 5'%), au® =0 (mod 5%), so v5(a) > 2, a
contradiction.

Case 3. v5(u) = 1.- By (3.34), vs(v) > 1. Since D = 0 {mod 5°%), vs(w) > 1.
Since E =0 (mod 5'°), au® =0 (mod 5%), a contradiction. _
Thus Z/5(t) = 1.

Case 1. vs(u) = 0. Since E = 0 (mod 5'%), au® =0 (mod 5%), so vs5(a) > 2, a
contradiction. :

Case 2. u = 0 or v5(u) = 1. Since E = 0 (mod5'%), a®»® = 0 (mod 5°), so
vs(v) > 1. Since B =0 (mod 5%), vs(t) > 1, a contradiction.
Hence k£ = 1.

(3) Assume that vg(a) = 3. Then 6?/5% is a 5-integral element, so k > 2.
Consider k = 3. Since A =0 (mod 5), v5(t) > 2. Since B =0 (mod 5°),

u+vw=0 (mod}?). (3.37)
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Since C =0 (mod 5%),
u(v?+uw) =0 (mod 5). (3.38)

Since D =0 (mod 5'?),
| wv=0 (mod 5%). (3.39)
Case 1. u = 0.

1.1. t=0. Since B=0 (mod 5°), vw =0 (mod 5%).

1.1.1. ys(v) = 0. Then vs(w) > 2. Since C = 0 (mod 5%), 5a%v = 0
(mod 5%), a contradiction.

1.1.2. vs(v) = 1. Then vs(w) > 1. Since C = 0 (mod 5%), 5a%v = 0
(mod 5°), a contradiction.

1.1.3. v =0 or v5(v) = 2. Since C =0 (mod 5%), vs(w) > 1. Since £ = 0

(mod 51%), a* =0 (mod 5'), a contradiction.

1.2 vs(t) = 2. Since B =0 (mod 5%), vs(v) < 2,vs(w) < 2 and v,(v) =1 or
v(w) = 1 but not both.

1.2.1. vs(v) = 1 and vs(w) = 0. Since C = 0 (mod 5°), 5a’w® = 0
(mod 5%), a contradiction.

©1.2.2. us(v) = 0 and vs(w) = 1. Since E = 0 (mod 5'5), a%®
(mod 57), a contradiction.

[l
o

Case 2. vs(u) = 0. By (3.37), vs(v) = vs(w) = 0 contradicting (3.39

)-
Case 3. vs(u) = 1. By (3. 37), vw = 0 (mod 5). By (3.38), » = 0 (mod 93).
Since D = 0 (mod 5'?), w = 0 (mod 5). Since E = 0 (mod 5%
(mod 5%), a contradiction.

Case 4. . vs(u) = 2. By (3.37), vw = 0 (mod 5). Since C = 0 (mod 5%),
5auv? = 0 (mod 57), so v =0 (mod 5).

4.1. vs(v) = 1.
411. t = 0. Since B = 0 (mod 5°), w = 0 (mod 5). Since £ = 0
(mod 5%), av® =0 (mod 5'2), a contradiction.
4.1.2. v5(t) = 2. Since B = 0 (mod 5%), vs(w) = 0. Since E = 0
(mod 5%), a’w® =0 (mod 5'9), a contradiction.
42. v = 0 or v5(v) = 2. Since B = 0 (mod 5°), vs(t) = 3. Since C =
0 (med 5°%), 5a*w? = 0 (mod 5°), so w = 0 (mod 5). Since £ = 0

(mod 5'%), a* =0 (mod 5?), a contradiction.
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Hence k£ = 2.

(4) Assume that vs(a) = 4. Then 61/5% is a 5-integral element, so k > 3.
Consider & = 4. According to Remark 3.2.1, we may consider 0 < ¢, u, v, w < 5%
Since A = 0 (mod 5*), vs(¢) > 3. Suppose that vg(t) > 3. Then t = 0. Since
B =0 (mod 5%),

u+vw =0 (mod 5. (3.40)

Since C = 0 (mod 5'2),
u(v? +uw)=0 (mod 5. (3.41)

Case 1. vs(u) = 0. Since E = 0 (mod 5%), au® =0 (mod 5%), so vs(a) > 4, a
contradiction.

