CHAPTER I

EIGENVALUE PROBLEM

In this chapter, we will show that there is a least positive characteristic value λ_0 of the system $f''(t) + \lambda P(t) \ f(t) = 0, \quad \text{where P is a positive continuous}$ function on [0,1] and f(0) = f'(1) = 0. We will also show that the solution of the system with $\lambda = \lambda_0$ is nonvanishing in $0 < t \le 1$. Moreover, we can prove that every non-trivial solution f_{λ} of the equation $f''(t) + \lambda P(t) \ f(t) = 0$ corresponding to any real value of $\lambda < \lambda_0$ and $f_{\lambda}'(1) = 0$ is nonvanishing in $0 \le t \le 1$. The wronskian of any two linearly independent solutions of the equation is constant. Finally, we will show that if P_n of $f''(t) + \lambda P_n(t) f(t) = 0$ decreases, then the first eigenvalue $\lambda_{0,n}$ increases.

A. Some Preliminary Results on the Sturm-Liouville System.

A normal first-order differential equation is the equation of the form y' = F(x,y).

A function F(x,y) satisfies a Lipschitz condition in a plane domain D if for some nonnegative constant L, the function satisfies the inequality $|F(x,y) - F(x,z)| \le L |y-z|$ for all (x,y) and (x,z) in D.

Lemma 1.1 If σ is a differentiable function satisfying the differential inequality

(1)
$$\sigma'(x) \leq K \sigma(x)$$
 $(a \leq x \leq b)$

where K is a constant, then

$$\sigma(x) \leq \sigma(a) e^{K(x-a)}$$
 (a $\leq x \leq b$)

Proof: Multiplying both sides of (1) by e-Kx, we obtain

$$e^{-Kx} \sigma^{(x)} \leq Ke^{-Kx} \sigma(x)$$

$$e^{-Kx}[\sigma'(x)-K\sigma(x)] \leq 0$$
,

$$\frac{d}{dx} \{\sigma(x)e^{-Kx}\} \leq 0.$$

Thus, the function $\sigma(x)e^{-Kx}$ is nonincreasing for $a \le x \le b$. Therefore $\sigma(x)e^{-Kx} \le \sigma(a)e^{-Ka}$,

$$\sigma(x) \leq \sigma(a)e^{K(x-a)}$$
. #

Theorem 1.2 Let F satisfy a Lipschitz condition for $x \ge a$. If the function f satisfies the differential inequality $f'(x) \le F(x, f(x))$ for $x \ge a$ and g is a solution of y' = F(x,y) satisfying the initial condition g(a) = f(a), then $f(x) \le g(x)$ for $x \ge a$.

<u>Proof</u>: Suppose that $f(x_1) > g(x_1)$ for some $x_1 > a$. Let x_0 be the largest element in $[a, x_1]$ such that $f(x) \le g(x)$. Then $f(x_0) = g(x_0)$.

Let
$$\sigma(x) = f(x) - g(x)$$
, we have
$$\sigma(x) \ge 0 \text{ for } x_0 \le x \le x_1 \text{ and}$$

$$\sigma'(x) = f'(x) - g'(x)$$

$$\le F(x, f(x)) - F(x, g(x))$$

 \leq L(f(x) - g(x)), L is the Lipschitz

constant for F

=
$$L\sigma(x)$$
 , $x_0 \le x \le x_1$.

By Lemma 1.1, $\sigma(x) \leq \sigma(x_0) e^{L(x-x_0)} = 0$ for $x_0 \leq x \leq x_1$. So $\sigma(x) = 0$ for $x_0 \leq x \leq x_1$. This contradicts the hypothesis $f(x_1) > g(x_1)$. We conclude that $f(x) \leq g(x)$ for all $x \geq a$. #

Theorem 1.3 (Comparison) Let f and g be solutions of the differential equations y' = F(x,y) and z' = G(x,z), respectively, where $F(x,y) \le G(x,y)$ in the strip $a \le x \le b$ and F or G satisfies a Lipschitz condition. Let also f(a) = g(a). Then $f(x) \le g(x)$ for all $x \in [a,b]$.

Proof: We consider two cases.

Case 1 : G satisfies a Lipschitz condition

Since $y' = F(x,y) \le G(x,y)$, the functions f and g satisfy the condition of Theorem 1.2 with G in place of F. Therefore $f(x) \le g(x)$ for $x \ge a$.

Case 2: F satisfies a Lipschitz condition

The function u(x) = -f(x) and v(x) = -g(x) satisfy the differential equations u' = -F(x, -u) and $v' = -G(x, -v) \le -F(x, -v)$,

respectively. Thus, by Theorem 1.2, $v(x) \le u(x)$ for $x \ge a$. This means that $f(x) \le g(x)$ for $x \ge a$.

Corollary 1.4 Under the hypothesis of Theorem 1.3, if f(a) < g(a) then f(x) < g(x) for $x \ge a$.

<u>Proof</u>: Suppose that $f(x) \ge g(x)$ for some x > a, there would be a first point $x = x_1 > a$ such that $f(x_1) = g(x_1)$. The two functions $y = \emptyset(x) = f(-x)$ and $z = \psi(x) = g(-x)$ satisfy the differential equations y' = -F(-x,y) and z' = -G(-x,z), respectively, with the initial condition $\emptyset(-x_1) = \psi(-x_1)$. Since $-F(-x,y) \ge -G(-x,y)$ and -F(-x,y) satisfies a Lipschitz condition, we can apply Theorem 1.3 in the interval $[-x_1, -a]$ and get $\emptyset(-a) \ge \psi(-a)$. This means that $f(a) \ge g(a)$ which is a contradiction. Thus f(x) < g(x) for x > a.

Corollary 1.5 Under the hypothesis of Theorem 1.3 with $f \not\equiv g$, there is a point $x_0 \ge a$ such that f(x) = g(x) for $a \le x \le x_0$ and f(x) < g(x) for $x_0 < x \le b$.

<u>Proof</u>: Let x_0 be the least upper bound of the set of points for which f(x) = g(x), $a \le x \le b$. If x_1 is a point in $[a, x_0)$ such that $f(x_1) < g(x_1)$, then by Corollary 1.4, we have f(x) < g(x) for $x > x_1$. Therefore $f(x_0) < g(x_0)$. This contradicts the properties of x_0 . Hence f(x) = g(x) for $a \le x \le x_0$. Since $f \not\equiv g$, by the properties of x_0 and Theorem 1.3, we have f(x) < g(x) for $x_0 < x \le b$. #

Corollary 1.6 Under the hypothesis of Theorem 1.3, if F(x,y) < G(x,y) for all (x,y) in D, then f(x) < g(x) for x > a.

<u>Proof</u>: Since F(x,y) < G(x,y), $F(x,y) \le G(x,y)$. By Corollary 1.5, we have a point $x_0 \ge a$ such that f(x) = g(x), $a \le x \le x_0$ and f(x) < g(x), $x_0 < x$. To show $x_0 = a$, suppose $x_0 > a$ and f(x) = g(x), $a < x \le x_0$. Then we have f'(x) = F(x,f(x)) = G(x,g(x)) = g'(x), $a < x \le x_0$. This contradicts the hypothesis F(x,y) < G(x,y) for all (x,y) in D. Hence $x_0 = a$ and it follows that f(x) < g(x), x > a.

Let P and Q be continuous functions on an interval [a,b]. If x_0 is any point in this interval and α , β are any numbers, then by a well-known theorem of the initial value problem $\frac{d^2u}{dx^2} + P(x) \frac{du}{dx} + Q(x) u = 0, \quad u(x_0) = \alpha, \quad u^*(x_0) = \beta \quad \text{has one and}$ only one solution u = u(x) on the interval [a,b]. Thus the following lemma is directly obtained:

Lemma 1.7 Any nontrivial solution of $\frac{d^2u}{dx^2} + P(x) \frac{du}{dx} + Q(x) u = 0$, $a \le x \le b$, which satisfies condition $u(x_0) = 0$ will have $u'(x_0) \ne 0$ for any $x_0 \in [a,b]$.

Next, we will prove Sturm Comparison Theorem. We consider the equation

(2)
$$\frac{d}{dx} \left[P(x) \frac{du}{dx} \right] + Q(x) u = 0$$

where P and Q are positive continuous and P is differentiable in [a,b]. Let

(3)
$$P(x) u'(x) = r(x) \cos \theta(x),$$

(4)
$$u(x) = r(x) \sin \theta(x).$$

Differentiating (4) with respect to x, we have

$$u'(x) = r(x) \cos \theta(x) \frac{d\theta}{dx} + \sin \theta(x) \frac{dr}{dx}$$
.

From (3), we obtain

(5)
$$\frac{r(x)\cos\theta(x)}{P(x)} = r(x)\cos\theta(x)\frac{d\theta}{dx} + \sin\theta(x)\frac{dr}{dx}.$$

Differentiating r(x) cos $\theta(x)$ with respect to x, we have

$$[r(x)\cos\theta(x)]' = -r(x) \sin\theta(x) \frac{d\theta}{dx} + \cos\theta(x) \frac{dr}{dx}$$

From (2), (3) and (4), we obtain

(6)
$$-Q(x)r(x)\sin\theta(x) = -r(x)\sin\theta(x)\frac{d\theta}{dx} + \cos\theta(x)\frac{dr}{dx}$$

Multiplying the equation (5) by $\cos \theta(x)$, the equation (6) by $\sin \theta(x)$ and subtracting, we get

(7)
$$\frac{d\theta}{dx} = \frac{1}{P(x)} \cos^2 \theta(x) + Q(x) \sin^2 \theta(x).$$

Multiplying the equation (5) by $\sin \theta(x)$, the equation (6) by $\cos \theta(x)$ and adding, we get

(8)
$$\frac{d\mathbf{r}}{d\mathbf{x}} = \left[\frac{1}{P(\mathbf{x})} - Q(\mathbf{x})\right] \mathbf{r}(\mathbf{x}) \sin \theta(\mathbf{x}) \cos \theta(\mathbf{x}).$$

To each solution u of (2), there correspond the solutions θ and r of (7) and (8) where $r^2 = u^2 + p^2 u^{*2}$, $\theta = \tan^{-1}(\frac{u}{Pu})$. Since u and u' do not vanish simultaneously, it follows from Lemma 1.7 that $r^2(x) > 0$ on [a,b] and thus it can be assumed that r(x) > 0. A consequence of this assumption is that

 $u(x) = r(x) \sin \theta(x)$ can vanish only where $\theta(x) \equiv 0 \pmod{\pi}$.

Theorem 1.8 (Sturm Comparison Theorem) Let $P_1(x) \ge P_2(x) > 0$ and $Q_2(x) \ge Q_1(x) > 0$ and let u_1 , u_2 be nontrivial solutions of

(9)
$$\frac{d}{dx} (P_1(x) \frac{du_1}{dx}) + Q_1(x)u_1 = 0,$$

(10)
$$\frac{d}{dx} \left(P_2(x) \frac{du_2}{dx}\right) + Q_2(x)u_2 = 0 , respectively.$$

Then, between any two zeros of u there lies at least one zero of u2.

Proof: First, we change (9) and (10) into the form

(11)
$$\frac{d\theta}{dx} = \frac{1}{P_1(x)} \cos^2\theta(x) + Q_1(x) \sin^2\theta(x) = F_1(x,\theta)$$

and

(12)
$$\frac{d\theta}{dx} = \frac{1}{P_2(x)} \cos^2 \theta(x) + Q_2(x) \sin^2 \theta(x) = F_2(x, \theta),$$

respectively.

Since $P_1(x) \geqslant P_2(x) > 0$ and $Q_2(x) \geqslant Q_1(x) > 0$ for all x in the interval [a,b], $F_1(x,\theta) \leqslant F_2(x,\theta)$ in the strip $a \leqslant x \leqslant b$. Let $\theta_1(x)$ and $\theta_2(x)$ be solution of (11) and (12), respectively. Let x_1 , x_2 be two consecutive zeros of u_1 where $x_1 < x_2$, then the curve $\theta_1(x)$ of $u_1(x)$ intersects the line $\theta = k\pi$ at $x = x_1$ and the line $\theta = (k+1)\pi$ at $x = x_2$ (because $\frac{d\theta_1}{dx} = \frac{1}{P_1(x)} > 0$ where $\theta_1(x) \equiv 0$

(mod π), so θ_1 is an increasing function). We can assume without loss of generality that k=0, that is, $\theta_1(x_1)=0$, $\theta_1(x_2)=\pi$ and we can also assume that $0 \le \theta_2(x_1) < \pi$ by a proper choice of n

in $\theta_2(x) + n\pi$. By Corollary 1.4 or 1.5, we have $\theta_1(x) < \theta_2(x)$ for $x > x_1$. This implies that $\theta_2(\bar{x}) = \pi$ for some \bar{x} in (x_1, x_2) . Hence $u_2(\bar{x}) = 0$, and the theorem is proved.

Now, we consider the Sturm-Liouville System.

A Sturm-Liouville equation is a second order homogeneous linear differential equation of the form

(13)
$$\frac{d}{dx}\left[p(x)\frac{du}{dx}\right] + \left[\lambda\rho(x) - q(x)\right]u = 0,$$

where λ is a real number; p, ρ , q are real-valued continuous functions of x; the function p and ρ are positive and p is continuous differentiable, $a \leq x \leq b$.

A Sturm-Liouville system is a S-L equation together with two seperated endpoint conditions of the form

(14)
$$\begin{cases} \alpha u(a) + \alpha' u'(a) = 0 \\ \beta u(b) + \beta' u'(b) = 0 \end{cases}$$

where α , α' , β , β' are real numbers such that $\alpha^2 + {\alpha'}^2 \neq 0$, $\beta^2 + {\beta'}^2 \neq 0$.

A nontrivial solution of S-L equation is called an eigenfunction and the corresponding value λ is called its eigenvalue.

In (13) if we let P(x) = p(x) and $Q(x) = \lambda \rho(x) - q(x)$, we obtain (2). Since u = 0 iff $\sin \theta = 0$ where θ is the solution of the equation

(15)
$$\frac{d\theta}{dx} = \frac{1}{p(x)} \cos^2\theta + \left[\lambda \rho(x) - q(x)\right] \sin^2\theta \qquad (a \le x \le b),$$

the zerosof any solution of (13) are the points where $\theta \equiv 0 \pmod{\pi}$. Given that $\theta(a,\lambda) = \gamma$ for all λ , where γ is defined by the condition $\tan \gamma = \frac{u(a)}{p(a)u^{\dagger}(a)} = \frac{-\alpha^{\dagger}}{p(a)\alpha}$, $0 \leqslant \gamma < \pi$. Thus for fixed value γ , $\theta(x,\lambda)$ is the solution of (15) which satisfies the initial condition $\theta(a,\lambda) = \gamma$ for $a \leqslant x \leqslant b, -\infty < \lambda < \infty$.

Theorem 1.9. Any S-L system has an infinite sequence of eigenvalues $\lambda_0 < \lambda_1 < \cdots$ with $\lim_{n \to \infty} \lambda_n = \infty$. The eigenfunction u_n belonging to the eigenvalue λ_n has exactly n zeros in the interval a < x < b.

To prove this theorem we need the following lemmas:

Lemma 1.10 For a fixed point x such that x > a, $\theta(x, \lambda)$ is a strictly increasing function of the variable λ .

 $\begin{array}{ll} \frac{P \operatorname{roof}}{d x} : & \operatorname{Let} \ \lambda_1 < \lambda_2. & \operatorname{Let} \ \theta(x, \ \lambda_1) \ \text{be the solution of} \\ \\ \frac{d \theta}{d x} & = \frac{1}{p(x)} \cos^2 \theta(x) + (\lambda_1 \rho(x) - q(x)) \sin^2 \theta \ (x) \ \text{and} \ \theta(x, \ \lambda_2) \ \text{be} \\ \\ \text{the solution of} & \frac{d \theta}{d x} = \frac{1}{p(x)} \cos^2 \theta(x) + (\lambda_2 \rho(x) - q(x)) \sin^2 \theta(x). \end{array}$

By Corollary 1.6, for a fixed point x such that x > a, $\theta(x, \lambda_1) < \theta(x, \lambda_2)$. #

Lemma 1.11 Suppose that for some $x_n > a$, $\theta(x_n, \lambda) = n\pi$ where n is nonnegative integer. Then $\theta(x, \lambda) > n\pi$ for all $x > x_n$.

Proof: If x_n is any point where $\theta(x_n, \lambda) = n\pi$, then by (15) we have $\frac{d}{dx_n} \theta(x_n, \lambda) = \frac{1}{p(x_n)} > 0$. Thus the function $\theta = \theta(x_n, \lambda)$, considered as a function of x_n , is increasing where it crosses the line $\theta = n\pi$. Hence $\theta(x, \lambda) > \theta(x_n, \lambda) = n\pi$ for $x > x_n$. #

Remark. Lemma 1.11 combined with the condition $0 \le \theta(a, \lambda) < \pi$, makes the first zero of u in the open interval a < x < b occur where $\theta = \pi$, and the n-th zero where $\theta = n\pi$.

Proof: We consider two cases:

Case 1: $\theta(a,\lambda) = 0$. By Lemma 1.11, $\theta(x,\lambda) > \theta(a,\lambda) = 0$ for x > a. Since u has zero when $\theta \equiv 0 \pmod{\pi}$, the first zero of u in (a,b) occurs where $\theta = \pi$, and it follows that the n-th zero occurs where $\theta = n\pi$.

Case $2:0<\theta(a,\lambda)<\pi$. Since u has a zero when $\theta\equiv 0\pmod{\pi}$, the first zero of u in (a,b) occurs where $\theta=0$ or $\theta=\pi$. If the first zero of u occurs where $\theta=0$, then $\theta(x_1,\lambda)=0$ for some $x_1\in(a,b)$. Hence by following the same argument as in Lemma 1.11, we have $\theta(x,\lambda)<0$ for all $x<x_1$ and in particular, $\theta(a,\lambda)<0$. This contradicts the hypothesis $\theta(a,\lambda)>0$. Therefore the first zero of u in (a,b) occurs where $\theta=\pi$ and by Lemma 1.11, it follows that the n-th zero occurs where $\theta=\pi\pi$.

Let $x_n(\lambda)$ be the smallest x such that $\theta(x,\lambda)=n\pi$. Then the following lemma shows that $x_n(\lambda)$ exists for large λ .

Lemma 1.12 For a given fixed positive integer n and a sufficiently large λ , the function $\lambda \mapsto x_n(\lambda)$ is defined and continuous. It is a decreasing function of λ and $\lim_{\lambda \to \infty} x_n(\lambda) = a$.

Proof: Let $q_M = \max \{q(x) : a \le x \le b\}$, $p_M = \max \{p(x) : a \le x \le b\}$ and $\rho_m = \min \{\rho(x) : a \le x \le b\}$. A solution of the differential equation $p_M u'' + (\lambda \rho_m - q_M) u = 0$ where $\lambda > q_M/\rho_m$, is a function $u(x) = \sin kx$ where $k^2 = (\lambda \rho_m - q_M)/p_M$. This solution together with the condition $u(a)/p(a)u'(a) = \tan \gamma$ will give $a + (n\pi - \gamma)/k$, $n = 0,1,2,\ldots$ as the zeros. These zeros are spaced at a distance $\pi \sqrt{p_M/(\lambda \rho_m - q_M)}$ apart. Hence we can choose λ large enough so that u_1 has n+1 zeros in (a,b). By Theorem 1.8, any nontrivial solution u of the S-L equation must has at least one zero between any two zeros of u_1 . It follows that u has at least n zeros in (a,b) and $\theta(x,\lambda)$ take the value $n\pi$ for some x. Hence $x_n(\lambda)$ is defined. Since $\theta(x,\lambda)$ is a continuous function of x and x, we have $x_n(\lambda)$ is a continuous function of x and x, we have $x_n(\lambda)$ is a continuous function of x and x, we have $x_n(\lambda)$ is a continuous function of x and x, we have $x_n(\lambda)$ is a continuous function of x and x, we have $x_n(\lambda)$ is a continuous function of x and x, we have $x_n(\lambda)$ is a continuous function of x and x, we have $x_n(\lambda)$ is a continuous function of x and x, we have x

Next, we show that \mathbf{x}_n is a decreasing function of λ . Since $\theta(\mathbf{x},\lambda)$ is an increasing function of λ , it follows that the zeros of \mathbf{u} , if any, move to the left towards $\mathbf{x}=\mathbf{a}$ as λ increases. So $\mathbf{x}_n(\lambda)$ is a decreasing function of λ . But the number $\mathbf{x}_n(\lambda)$ falls between the (n-1)th and the n-th zero of \mathbf{u}_1 and both zeros tend to \mathbf{a} as λ tends to ∞ . Therefore $\mathbf{x}_n(\lambda)$ tends to \mathbf{a} as λ tend to ∞ . #

Lemma 1.13 For any x such that x > a, $\lim_{\lambda \to \infty} \theta(x,\lambda) = \infty$ and $\lim_{\lambda \to \infty} \theta(x,\lambda) = 0$.

<u>Proof</u>: Let \mathbf{x}_1 be a fixed point in (a,b). Let $\varepsilon > 0$ and let \mathbf{n} be a positive integer such that $\mathbf{n} \geqslant \varepsilon$. By Lemma 1.12, there is a positive number N such that for $\lambda > N$, $\theta(\mathbf{x}_n, \lambda) = \mathbf{n}\pi$ for some $\mathbf{x}_n \in (a,\mathbf{x}_1)$. In addition, by Lemma 1.11, $\theta(\mathbf{x}_p\lambda) > \theta(\mathbf{x}_n,\lambda) = \mathbf{n}\pi \geqslant \varepsilon$. Since ε and \mathbf{x}_1 are arbitrary, $\lim_{\lambda \to \infty} \theta(\mathbf{x},\lambda) = \infty$.

Next, we show that $\lim_{\lambda \to -\infty} \theta(x,\lambda) = 0$. Given $\epsilon > 0$ and this ϵ is small enough so that $\gamma < \pi - \epsilon$. If $\epsilon < \theta < \pi - \epsilon$ and $\lambda < 0$, then $\sin^2 \epsilon < \sin^2 \theta$ and $\lambda = -|\lambda|$. Let $\rho_m = \min \{ \rho(x) : a < x < b \}$, $Q_M = \max \{ |q(x)| : a < x < b \}$, $p_m = \min \{ p(x) : a < x < b \}$. Then ρ_m and ρ_m are positive and

$$\frac{d}{dx} \theta(x,\lambda) = \frac{1}{p(x)} \cos^2 \theta + \left[\lambda \rho(x) - q(x)\right] \sin^2 \theta$$

$$< \frac{1}{p_m} \cos^2 \theta - |\lambda| \rho(x) \sin^2 \theta + |q(x)| \sin^2 \theta$$

$$< \frac{1}{p_m} - |\lambda| \rho_m \sin^2 \epsilon + Q_M.$$

We have that the slope of the segment in the $x\theta$ plane joining the points $(a, \pi - \epsilon)$ and (x_1, ϵ) where $a < x_1 < b$ equals $\frac{2\epsilon - \pi}{x_1 - a}$. Then for a point (x, θ) on this segment, let

$$N = \max \left\{ \left(\frac{1}{p_m} + Q_M - \frac{2\varepsilon - \pi}{x_1 - a} \right) \frac{1}{\rho_m \sin^2 \varepsilon}, \varepsilon \right\}. \text{ Thus } N > 0. \text{ Hence}$$
 for $\lambda < -N$, we have

$$\begin{split} \frac{d}{dx} \; \theta(x,\lambda) \; &< \; \; \frac{1}{p_m} - \; (\frac{1}{p_m} + \; Q_M - \frac{2\,\epsilon - \pi}{x_1 - a}) \; + \; Q_M \\ \\ &= \; \frac{2\,\epsilon - \pi}{x_1 - a} \qquad \qquad \text{for } \epsilon \; \leqslant \; \theta \; \leqslant \; \pi - \epsilon \; , \; a \; \leqslant \; x \; \leqslant \; x_1 \; . \end{split}$$

Claim $\theta(\mathbf{x},\lambda)$ lies below the segment for $\mathbf{a} \leq \mathbf{x} \leq \mathbf{x}_1$. Suppose on the contrary that there is a first point \mathbf{x}_0 in $(\mathbf{a},\mathbf{x}_1]$ such that $\theta(\mathbf{x}_0,\lambda)$ lies on this segment. Since we consider the curve $\theta(\mathbf{x},\lambda)$ on $\left[\varepsilon,\pi-\varepsilon\right]$, then, if the curve $\theta(\mathbf{x},\lambda)$ does not lie below the line $\theta=\varepsilon$ for all $\mathbf{x}\in\left[a,\mathbf{x}_0\right]$, we have $\frac{\theta(\mathbf{x}_0,\lambda)-\theta(a,\lambda)}{\mathbf{x}_0-a}>\frac{2\varepsilon-\pi}{\mathbf{x}_1-a}$.

By Mean Value Theorem, there exists a point \bar{x} ε (a,x_0) such that $\theta'(\bar{x},\lambda) = \frac{\theta(x_0,\lambda) - \theta(a,\lambda)}{x_0-a} > \frac{2\varepsilon-\pi}{x_1-a} .$ This contradicts

 $\theta'(\mathbf{x},\lambda) < \frac{2\varepsilon - \pi}{\mathbf{x}_1 - \mathbf{a}} \quad \text{for } \mathbf{x} \in \left[\mathbf{a}, \mathbf{x}_1\right]. \quad \text{If the curve } \theta(\mathbf{x},\lambda) \text{ lies below}$ the line $\theta = \varepsilon$ for some $\mathbf{x} \in \left[\mathbf{a}, \mathbf{x}_0\right]$, define \mathbf{x}_2 be the last point in $\left[\mathbf{a}, \mathbf{x}_0\right]$ such that $\theta(\mathbf{x}_2, \lambda) = \varepsilon$, then $\frac{\theta(\mathbf{x}_0, \lambda) - \theta(\mathbf{x}_2, \lambda)}{\mathbf{x}_0 - \mathbf{x}_2} > \frac{2\varepsilon - \pi}{\mathbf{x}_1 - \mathbf{a}}.$

By Mean Value Theorem there is a point $\bar{x} \in (x_2, x_0)$ such that $\theta'(\bar{x}, \lambda) > \frac{2\varepsilon - \pi}{x_1 - a}$. This is a contradiction. Hence $\theta(x, \lambda)$ lies below the segment for $a \leq x \leq x_1$, in particular, $\theta(x_1, \lambda) < \varepsilon$ for $\lambda < -N$. Since $\theta(x_1, \lambda) > 0$ (by Remark), it follows that $|\theta(x, \lambda)| < \varepsilon$, and since ε and x_1 are arbitrary, $\lim_{\lambda \to -\infty} \theta(x, \lambda) = 0$. #

Proof of Theorem 1.9

First, we transform (14) into equivalent endpoint conditions for the function $\theta(x,\lambda)$ of the system

$$\frac{d\theta}{dx} = \frac{1}{p(x)} \cos^2 \theta(x) + \left[\lambda \rho(x) - q(x)\right] \sin^2 \theta(x),$$

$$\frac{dr}{dx} = \left[\frac{1}{p(x)} - \lambda \rho(x) + q(x)\right] r(x) \sin \theta(x) \cos \theta(x).$$

If $\alpha \neq 0$, then the function $\theta(\mathbf{x},\lambda)$ must satisfy the initial condition $\theta(\mathbf{a},\lambda)=\gamma$ where γ is the smallest number such that $0\leqslant \gamma<\pi,\; \gamma\neq\frac{\pi}{2}$ and that $p(\mathbf{a})$ tan $\gamma=-\frac{\alpha'}{\alpha}$. When $\alpha=0$, we choose $\gamma=\frac{\pi}{2}$. Similarly, we choose $0<\delta\leqslant\pi$ so that tan $\delta=\frac{-\beta'}{\beta p(b)}$.

A solution u of the equation (13) for a \leq x \leq b is an eigen function of the S-L system iff for the corresponding phase function defined by $r^2 = u^2 + p^2 u^{\dagger 2}$ and $\theta = \tan^{-1}(\frac{u}{pu^{\dagger}})$, $\theta(a,\lambda) = \gamma$ and $\theta(b,\lambda) = \delta + n\pi$ where n = 0,1,2,..., $0 \leq \gamma < \pi$, $0 < \delta \leq \pi$. Any value of λ which satisfies these conditions is an eigenvalue of the S-L system.

Let $\theta(\mathbf{x},\lambda)$ be the solution of $\frac{d\theta}{d\mathbf{x}} = \frac{1}{p(\mathbf{x})}\cos^2\theta(\mathbf{x}) + [\lambda\rho(\mathbf{x})]$ $-q(\mathbf{x}) \sin^2\theta(\mathbf{x})$ for the initial condition $\theta(\mathbf{a},\lambda) = \gamma$. A solution $\theta(\mathbf{x},\lambda)$ is unique for each value of λ and by Lemma 1.10 and Lemma 1.13 with $\mathbf{x} = \mathbf{b}$, $\theta(\mathbf{x},\lambda)$ also satisfies the second condition $\theta(\mathbf{b},\lambda) = \delta + n\pi$ where \mathbf{n} is nonnegative integer. Thus as λ increases from $-\infty$, there is an infinite sequence λ_n such that $\lambda_0 < \lambda_1 < \dots$ and $\theta(\mathbf{b},\lambda_n) = \delta + n\pi$. Each of these values gives an eigenfunction $\mathbf{u}_n(\mathbf{x}) = \mathbf{r}(\mathbf{x})\sin\theta(\mathbf{x},\lambda_n)$ of the S-L system. