CHAPTER TV

INTEGRALS OF MOTION FOR THE TODA SYSTEM

The aim of this chapter is to use two approaches: the ARS
method, and the direct calculation method, in order to identify

the integrals of motion for the Toda system [14,17].

ARS METHOD

Consider two special cases of boundary conditions : The
free end lattice with three non-equal-mass particles and the

fixed-end lattice for two particles.
Free-end lattice

Let us consider a free-end-lattice with three, non-equal

mass, particles. The Hamiltonian governing the system reads

€(%,-%;) %,- %

“‘Ef“_l_’f*!ﬁ*e ¥ie . (4.1)

2my  2m, 2

We introduce the following change of variables:

€(%,-%,), %.-%)
ai = le ' /2 ; 8.1 5 le %z 3/2 :
% 2
bk = 7Dk (4.2)
2m,

k = 1,2,3 with m_ normalized to one. Tn terms of the a,, b.’s,

the equations of motion become
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ai = Gai(bz“bi)a
a, = -a,[(1+m,)b, + m;b, 1,
b, = 2¢al, b, =Y_§_(a:—eaf), m,,m,, €> 0 (4.3)
’ﬂli 2
where we use the total momentum mib1+ mzbk+ b3 = 0 to

eliminate b3.

In order to investigate the dominant bebhavior around a singularity

in the complex-time plane we put:

¢ xz’ B = B,

o
n

where T =t - t  with t, the position of the complex pole.
One find the three cases are available

7 P =~
i) 8,5 a,~pt o> =1

(dominant terms: 51 = €a,b,, éz —a41+m2)b2,

B1=2_E__azi ’}')2'—'2_?‘3)1
™,y m,
where « = arbitrary constant,
p= € , 2p = integer (>0). (4.4)

1+m,
so that the dominant behavior of b, does not introduce a branch

point.
- ?

ii) ai'_vu‘c_i, a~p% B Ko

(dominant terms: éi ea,(b,-b,),

é’l = —a2[(1+m2)b2 + m1b1],
b, = z%i A
6: = —Zggi )

m

2

where 14 arbitrary constant,

g = my , 2q = integer (>0), (4.5)

€(my+m;)
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iii) ai~o<‘c'1, azn—pz—:
e
(dominant terms: a, = €a,(b,-b,),
a, = -a,[(1+m,)b, + m.b, 1,

s 2
b, = 2¢a, ,

™My
b, = 2(a%-ea®). )
2 Y_'_"z z 1
where o = -my(l4mite) , gz -[me(m+m )], (4.6)
2€°(1em+m) ZE(1a+my+m,)

Now following the ARS algorithm we investigate the

resonances. Looking for higher order terms of the form, we have

case i) a, = 7 * TGN ay= ﬂz-1+ §ZP—1,
P+1 2P $Ar
b, sfe/ Al + 57 s
™, (Zp+4)
b, < ¥/ ekt
12,
We find the resonance equation:
r(2p+r+l1){r-2){r+1) = 0. (4.7)

The solutions of Eq.(4.1) have the Painleve property in this case

with 3 arbitrary constants: t_, &, and one entering at r = 2,

—1. r-- -+
case ii) a, = ®aT + ¥¢ 1, a, = p“ﬁ +§Zr %,
' =4
by =~2E0 T % £t
My
b, = gextz 'y ot
my
We find the resonance equation:
r(r-1)(r-2)(r+1) = 0. (4.8)

In this case we have the Painleve property with 4 arbitrary

constants: t_, o, and two entering at r = 1 and 2.



Sy -1 ¥=3 ~d r-1
case iii) 8, = T '+ 31 y a, = pT +3¢T 3

e
]

P r-4
e CE I  Br e
1

Z_(éMZ—Pz)Z—i + 07
™a

r-1

=
]

2

We find the resonance equation:

(r-2)(r+1)(r*-r-2M) = 0, (4.9)

where M [m, + e(m1+mz)](1+mz+e),

EM, (1+my+m,)

(1+4p)(1+q),
1-Pq

from Eq.(4.4) and Eq.(4.5). For the Painleve property,
2

r - r-2M =0, which must have integer roots only, and this

implies that

M= (1+8)(N¥q) =0 a{ntl)~n = 0,1,2,... (4.10)
P9 z

with 2p and 2q positive integers. Eq.(4.10) has five possible
solntions:
a) p=q=4, withn =2 and resonances at r = -2, -1,
2

2, 3. Eqgs.(4.4) and (4.5) give
m, = 261 ) s ris B e Zeil e ncha$s € < 2. 4.1

, both with n = 3 and

resonances ‘at r = -3,-1, 2, 4, For p =1, q =1, Egs.(4.4) and
2
(4.5) give
m= €(e-1) , kol b1 ¢ €43, (4:12)
2-€ ;

The case p = 1, q = leads to Eq.(4.12) with € ->2e€,

ekp =t ges Y., or pi=3 g1, bothwithn =5
z 2 z z
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and resonances at r = -5,-1, 2, 6. For p = %, q =

[NV}

Eqs.(4.4) and (4.5) give
m,= 3€(2€-1) , m,=2¢-1 , 1< €< 2. (4.13)
2-3€ !

The case p = 3, q = 1 lead to Eq.(4.13) with € >¢/5 .
2 7

For the free-end lattice with three masses

H= p, +pi+pf + g i LN
Zmy 2wy 2 ;
There are three families of lattices which have the Painleve
property :
a) m, = € ze-1) m2=2€—1 NIl € 2
2-€
b) m,= €le-1)/ ./ /mymgiel , N < € € 2,
e

c) my= 3€(2€-¥)/;/ mMyg="2€-1 , 1 < e
2~-3¢

Fixed-end lattice

Let us consider a fixed-end lattice with two nonequal

masses. The form of the Hamiltonian governing the system is

& €(%.-%,)
TR S e B R TR (4.14)
zm,  Zm, :
We introduce the following change of variables:
-3%/2 €(G,~%,)
ay = i1e ¥ y 8, = ie Vs z/l , 85 = ;941/2-:
2 2 2
b, = P, 5 bz =P, - (4.15)
2m, m,
In terms of the a,, b,’s, the equations of motion become
A, = 3a.b b, = 2(ea:-3a%)
1 1774 R s 179
b
éz = -a,b, y b, = g}ag—eai),
e
a, = €a (b,~b ). (4.16)



In order to investigate the .dominant behavior around a

singularity in the complex-time plane, we put

where 7 = t - t, with t_ the position of the complex pole.

One finds that three cases are available

7 -1 =3 s
i)ia ety =, B LT ¢ By ER

3 3
&
(dominant terms: 5.1 = Jaibi, :iz = -a,b,, é's = ea,s(bz—bi)
B 2 -2_5_93 ) bz = ZEZ)

o
’mi mz

where ¥ = arbitrary constant
2 z
ot y P ormg
25 z
s = €(1+4). (4.17)
3

ii) a1~o<'lp, azh-p'(n“ % asﬁ‘é’(-

(dominant terms: éi = sa by, éz = -a,b,, 1'13 = ea;bz-bi),
b, = 2¢al , b, = -2¢aj)
g Mo
where ® = arbitrary constant

¥

B = arbitrary constant
p= Img = -2€3%,
E€(m rm) ™,
Z
q = m, = -2¢€d S
e(mivmz) mz
z
3 = -mm, (4.18)
Q_E!(m1~mz) 2 ;

gt | -1 -1
i)l a ~at 5 8, ~pt . 5B, R,

(dominant terms: éi = sa,b,, éz = -a,b,, éa = eaa(b,,_—bi),



b, = 2 (ca;- saf), b, * S¢a,~eat} )
™My me :
- 5 z B L #
where €¥-3x= m, , €¥-p = m., (4.19)

23 z
Following the ARS algorithm we investigate the resonances.

