CHAPTER 1T

/
THE PAINLEVE PROPERTY AND DIRECT CALCULATION METHOD

In this chapter, we review a use of the two distinct
approaches : ARS method and direct search for the integrals of

motion in order to identify the integrability of dynamical systems.
ARS METHOD.

The ARS conjecture was formulated by Ablowitz, Ramani,
and Segur (ARS) [7,12] who related integrability to the
singularity structufe through the Painlevé property of the
solutions, i.e., that the only movable singularities on the
complex time plane they can have are poles. The ARS algorithm was
developed in order to determine whether a nonlinear ODE { or

system of ODE’s) admits movable branch points.

Let us consider first the case of the nth order ODE

ue PE W s s b e (2.1)
dz" dzh-t

and assume that the function becomes infinite at the singularity.
The ARS algorithm proceeds in three steps:

A. Finding the Dominant Behavior.

Let us look for a solution of Eq.(2.1) of the form



&

W~ x(z-z,) (2.2)

where Re(p) < 0 and 2z, is arbitrary. Substituting Eq.(2.2) into
Eq.(2.1), one finds all possible values of p. Two or more terms in
the equation may balance (depending on « ), and the rest can be
ignored as z—>z,. For each such choice of p, the terms which can
balance are cailed the leading terms. Requiring that the leading

terms do balance determines <.

/4 " o 2
Example: w + ww - 2w + aw + uw = 0.

There are two possible choices:

i) p= -1, &= 3, the leading terms are ww'and ww”,

ii) p -2, o= 3, the leading terms are ww” and —2w3.
If any of the possible p’s is not an integer and if Eq.(2.2) is
asymptotic near z,, then it represents the dominant behavior in
the neighborhood of a movable branch point of order p. This means
that the equation is not of P-type: here P stands for Painlevé.

(The equation is of P-type if all of its solutions have Painlevé

property. )

If all possible p’s are integer, then for each p,
Eq.(2.2) may represent the first term in the Laurent series around

a movable pole. In this case, a solution of Eq.(2.1) is
p o 3
wig) = (2-z,) Ta;{z-2) , 0 <lz-z)< R, (2.3)
jz0

R is a positive number. =z, is an arbitrary constant. For an nth
order ODE there are still (n-1) arbitrary constants to be sought

among the a; in Eq.(2.3). If they are all found to be present



there, Eq.(2.3) will be the general solution. The powers j at

which these arbitrary constants enter are called resonances.

B. Finding the Resonances.
We start by keeping only the leading terms in the

original equation. Substituting

P P+T
wo= otlg-gy) .+ P(z—ze) 3 (2.4)
into the leading equation. To leading order in P> this equation

reduces to
. a
Q(r)plz-z,) =0, Q@ >»p+r-n

If the highest derivative of the original equation is a
leading term, q = p + r -n, and Q(r) is a polynomial of order n.
If not, q > p+ r - n, and the order of the polynomial Q(r) equals

the order of highest derivative among the leading terms ( <n )

The roots of Q(r) determine the resonances.
i) one root is always (-1). It represents the
arbitrariness of z,.
ii) The resonance r = 0 corresponds to the
coefficient of one of the leading terms being arbitrary.

iii) Any resonance with Re(r) < 0 (except r = -1) must
be ignored, because they violate the hypothesis that (z—z,f is
the dominant term in the expansion near z,.

iv) Any resonance with Re(r) > 0 but r not a real

integer, indicates a movable branch point at 7 = %, The algorithm



terminates at this stage.

v) If for every possible (p,x ) from step A., all of
the roots of Q(r) (except -1 and possibly 0) are positive real
integers, then there are no algebraic branch points. Proceed to
step C. to check for logarithmic branch points.

vi) The general solution of the nth order ODE in the
neighborhood of a movable pole, Q(r), must have (n-1) nonnegative
distinct roots, all real integers, If for every (p, «) from step
A., Q(r) has fewer than (n-1) roots, thén none of the local
solutions is general. This means that Eq.(2.2) misses an essential

part of the solution.

