CHAPTER II

EVALUATION OF SOME WIENER INTEGRALS
1

In this chapter, we evaluate S exp(A [/ P(t)xz(t)dt)dW(X)
C 0

for several functions P which are positive (also nonnegative) on

[0,1].

Theorem 2.1 Let P be a continuous and positive function on

[b,l] and let AO be the least characteristic value of the differential
equation

(D £'(t) +AP(t) £(t) = O,

subject té the boundary conditions

(2) £(0) = £'Q) = o,

N

Then, if -» < A < AO and f, is any nontrivial solution of (1)

satisfying
(3) £1(1) = o0,
we have
Iy £ (1))
() / exp (A J P(t)x“(t)dt)dW(x)= oy
c 0 A

Consequently, if A < AO and fl’ f2 are any two linearly independent

solutions of (1), we have

1 = (fz' (a)f; (a)-£] (a)£, (a));i
(&) é exp()\ é P(t)x (t)dt)dW(Xf \fé(l)fl(o)-fi(l)fz(o) Py
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where a is any convenient point in 0 < a < 1.

Before proving this theorem, we shall prove Theorem 2.2

which is more general than Theorem 2.1.

Theorem 2.2 Let P be continuous and positive on 0 < t < 1, and
let AO be the least characteristic value of (1) subject to the
boundary conditions (2). Then if F is any Viener measurable
functional on C, X < AO’ and fk(t) is any nontrivial solution of (1)
satisfying (3), we have

1
S F(x) exp(rh f P(£)x2(t)dt) dW(x)
G 0

) (fA(l))% s [ IES A J @
o SR Fly(+)+£, (+ -, y(s)ds| dW(y),
507 ¢ & AN EN O] §

where the existence of one Wiener intesral implies the existence

of the other.

Proof : Consider the linear transformation

t fi(s)
(n y(t) = =x(t) - f —— x(s) ds ,
o £(s)

where A is a fixed value, —» < )\ < AO’ and fA is any non-trivial
solution of (1) satisfying (3), fA(s) # 0, 0 € s <1 (Thecrem 1.16).
This transformation takes the space C intc a part of C. We shall
show that it takes C into the whole of C in 2 1-1 manner. First,

£1 ()

multiplying (7) by 2 and get
[£, ©)]
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fi(t) £1(t) fi(t) t fi(s)
2 y(t) = 5 x(t) - 2 x(s)ds
[fk(t)_'] [fx(t):! [£,()]° 0 £,(s)
t £1(s)
d 1 A -
- i x(s)ds| , X
dhdo {w el e
SO (\'/  * \\"‘\
(8) ft " iy (s) % It Qi (s) G/
y(s)ds = e, gia). ds ., WS
o [t,()]° B®) 5 £ '

Multiplying (8) by fA(t) and adding tc (7), we obtain

t fi(s)
M) y(t) + fx(t) L

0 [f)‘(s)]

9 ¥(s8)ds = x(t).

Thus to every function x of C there corresponds a function y of C
defined by (7), and this y satisfies the relation (9). This implies
that the tramnsformation is 1-1. To show onto, let y be any function

f'
of C and define x by (9). Multiplying (9) by f—)‘%g s we get
A

By + 6300 A0 (s) Sl
ey ¥t + e y(s) ds = ——— x(t) ,
fl(t) A 0 [f}‘(s)]z fA(t)
t “£l(a) : £(t)
* A e Yaul
so that
iy <tk It fi(s) t fi(S)
10 t y(s) ds = f x(s)ds.
i [f}\(:s)]2 o HL(®

Subtracting (10) from (9), we obtain (7). Hence (7) is a 1-1

transformation of C onto itself.
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Next, we want to show that the transformation (7) satisfies the

hypotheses of the following theorem :

Theorem 2.3 Let Kl be continuous on {(t,s)' 0 & g8y 0. < 8291}
and let it vanish on {(0,s)| 0 ¢s <1}, Let K2 be continuous on

{(tys)] 0 st <1,0 <5 <t} and let

Kl(t,s) when 0 st <sg, 0 <s g1,
K(t,s) = Kz(t,s) when s <t gl, 0 €8 <1,
Kl(c,s)+1<2(t,s) when t = s, O ¢ 8% %,
2
2 1
J(s) = K (s,8) - K (s,8) yu0 £ 8 81

K(sl’sl) & .K(sl, sn)

D = l+ z faay f l.If . . . o e ? . . . . ds ...ds o
0 n

K(Sn’Sl) oo .K(sn,sn)

Assume furthermore that K satisfies the following ccnditions :