Case 2. vg(u) = 1. By (3.41), vs(v) > 1. Since D = 0 (mod 5'%), vs(w) > 1.
Since £ =0 (mod 5%), au® =0 (mod 5'%), a contradiction. -

Case 3. vs(u) = 2. By (3.40), vs(vw) = 2. By (3.41), vs(v) > 1.

3.1 vs(v) =1 and vs(w) = 1. Since E = 0 (mod 5%), a*® = 0 (mod 5'), a
contradiction.

3.2 vs(v) =2 and vs(w) = 0. Since D =0 (mod 5'%), vs(w) > 1, a contradic-
tion.

Case 4. u = 0 or vs(u) = 3. By (3.40), vs(vw) > 3. Since D = 0 (mod 5'¢),
vs(v) > 1. Since E =0 (mod 5%), '

a? +5a%vuw® — a*uw® =0 (mod 5'7) (3.42)

and
adw® =0 (mod 5'). (3.43)

By (3.43), vs(w) > 1. By (3.42), vs(a) > 4, a contradiction.
Thus vg(t) = 3. Since B =0 (mod 5%),

u+vw=0 (mod5%). (3.44)
Since C = 0 (mod 5'?),
w(v®+uw) =0 (mod 57). _ (3.45)

4.1. u = 0. By (3.44), vs(vw) > 3. Since D = 0 (mod p'®), v5(v) > 2.
Since £ =0 (mod 5®), ¢®w® = 0 (mod 5'%), so vs(w) > 1. Since B =0
(mod 5%), v5(t) > 3, a contradiction.

4.2. vs(u) = 0. Since E =0 (mod §%), au® =0 (mod 5%), a contradiction.

4.3. vs(u) = 1. Since E = 0 (mod 5%), a*»® = 0 (mod 5°), so ws(v) > 1.
Since B =0 (mod 5%), v +vw = 0 (mod 5%), s0 v5(v) = 1 and vs(w) =0
contradicting (3.45).
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44. vs(u) = 2. By (3.45), vs(w) # 1. Since B =0 (mod 58), vs(vw) > 2.

4.4.1. vs(w) = 0. By (3.45), v5(v) = 1, a contradiction.

4.4.2. vs(w) > 2. By (3.45), vs(v) > 2. Since E = 0 (mod 5%), au® =0
(mod 5®°), so vg(u) > 2, a contradiction.

4.5. vs(u) = 3. By (3.45), vs(v) > 2 and vs(w) > 1. Since B =0 (mod 5%), so
vs(t) > 3, a contradiction.

Hence k& = 3. O

Corollary 3.2.8. (i) Ifa =1 (mod 5%), then (1 — 8+ 62 — 6% +6)/5 is a
S-integral element.

(#3) Ifa = —1 (mod 5%), then (14 0+ 6%+ 6% + 6*)/5 is a 5-integral element.

(44) Ifa=5m+2 and m =1 (mod 5), then (14260 — 6% —20° +6%)/5 is a
5-integral element.

(iv) Ifa=5m—2 and m = —1 (mod 5), then (1 — 20 — 9> +26% +04)/5 is a
5-integral element.

Proof. They follow from the proof of Theorem 3.2.7 for vs(a) = 0 in the subcases
2.1.3.1, 2.2.2.1, 2.3.4.2 and 2.4.5.2, respectively. O

We now conclude to obtain a p-integral basis, for every rational prime p, of

K = Q(8) where @ is a root of the irreducible polynomial z° + a in Z[z] with
vp(a) < 5 as follows.

Theorem 3.2.9. Let K = Q(6) where 8 is a root of the irreducible polynomial
z° + a in Z{z) with vp(a) < 5. Then a 5-integral basis and p(# 5)-integral basis
of K are given in Table A and Table B, respectively.

