CHAPTER I

EIGENVALUE PROBLEM

In this chapter, we will show that there is a least

positive characteristic value AO of the system

£'(t) + AP(t) f(t) = 0, where P is a positive continuous
function on [0,1] and £(0) = £'(1) = 0. We will also show

that the solution of the system with A = A is nonvanishing

0
in0 < t £ 1. Moreover, we can prove that every non-trivial
solution_flof the equation f"(t) + AP(t) £(t) = 0 corresponding
to any real value of A < AO and fi(l) = 0 1is nonvanishing in

0 £t <1. The wronskian of any two linearly independent
solutions of the equation is constant. Finally, we will show
that if Pn of f"i&m) APn(t)f(t) = 0 decreases, then the first
eigenvalue AO ] increases,

9

A, Some Preliminary Results on the Sturm~Liouville System.

A normal first-order differential equation is the
equation of the form y' = F(x,y).

A function F(x,y) satisfies a Lipschitz condition in
a plane domain D if for some nonnegative constant L, the function
satisfies the inequality ‘F(x,y) - F(x,z)' £ Lly-z! for all

(x,y) and (x,z) in D.



Lemma 1.1 If ¢ is a differentiable function satisfying the
differential inequality

(1) o'(x) s K o(x) (a b)

A
»
N

where K is a constant, then

B

K(x~-a)

o(x) € o(a)e (a £x €b)

Proof : Multiplying both sides of (1) by e ** , we obtain

e-KX o' (x) < Ke-Kx o(x),

e-Kx[o'(x)—Ko(x)] S,
E% {o(x)e"Kx} 4 08N

Thus, the function c(x)e_Kx is nonincreasing for a ¢ x < b.

Therefore cx(x)e_Kx < c(a)e_Ka

o(x) s o(a)e i R

Theorem 1.2 Let F satisfy a Lipschitz condition for x 2 a.

If the function f satisfies the differential inequality

£'(x) < F(x, f(x)) for x > a and g is a solution of y' = F(x,y)
satisfying the initial condition g(a) = £(z2), then f(x) < g(x)

£OT D> A,

Proof : Suppose that f(xl) > g(xl) for some X, > a. Let xorbe

the largest element in [a, xl] such that £(x) <€ g(x). Then .

f(xo) = g(xo).



St

Let o(x) f(x) - g(x) , we have

o(x)

0 for x0 e B x1 and

o' (x) ‘= f'(x) - g'(x)

W

A

F(X’ f(X)) - F(x9 E(X))

N

L(f(x) - g(x)) , L is the Lipschitz

constant for F

= Lo(x) > Xg £ X X .
L(x-x.)
By Lemma 1.1, o(x) ¢ c(xo) e i J Tl ) R Xy € X & X
So o(x) = 0 for x, < X < x.. This contradicts the hypothesis

0 1
f(xl) > g(xl). We conclude that f(x) < g(x) for all x > a. #

Theorem 1.3 (Comparison) Let f and g be solutions of the

differential equations y' = F(x,y) and z' = G(x,2), respectively,

where F(x,y) € G(x,y) in the strip a < x < b and F or G satisfies

a Lipschitz condition. Let also f(a) = g(a). Then f(x) < gx)

for all x ¢ [a,b].

Proof : We consider two cases..

Case 1 : G satisfies a Lipschitz condition

Since y' = F(x,y) < G(x,y), the functions f and g satisfy the
condition of Theorem 1.2 with G in place of F. Therefore

£42) ¢ g(x) for x> a.

Case 2 : F satisfies a Lipschitz condition

The function u(x) = -f(x) and v(x) = -g(x) satisfy the differential

equations u' = - F(x, -u) and v' = - G(x, -v) ¢ - F(x, -v),



respectively. Thus, by Theorem 1.2, v(x) < u(x) for x 2 a.

This means that f(x) < g(x) for x > a. "

Corollary 1.4 Under the hypothesis of Theorem 1.3, if f(a) < g(a)

then f(x) < g(x) for x > a.