(A) For almost all s, K is absolutely ccntinuous\in towP gt el
after the jump at t = s is rermoved by the addition of a step function,
(B) There exists a measureble function H which is of bounded variation

in t for each s and which for almost all (t,s) in [0,1] x [0,1] is

3K (t,s) -

equal to "t

(C) The function H mentioned in (B) can be chosen so that

1 1
J sup lH(t,s)lds <® and [ Var [H(t,s)] ds < o,
0 ogts1 0 oOsts1
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(D) The function J is of bounded variation on [0,1].
(E) The determinant D 40 .
Let S be a Wiener measurable subset of C, and let TS be the

image of S under the transformation T defined by y = T(x);

1
y(t) = x(t) +/ K(t,s) x(s) ds.
0

Then we have meas, (TS) = IDI J exp (-9 [x] )dW(x), where
S

1

¥
[r a—K(t:,s)x(s)ds] dx(t)
0

Lo 3 2
o[x] = s [T{ I K(t,s)x(s)ds] dt+2 s 5
0 0 0

1 2
+/ J(e)a{[x(t)] }.
0

Moreover, if Jis any Wiener measurable function defined on TS,

then

1l
48 Flylaucy)=Io| Flxt 1 R(+,8)x(s)ds] exp(-0[x])di(x),
S 0

in the sense that the existemces of one side implies that of the
other and the validity of the equality.

(For a proof of this theorem see [31)

To prove that the transformation (7) satisfies all the
hypotheses of Theorem 2.3, we let Kl(t:,s) =0 (0<st<s, 0<scg
Kz(t,s) =- f5(s)/f,(s) (0 <s<t, 0<sg1). Clearly, 2
continuous. K2 is contimuous, since f}'\ and fl are continuous on

[0,1] and f)t(S)" 0 for all s in [0,1] (Theorem 1.16).
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0 s D€ t<a, 0 g8:1
Let K(t,s) = -fi(s)/f)\(s) i 82tz 1, 0 sl

-f;‘(s)/ZfA(s) , Eom.g o 0 8%l
and J(s) - -fk'(s)/fx(s) >y HATWE L

To show that (A) holds, we defime a step function Ss as follow :

-£ (8)/2f, (s) s 0gtcs
Ss(t) = 0 , t =38
fi(s)/ZfA(s) e € € € 1

Therefore, for each s in [O,l] , K(t,s)-l-SS(t) = -f;\ (s)/ZfA(s)
(0 < t < 1), and it is also absolutely continuous in t on 0 < t < 3 i
hence (A) holds. If we take H(t,s) = O on the square [O,IJX[O,lj %
then clearly (B) and (C) hold. To show that (D) holds, we consider
that J is continuous on [0,1] and J'(s) =(f>"(s)/fx(s))'

=(5(8) £} (8)~£] 2 (8)) /£2 ()

= - (8)-£}%(s) /£1 (s).
Since P, f)‘, fx' are contimuous on [0,1] and fA(s) # 0 for any s
in [0,1] (Theorem 1.16), we have that J' is bounded on [0,1], ana
hence J is of bounded variation. This shows that (D) holds. To show

that K(t,s) satisfies (E), we consider the Frecdholm determinant of the

transformation,
l K(sl,sl) oo e K(sl’sn)
© 4 1
D - 1 + z e f L f . Ll . . . L ° o . . - ds L ds
n=l " 0 0 x »
K(Sn,sl) LI K(sn’sn)
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“ g '3 o
= & S {7 Kisss)de}
g - 0

1
= exp (/ K(s,s)ds)
0

1
= exp (§J (-£1(s)/£,(s)) ds)
0

= exp (- 5 [og £,(1) - 1o £,(0)])

1 £,(0)
= oxp (5 log ¥y (1)>

£, (0)\k
- ¥;?i) £ 0,

Hence by Theorem 2.3 with j[y] = F[x] = F[T_l(y)] , we have

() ¢ £1(s)
RO NOW, o) ¥® @] vy
c 0
W £ £0s)
A
= (_fl(l)) s I'[x]exp{— T ["-'f (- f ' )X(_-,))dsJ dt

1t . -£(s) e £1(0)
-2 g[‘é Tl E T (a)) X(s)ds] dx(e) - f (- £ (t))d[x(t)] }dW(x)

(12)
f. (0) Y , 1 f'(t) 2 1 £1(t) 2
= —L. i __)\___ " £ A
(fx(l)) é Flaexp é L £,(0) x(t)] du *é (0 d[x(e)] M w(x)

where the existence of either side implies the existence of the other.
On integrating by parts to the right side of (12) and using f;\ (1) =

x(U) = 0 and (1), we obtain



3¢

[ i () fi(s) (e3da] an(rd
J Fly() + £.() s —— y(s)ds] aW(y
c A 0 fx(s)

