CHAPTER V

In the domain of integrability we have always followed a
two steps procedure: integrability prognostication through the ARS
algorithm, and integrability verification by direct construction

of integrals of moion.

In the previous chapters we have reviewed the results of
the two methods in the cases of the Toda system and the Henon-

Heiles hamiltonian.
1) The Henon-Heiles Hamiltonian
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There are three cases of integrability:
a) e=-d, a="b,

b) e = -6d, a # b,

c) e = -16d, b = 16a.
Using the ARS method, cases a) and b) have been given by
Bountis et al.[14] and Chang et al.[16] have found the integrable
case: case c). We present a direct calculation method of the two
cases a) and c). For the case b), Green has calculated the

integral of motion by direct calculation method.



2) The Toda system

We have studied a lattice with nearest-neighbor

exponential interactions for different boundary conditions:

a) The free-end lattice with three masses:
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There are three cases of integrability:

a) m. = e(26e=1) , . m, =2l , 1 < €< 2,
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b)-m, = €(e-1) , m o =e-1 < e <25
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c) m, = 3e(2¢e-1) , W,/ s 26-1 ;. 1€ &< Zv.
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Using the AR§ method, Bountis et al.[14] have found three
cases for which the system satisfy sufficient condition for
possessing the Painleve property. Dorizzi et al.[17j presented a
direct calculation of the constants of motion for all the three

cases above.

b) The fixed-end lattice with two masses:
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There are five cases of integrability

a) m;/m, =1 , 3=¢ =1,

b) m /m,

n
—
o

|
—
m

1]

1/2,

]
]

c) mi/m2 ¢ et s R /2



'd) mi/m2 1/3 , 5=1/3 , € = 1/2,

e) mi/mZ T 3 ¥R e S,

The integrable cases have been shown by Ramani [18] and
Dorizzi et al. [17]. The first has found the integrable cases by
the ARS method and the second has calculated the integrals of

motion by the direct calculation method.

As yet there are no general methods to check for integra-
bility of dynamical system. The ARS method, although gives only
sufficient condition, provides a convenient way for studying the
question of integrability. Supplemented by direct calculation of
the constants of motion using various methods we find an effective

tool for the investigation of integrability of a dynamical system.

The drawbacks of the direct method are obvious. It cannot be
applied to find nonpolynomial integrals of motion. Moreover, in
the polynomial case, the method becomes cumbersome for polynomials
of order higher than 2 in the momenta. More significantly, there
is no guarantee that we will be able to solve the differential
equations involved in the construction of the coefficients in the

polynomial,

Several works have been devoted to the study of dynamical
systems using the Painleve property. New integrable systems have
been discovered by direct construction of integral of motion [19]
and confirmed the usefulness of the Painleve criterion. But

Grammaticos, Dorizzi, and Ramani [4] bhave discovered that some



systems are integrable and yet fhey do not poséess the full
Painlevé property. These systems exhibit a simple sihgularity
expansion in powers of (t—tofk, with r an integer. This is the
weak Painleve concept . The weak Painleve case has been examined
in detail in ref.[20,21], in connection with the existence of

fixed singularities.

One of the drawbacks of the ARS approach is the fact that one
must first reduced the partial differential equation before
applying the algorithm. Weiss, Tabor, and Carnevale [22] have done
away with this problem by introducing the Painlevé property for
the partial differential eguations themselves. According to Weiss
et ~al, [21}); a partial differential equation will possess the
Painlevé property if its solutions are single valued about a
movable singularity manifold. The application of the Painlevé
method to partial differential equations has been examined in

detail in réf [12].
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