Proof : Suppose that f(x) > g(x) for some x > a, there would be

a first point x = x;> a such that f(xl) = g(xl). The two functions
y = 0(x) = £f(-x) and z = Y(x) = g(-x) satisfy the differential
equations y' = -F(-x,y) and z' = -G(-x,z), respectively, with the
initial condition 0(—x1) = W(-xl). Since -F(-x,y) > -G(-x,y)

and -F(-x,y) satisfies a Lipschitz condition, we can apply

Theorem 1.3 in the interval [-xl, -a] and get @(-a) > y(-a).

This means that f(a) > g(a) which is a contradiction. Thus

f(x) < g(x) for x > a. #

Corollary 1.5 Under the hypothesis of Theorem 1.3 with f § g,

there is a point Xy 2 2 such that f(x) = g(x) for a € x < X, and

f(x) < g(x) for Xy < X ¢ b.

Proof : Let X, be the least upper bound of the set of points

for which f(x) = g(x), a < x < b, If x, is a point in [a, x;)

such that f(xl) < g(xl), then by Corollary 1.4, we have

f(x) < g(x) for x > X, - Therefore f(xo) < g(xo). This

contradicts the properties of x Hence f(x) = g(x) for a € x < x..

00
Since f # g, by the properties of X5 and Theorem 1.3, we have

f(x) < g(x) for Xy < X € by #



Corollary 1.6 Under the hypothesis of Thecrem 1.3, if

F(x,y) < G(x,y) for all (x,y) in D, then f(x) < g(x) for x > a.

Proof : Since F(x,y) < G(x,y), F(x,y) < G(x,y). By Corollary 1.5,
we have a point X; 2 a such that f(x) = g(x), a € x < xoand
f(x) < g(x), X5 < x. To show X, = a, suppcse X, > a and f(x) = g(x),

a<x<x Then we have f'(x) = F(x,f(x)) = G(x,g(x)) =g'(x),

0
a<x<xg. This contradicts the hypethesis F(x,y) < G(x,y) for

all (x,y) in D. Hence Xq = a and it follows that f(x) < g(x), x > a.y

Let P and Q be continuous functions on an interval [a,b] .
If x, is any point in this interval and a, B are any numbers, then
by a well-known theorem of the initial value problem
d2u

——+P(x)g£+Q(x) u=0, u(x,) =a, u'(x,) =8 has one and
dx2 dx 0 0

only one solution u = u(x) on the interval [a,b] . Thus the
following lemma is directly obtained;
2

Lemma 1.7 Any nontrivial solution cf d—% + P(x) -g-:f + Q(x) u=0,
dx

a £ x £ b, which satisfies condition u(xo) = 0 will have u'(xo)# ¢]

for any X, € [a,b] .

Next, we will prove Sturm Comparison Theorem.
We consider the equation
d du _
(2) - [P(x) EE]* Q) u = 0

where P and Q are positive continuous and P is differentiable in

[a,b] . Let



(3) P(x) u'(x)

r(x) cos 8(x),

(4) u(x) r(x) sin 8(x).
Differentiating (4) with respect to x, we have
de dr
1 - £ _
u'(x) r(x) cos 6(x) o + 8in 8(x) & -

From (3), we obtain

r(x)cos 8(x)

(5) P(x) = r(x) cos 8(x) Q§_+ sin 8(x) gi"

Differentiating r(x) cos 8(x) with respect to x, we have

[r(x) cos 0(x)] = -r(x) sin O(x)-%% + cos B(x) %i .
From (2), (3) and (4), we obtain
(6) = Q(x)r(x)sin 6(x) = - r(x)sin 8(x) g§-+ cos 8(x) %i

Multiplying the equation (5) by cos @(x), the equation (6) by
sin 8(x) and subtracting, we get

de = 1

(7 S cos 0GRy ¥ Q(x) ‘sin0(x).

Multiplying the eguation (5) by sin 8(x), the equation (6) by
cos 8(x) and adding, we get

dr

(8) s

o [I’%;(T - Q(x)j| r(x) sin 6(x) cos 0(x).