Looking for higher order terms of the form

: - L -1 r-1
case 1) ai=zx21+ Azri, a,= pT "~ + BT
a, = ¥ + ¢,
=% r-
b'l %0 ZﬂZT * 0T i)
™y
F W ¢ -1
b,Z = -2t + 3‘( g
ml
We find the resonance equation:
2 2
r(r-2) (r+1) =0 (4.20)
< = P y+p ¥ G r+%
case ii) a, =X /$ PO, a, = pT + BT
4 —
a, = ¥ AL )
z 5 o
b, = -26¥ 7' + S &R
my
Z_-1 -
bRsgett s g2
Y"f-
We find the resonance equation:
rire=-1)(r-2)(r+1) = 0 (4.21)
o3 -1 5 -1 -
case iii) a, = «T + Azri, g .= PT + 8" i,
= yoy
a, = B TCE 5

2 iy 8
b, = 2(-€X+35«)7 +07" !
“‘ >

1
B e g(exz_ Pz)_(—i P gz\'—i‘
b

We find the resonance equation:

rir+1)(r-2)(rt-r-2-4M) = 0



22 z %
where M= "€vs s &8,
m, ™m,3
& k&
(1'*z§§’

from Egs.(4.18) and
e p 2 - M =0;
implies that

M= —6(2 - 3) =

2 23

which must have integer roots,

(4.19).

(an)(n+1)’ i ) o g A
SR Tt T

with Egs.(4.18) and (4.19) and M = 1 :

a) s=1 has the

three nossible solutions:

- = dases % , m, = 3m,,
e e %, RN,
b) s= 3 has the possible solution:
2
s=%,e= i opmg =Wy,

c) s=2 has the

two possible solutions:

= §=1,€:1’m1=m2,
_J=:1:_;, e:%,m1:ﬂz,
3
For the fixed-end lattice with two masses:

Lt ?j 4.0, e_m1 eé(%”?‘x e,
2m,  7m,

There are five families of lattices which bhave the
property :

a) m,/m, =1, 8 =€=1,

b). m/m, =1, 5§ =1,€= T/2,

o) Nem, R 3/8 8w 1y €= 1/2

d) m/m, = 1/3, 3=1/3, € = 192

1}
e
-

QU

1]

e) mi/mZ

1/72,€=1/2.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

/
Painleve

22)

For the Painlevé property,

only and this

23)

24)

25)

26)

27)

28)

22



DIRECT CALCULATION METHOD

Free-end lattice

The Hamiltonian governing the system reads

;5 €(%,~ %2> -
H=p), +ps +pi + ™ 4 ot (4.29)
2—17\1 Z-"‘z Qm‘s

We introduce the following change of variables:

x = €la,-q,) , ¥Y=a709,, z=ma,imq,+ mq,. (4.30)

The equations of motion are derived from the Lagrange

equations:
5a_t(miqi) = -€X, s:_,t(mzqz) = €XxY;
;ﬁ(ms%) =Y, (4.31)
> 6( o - \]
with X = e & PN T %% o o) (4.32)

From Eq.(4.30) the equations of the motion of x and y:

x = €(q M09 = %JY = é(m,:‘mz)xl,
;o
¥y=4q-4d, = €fx - (mgt my)y o e.38)
Y“z &w_‘;
Fq. (4,33) can be written:

XY “uX .,y =y (4.34)
with «=€(mst+ m;) : P = mt m,

m‘l &"th

For the system Eq.(4.31) to be completely integrable it is

sufficient that the system Eq.(4.34) be integrable.
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Now we will 1look for a second integral polynomial in

velocities. At order 3, the form of the integral is
_ «3 2 . . g .3 . .
c=fx + f«.x y + f,ny + fby g X T EY.

In this case, we can restrict ourselves to constant fl’s.
The compatibility condition, necessary for the integration
of the equations for the g; Hes Eq.(2.25),is considerably

simplified from Eq.(4.34) . We are led to the conditions

3f, = Pfi’ t, = «f,. (4.35)

One can easily integrate the equations for the gls:
13

g, = («p-1)E,X + 2(pfi-f1)Y,
gi= Z(Nfi—fz)x + (xp=-1)f,Y . (4.36)
The next compatiblility condition Eq.(2.26) is an identity
in terms of the independent functions Xz, XY, Yz. The coefficients

fi and fz must satisfy three linear equations:

«f, (3-xp) - 2f, =0 , -2f; + pf,(3-xp) = 0 ,

f, (2x-op-1) + f2p -«p-1) = 0. (4.37)

This system has a nontrivial solution (fi,f ) whenever & and P

2

satisfy the equation
(p-x)(xp-1) =0, (4.38)

or, equivalently,
2(20-op-1) - (2p-oip-1)(a’p = 30) = 0

(200-1-p) (op-3) - 2(2p-ap-1) = 0 (4.39)



The condition «p= 1 is impossible because the change of

variables (Eq.(4.34)) is not defined.