Example: w” + dww’ 4 2w3 =0 (%)

The only dominant behavior is w~0c(z-z,)—1 5
where o satisfies o - 2+ 1 = 0.
The resonances are r = =1, r = 0,
The root (-1) corresponds to the arbitrariness of z,.
The root (0) does not correspond to the arbitrariness of « ,
because X= 1 is a double root of the leading equation. So,
W =.<><(z—z,)-1 cannot be the first term of a general solution of

Eq. (%),

C. Finding the constants of integration

For a given (p, ) from step A., let r, & r, < ...,¢
denote the positive integer roots of Q(r). Substituting
P r; P+)
w=o(z-2,) +3_§1a3(z-—z) y (8 & n-1), (2.5)

into the full equation (2.1)



P+)-n

The coefficient of (z-z,) is
T
Q(j)aj - Rj(zo,a,ai,...,a}i) =0, R= (Ri,..., R, .
(2.6)
Then:
31 Por.j ¢ N Eq.(2.6) determines a;
ii) For j =r , Eq.(2.6) becomes
O-an-— Rq(zo,d,ai,...,aq_i) = 0.
1f Rq(zo,d,al,...,aq_i) # 0, (2:9)

then Eq.(2.6) cannot be satisfied., There is no solution of the
Eq.(2.6); and we must introdnce logarithm terms into the
expansion. Replacing Eq.(2.5) with

P r-1 P+) P+l
w=x(z-2,) + ﬁaaj(z-q) + [aq’+ bri In(z-z,) Mz-2,)

+..’

P+, -n
The coefficient of [(z-z,) In(z-2,)] is Q(r, )b, = 0.
b A
iit) 1 Bq. (2.3 Fatse (R§.= 0) then aqiis an arbitrary

constant of integration. Proceed to the next coefficient.

For a system of first order ODE’s, the basic steps of the
algorithm are not essentially different.
The nth order ODE has the form

311 = F‘j(z;wi,wz,-u,wn) J=1,.0.,n, (2.8)
Z

1. Finding the dominant behavior of the system.
P.
substituting Wj~“j(z—z°)')’ j = 1,...,1‘1, (2.9)
into Eq.(2.8) and one finds all possible P; for which there is a

balance of leading terms and what the leading terms are. The



algorithm stops unless the only possible pj’s are integers.

2. Finding the resonances of the system.
For each p, construct a simplified equation from
Eq.(2.8) that retains only the leading terms.

Substituting into the simplified equation

?j Pj+r :
o T dﬁz-zo) + Pj(z~z°) Y i (2. 10

with the same r for every w To leading order in B this

jos
becomes

[Q(r)]p = 0,
where [Q] is an nxn matrix, whose elements depend on r. The
resonances are the nonnegative roots of

det[Q(r)] = 0, a polynomial of order & n.

One root is alwavs (=1), (0) may also be a root. The

algorithm stops unless all of the resonances are integers.

3. Finding the constants of integration.
Substituting into Eq.(2.8)

T

Gicg? & Th e (2.11)
WJA: <><:1 gl 5% k‘iajkz Zs 3 .

where r, is the largest resonance. The coefficient of each power
of (z-z,) has the form of a matrix generalization of Eq.(2.6)., Its

treatment is identical to the previous case.

In summary, we say that the ODE (or a system of 0ODEs)
satisfies the necessary condition for the Pain]evé property (i.e.

for having no movable critical points other than poles), if its



solutions can be expanded in Laurent series, near movabhle

singularities at z-z_, . The ARS algorithm provides only an

indication that the system actually does posses the Painleve

property.

Direct calculation for integrals of motion

In this section we review a direct calculation method for
the investigation of the e*istence of integrals of motion
polynomial in the velocities, following Bertrand’s approach [2].
This method makes the assumption that the constants of motion are
polynomials in the velocities (or momenta). This method is

powerful in the simple cases.

Let us consider the motion of a particle in a two

dimensional potential V(x,y). The Hamiltonian governing the system

reads
H= 1m, % + m,y2) + V(x,y). (2.12)
2
The equations of motion associated with the system are
simply
o e SRR IR R A (2.13)
X oY

For the complete integrability of the system, one needs
the existence of a second constant of motion, besides the

Hamiltonian.