To each sclution u of (2), there correspond the solutions © and r
of (7) and (8) where rz = u2+ qu'z , 8 = tan—l(iﬁw) 4
Since u and u' do not vanish simultaneously, it follows from

Lemma 1.7 that rz(x) >0 on [a,b] and thus it can be assumed

that r(x) > 0. A consequence of this assumption is that



u(x) = r(x) sin 0(x) can vanish only where 8(x) = 0 (mod m).

Theorem 1.8 (Sturm Comparison Theorem) Let Pl(x) > P2 (x) >0
and Qz(x) 2 Ql(x) >0 and let us u, be nontrivial solutions of

cu

9) = @0 7+ u = 0,
d du,
(10) Ix (B () =)t Q®u, = 0, respectively.

Then, between any two zeros of uy there lies at least one zero of Uy .

Proof : First, we change (9) and (10) intc the form

(11) g—g = P—l%ﬁ coszg(x) +Q1(x) sinZQ(x) = Fl(x,G)
and

as £ - iﬁ cos®0(x) +0Q,(0sin%0(x) = F,(x,0),
respectively.

Since Pl(x) 2 Pz(x) >0 and Qz(x) 2 Ql(x) >0 for all x in the
interval [ja,b], Fl(x,Q) < Fz(x,.G).in the strip a < x € b. Let
Ql(x) and Qz(x) be solution of (11) and (12), respectively. Let
X5 X, be two consecutive zeros of uy where xl< Xy s then the curve
Gl(x) of ul(x) intersects the line ® = kT at x = x, and the line

1
de; 1 "
9 =(kH)m at x = x, (because _* =_=_ >0 where Ol(x) =0
dx Pl(x)

(mod T), so 91 is an increasing functicn). We can assume without

loss of generality that k = 0, that is, © xl) =0, Ql(xz) =T

1¢

and we can also assume that 0 < Oz(xl) < ® by a proper choice of n



in Oz(x) + nm, By Corollary 1.4 or 1.5, we have Gl(x) < 92(x)

for x > X . This implies that 92(§) =7 for some x in (xl’XZ)'

Hence u2(§) =0, and the theorem is proved. it

Now, we consider the Sturm-Liouville System.

A Sturm-Liouville equation is a second order homogeneous

lipear differential equation of the form

Ay g lr@ Gt [e@ ~aw]u=0,

where A is a real number ; p, p, q are real-valued continuous
functions of x; the function p and p are positive and P is
continuous differentiable, a < x < b.

A Sturm-Liouville system is a S-L equation together with

two seperated endpoint conditions of the form

0

0

(14) { au(a) + a'uf(a)
Bu(b) + B'u'(b)

where a, a', B, B8' are real numbers such that a’+ a'2 # 0,
8% 8'2 # 0.

A nontrivial solution of S~-L equation is called an

eigenfunction and the corresponding value A is called its
eigenvalue.
In (13) if we let P(x) = p(x) and Q(x) = Ap (x) - q(x), we obtain (2).

Since u = 0 iff sin 8 = 0 where © is the solution of the equation

o . 4
L dx  p(x)

cosZG + [Ap(x) - q(x)] sinze (a < xg b)),
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the zerosof any solution of (13) are the points where 8 = 0(mod w).

Given that 6(a,2) = y for all A, where y is da2fined by the

u(a) _ _=a'

condition tan y = pla)u' (a) p(a)a

s 0 £ vy <7, Thus

for fixed value y, O(x, A) is the solution of (15) which satisfies

the initial condition ©(a, A\) =y for a < x < b, - ® < A < o,

Theorem 1.9. Any S-L system has an infinite sequence
of eigenvalues A, < A, < ... with 2im A_ = =, The eigen-
0 1 B

function u belonging to the eigenvalue An has exactly n zeros in

the interval a < x < b.
To prove this theorem we need the following 1 emmas :

Lemma 1.10 For a fixed point x such that x > a, 0(x, \) dis a

strictly increasing function of the variable A.

Proof Let Al < 12. Let B(x, Al) be the soluticn of

%% » p(i) cosze(x) + (Alp(x) - q(x)) sinze (x) and O(x , ») be
the solution of g§.= Eziy.coszg(x) e @) - q®) sinzg(x).