Thus x=p (=1) , and the second equation (4.39) then reads

(©-1)" (x+1) (o= x-2)

= 0. (4.40)
When x =p=2 (f,= -f, ), we can define
m, = €2¢e-1) , m, =261 , m, =1 (4.41)
gt

The svstem (4.33) is integrable and admits apart from the

energy. a second constant of motion cubic in the velocities
C= 2% + 3T ~ kv <2y +9(e"- 2e7)x + 9(2& - .
(4.42)

The values of the parameters m. and € correspond to the

first case in Eq.(4.11).
Let us consider an integral of order 4 in the velocities

- PN o 50 22 « v 3 il > 2 P
C=f.x % flx v + fzx y o+ f}xy . 05 M Ry g,X° + g Xy

+ gZ&z + hix,y)

We can restrict ourselves'té constant fc’s.
From the compatibility condition for the integrability of

the g;’s {Eq.(2.30)) reduces to
4f, = pf, e MR W (4.43)

Using Eq.(2.29), the eqgunations for the g L,S can be

integrated to give



g, = bp-1)f, X + 2f,pY - 3f,Y,
g, = 3f,0X - 2f,X - 20, - 3£,pY,
= 2f,0X - 3£,X - £,Y + 41 pY.

The second compatibility condition for the integrability
of h, Eq.(2.32), is an identity in terms of the independent

2 2
functions X, XY, Y . We obtain a system in terms of £, fz’ fa0 s p ¢

£, (-2+430-ap) + f,(2p-22) + f,(-3p+ap+2) = 0,

2z
12f, + 12pf, - 6p°f, = 0,

6o+ 12xf, - 12f, = 0. ~ (4.44)

If we stick to the f, =0 then Eq.(4.44) gives the

conditions

(ap + 2Y =/0/s @ ehgl- 2)(% = 1) = 0,

(x- 2)(ex= 1) = 0. (4.45)

Eq.(4.45) can be written
a) of= B pre] orb) x=2, p=1, (4.46)
The two cases a) and b) are related by changing ¢ in 26 »
scaling on x (x into x/2)

The case b) writes, in terms of €, m,, m,, M.

W= EEEL) ey = {de1) o WMy#.]l a4

In this case, the value of constant C is

& g o : e %
c=%" +4%y + 4x%y  + d(e"-e?)x* + 8(2e -e')xy + 16e y2

B

+ 4e . (4.47)
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The values of the parameters m; and € correspond to the

second case provided by the ARS method.

Let us consider the case of order 6 in the velocities. The

form of a sixth-order constant is

« 24 v . 5
XYy +85XY

b *5 ® 402 «3 «3
C = e,x +e1xy+ezxy +e3xy +eq

c b xS +3 . v 2 +2 .03 .4 -2
@y - F R +Exy+,xy + Lxy £ 5% * 1R
+ g Xy +' y° + h

g,xy + g%V .

Ao

\‘ -
We can restrict ourselves to constant e ’s.

From the compatibility condition for the integrability of the

£f.’s (2.38) gives
6e, = pe, 2 xe = be, . (4.48)

Using Eq.(2.37), the equations for f.L’s can be integrated

to give

A ei(a(p—l)X + (2e1‘5 —5e1)Y,

= AX +BY,

fi = (bex - 2e,)X + (3es‘s~ de, )Y,
s AX + BY,

f,. = (See— Je )k + (49“1,— 3e,)Y,

= A,X + B,Y,

f, = (3e;x- 4e,)X - 2e,Y,
= AX+BJY,

s = 2e,xX + (6e,p- es)Y,

= AX + BY, (4.49)