£, (0) )* e ST SRR - 2 £1(0)
"t L Tiueet- [f 0 *(®)] at +( (1)[ L (o>["(°)] )

1 f'(t)
- I x>(t)d [f (t)]

} dW(x)

£ (0))’i 1 [£(6)]?
A A
= | s S F|x| exp{- s ' (t)dt
(f;\m c (=] 0 fi(t)

2
1 £, (L) £V (E)-|£1(t)
] ) e - &t ])dt}dw(X)
0 fx(t)

£, (0) Vs B2
A A 2
= (-———- ) é F[x] exp {- f E—TE) x (t)dt} d W(x)

]
I ——
Hh
-
~
=]
N

g 1
————-) I F[x] exp (r AP(t)xZ(t)dt) dW(x).
A C 0

Therefore

1
I B[] exprf P(E)x (t)de)d W(x)
C 0

fA(l) : (+) f (s)
- N é Fly(:) + £ () f R y(s)ds] dW(y). y

Proof of Theorem 2.1

Let the function F in Theorem 2.2 be identically unity,

that is, F(u) = 1, for all u, we obtain %).
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To prove the second part, let fl and f2 be any two linearly
independent solutions of (1) and let fA(t) = fé(l)fl(t) - fi(l)fz(t).

Then fx is a non-trivial solution of (1) since

f;(t) + AP(t)f‘t) = fé(l)f;(t)—fi(l)fg(t)+AP(t)fé(l)fl(t)—AP(t)fi(l)fz(t)

fé(l)(fI(t)+AP(t)f1(t))—fi(l)(f;(t)+AP(t)f2(t))
=0
and fi(l) = fé(l)fi(l) - fi(l)fé(l) = 0.

By relation (4), we have

3 3
S £ W W-£1 W, |
é exp (A 6 P(t)x"(t)dt)dW(x)= f£<1)f1(°)‘fi(1)fz(°)

That is the relation (5) true for a = 1, Since the differential
equation (1) has no term in £'(t), by Theorem 1.17 its wronskian is
constant. Hence, we may use any convenient boint a instead of 2 = 1,

This yields Theorem 2.1. p

Example 2,1.1 Let P(t) = 1.

Therefore the differential equation (1) becomes

(13) £"'(t) + Af(t) = 0

and the solution is f(t) = A cos(/At) + B sin(/At) where A, B are
constants. Since £(0) = 0, A = 0. Thus f(t) = B sin (¥At) and
£'(t) = B/A cos(YAt). And since £'(1) = 0, BY2 cos’A = 0. We may
assume that A # 0, if A = 0 we have f(t) is a trivial solution

because f"(t) = 0 has solution f(t) = Ct+D where C,D, are constants
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and £(0) = £'(1) = 0. Hence cos/A = 0, But cos (2n+1)%~= 0,

2

2m 1
n=0,1,2,... . Thus A = (2n+l) R O . 2.0 0. Ehae 1a

2

the least characteristic value is T and the characteristic

function which satisfies characteristic value A is sin VA t.

A nontrivial solution of (13) satisfying fi(l) =0 is

2

fA(t) = cos (VA(t-1)). Therefore, by relation (4), for - < A <-£ 5

c cos(~v1) cos V)

This means that

1 2 cos O \E 1 %
J exp (A f x“(t)dt)dw(x) =(—i—-— = (———) .
C

Z
1
- (1/cos VX)7? Ll ¥ <%
I oexp A F xP(t)dt)du(x) = .
c 0 (1/cosh V|A])? , ~w <A <0,
Example 2.1,2 Let P(t) = (t;+<n)_2 sy O ¢ o <o,
Therefore the differential equation (1) beccues
(14) f"'(t) + 5 f(t) = 0.
(t+a)
Take t+& = e’ , then L —l—-. This implies that
: dt t+a
2
d dz 1 d - 4'Elt Y . dfle
@B IOR 0, e - e SHD A
(t+a) dz (tyqa)” d=z

2
Replacing f"(t) in (14) and multiplying this equation by (t+a)”,

we obtain

2
(15) L i) - fe) + re(e) = 0.

dz dz
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2
If we write A =-% -4 , 0<yp<x, then we have the general

solution of (15),

£(e) = Ae(EMWIZ | g Cri)z

(16) = A(tm);"'11 - B(t+oz);""u o

where A and B are constants., That is the two linearly independent
1
solutions of (14) are (t:-mt);i+u and (t+a)1-u "
" : B W hich
Claim that there is no linear combination of (t+4e) and (t+a) whic

satisfies the boundary conditions £(0) = £f'(1) =0 .
In fact,from (16), £'(t) = A(%‘+u)(t+:z)_;5+u + B(%'--u)(t-!-a)_%—u.

If (16) satisfies the boundary conditions £(0) = £f'(1l) =0, then

we have
PV T, — =7 57 \
and AGH) (L4a) "5 4 B(% ) @ . o .
Consider
ot e = & 0™ (14a) TTH- Gy T (1) T

G (W) F ) oy
-2u

g 1
"G (GGG )

since 0 <a <o and 0 < p < . Therefore A =B =0, so we have

the claim. It follows that A =-% -uz 5 0 <yu<o, is not a



characteristic value and the least characteristic value of (14)

is J\o ;% « Hence relation (5) yields

1 2
roexp (Gt s =28 ar)aw
C 0 (t+o)

; ok
& =) (o) " ¥ () T L ) () T (abe) T

& 0 @) T L) () T T

15
3 1
("_2- ) = (5 +u)

T i) T [ DaPs ot Dy v

” 3
’ (Zua“ T i)t )
2u <
- D™ + @+ )
2
2 ~2
Example 2.1.3 Let P(t) = (t"+a)

s, 0 <a<e,

Therefore the differential equation (1) becomes

(17) £1(t) +-——§l—-2 Bty 13ING
(t™+ a)
Take t2+a =" s  then AR, AL . « This implies that
at 2
t +a
d du 2t 4
£f'(t) = — f(t) — =———— f(t)
du at P oy ’
4 4¢? a2e(e) | 2(t%40)-4t2  af(t)
£740) = e oA g B v
(t"+4a) du (t™+ a) s
. _at® ) | 202¢2  ag(o)

(t240)? a?  (t24w)? du

36
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Replacing f£"(t) in (17), we obtain

2 »
4t2 é—g(t)+-(2a—2tz) S—f(t)+ Af(e) = 0
du du
u dzf(t) u d f£(t)
4(e =0) e + (20-2(e =0)) — + Af(t) = 0,
du dl.l
o .. doECE) u, d £(t)
(18) (4e =40) vy + (4a-2e) — + AM(t) = 0 .
3 du

u

2
If we write A =-a , then =». < A < 0 and fl(t) =¢ 1is a

solution of (18). To show fl(t) = (t:2+ oz)li is a solution of (172).

2
Since f£1(t) = ———r and f£}(t) = [(t240) % —— /(t%m),

(t%4a) (t"+a)

therefore (17) becomes

b ti4a -8 = <r.(t:2+m);"‘:I - o.

(t2+a);5 t2+a

1 2
— | (t"+0)
t2+a [

By the method of finding another solution of differential equation,

celp ot o

+(1) dt
((t% o2

%

we have f2(t) = (t2+ @)~ v(t) where v(t) = s ce

o c & c -1 t L
F ————tzm dt - tan ol ¢ is a non zero constant.
2. .5
Thus the second solution of (17) is £, (t) =_<_:_§_t_"__'a_l tan g .
2 Yo Vo

And fl’ f2 are linpearly independent sclutions since
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2 Y

£.()  £,(0) | (24 ) bt a) cant L

2 Y T

' 2 -k c(t™)® Vo ct(t +o) -1t
£1(t) £1(t) t(t"+ - tan —
1 2 G) /E 2+a /& /&

+ ct ¢ -1t ct g -1t

ax o4 7; an /E - 7: an JOT

The least characteristic value of (17) is AO > 0, because for

AO > A > == there is no linear combination of f1 and fz satisfies

the boundary conditions £f(0) =£'(l) =0. Hence relation (5) yields

e \;5
c
;oexptea 5 28 ae) gl ( 3 = o I
§ 2 ) 13 & - }
C 0 (t%+4a) c{(1+a) *+ 75 tan /-g}a (1+a) 7 0O
1
= (1+a)*
(Vo + tan—l 1 );5
Ya
Example 2.1.4 Let P(t) = eat, o is a real number, a # 0. Therefore
the differential equation (1) becomes
(19) £'(e) + AT £(e) = o .
To find the solution, we let f(t) = I a emt, then £'(t) = Z annzoflem't
n0 ° n=0
and (19) becomes
(-]
S nzctzemt g ae(n-i-l)ozt
n=0 e n=0



