CHAPTER ITT
/
INTEGRALS OF MOTION FOR THE HENON-HETLES SYSTEM

In this chapter, we focus on the Hénon-Heiles Hamiltonian
system. The cases of integrable systems with the Painleve property
have been considered by Grammaticos and co-workers in ref[13] and
Bountis and co-workers in ref[14], In the first section of this
chapter we are devoted to the study of integrahility of the Hénon-
Heiles Hamiltonian with the Painleve property. The integrable
cases of the Hénon-Heiles Hamiltonian by direct calculation method

will be studied in the last section.

ARS METHOD

By starting with a general expression of the Hénon-Heiles

hamiltonian:
- Py
H= 1 +5 4 ax®+by?) + dy = ley . (3.1)
4 >

the corresponding equations of motion are

-ax - 2dxy,

~-by ~dx* + ey% (3.2

. B
"

In order to investigate the leading order behavior around a
singularity in the complex-time plane we put:

x = AT® : v = pe’; (3.3)



where 7 = t-t, with t, the position of the complex pole.

One finds that two cases of the dominant behavior are

available
i) A =%(38/d)J2¢e/d , & = -2,
B = -3d A P = =2, (3.4)
(dominant terms : X = -2dxy , ¥ = -dx° + ey?)
® ii) A = arbitrary , o = 1% 1-48d/e,
z
B = 6/e o P (3.5)
(dominant terms : X = -2dxy ,¥ = ey’).
The Painlevé criterion requires that o« and B be integers,
which restricts the values of d/e in the case 2.
Now, following ARS algorithm, we investigate the
resonances. Looking for higher order terms of the form, we have
2= AChO Tl
r
y = B7f+ 2t (3.6)
# Substituting Eq.(3.6) into the dominant part of the equations

of motion, ones finds all possible r

For case i:

det Q(r)

(r-2)(r-3) + 2dB 2dA
det &0
2dA (r-2)(r-3) - 2eB

-1, 6, 51 /T-24(1+e/d), (3.7)
z Z
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and for case 1ii:

»
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(r-%) (r+x-1) + 2dB 2dA
det Q(r) = det =0,
{(r-2)(r-3) - 2eB
r= =1, 0, 6,f41—48(1-d/e). (3.8)

The root -1 is associated with the arbitrariness of the
pole position, The root 0 in case ii is related to the
arbitrariness of A, For the system to be integrable according to

the Painlevé criterion the values of r must be integers

There are four possible cases for having the Painlevé property:

e = -d,a = b; e = -2d,a £ b; e = -6d,a # b; e = -16d,b = 16. (3.9)

DIRECT CALCULATION METHOD

Now we look for the integrable cases by the direct calcu-
lation method. Consider the case of a constant of motion

quardratic in the velocities.

The compatibility condition Eq.(2.19) reduces to

6x(2d+e) = 0, 2p(6d+e) + 4x(a-b) = 0,
(-be-2d)s = 0, 4d(¥+5) + p(4a-b) = 0,
k(b-a) = 0, 3(2b-a) - 2k(d-e) = 0,
6xd = 0, 3s5d = 0. 30109

Equation (3.10) leads to the cases:

a: e = -6d, a# b, s 0,x=0, k =0,

The equations of g; reduce to
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g, =PY + Y,
g, = =px,
8 = 5 . {3.1%1:)

The integration for the h is straightforward:

h = apxzy + 2pdx*y* + ¥ax® + 2vdx?y - (b/Z)pxzy

@ (d/4)px“ f (e/'2){ex2y2 + bjy2 - (2e/3)sy,
and gives the condition
-2ap + (b/2)p + 2&5 - 2dy = 0. (3.12)
Now the constant of motion is written as
C = (py +¥)%° - pxxy + ¢y  + h. (3.13)

In this case, Green [15] has obtained the corresponding integral

of motion (d =1, g =4, ¢£=0, ¥ = -(4a-b)),

G =x*+ 4x2y2 - 4%(xy-yx) + 4axzy + (4a-b)(i2+ax2 Jio

bt e=-2d, p=0,¥=3,*%=0,3 =0, k=0, a#b.