The next compatibility condition Eq.(2.40) reduces to

0,

4B, - pB,
(pAy - B,) + 2(¢B,~ A,) + 3(pA,~ B,) + 4(xBo- AJ)

= (B, - A,) + 2(pA,- B)) + 3(xB - A;) + 4(gA, - B,).(4.50)

It is possible to calculate g :

2
g = %(4A°P<— AX + [4(B,x - A,) + (A - B,)IXY
+ 1[2pB, - 3B, ]Y",
21 4
R O G T ) &2 ey L
8,= 403, - 2A,)%° + [3(«B, - A,) + 2(pA, - B,)
2
+ A, TR b Bi)JXY + 1_7.-(3‘AB3 - 2B,)Y,
< 2 &
= Cix + DiXY + EiY s
2
g, (xA, - %Az)x + (4PA4 o o e P 4B, )XY

+ (2pB, - Ba)YZ,
-

% Z 2
. sz + DZXY * EZY : (4.51)

The last compatibility condition (Eq.(2.42)) will give the

conditions:

2E; % PE.;
dc, s 9,

4(D,- =E,) - 2(pD,~ E,) - (D= oE,) - 2(E,- #D,) = 0,

2(C,- «D,) + (D, - §C,) + 2(xD,- C,) + 4(pC, -D,) = 0. (4.52)

The nine equations (4.48), (4.50) and (4.52) summarize in

terms of «, p and the eL’s. They form a system of nine equations



- for the six unknowns e . It is possible to show that in order to

get a solution to this system, o and p have to take the following

values.

a) « =2, p =2 : This integral is the product of the
constant of degree 3 in the velocities.
h] & =-2, p = 1 : This integral is the product of the

constant of -degree 4 in the velocities.

Cy = Ay p = 2 : This corresponds to
3
m = 3¢(2e-1), m, .= 2€ =1 o, 51, 1. ¢64< 2
* 2-3€ 4

We finally find the values of el’s, the functions fl 'g

and the functions g.’s

e°:4, 31212; e, 13, 63=6a eu=1a

f, = 4X = 8Y,  f, = 14X - 16Y, £, = 50X - 10Y,
i, |
fy = 8X - 2¥, £, =4,
g = -5X + 20XY + 4Y°,
3 |

=~ >
g = -8X %+ 6XY + 4Y ,
1 3

g, = -8k + 4XY + Y.
a 3

The values of the nonstanfslare

ik 4 s L s a
C=4x+ 12Xy + 13x 3+ 67+ x g%+ 4(& - 2¢7)x*

+ (14" - 16€' )x°y + 10(5e* - &' )x*y%+ 2048 - xy>
3

+ 48 3" + (-5 + 207 + 4e% )y + 4e™ + 4™
3 3 3 23 a

+ (-8e™ + 6”7 + 4e™ )iy + (-8e™ + 477 4 )y .
3 a 2

For the cases of the free end lattice, there are three

integrable cases which can he calculated by the direct calculation
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method.

a) m,

eLze-d ), . = $6-4
2-¢

€le-1) , m, = €-1
2-¢€

c) m, 3:%:“ yoooWy = Rged L €€ 4T,

b) m,

(case ¢ see appendix)

Every case of integrability predicted by the ARS method

was recovered by the direct calculation of the integrals of motion.
Fixed-end lattice

The form of the Hamiltonian governing the system is

-3 E(x-Y)
el P4 el

H=p, +p +e + \ (4.53)
é—mj_ E’"‘g_
We put X=e IS eﬁo“’), Woaal, (4.54)
The equations of motion read
S(‘ Z 1(59’3’( 3 eeé(’(—j)) :
My
V= 4(eetT 1 Yy,
my
after a scaling in time
X = (3X - €D), y=aled -Y), a=nm/n,. (4.55)

Let us begin with a quartic constant (Eq.(2.27)). We can

restrict ourselves to constant f. .

The first compatibility condition (Eq. (2.30)) reduces to




o208 =

L= en b

We integrate and find the functi

g, = Af X + Af,D + 2f,

o

F.(X + D) + F,Y,

4f, D

oa
1]

= (Fo o7 Fq_ )D’

~3f.%,

4
]

(F,/a)X.