On equating coefficients we find

ann Q = -A an_l ’ ne= 1,2,... .
-\ ah.—l (-A)n ao
This implies that R, T RS i
no (nl)"a

Choosing ao =1 , we obtain

n )‘nenat

w o (51)
(20) f.(t) = T
* 00 a2 (n1)2

as a solution of (19) for every value of A # 0, -® < A < =,

To show this,we replace £"(t) and £(t) in (19) by

(_l)n A11 enat

£1'(¢t) = T
1 =1 az(n-l)((n—l) !)2

(-1) n—])\n-le(n-l) ot

and f 1 (t) = z s Trespectively ,

=1 o;z(n-]')((n-—l)!)2
then we get

i__].)n}\nenmt: - ; (_Dn-l)\nenat
n=1 o

o
z
n=1 o

= 0 -

2(n—1)((n_1)!)2 2(n-1)((n_1)!)2

Also this fl is the classical of Bessel function of order zero,

e k +2k
i, 2 a1y E9°

A second linearly independent solution cf (19) for A real, A # 0

t
is given by fz(t) gt N (the%) , the Bessel function of the

39



second kind of order zero.

40

The general Bessel function of the

second kind is defined by the equation

Jn(z)cos nm - J_n(z)

» N # integer, or by the limit

Y (z) =
- sin n7w

of this expression whan n is an integer.

at

Vi 1
Since f (t) 3t JO(ZA e )
at iy
£3(t) = A3 2 Yé(zia—s—-)

fé(a)fl(a) - fi(a)fz(a) =

But for n is not an integer,

Wronskian (Jn(z), Yn(z)) -

(21) »

and we know that

(22) J;(Z)an(z) - Jn(z)

at
2 -3
572 ., 2%
A e JO( - ) and
» thus
2% aa
] o (
[, DR @-5 @Y @] % 2
5 a
AZe Wronskian [JO(Z),YO(Z)]Z ? Zl;ie ’
a
we have

Jn(z)Y;(j) - J;(z) Y (2)

sii 4 [Jn(z)JA(z)cos nr - %n(z)J:n(z)

= 3 (2)J (@) cos am + J! (2)J_ (2)]

[3:(2)J_ L (2)- 3 (2)J! éz)]

sin nm
2 sin om
1 ] = R
J-n(z) Tz 4
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which we show as follows. Since
z, 2k+n-1

(=1* (2ktn) P

2 k! I'(k+n+l)

©
z

z J'% (=)
" k=0

]
N

z, 2k+n z, 2k+n-1
n* P O Dl 1

K TrD) 2 E 6D o)

c
= N ¥
k=0

z, 2k+nt+1
(_1)k )
k! I'(k+n+2)

©
= nJ(z) -z I
" k=0

= n Jn(z) -z Jn+1(z) N

it follows that

::g z(J;(z)J_n(z)—Jn(z)J:n(z)) = iig{(an(z)—ZJn+l(z))J-n(z)-Jn(z)

(nJ_ (2)-2J__,,(2))}

(23)
= ﬁig (Zan(z)J_n(z)—an+1(z)J_n(z)+an(z)J_n+1(z)) .
z
& min+2s
> n* P I (arbnt2s+1)

And since Jm(z)Jn(z) = I »
s=0 T (mts+1)T (n+s+1)s!T (mint+s+1)

relation (23) becomes

" y N 2n
i-,i(n)l Z(Jn(z)J—n(z)-Jn(z)J-n(z)) T (n+1)T (-n+1)
2
I'(n) T(i~-n)

= 2 sin um
m
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this yields (22).

Hence (21) becomes

4 1 2 aiany . 2
(24) Wronskian (I, (), Y (2)) = i o iy .

On taking limits, (24) is also true when n is an integer,

aa
' ‘ L ol "8 24
hence fz(a) fl(a) - fi(a)fz(a) =A°e , o2
m2\ ‘e 2
-—
m
AR .3 . 3
g G 5 2 s 2 Y
W) T 1 SRR 2
' — = - —— —_—
and  £5(1)f, (0)-£] VT DY MAR AT BRI Yy Co—) 20 (5= )Y, ¢ 7],
On using these two equations in relation (5), we obtain
Q o ias o7
1 g < %'7 .
I expOf & (e andir —2— i & yyy ey gy e )]
c 0 % a'% |

for all a # 0 , a real eand -~ < A <0 or 0 < A < AO where AO is
the least characteristic value of the differential equation (19) with

the boundary conditions £(0) = f'(1) = 0.

Example 2,1.5 Let P(t) = (t+a)8 y 0 <a<owo, B # -2, 8 real.