Let us look for the case of a constant of motion quadratic

in the velocities. The general form of an integral is
C=gx +gky+gi* +h , (2.14)
The conditions of the constancy of C can be written as

b e +2 22 . 2 & +» v 2 . 22 1 e 9
0 = d(E =EX QXY +EXyY + gy + B XYt g 5+ 28, xx

Q.I

+ g, VX + g X + 28, ¥y + hx + hy. (2.15)

Regrouping and equating to zero the coefficients of each monomial

in the velocities, we obtain at order three

goxzoi g°y+glx=0’

dy * €, =00 BIED (2.16)

The solution of this system of equations is

oq
°
]

o<yz+Py+25,

o
-
1]

~2oxy - PET Y Tk, (2v17)

ox” = IX4 €.

o
~
n

At first order we obtain

hx+ Zgo‘x‘." gi$i=0 y
hy + gik + 2g2§ =0 . (2.18)
The integrability condition for h reads
%[Zgovx * gVl = alg,V + 28,Vy 1, (2.19)
X

or, equivalently,

10



2(g, - g,)Vxy + (28,, - 8% - L 81y

_gi(vxx - Vyy) =05 (2.20)

)V

For the system to possess an integral of = motion quadratic in

velocities, the potential must satisfy Eqs. (2.18) and (2.19).

Let us look for the case of a constant of motion cubic in

velocities of the form
Bt + X v At L v i gt (2.21
S & XY+ %y 3V g.X + g,¥. -21)

The condition %Q = 0 leads to a system of partial differential
t
equations obtained by equating to zero the coefficients of each

. cMen 5
monomial X y . We obtain

Hi =0, 3o/ + a_f:l. =0 , 8_f1 + 3_fz =0 ,

A% ? N oY X

;.f-; + .3__f:3 =1 9 ?_;_fs =70, (2»22)
5 5y

The first set of PDEs for t’.L can be solved in a straight-

forward way giving:

fo = oy’ +py’ + ¥y + 5,
fy = -(3xy® + 28y + ¥)x + ey® + S i,
f, = (3«y+p)x - (26y+5)x+ey+k, (2.23)

£, = —ax® + €x® - ox + Q.

The next set of equations read

3,Xx + £,7 + 3g, = 0,

X
2f,X + 285 + 28, + 28, = 0, (2.24)
oY ax

|

o
)
-

U]

S

T.x 4 3f5§ +

o
.



One replaces f; from Eq.(2.23) and X, ¥ from the equations of
motion, X = -3V/ax $ ¥y = -3V/3y , and integrates for g;. The

compatibility condition for the integration reads

L 4 »e ve 2 .o . r 4 . v
ALK + 3,F) - 3(21,X +2F,F) + (3£, # £,¥) = 0.

% axdY ay*
{2.25)

The last equation reads:

g,X + g.¥ = 0. (2.26)

For the system to possess an integral of motion cubic in

velocities, the potential must.satisfy Eqs.(2.25) and(2.26).

Let us consider the case of a constant of order 4 in the

velocities. The form of a fourth-order constant is

2

€= £.5° + £,307 4 £,5°5° + 0,55 + 0,5 + 8, %" + g, %y
g9 : (2.27)
The first set of partial differential equations for f; can
be solved in a straightforward way giving
f, = Ay3 + By2 + Cy + D,

-3Axyz - 2Bxy - Cx + EyZ + Fy + G,

]
-
L

-
N
1]

x“(3Ay + B) - x(2Ey + F) + Hy + 1, (2.28)
£, = -AC + E;* - Hx + J,
FT R D

The PDE’s for g; read
Af,X + £,¥ + @ =0,

8f,X + 20.¥ + ag, + g, =0,

. ay X
sk Rty vy v =0, (2.29)
Yy X
fjx + 40 ¥ # 08, = 0.
oY

12



The compatibility condition for the integration reads

-3 (X + 41,F) + 30 (2f,X + 3f,¥) - 2° (3f,X + 28,¥)

ax? ax 2y 3)<'>y
+ 3?(4f X + £¥) = 0. (2.30)
ay?