The last compatibility condition

(F,- F)(s+ 2¢e°= 3e3)

0,

F.(3.- a) + B3~ 1) =0,

Fl(—2€+ a -ea +2¢) + F,(ca

This system of Eqs.(4.56) and (4

0; a =NE——or—=¢

i

and ¥ = 2, or ¥

-a) = 0. (4.56)

ons g :

ayY,

- Zfz al,

(4.57)

(Eq.(2.32)) will give

=Ya) = 0 (4.58)

.58) is satisfied for

b ] |

Finally, we find three distinct cases:

|
[y
-

a) mi/mZ = 3 =€ =1,

|
-y
-
()

i

b) m,/m, = ¥ € mils

]
ey
~
]

c) my/m, =1, 3 € =

]
[AV)
-

m

]
s
S

( equivalent to 3
The values of the constants are

v el 2 S
£y L o é’x s é‘yxy +
Zz

al € =

ey te He

(4.59)
2, (4.60)

1/ 2. (4.61)

-2 2(x-¥) -% 5
T el T

~N

i



2 .2 Y.z xX=%Y% . , X .2 x-y - -%
. b)C=xy+ex-e Xy +ey+e '+ 2¢’ s
2 2z
o 42 .z <=9z « . ¥ 2 ~x ~ =
c)C=xy+ex-e xy + €%y ¥ %6 %r g " 5 MY
2

Z

The values of the parameters m; , 3 and € correspond to the

case [Eqgs.(4.27), (4.24) and ( 4.26)] provided by the ARS method.

Now Let us consider the case of a constant of order 6 in
the velocities. The first compatibility condition gives a system
of els:

e, 5 e, 28,
be, + (2—9.)2ez +(1—a)3e3 3 (1-2&)2eA =05 (4.62)

The integration of the equations for the fl’s is straightforward:

f, = beX # B D P 2ae ¥,
= E.X +/B,D % ak Y,
f, = 6e,D + 3ae,Y - 2ae,D,
= E,D + aE,Y - aE,D,
fi = 4e,X + 4e,D - 3ae,D - 2ae,D + 6e,D +4e,aY,
£ 2B X + [{2-0)8, - ak, + E_ID +2E4aY,
f...= 3eyX - 2e,D,
EX - BE,
I, = 28,0,
s R,

The second compatibility gives relations on E;:
[Ee(-5es+25 +48) + Eg(4(c-3) +base-2as" -4aé) + E,(c-3)° (-4ac+s)]

(€-35) =0, (4.63)

42



3E.(a-3) + E}Qa—4—3a2) + E,(1-3a) = 0,
(1-¢)[E,(1-¢) (-143¢) + Ez(l—e)(-sae+a+4ez) + E4(3—4a—4e+,4ae)el]
=0 (4.64)

The Eqs.(4.62),(4.63) and (4.64) are satisfied for

1]
[y
-
QA
n
pary
~-e

a=1,"¢

n
—y
o, |
[\
-

(%)

i

&2 06 1/2;
a.=1, €21, 55 23
which corresponds to the cases Egs.(4.59) - (4.61).
For a = 1/3, € = 1/2, the conditions Eqs.(4.62) and (4.64) are

satisfied and

E, = -6 E

"o ?

= 27E,.

o

In order to satisfy Eq.(4.63) for these values of a and

¢, s must take one of the following values:
3 = 1, 13080 ALLs

The system (4.62), (4.63) and (4.64) are satisfied. The

calculation of the g;’s reads

26, X" + 4E_XD +D%(4E -ak +a"E)) + 2a°E,Y"
5

g, =
+ 4aE,XY + DY(4acE, +aF -a’E,),
e
g, = (33-4)(aB,-E)DX + 27(7E°-7anz+3aﬁnz-3an)
+ YD(aE,-aE, -3a° E,+3aE +4acE, -4a’cE,),
e e
g, = E%ﬁ‘ -XD(E,s -dack,) + 4aF,XY + 2E,X° (4.65)
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Now we can make explicit the values of g in Eq.(4.65) for
cases of values of a, € and § solutions of Eqs.(4.62),(4.63) and
(4.64) and check whether relation (2.42) holds or not

1) a=1/3, €= 1/2;, 3= 1. The g; are

g, = 2X° + 4XD - 8XY - 2YD + D* + 2Y’,
3 3 i Zz
g, = 30" + 2XD - 6YD,
g, = 9D° - 6XD + 12XY - 4X (with 3E, = 1)

Z
Relation (2.42) is verified, and we then compute the

constant

& -4 .2 'y ~% X~YY/ . - 4 o-Y), “3a
C=X = 2R%¥ +9xy“+(e—2ev+e %" + e /ny
i3 3
(& S0P/ = N B 4 (X-Y)/; v 3 —X » 4
+ (6eY =78 Vo i’y 98 C xy + 98 ¥
2% —(x+Y), -% (X +Y), - o
2 (267 + 4l VEBORD" 6e Y2 + 377 + Be™))x"
2 3

- =( ), ¢ ), - * ~
+ (32 L e YRy - 1277

7 L —xAy,
R e TG

z

e ke LY.
2) a = /BUER G IERA/SNTIE R Bre

z Z
g = 2% + 4XD - 8XY - 2YD + D+ 2V,
: 2 3 3 2

g = 3D’ + 6XD - 6YD,

2
g, = 90" + 6XD + 12XY - 4X.  (with 3E, = 1)
3

In this case, one can check that relation Eq.(2.42) is

verified and then compute the constant



Y . b o4 -7._ v 204 -, =YYy & (X=Y)fp » 3¢
C=x -2xy +9%y + (eé—Zey+e 1x + e e iy
& 3

(X=9), =%/ 22 (x=3), - +3 S
+ (60 = 3% _ 4o B 35 - 977% x3°r 06 §*

-2% X -y, ~%/ (x4 W), %=Y 4
+ (2 2+ 4ev % - Bo " . Ge Ty 3e + 6e7)x
2 3
s My (x+y), .. x % 2y -/
+ (3¢ +6e" % 6"V )5y 1 " - 46 -8’

3) a=1/3,€=1/2, 5= 2/3 and a = 1/3,¢=1/2, 5 = 1/2.

The relation (2.42) does not hold. This means that, there
does not exist any integrable case.
There are five cases with the direct calculation method

for the fixed-end lattice.

a) m/m, =1, 5= ¢€=1,

b) ’"1/'“2 = Tr—a =t €= HiD,

c) my/m, =1/3,5 =1, € = 1/2,
d) m /m, =1/3, 3 =1/3, € =1/2,
e) my/m, =1, 5=1/2, € =1/2.

In this chapter we review the usefulness of the ARS method
and direct calculation of the constant of motion as a tool for
identifying integrable cases of Toda lattice:

1) The free-end lattice with three masses:

I B B

2’"‘1 Zm, Zmb

B
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' Bountis, Segur, and Vivaldi [14] showed that there are
three cases for which the system satisfy sufficient condition for

poséessing the Painleve property.

a) m, e(ze-1) | m,=2€é-1 , ;2< e < 2,

Z-€

erze_-eig s “Eyr €ty AeB LR,

b) m,

c) m 3eclze-1) | m, = 2¢é-1

1 2-3€¢
It can be checked that the system is integrable for these
conditions by direct calculation method [4]. The integrals of

motion for all cases have been calculated by Dorizzi, Grammaticos,

et al.[17] by this method.

2) The fixed-end lattice with two masses:

z 3% E(x-9) ) &
H=p; +p, ¥ i+ e . +e,

Zm, em,
The ARS method gives only the sufficient condition for
integrability. Ramani [18], using this method, has found five
cases.

a) my/m, =1, 5= =1,

b) my/m, =1, s=1, ¢=1/2 ,

c) mg/m, =1/3, 3 =1, ¢ = 1/2 .
d) m;/m, = 1/3, 3=1/3, ¢ = 1/2.
B M = X, T EE e = 173,

Dorizzi, Grammaticos et al. [17] checked that the system is
integrable by direct calculation method and they have found the
integrals of motion for all cases.

From the results we review in this chapter, the ARS method
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