By Corocllary 1.6, for a fixed point x such that x > a,

8 (x, ll) < 8(x, Az). 4

Lemma 1.11 Suppose that for some X, > a, 9(xn, A) = nm where

n is nonnegative integer. Then ©(x, A) > nr for all x > X .
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Proof : If X is any point where Q(xn,l) = nT, then by (15)

d 2
. » - 3
we have ax_ O(xn,l) ~ > 0. Thus the function © Q(Xn, Y,

considered as a function of X s is increasing where it crosses

the line © = nm. Hence 8(x,)) > Q(XR,A) = nn for x > X o ¢

Remark., Lemma 1.11 combined with the condition 0 < 8(a,A) < m,
makes the first zero of u in the open intcrval a < x < b occur
where 8 = 7, and the n-th zero where © = nm,

Proof : We consider two cases :

Case 1 : 8(a,)) = 0. By Lemma 1.11, 0(x,)) > 8(a,A) = 0 for x > a.

Since u has zero when 8 =0 (mod 7, the first zero of u in (a,b)
occurs where 8 = 7, and it follows that the n-th zero occurs where

8 = nm,

Case 2 : 0 < 8(a,A) < m. Since u has a zero when 6 = 0 (mcd T,

the first zero of u in (a,b) occurs where 6 = 0 or 8 = 7. If the
first zero of u occurs where 6 = 0, then 9(xl,l) = 0 for some

Xy €(a,b). Hence by following the same argument as in Lemma 1.11,
we have 8(x,X) < 0 for all x < X, and in particular, 0(a,r) < 0,

This contradicts the hypothesis ©(a,\) > 0. Therefore the first

zero of u in (a,b) occurs where 8 = 7 and by Lemma 1.11, it follows

L}

that the n~th zero occurs where 8 = nm. &
i

Let xn(A) be the smallest x such that 8(x,\) = nm. Then

the following lemma shows that xn(k) exists for large A.
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Lemma 1.12 For a given fixed positive integer n and a sufficiently
large A, the function ) »-xh(x) is defined and continuous. It is

a decreasing function of )\ and &32 xn(k) = a,

Proof : Let Qy = max {q(x) : a < x € b}, p,; = max {p(x) : a £ x € b}
and p = min {p(x) : a < x < b}. A solution of the differential

equation pMp"+ (Apm- qM) u = 0 where A > %ﬁ/pm s is a function

u(x) = sin kx where k2 = (Apm- q%)/py . This solution together
with the condition u(a)/p(a)u'(a) = tan y will give a + (nm-y)/y,

n=0,1,2,... as the zeros. These zercs are spaced at a distance

"w/pM/(Apm- qM) apart. Hence we can choose A large enough so that
uy has n+l zeros in (a,b). By Theorem 1.8, any nontrivial solution
u of the S-L equation must has at least one zero between any two
zeros of u; It follows that u has at least n zeros in (a,b) and
8(x,A) take the value nm for some x. Hence xn(h) is defined. Since
8(x,\) is a continuous function of x and A, we have xn(A) is a
continuous function of A.

Next, we show that X, is a decreasing function of A. Since
8(x,A) is an increasing function of A, it follows that the zercs of
u, if any, move to the left towards x = a as A increases. So xh(A)
is a decreasing function of A. But the number xn(A) falls between
the (n-1)th and the »-th zero of u, and both zeros tend to a as A

1§

tends to », Therefore xn(A) tends to a as A tend to . 4



Lemma 1.13 For any x such that x > a, fLim ©6(x,A) = « and
A

2im ©(x,A) = 0.

A>=—co

Proof : Let X be a fixed point in (a,b). Let € > 0 and let n be
a positive integer such that n > €. By Lemma 1.12, there is a
positive number N such that for A > N, G(xn,k) = nn for sdme

X € (a,xl). In addition, by Lemma 1.11, O(XPA) > 9(xn,A) =nam > €.