Therefore the differential equation (1) becomes

~

(25) £"(t) + A(e+)® £(8) = o .
By experiment, we take a solution of (25) as the series
(=]

f(t) = :
n=0

ey PRL. o
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(26) £°(t) = £ au(p+2) [n(g+2)H] (t+o
n=0

)(8+2)n-1

And from (25), we have

') = - AGtt® 1 a (e (BFDH
n=0
= -AI a (t4a) (FF2)0tE4L
n=0
o3 8 (e (B LB
gl n-1
it R (8+2)n-1
(27) Anil -~ (t+a)

On equating coefficient from (26) and (27), we get

n(g+2) [n(p+2)+1] a_ = -ra , .

e F

This implies that a_ = - A a_ 1/(e+2) (o 535

= (DN oy [82) (ot G- (F gl
1

1 ( A*s )B+2
If we let a
0 8+2
r(i+ g +2)

, then we have

kel

nt+ ——
B+2(t+a) (B42)n+l

s (-1) A

()
S5 54 B42
n=0 n!l' (n+ == ) +1)

£,(0)

1
. 2n+ 42 B+2
A

(t+a) 2

1

o n —=(2n+
(t+a);5 z ('1)1 B+2
n=0 n'I‘(n+ E:Z— +1)

£

;i [ZL{‘.'H]) Xlﬁ 1
d

m B+ 2

8+2)

(28)

(t+a)




to show that f satisfies the differential equation (25), let

1
+1 3
- (t+a) A
(29) z o ,
then %% E (t+q)§ A% :

With this notation we obtain from (28) that

hTw

_;i ;5
£1(t) = %(tw.) 1, @ £ () I @
B+2 R4+2

and

2
2

Fo

g £y
B0 = - et @)+ em? 1 (2

L 1
B+2 B+2

L g : =k B #s

+2 (§+-§-)(t+a)2 It (2) + A(t+) J"l (z)

———
—_—

B+2 g+2

8
== %(t'hx) 2J

) 14F A!’(-g— +l)(t+a)2 J'l (z)

B2 -

k

K
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Hence f;(t) + A(t+a)B fl(t)

B
=+1
= e [ (242 7 @ t—p, 1, W (@)

7 4l e it =
B+2 V2 (p40) 2 B+2 B+2 B+2

= A [ @410 - s @43, @)
B2 Tst' 2 (842)" g3g s+2

~ K 42k n+2k=-2

C Vi f S (D) 4k(nik) [z
Sho Ty S e T T Vs T r(n+k+1)\2) :

2 o n+2k-2
_L=lL

n_ . -1 z
e I (%) o & I‘(n+k+1)(2) g

(- 1) (n+2k)
2! T (n+k+1)|2

2

© n+2k-1
I(z) = )
» k=0

£ - (-1)% (n4210 (£)n+2k—2
z “n Lo KT T(n#ctD) |2

© k n+2k-2
" & (- 1) (n+2k) (n+2k-1) z
5 L K0T (oHetl) ( 2)

k=0

and it follows that

2
M) +2 3= -2, 3 (2) +3(2)

z

-2 k n+2k-2

2
- n(nrl+n-n"(z RERRET. . L8 * b
e (2) +ki1 T () | (02) (nh2k 1) +H(n+2k) -n -4k (k) )



A second solution of (25) is given by

f (t) = (t+u)%

The functio

B
+1 L

(t+a)?

2
re.
B+2

ns fl and f

B+2

for real number A, X # 0 because
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o are linearly independent solutions of (25)

£,(t) £,(t)
fi(t) fé(t)
(t4a) %3 @ (t+a) Ty L@
B+2 B+2
g B,1 %—i
%(t"'a)—;iJ 1 (z)+)\li(t+a)2 4 1 (z) -—(t+a) !EY (Z)+)\ (t+a) # 1
B2 ) e 72
W
= ANt [T @Y (-3 1 DY 4 (2)]
B+2 B2 E::Z B+2
(24)
¥ -,
= )\!"‘(tm)2 =4
B+2
R # 0.
Thus fé(a)fl(a)—fi(a)fz(a) - B2 Also by (28) and (29), we obtain
. § 1
5t 1
£1(t) = A (t+a) [__l_(z) trey Y1 @]
B+2
1
o e l)()——+8+22k1 X
S+r._© 2k+ =) (5 k
)«li(tm)2 Z[kz (=1) s P + 3 £1) ()
=0 Zk!l‘(k+§-_3"3 + 1) 1

=0 k'r(k+———+l)z(e12)

A ] which can be showns as in the case of £i.