We obtain the equations for h:

28 .x + gy ¥ SQ =0,
gX + 2 gly + 3]

h =0, (2.31)
1 5y

The compatibility condition for the last equation reads:

3(2g,X + 2,¥) = a(gX + 28,¥). (2.32)
3y %
An integral of motion quartic in velocities exits whenever the

potential satisfies the Eqs. (2.30) and (2.32).

Let us now consider the case of a constant of order 5 in

the velocities. The form of a fifth-order constant is

3 -5 O +3 .2 +2 3 s o g . 5 « 3
C=e,x + e, X y+exy 2 e.X ¥, texy ¢ ey ¢ L 8

2 v o2 « 3 . B
+ fix v + fzxy + f3y tg.x+ gy, (2:38)

By equating to zero the coefficients of order 4 in
dc/dt. = 0, we obtain a system of partial differential equations
for f. , which leads to the new compatibility condition (2.34). A

- soon as this last condition is satisfied, one can calculate the

functions £:. The problem is then reduced to the search of the gi’s

from relations that read the same as in the case of constants of

order 3 in the velocities.

i3



i4

The compatibility condition gives

o v .o [ e 4. 4 4® ve
3 (be,x + e - 2 (4e,x + 2e,y) + 2 (3 + 3e,
a‘l‘*( . 1Y) my; ! e,¥y) wlwg e,X e,y)
- 3 (2e,Xx + 4e,¥) + e X + Be ¥) = 0. 2.34)
»loy 2 s ity * :
The PDE’s for g, read
3f X + f1y + 3g, =0,
ax
2f,X + 2f,y + 2g,+ 3g, = 0,
ay Ix
f1§ + 3£3§ +3g.= 0. £85.35)
ay
and the last compatibility condition gives
g,X + g,y =04 (2,36)

Let us now consider the case of a constant of order 6 in
the velocities. The computations are similar but more complicated.

- The form of a sixth-order constant is

5 Ve M S i X
C= e,x6 % eixsy + e,_x“yz + eﬁx’y + e‘xzy4 + esxys
« b B L e 9 . + 1 3 . 4 ¢ 2
t ey HE X" +fixy+ LURY: + £.5y" + £,9" + g%
v . . 2
+g1xy+gzy + h.
The condition dC/dt = 0 leads to a system of partial

differential equations obtained by equating to zeo the coeffi-

cients of each X'y . We obtain at order 5

fo.x + e,y ¥ g_£ =0, be,x + de.v. 4 é;__go+ aa{1= 0,

de X + 3e,y + afy+ af, = 0, 3e,x + de,¥ + afe+ afy= 0,
t%4 ax Yy ax

2e,X + 5e,y + afs+ afs = 0, e,X + 6e,¥ + ofu = 0.  (2:37)
Y A 3y

The compatibility condition gives



3 (6e,X + e ¥) - 3_3:),‘5%3( + 2¢¥) + 3 (4e,X + 3e,¥)

ay® e

5 .o ‘" 5 v ve & v v
-2 (3e,x + 4e,y) + 3 (2¢,x + be y) -3"(e_x + 6e,y) = 0.
syt 3 4% Py s M 6

(2.38)
The problem is then reduced to the search of g;’s and h
from relations that read the same as in the case of constants of

order 4 in the velocities.

The next set of equations reads:

"
o

Af.X + £,V + g,

3

3f. X + 2Ff.y + ag,
: 2 2 3_5

+

2 £,X +3f,y+ g, 0, (2.39)
3y

£.% 4£, ¥ + g, = 0.
5y

The compatibility condition for the integration reads

P (£,% + 4f, ) + Z(2FK + 36 ) - 2 (A, + 20F)
b4 axay
,(4f,'x' + fi',s;) = 0. (2.40)

+
@ 'y)
i, x |2

At first order we obtain

[
g
°
Eaie
+
i
<
+
o
-
1}
o

X

e,
'-L

¢

+

5]

Jq -
“ -
+
©

=y

H

O

(2.41)

N
<

The compatibility condition for the last equation reads
2 (2¢,% + g,y) = alg X+ 287y, (2.42)
3y 2 2

The constant of order 6 in velocities exists whenever the
potential satisfies the PDE’s Eq.(2.38), Eq.(2.40) and Eq.(2.42).

The search is facilitated by the fact that in nontrivial known

018125
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