Since € and X, are arbitrary, f2im  6(x,A) = o ,
A=

Next, we show that %im ©(x,A} = 0. Given € > 0 and this
A>=—°

€ is small enough so that y < m-¢e, If € < 6 < m-e and A < C ,

then sinze < sin29 and A = —IAI. Let B = min {p(x) : a € x € b},

A

Qy = max {J]ax)| : 2 <'x ¢ b}, p, = min {p(x) : a <x <b}. Then

P and p, are positive and

d

dx Q(X,A)

ETiT cosZS + [kp(x) - q(xf] sin29

< Si cos’d - [A] o(x) s1n’0 + lq(x)| sin’e

=

1 2
< o IA' P sin"e + %ﬁ .

8

We have that the slope of the segment in the x0 plane joining the

points (a, m-€) and (xl,e) where a < x. € b equals i . Then
1 X, -2

for a point (x.8) on this segment, let

N = max{GéL-+ Q. - 28—") 1 s €3 Thus N > 0. Hence
P M x -a 2
m 1 pmsin €

for A < -N, we have
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_d 8(x,A) & 1 1 . Ze-n)

- (=+0Q +Q
dx P, Py M Xa M
= i for e ¢ 8 s € , a € X £ X,
xl-a 1

Claim ©(x,)A) lies below the segment for a < x ¢ xl. Suppose on
the contrary that there is a first pcint Xy in (a,xl] such that
O(xO,A) lies on this segment., Since we consider the curve ©(x,A)

on [e,n—e], then, if the curve ©(x,)) dces nct lie below the line

Q(xo,l) - 8(a,A) K, 2e-T
x,-a 4

@=¢ forall xe [a,xOJ, we have
X - a
0

By Mean Value Theorem, there exists a point X € (a,xo) such that

o 9( ,A) bt Q(aax) A
9'(x,)) = %o > . . This contradicts
X,~ a X,

2€-T

the line 8 = € for some X € [a, xo], define X, be the last point

9'(X’A) <

for x € [a,xl]. If the curve 8(x,A) lies below

in [a,xo] such that G(XZ,A) = ¢, then G(XO’A) e g(XZ’A) > Es:g .
X, - | B
0 2

By Mean Value Theorem there is a point % € (xz,xo) such that

- 2e~
8'(x,1) > = _: . This is a contradiction. Hence 6(x,)A) lies

1

below the segment for a < x < X35 in particular, 9(xl,A) < €

for A < -N. Since 9(xl,k) > 0 (by Remark), it follows that

lO(x,A)I < e, and since € and X, are arbitrary, 2im 6(x,A) = 0. #

A>=co
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Proof of Theorem 1.9 .

First, we transform (14) into equivalent endpoint conditions

for the function ©(x,)) of the system

% - p%x) cosze(x) + o (x)-q(x)] Sinzg(x)’

'%§ = EE?%T = 2p(x) + q(x)] r(x)sin 8(x)cos 8(x).

If o # 0, then the function 8(x,)) must satisfy the initial

condition 8(a,A) = y where Yy is the smallest number such that

]
0Osy<my# % and that p(a) tan y = - %-. When o = 0, we choose
™ '
L R o Similarly, we choose 0 < § < 7 so that tan § i)

A solution u of the equation (13) for a ¢ x ¢ b is an eigen function
of the S-L system iff for the corresponding phase function defined

by 1T % dob gt e H tan—l(p—z.—), 8lu, 1) = yiind 0(b, k) = Dtite

where n = 0,1,2,..., 0 <y <m, 0 < 8§ ¢ m. Any value of A which

satisfies these conditions is an eigenvalue of the S-L system.