: Table A
Condition 5 — integral basis | v5(d(K))

V5(a) =0
a=1 (mod 5%) {1,6,6°,6°,6,} 3
= —1 (mod 5%) {1,0,6%,6°,6,} 3
a=5m+2and m=1 (mod 5) {1,6,6%,6°,45} 3
a=5mn—2and m= -1 (mod 5) {1,6,6%,6°,6,} 3
Otherwise {1,6,6%,6°, 6"} 5
vs(a) = 1 : {1,8,6%,6%, 6%} 9
vs(a) =2 {1,6,6%,6%/5,6%/5} 9
vs(a) = 3 {1,86,6%/5,6% /5,0 /5°} 9
vs(a) = 4 {1,0,8%/5,6%/5%,6°/5%} 9

Inteble A, 6, = (1 -0 +6%—6%+6%/5, 6, = (1 +6+ 6%+ 0%+ 6%)/5,
b3 =(1+20—62—20°+6%)/5 and 64 = (1 — 20 — 6° + 28° + %) /5.
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Table B

| Condition | p(# 5) — integral basis | v,(d(K))
vp(a) =1 {1,6,6%,6° 6%} 4
UP(a) = {1)9)92)93/27) eé/p} 4
vp(a) =3 | {1,6,6°/p,8°/p,6%/p"} 4
vp(a) =4 | {1,6,8%/p,6%/p",6%/p°} 4

Proof. Table A is obtained from Theorems 3.1.3, 3.2.2, 3.2.3, 3.2.6, 3.2.7 and
Corollary 3.2.8. Table B is obtained from Theorems 3.1.5, 3.2.2, 3.2.3, 3.2.4 and
3.2.5. O

We now give examples to illustrate how to use our tables.

Example 3.2.10. Let K = Q(f), where 6°+1500 = 0. Here a = 1500 = 22.3-5%,
Then discy/q(f) = 28-3%:5'7. Consider 2-integral basis, 3-integral basis and 5-
integral basis. By Table A, 5-integral basis is {1, 6, 82/5,8%/5,8%/5%}. By Table
B, 2-integral basis is {1, 6, 62,6%/2,6%/2} and 3-integral basis is {1, 8, 62, 8%, 6*}.
Thus by Theorem 3.1.6, an integral basis of K is {1, 6, 62/5,6°/10, 8*/50}. From
Table A and Table B, d(K) = 2*-3%.5°.

Example 3.2.11. Let K = Q(f), where 6° + 57 = 0. Here a = 57 = 3-19.
Then discy/g(#) = 3*-5°-19*. Consider 3-integral basis, 5-integral basis and
19-integral basis. By Table A, 5-integral basis is {1, 6, 62, 6%, (1 + 20 — 62— 263 +
6%)/5}. By Table B, 3-integral basis and 19-integral basis are {1,4,6%,6% 6}
Thus by Theorem 3.1.6, an integral basis of K is {1, 6,62, 6%, (1 +26 — 6% — 263 +
6*)/5}. From Table A and Table B, d(K) = 3*-5% - 19%.

Example 3.2.12. Let K = Q(#), where 6° — 19551 = 0. Here a = —19551 =
—3-7%-19. Then discx(f) = 3*- 5% 72 .19". Consider 3-integral basis,
5-integral basis, 7-integral basis and 19-integral basis. By Table A, S-integral
basis is {1,0, 62,63, (1—6+6%—63+6*)/5}. By Table B, 3-integral basis and 19-
integral basis are {1,6, §%,6°, 6"} and 7-integral basis is {1, 8, §2/7,6°/7,8*/7*}.
Thus by Theorem 3.1.6 and the Chinese Remainder Theorem, an.integral basis
of K is {1,0,0%/7,6%/7,(—49 + 496 — 4962 + 496° + 6*)/245}. From Table A
and Table B, d(K) = 3%.5%.74.19%,
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