The equations of g; reduces to
g, 5%y &, = 0, g,=7%,

The equations for the h can he integrated to give
h = fax” + 2d3x%y + yby? - (2/3)sey>.

Now the constant of motion is written as
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C=¥{x + y° + x%(a+2dy) + y2(b-(2/3)ey)}. (3.14)
It ¥ = '21“ . %{)'(2 + &2 + ax’+ byz} + dx*y - (1/3)ey‘3.

This is the Hénon-Heiles hamiltonian, C is not a second

constant of motion, independent of the hamiltonian. This

means
that e = -2d does not lead to integrability.
C!e=—d,8.=b,’9=0, “=5t
The equations of £; reduces to
g, =%, gk g, =%. (3.15)

The equation for the h can be integrated to give

h = ayx” + 2¥dx”y + kbxy + (d/3)kx> - kexy® + yby?

+ (2d/3)sy;
The constant of motion for this case is written as

C = 5x°+ kky + 397 ¥ asx + 2¥dx’y + akxy + (d/3)kx’

- kexy?® + ayy> - (2e/3)xy3.

Now we look for an integral of motion which contains

velocities up to the fourth power,

The first compatibility condition (2.30) gives

Then the equations of f: are



f, = Cy + D,

£, = -Cx + G,

f, = Hy + I,

f, = -Hx + J,

f, = K.

Now we consider the case e = -16d and for the

Eq.(2.30). The conditions read

One can integrate the equations for the ga’s:

2aDx” + 4dD¥’y + a,

go

g

-4dDx> + 1.
1 3

where q , 1 are two integration constants.

We proceed now to first order Eq.(2.31)

28X + g + ah =0,

gi')2+¢z_h s 0
Y

The compatibility condition Eq. (2.32) im
2. e o oo
ot ¢ R L R S R MR AT RNt i o
axaY ay ¥ 1 o % :

which amounts to

=108 op =8

D
i

bh=16a  or D=0,
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(3.16)

relation

(3.17)

(3.18)

(3.19)
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Integration of Eq:(3.18) gives for h:
h = -4dDx*(ay+dy?) + a?Dx* - 2d%Dx°.
> 2
and finally the integral of motion becomes (with D = 3):

3x" + 6(a+2dy)X x° - 4dCxy - 4dx*(ay+dy?)

Q
]

+ 3a%x* - 2d%x%
7 |

There are three possible cases with the direct calculation
method, e = -d, e = -6d, e = -16d. .

For the cases e = -d, e = -6d, integrals of motion can be
found by the case of a constant of motion quardratic in the
velocities.

For the case e = -16d, integrals of motion can be found by

the case of a constant of motion order 4 in the velocities.

In this chapter we focus on the Hénon-Heiles hamiltonian
system.
H= 3% + 3"+ ax” + by®) + axy - ley”.

Following the works of Bountis, Segur, and Vivaldi in
ref.[14] and Chang, Tabor, and Wriss in ref.[16] we have shown,
using the ARS method, that this system possesses the Painleve
property for the parameter values:

&)e="d,a=b,

b)e=-5d, &#b,
c) e = -16d, b = 16a,
d) e =-2d, a # b.



The ARS method gives only the sufficient condition for
integrability. One still needs some method to check that the
system is integrable. Direct calculation of integral of motion has
been suggested in ref.[4]. Using this method, we have calculated
the integrals of motion in the cases a) and c¢c). The integrals of
motion in case b) was calculated by Green [15]. But for case d),
direct calculation method does not give the new integral of
motion. This means that the condition e = -2d does not lead to the
integrability. The ARS method, although gives only the sufficient
condition, provides a useful ana convenient way for studying the
question of integrability. Supplemented by direct calculation of
the constants of motion using various methods we find an effective

tool for the investigation of integrability of a dynamical system.
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