. & .3 3
Let 8(x,A) be the solution of REITY ) cos 9(x)+[Ap(x)

.- q(x)] sin29(x) for the initial condition 8(a,A) = y. A solution
8(x,1) is unique for each value of A and by Lemma 1.10 and Lemma 1.13
with x = b, 8(x,\) also satisfies the second condition ©(b,A) = &+nmw
where n is nonnegative integer. Thus as A increases from -=, there
is an infinite sequence An such that A0< A1< ... and 6(b, An) = §+nmw.
Each of these values gives an eigenfuncticn un(x) = r(x)sin®(x, An)

of the S-L system. Since O(a,An) = y and O(b,An) = §+nm and 9(x,kn)

006487

{ 18082 -~ A



16

is a continuous function of x, it must take on each of the value Ty
2m,++., Oy at least once on the interval (a,b). From Lemma 1.11,
we note that none of these values can be taken on more than once.
and since each corresponds to a zero of u ., we have that the
eigenfunction has exactly n zeros on (a,b).

To complete the proof we must show that 2im Ak = o,
koo

Suppose iim Ak =M, M < », Therefore, for given ¢ > 0 we can
=00

find a positive number Ne such that for n, m > Ne’ IAn- Aml < €.

Since @ is a continuous function of A, for any € > 0, there

exists §_ > 0 such that for |A - A | < & , we have
€ n ‘m €y

1

CICH An)— e(b, Am)l < €1 Take €,< ™ and choose ¢ = Gel » thus

|e(b, A)- @b, A )| < m. This contradicts |8(b, A= 0, A > w

since O(b, X ) = 84nw and 6(b, A ) = §+mm. Hence fim A, = =,
n m Koseo k f

Theorem 1.14 If q(x) < 0 and u is a nontrivial solution of

u"(x) + q(x)u(x) = 0, then u has at most one zero.

Proof : Let x0 be a zero of u, so u(xo) = 0. Since u is nontrivial,

u'(xo) f0 (Lemma 1.7)

case 1 : u'(xo) > 0. Then u is a positive over some interval to
the right of Xqe Since u"(x) = -~ q(x)u(x) and q(x) is negative,
we have u"(x) > 0 on the same interval. It follows that u' is an

increasing function to the right of x To this end, we show that

0.
u has no zero to the right of Xge Suppose on the contrary that
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there is a point xl to the right of X, such that u(xl) = 0, we may
take Xy to be the consecutive zero. Then by Rolle's Theorem, there
is a point x € (xo, xl) such that u'(x) = 0. This contradicts the
fact that u' is increasing on (xo, xl) which follows from the given
equation that u" is positive on (xo, xl). In similar way there is

no zero to the left of Xy

case 2 : u'(xo) < 0. By similar argunent as in the first case, we

have that u has no zero to the right and to the left of Xg Thus

u has either no zero at all or only one. #

B, Properties of the Special Type of S-L System.

From Lemma 1.7, Theorem 1.9 and Theorem 1.14, we have Theorem 1.15

as follows.

Theorem 1.15. There is a least charscteristic value AO of the

system
(16) £'(t) + AP(t)f(t) = 0, F is positive on [Q, 1],
(17) £(0) = £f'(1) = 0

and AO is positive. The soluticn f of the system with A = AO is

nonvanishing in 0 < t < 1.

Theorem 1.16. Every nontrivial solution fl of (16) corresponding
to any real value of A < AO and satisfyinz the single boundary

condition fi(l) = 0 is nonvanishing in 0 < t < 1.
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Proof : Let }‘0 be the least characteristic value of the system

[(16),(17)] and let f be a solution of the system with )\ = AO.
For any A < AO, O:g.t.€ 1, f}\ is a nontrivial solution of (16)

satisfying fi(l) = 0. Thus

(18) £"(t) + AOP(t) f(t)

]
o
w

]
=

(19) £1(8) + AB(t) £, (¢)

Multiplying the equation (18) by f)‘(t), the equation (19) by f£f(t)

and subtracting, we get

£"(t) fA(t) - f')\'(t)f(t) (A—AO)P(t)f(t)fA(t) X

d—g- Ef'(t)fA(t) - £1(0) £(t)] = Q=2 )P(D)E(E)E, (£) ,
- 1
[£' ()£, (o) - £1()E()] ] = (G-2g)] BDE(T, ()ds,
where 0 < t < 1. Since f'(1) = f)"(l) =0 ,
1
(20) - £1(6)E, () + £1(DE(E) = (A=Xg) /' P(S)E(s)E, (s)ds.
t

Because f(0) = 0, at t = 0 we have f)‘(t) # 0. If f)‘(O) = 0, then

A is the characteristic value of the system [(16,(17)] which is
less than the least characteristic value )‘0’ a contradiction. Also
at t = 1 we have fA(t) #0., If f)‘(l) = 0, then f)‘(t) is trivial

solution by Lemma 1.7. Now suppose there exists t. ¢ (0,1) such

0
that ty is the greastest zero, that is, fA(tO) = 0. With this

value of tys the relation (20) becomes

1
(21) f(tO)f):(tO) = ()\—AO) I P(s)f(s) f)‘(s)ds .
t

0
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Without loss ny of generality we assume
(22) fA(t) > 0 (t0< S

and f(t). > .0 (0<tgl) (Theorem 1.15).

And since A < AO s (21) yields that f;(to) s negative. But
fx(to) =0, so fA(t) <0 (tO <t < 1), This contradicts (22).
Hence there is no greatest zerc of f) in (0,1). This yields

Theorem 1.16. #

Let f1 and f2 be any two linearly iudependent solutions

of the second order differential equation, the wronskian of fl

v 4 ' o
and f2 is fl(t) fz(t) fz(t)fl(t) and is denoted by W(fl,fz).

Theorem 1.17 If £"(t) + AP(t)f(t) = 0 and fl, f2 are linearly

independent solutions, then its wronskian is constant.

Proof : We consider
(23) fI(t) + AR(t) fl(t) = 0 and

(24) f'z'(t)+AP(t) fz(t) = .07 .

Multiplying (23) by fz(t) and (24) by fl(t) and subtracting,

we have
fl(t)fg(t) - fz(t)fg(t) = 0
= (£, (D) E3(t) - £,(E](t)) = O .
Hence fl(t)fé(t) - fz(t)fi(t) = k , where k is constant.

Therefore  W(f;> £,) is constant. p



C. Variational Behaviour of Eigenvalues

Theorem 1.18 Let

]
o

(25) £'(t) + APl(t) £68) and

]
(@]

(26) £"(t) + AR, (t) £(t)

satisfy the conditions f(0) = f'(1) = 0 where Pl’ P2 are positive

continuous functions on [0,1]. If Pl(t) 2 P,(t). Then the first

eigenvalue AO 1 of (25) is less than or equal to the first eigen-
]

value AO,Z of (26).

Before proving this theorem, we will show the following thecrems:

Theorem 1,19. The differential equaticn £'"(t) + AP(t)f(t) = O

with £(0) = £'(1) = 0 must be satisfied by any extremizing function

1 2 _
27) I = fT () dt
0

with respect to continuously differentiable fumctions f which

satisfy the normalization cecndition

1 2
(28) ULARLE) HA0eINASI NV B
0

Proof : We ccnsider the problem of extremizing the quantity
1

: 2
(29) I = / ¢'%w)de + 2, [60)] %+ o, [8(1)]
0
with respect to continuously differentiable functions @ which
satisfy the normalization condition

t p
(30) ) J P(E)PT(L) dt = 1
0
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where P is a positive continuous function and a» 32 are nonnegative
constants,
Let a = a(t) be a continuous differentiable function with

a(0) = -, a(l) = a,. Thus (29) can be written as
(31) I = f W'2e) + 5 <a(t)¢ (£))]at.

Using the method of isoperimetric prcblem ([8], Chapter 4), we form,
from the integrand of (30) and (31),

% - A

dat

2

= 92+ 4 (ag?) - apg

)

- ¢,2 + 2a00'+ ¢2 da AP¢2
where -\ is an undetermined multiplier, and it follows that
*
E_GL - ¢ ) = 0
aa dt a¢ ' ]

2a¢'+2¢d—:—zxp¢-a%(z¢'+ 2a8) = 0 ,

@" + AP = 0 .

That is @"(t) + AP(t)@(t) = 0 must be satisfied by any extremizing

function for this problem.

*
In the free-end-point problem, we get -gg. =0 att=0and t = 1.

