Chapter II

Theoretical Background

In this chapter we will consider the theoretical models which describe the
magnetic state of matter. It is found that some of the elements in the periodic table
show spontaneous magnetic moment in the absence of external magnetic fields.
These elements are called a ferromagnetic, ferrimagnetic or antiferromagnetic
depending on the orientation of their magnetic moments or their electron spins. The
origin of spontaneous magnetization was unknown prior to the development of
quantum mechanics. At that time, Weiss proposed a model to describe the
spontaneous magnetization which did not treat the origin of the phenomena.

Nevertheless, it gave good agreement to the experimental results.

In order to explain spontaneous magnetization, Weiss assumed that the
orientation of a spin moment is due to field which acts on each lattice site, occupied
by a spin moment. The field is called the molecular field model. With the advent of
quantum mechanics, Heisenberg explained spontaneous magnetization as being due
the interaction of nearest neighbor electrons with each other. This interaction term is
called the exchange integral or exchange interaction which will be discussed in
detail later. Weiss's model is a first approximation to Heisenberg’s model.
Unfortunately, Weiss's model encounters some serious problems when it was applied
to the system in which the itinerant electrons contribute strongly to the spontaneous
magnetization. These systems are the metals and metallic compounds. Stoner
(1938,1946-1947) constructed a model in which the itinerant electron play the
important part. Our consideration in this chapter is based on both the Weiss

molecular fields model and Stoner collective electron model.
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Exchange Interaction

In all condensed matter exhibiting the magnetic behavior, no matter whether
they be ferromagnetic, ferritmagnetic or antiferromagnetic, there is an ordering
orientation of the magnetic moments which arise from the electron spins. In the
classical interpretation, the spin orientation is due to the energy between two
electron spins or two magnetic moments similar to the energy due to magnetic dipole
moment. In the quantum mechanics interpretation, the ordering of magnetic
moments or the electron spins is due to the overlap of wave function of electrons
belonging to neighboring ions. We start here with the wave function of N electrons.
It was well known that the wave function which is used to describe the state of N
electrons must be an antisymmetric wave function. An antisymmetric function is
one for which the interchange of coordinate, both of spin and space coordinate, of

any two electrons lead to a change in sign of the wave function, i.e.,
Hriry) = -Hrar) 2.1

where ¥(r,,r;) is denoted as the total wave function for the two electrons, one which

is located at r; and the other is located at r,, keeping in mine that two electrons are

identical. If the wave function of each electron are denoted as ¢; and @;,the total

wave function becomes
Hrir) = @i(r)ear2) — oi(r) eary) 2.2
This wave function satisfies equation 2.1 as is seen as follows
@) ear2) — @ir) @ar) = ~(@i(r) a(ry) — @i(r) @a(r2). 2.3

Equation 2.2 is the two electron wave function. If ; = r; or ¢; = ¢, the two electron

wave function vanishes, thus confirming that Pauli exclusion principle is operating.
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From the two electrons wave function we can generalize to N electrons wave

function as a summation of N multiple term at every possible different coordinate,
ie.,
¥ = X Py pir) 2.4

¥ = @ir)ear) ws(m)---(on(r,.)—qoz(rz)¢z(r3)¢s(r4)---con(rz)+---(N terms). 2.5

Where Py is a permutation of 7, that form of a total wave function which is called

the Slater determinant, i.e.,

2. o) . . . 9,0
?2.(2) 92 . . . ,2)
= 2.6
¢a (n) ¢b (n) v 3 » ¢n (n)
The one electron wave function, ¢;(7;), satisfied
Higa(r) = Ea@a(ry). 2.7

Where H,; is a one electron Hamiltonian, the total Hamiltonian, H,,;, contains N free

electrons Hamiltonian plus the interaction term, H;,.

Hupw = Hy+ Hy ¥H; +...+H, +H,, = 2]{1 +Hin 2.8

H; is the free electron Hamiltonian which depends only on the coordinate of i

electron, H;, contains the interaction term of N electrons.
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The energy eigen value is obtained from the total Hamiltonian and total

wave function. The energy of state is computed from
E = <¥Houai P> 2.9

In the above, Hy,a can be separated in the individual Hamiltonian of each
electron, which are independent with each other, and the interaction term which is
regarded as the perturbation term. The energy of state, in the first approximation,

would be
E = <¥Y[HitH+H;+H ¥ Hy] P> 2.10
E = ) Ei + <¥YH;, V> 2.11
where H;, depends on a pair of an electrons that interacted each other. Then H,, =
2;H;. When the existence of spin is taken into account, the energy state due to a
perturbation term can be separated into two parts, one depending on the occupation
state of a parallel spins and the other depending on everything except the spin

configuration. The first term denoted by J;; depends on the orientation of a parallel

spin and is called the exchange integral.
i = <¢i (1))’ (m) Hun (1) @i(m)> 2.12

Heisenberg Hamiltonian

In 1928, Heisenberg employed the interaction term, the exchange integral, to
constructed the Hamiltonian would describe the state of interacting spins which led
to spontaneous magnetization. This Hamiltonian is called the Heisenberg

Hamiltonian, i.e.,



22

H = ;J;8:S; 2.13

The summation over jj is taken only in nearest neighbor of a localized
electron base on the fact that J;, the exchange interaction, is due to the Coulomb
interaction which fall off rapidly with the increase in the interatomic distance. The
solutions of this model are easily obtained if one uses the Weiss molecular field
model. It should be noted that in the case of 1/2 spin, the Hamiltonian is called the
Ising model which exact solution in 1 and 2 dimension. The exact solution of two
dimensional Ising model is called the Onsagar solution in honor of the person who
first solved the model. Exact solution of three dimensional model has not yet been

obtained. This problem is not of concern in this study.

Weiss Molecular Field Model

In 1907, Pierre Weiss propose a model which is now named after him. He
assumed that there is a field acts on each spin or magnetic moment at each of the
lattice sites. This field causes the ordering alignment of a spin or magnetic moment
and is called the molecular field or mean field. Using standard statistical mechanics,
he obtains the dependence of the magnetization on temperature. The development of

these ideas proceed as follows.

Consider the Heisenberg Hamiltonian which was introduced after the Weiss

model for a spin located at ith lattice site interact with other spin on other lattice site.

where the summation over j is taken only in nearest neighbor of a spin lattice site i.

Assuming Jj; is constant for nearest neighbor lattice site i and j, we get
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H = J555 2.15

I'Ii T 'g/uBSiHe 2.16

2
ZS , - H, s treated as the magnetic field that acts on a spin located
EHg j=1 '

at the lattice site i. Applying statistical mechanics, we obtain the temperature

where H, =

dependence of a magnetization in the form

8y Hs
k,T

M = Ngu,sB,( ) 217

where 4 is a Bohr magneton, s is a spin quantum number, g is a Lande’ g-factor, H,
is the effective field, H = M which y is the effective field coefficient, By(x) is a
Brillouin function. It is seen that M, the magnetization appear on both sides of
equation 2.17. The solution of this equation, M, can be obtained by the graphical
method as shown in figure 2.1. This method is discussed in detail in many standard
solid state text book (Christman, 1988, Kittel, 1986, Maxﬁn, 1967 and Smart, 1966).
This model has been applied to real system. Prayoonwech and Tang (1979)
extended the molecular field model to compute the temperature dependent of a
magnetization of a spinal ferrite Fe;04 with random arrangement of Fe** and Fe?*.
Qiao et. al (1992) also used this model to investigate the temperature dependence of
the magnetization and to determine the exchange integral and the molecular field
coefficients of SmyFe;7Cy and Er;Fe;7Cx compounds. Both investigations agree with
the experimental results. However, the molecular field model has some serious
problems when it applied to systefns in which the magnetic moments are almost
entirely due to the itinerant electrons. The evidence of the deficiencies of Weiss
model is seen when comparing the vaiues of the molecular field coefficients deduced
from the observation of the Curie temperature. For nickel, if Jj is assumed to be

constant, the transition from ferromagnetic state to paramagnetic state leads to a
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molecular field coefficient 13,400 while a transition from paramagnetic state to
ferromagnetic state leads to a molecular field coefficient 18,500. (Martin, 1967)
Other evidence of the failure of the Weiss model is a non-integer value time to Bohr
magneton of a magnetic moment per ion is determined by the magnitude of a

guyzJH,

kT ) if T become

M
spontaneous magnetization at 7= 0 K i.e. 0. guzJB,(

zero then Bj(w) —1 and M/N should be equal to the integer number time Bohr
magneton. The value of a magnetization per ion of Ni, Fe and Co are 0.6, 2.2 45
and 1.72up respectively. This is due to the fact that Weiss model is concerned with
localized electron (in fact, only with localized spin at a lattice site, which interact
with each other through the exchange interaction). These interaction depends
strongly on a wave function of a pair localized electron. This model is valid only in
a non-metallic magnet such as a spinal ferrite and some of the oxide compound of
transition elements. Because of the deficiencies of Weiss model, Stoner (1938)
proposed his model to explain the magnetic behavior in the system that contain a

non-local electrons, the itinerant electrons.

Stoner Collective Electron Model

As we emphasize above, the spontaneous magnetization of metal or metallic
compounds of transition element, especially Ni, Co and F, are mainly due to itinerant
electrons in 3d band. In both models, Weiss and Stoner, the spin orbit coupling term
is neglected. Numerical calculation (Friedel, 1969) showed a spin orbit coupling
term was small compare to the width of d band, the spin orbit term being less than
0.1 eV while the width of d band is in ordt;,r of electron volts. The magnetization per
unit volume of a transition alloys would be equal to the Bohr inagnetron, M, time a
number of electron per unit volume, M = Nup. In 1938 Stoner proposed his model
to interpret the magnetic behavior of the system in which the electrons responsible to
a magnetization are the itinerant electrons. It is based on the Fermi-Dirac
distribution function and the shape of the density of states. The electrons having free

particle energy, are those near the edge of the Fermi level. When the interaction
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between a magnetic moment is switched on, the d band structure is splitted into two
levels, The subband for the spin up electrons is shifted down and the subband for the

spin down electrons is shifted up.

In his paper, Stoner obtained the graphical interpretation of A versus 7T by
employing statistical mechanics and using the Fermi-Dirac distribution function. He
assumed the energy of state to be that of the free electron density of state in three
dimension i.e. D(E) oc E”?. The number of electrons per unit volume in a whole

range of energy is then defined as
N=TD(E)f(E)dE. 2.18
0

Where D(E) is the density of state and f{E) is a Fermi-Dirac distribution function.
When we switch on the interaction, exchange interaction, Jj;, appears and the density
of state split in to two levels as shown in figure 2.2. The energy shift results from
molecular field, M, which acts on each of the spin moment. The energy of a spin

moment interacting with a magnetic field, / ,is
H = -yuM 2.19

looking at both spin up and spin down we have H = #yuM where minus corresponds
to the energy of the spin up electrons while the plus corresponds to the energy of the
spin down electrons. The difference in energies of spin up and spin down is 2yuM.
The magnetic moment is proportional to the difference in the numbers of spin up and

spin down electrons, i.e.,
M = (Nup-Naown) UB. 2.20

The relative magnetic moment obtains from this assumption is
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_M _Fa+p)-F@a-p)

= = 2.21
d M, Fla+p)+F(a-p)
E _E H+ o, 172
t f Hp( M) X :
= - d:Fla) = f————=dkx. N 1
where KT ° K.T and F(a) !exp TR umerica

calculations by Stoner gave a set of relative magnetization versus temperature shown
in figure 2.3 (Stoner, 1938). This relation gives better explanation of magnetic
behavior of both below the Curie temperature and above or from ferromagnetic state

to paramagnetic state than does the Weiss model.

Weiss molecular field model fails when one tries to apply it to the metallic
compounds, or to system in which a non-integer value of a magnetization per
formula unit occurs. In the latter system, there is a small overlap of 3d and 4s band
so the valence electrons are both 34 and 4s like. This graphical interpretation is
shown in the figure 2.4 and the overlapping of 3d and 4s band is shown in figure 2.5.
In the case of Ni, ten valence electrons, 9.46 electrons are in the 34 band while 0.54
electrons in 4s band. When exchange interaction is switched on, two d-sub band
appear, one contains only a spin down electrons and the other contains a spin up
electrons. In Ni, the lower subband is fully filled leaving 0.54 electrons to the upper
subband. This means the saturated magnetization per atom is equal to 0.54 3, 0.54
is a hole in a upper subband (Madelung, 1982). For cobalt, a magnetic moment per
atom at very low temperature is 1.7u5. To éxplain, nine valence electrons of cobalt
should be arranged among 4s band and two 3d subbands in the ratio 0.7:5.0:3.3. The
spontaneous magnetization for iron is 2.2/ per atom leading to the ratio in 4s and
two 3d subband being 0.9:4.7:2.4 i.e. neither the upper subband nor lower subband
are fully filled. Figure 2.6 shows a non magnetic band, one filled subband and both
unfilled subbands.

In the next chapter the calculation on the Stoner magnetic band model for
transition element is emphasized in order to determine a magnetization when one

shifts the Fermi level by introduce more electrons into the system.
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Figure 2.1 Graphical solution of equation 2.17 for reduced magnetization, m = M/M,,
the left hand side of equation 2.17 is plotted as the straight line, the right hand side is
plotted by fix the temperature and for s = 1/2, B;;»(x) = tanh(x), as shown in the figure.
For each temperature, there is a intersect point and this point is the value of a relative
magnetization for a given temperature. At the temperature higher than the Curie

temperature, /> 1 there is no intersect point, / = ksT/NiLy =T/T. where u = guips.
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Figure 2.2 The energy shift caused by an exchange interaction, AE = ;41/132 ’
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Figure 2.3 Calculation value of ¢/¢, and the reciprocal susceptibility in the collective

electron model.(Stoner, 1938)
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Figure 2.4.1a Schematic relationship of 4s and 3d bands in the metallic copper. The
3d band hold 10 electrons per atom and is filled in copper. The 4s band can hold 2

electrons per atom; it is show half filled, as copper has one valence electron outside the

filled 3d shell.

Figure 2.4.1b The 3d band of copper shown as two separate sub-bands of opposite

electron spin orientation, each band holding five electrons. With both sub-bands filled
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Figure 2.4.2a Band relationships of nickel above the Curie temperature. The net

magnetic moment is zero, as there are equal numbers of holes in both 3d Land3d T

bands.

Figure 2.4.2b Schematic relationship of bands in nickel at absolute zero. The energy

of 3d T and 3d { sub-bands are separated by an exchange interaction. (Kittle, 1986)
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Figure 2.5 Schematic relation of 3-d and 4-s overlapping.
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Figure 2.6 Calculation reveal a high and narrow band within a low and broad 4s band
in the vicinity of the Fermi level in the iron group transition metals. The 3d band
contain five times as many states as 4s band, and its density of state is peaky as
illustrated schematically here. (a) Is a non magnetic state and (b) and (c) ditferent

magnetic states (Martin, 1967).
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