(z)
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B - +2k~-1
y 3 ok & F* 2+ Zhs ¢
= X “(t+o) z 1 1 + 1
k=0 k! I'(k + ey 2 (k+ o 2(k+m)(8+2)
1
_B.-,}; " " (_Z_)-B_"'—2+2k—1
5 )\Lﬁ(tm)l ¢ 5 b} 2 -
n=0 k! I'(k +—BIZ—
8,1
= A 3(t+a)2 2 3 L SN
Bz
B, 1
? %/ /R
Similarly fi(t) = X(t+a) Yl (z) .
gz 7t
Hence relation (5) yields
T T
J exp (A [ (t+a) " x"(t)dt) dw(x)
¢ 0
(30)
B8 B B
241 =41, 41
__ (B+)® t 2(13a)? 2% L @,2 i 2(+a) 2 2%
Bl "3 B+2 L\ B+2 1 pt2
"lak(lﬂ) 4 a!g B+, g+2 B+2
-g+1 ; >’
2
v 20 A ]
_1_( B+2 } .
g+2
This relation holde for B # -2, 0 <o < ® and == < A < XA_ , A # 0.

- If we put B = 0, we obtain

0
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1 ' Y

Gl £ exp(Mf x2(t)dt)di( 2 () DT @D
c 0 * 1A (1) T [ g 2
1((1+a)f‘)y (@%) ] s
¢ § 2
- % 2kt
But Jy(w) = I (fli (3)
3 k=0 KIT(k+ 3 + 1) 2
’ (_2-);5 ; (_1) @ 2k+1
U k=0 k'(k+-)(k+—-l) %%r(%) r
2_)15 = cpk 21

U’ =0 2%%1 (2k+1) (2k-1). .. 3.1

) (2_)% ; ;-l;ku2k+1

kel ~(2k+1) !

i (-i—vr')% sin u ,

S i ;’ (-—1)k (}21)21(-%

k!I'(k—-]i-o-l)

L o k 2k
)‘ . (-1)" u

k=0 2% k1 (2k-1) (2k-3)...3.1

=(2_*5 O 5 O k"
o @1

9 \%
- (_) CcCOSsS u .
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J. (u) cos@-J . (u)
1 ¥ "
.
Yl(u) . & ¥ 4 & = (-Tr_‘,;) cos u
2 sin 3
and
J . (ueos(- D)-J. (u)
".l 2 !: 1
2 2 3 A%
Y (u) = = = sin u.
=% sin- 1y TG
2 2

Hence (31) becomes

2.8
exp O [ 22 (t)dt) o Wez)
0

2 Dy

e Wy e

n%A;‘(lm );’;al‘ Llr)«15 (1+o) lict

. Y Y e
I {sin((1+2)X “)sin(ad *)-cos ((1+a)A *) cos(ar )}]

1 e
= [eos ((+a)r%= ar'®]

-4
= [cos A%] B
which is the same as in Example 2.1.1.
1 5 ‘
Next, we will find [f exp(} J P(t)x (t)dt)dW(x)under the weaker
C 0

hypothesis P(t) > 0, 0 < t < 1, and this is our main purpose.

To do this, we need

Theorem 2.4 Let P be a nonnegative continuous function on [0,1],
and (Pn) a decreasing sequence of positive continuous functions on [O',l]

with 2im P = P, Let ) be the least characteristic value of (1)
. n O,n
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with P = Pn subject to (2). Then if fA Y is any nontrivial solution

of (1) with P = Pn satisfying fi n(1) = 0, we have, for X < 2im A
’

o O,n
ko £ g
(32) J exp (A J P(t)x"(t)dt)dw(x)= &im (——-a——_f %)
c 0 n->o A,n
Consequently, if A < &im Ao,n and fl,n and f2,n are any two

n-®

linearly independent solutions of (1) with P = Pn , we have

£ ) @-1] (@F, (2 )%
£} o D] O (D, ©

1
(33) /' exp(A fP(t)xZ(t)dt)dW(x)= Jlim(
¢

0 n-»o

where 0 € a < 1.