This yields @' (t) + a(t)@(t)

0 at t =0 and t = 1. Since a(0) = -a;s

a(l) = a, , we obtain
(32) 9'(0) - a,#(0) = o0,
#'(1) + azﬁ(l) = 0,
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In a fixed-end-point problem, we replace (32) by the condition

(33) 9@ = ¢@1) = o

' In a free-fixed problem, we must have one condition from each of (32)
and (33). Hence the differential equation £'"(t) + AP(t)f(t) =0

with the condition £f(0) = £f'(1) = 0 is a free-fixed problem with

a, = 0, and this system is satisfied by an extremizing function

1
I=7 f'2(t)dt with respect to continuously differentiable
0 A ;
functions f which satisfy /S P(t)f°(t)dt = 1. #

0
Note that this system is linear and homogeneous. Since
P(t) >0 for 0 < t <1, eny £f(} 0) may therefore be supposed, when

necessary, to satisfy the normalization condition (28). -If

1
J P(t)fz(t)dt = c2 we replace f by f/c then we have (28).
0 .

Theorem 1.20. The first eigenvalue AO is the minimum of the

integral (27) with respect to those functicns f which satisfy the
normelizaticn condition (28). Let fm (m =0,1,...) be the eigen-
function which satisfies £"(t) + AL(OE (8) =0 in [0,1] and
fm(O) = f&(l) =0, then the minimum of I under £(0) = f'(1) =0

is achieved when f = fo.

Proof : We will show this theorem by using expansion Theorem.(6],p.427)
We expand the arbitrary function f eligible for the minimization

of (27) in accordance with
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©

(34) f(t) = mEO cmfm(t)

£'(t) = mio e fn(t)
1 .
where c = é P(t) £ (r) £(t) at.

Subtracting the first equation of (34) for cne factor of (28),

we obtain
1 2 © 1 © 2
I P(t)f (elat o~ % c f P(t) £ (£)f(t)dt = % G : I
0 m=0 "0 R m=0

where the interchange of summation and integration is justified
by the uniform convergence of the series expansions. Subtracting

the second equation of (34) for one factor of (27), we obtain

© § © i 5 %5
I= 3 oc, ey (e e - R e (e (£(®)] - /).

]

0 and £(0) = £ ¢ f (0) =0 vherem = L3 14 G5 e M
m=0 ™ @

L d;
Koo hws g ey P e Yt
aOnNRkorn®

1
Since fm(l)

@ 1
m£0 qum é P(t)fm(t)f(t)dt



k)
/ ﬁ,%\';j.' . L 5’?2}\
e L
/ S

/ /
[~/

\ ';':b"'; ) ,V 7 ‘\rr\"sA;?"/’v. 24
N P >

Since Xm > Ao if m > 0, it follows that I > A The equality

0'
sign holds if ¢ =1 and C; =€ = ... =0, This means that if

Proof of Theorem 1.18

First, we transform (25) and (26) into an extremizing

tuiction’ 1Y gor's = p
(1) 2)

§ i =1,2 (Use Theorem 1.19). Let

be the classes of functions eligible for the minimization
(1) (2)

| G K(

of I(l) and 1(2),respective1y, that is, members of K and K

satisfy the same conditions. Since P, > P2 in [0,1], we have

1

2 1 2 1 2

(35) c = é Pl(t) f(z)(t)dt 2 fo Pz(t)f(z)(t)dt = I,

(2)

where f(2) are any member of K and ¢ is a positive constant

(ingeneral c is different for different member of K(z)) defined

by the left hand equation of (35). It is obvious that for any

(2) (1>

function f( in K*"7, there is a corresponding member f(z)/c in K

(2)
(1)

2)

with ¢ 3 1. Therefore, if any member f
(2)

in K renders I of (27)

(2)
, there exists a member f£,,,/c in K

(2)
(1)(f i} 1(2)(f(2))$1(2%f(2)).Ftom this we have

equal to I
(1)

renders I equal

te I where I

oy

that the minimum of I with respect to K(l) is less than or equal to its

minimum with respect to K(z). By Theorem 1.20, it follows that

PR e

0,1 s % S
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