Remark : 1. We can construct a decreasing sequence (Pn) as in

Theorem 2.4 in several ways, for example define Pn(t) = max (P(t), %9

1
n

or Pn(t) = P{e) +

2. By Thecrem 1.18, we know that the sequence (Xo n) of the

first eigenvalue corresponds to a decreasing sequence (Pn) is an
increasing sequence. This guarantees the existence of %2im A in

nsw 00
Theorem 2.4,

Proof of Theorem 2.4

Let A < %im A s then A < A

for sufficiently large n
Pl O,n n y g

0,

where AO i is the least characteristic value of (1) with P = Pn subject
H]

to (2), and P 1s positive and continuous function on [0,1I]. Thus by

relation (4) and (5), we obtain

2
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1 ; 5, (Y
= B Roa IERSHES
(34) é exp (A (f) Pn(t)x (t)dt)dw(x) (f)‘,n(o')
and
Y
1 (a)f (a)-f! (a)f (a)
2 2.1 l.n 2..71
(?5) é exp(Aé Pn(t)x (t)dt)dW(xk( ,n(l)f ,n(o)-fi,n(l)fz,n(o)) >

where f is any nontrivial solution of (32) satisfying f' (1) = 0,

and £ ik are two linearly independent solutions of (1) with P = P .
1.0 Z:n n

Case 1 If = < A < 0, then an(t)xz(t) increases to lP(t)xz(t),

hence by Monotone convergence Theorem,
1 1

I une f P(t)x>(t)dE)di(x)= 2im  exp( S P (t) x2(t)dt)dW(x)
C > 0 »

By (34) and (35), we have (32) and (33), respectively.

Case 2 If 0< A < 2im A s then APn(t)xz(t) decreases to AP(t)xz(t).

o O,n

Since Pn and x are continuous in [0,1], Pn and x are bounded

1

so [ APl(t)xz(t)dt < », By a consequence of Monotone convergence
0
Theorem,
1 1 2
f exp (Xf P(t)x (£)dt)dW(x¥ Lim /S exp(AS P (t)x" (t)dt)d W(x)
me o ¢

and by (34) and (35), we have (32) and (33), respectively. 4



Example 2.4.1 Find J exp()
C

positive real number and 0 < t

52
!

J thz(t)dt)dW(x)where B is a
0

e We consider the function

]
(t +%) for 0 < n < », These are decreasing functions which

converge to tB and they are positive and continuous on [0,1] A

From example 2.1.5, the functions

R
(]
e [2(c+%)2 x”]
fl(t) = (t +;) J_l__ ¥, and
B+2
B
§+1

% [2(t+-tl;) 3

fz(t) = (t +%)Y1 I

B+2
independent solutions of  £"(t

Thus for - < A < Rim AO 5
n-> /s

(33) where o =% > Wwe obtain

1,
I oexp (A S tPxE(t)ar) dw(x)
c 0

B+1
> o 3

Y
- S (B+2) [Y
)

2(1+ =)
- 3 n
£ B+2
B+2

B
1 -2"'1)‘55)

o) ] are two linearly

y 4+ + HPecey < 0.

replacing (30) to the right side of
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(36) 2 =+
" L 20+ 57 2 2y \E
= 2im (8+2) 1) Y J
n \ Bg+2 1 B+2
n-e B+1 e =} —
TR B2 pre
T (1+ =) "
B
£ =41 -4
1 L, 35 K
3 2(1+ =) b'Ea 2(> A
-3 3 2 Y .
14 B+2 = % N )
B+2 B+2
We consider that
B
—1
1.2 i
% 260 A
(.]_'.) J ...._tl.____
¥ 1 B+2
B2
g v
: 5+l ¢ 2Ny
S N & s ( il
n o P 4 B+2
k=0 k!T (ktz5+)
(37)
1
o; (_l)k (_r_];_ k(8+2)+1 }\1/2 2k+ )
Fe: Gl B+2 °
k=0 k! Ikt g +1) .
and
2 L
: 2L 5
L ) A
&y ‘——l‘-———-)
S B+2
B+2
LY Ba
3o (28" M) ondises als
g n cos(8+2)— 1 ( (n) A )
" (_}_) B+2 B+2 / B2 B+2
n .

T
sin B2

N
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3
2k= =
: -g-i-]_ 2 _f3+1 B+2
P TS ¢ | . .- 2(;1‘) A e g (_1) {(“) Als' #
2 () cos 77 J 1 M (n) 5 e i
Simg 42 k=0 k!T (k—5+ +2 1)
(38)
3 :
1 ik n 2@ 2% = D @D o 25
e s, (s TRESS
) o) k=0 kiF(k- zi +1) '8
Hence, replacing (37) and (38) in (36), we cbtain
B
B 2 (B+2 8+2 i o=t
/ exp() f t'x” (t)de)dW(x)= ———2—[0-(0 (8+2) £ (23 )]
c 0 U =0
N 1
2(+2) m o e
= (B+2) [Sin g T Q- B_+2_)]
1 %
i Jllyw 2 2)
Wkl 4(B+2) L J_l_ -l(m ) _l

R+2
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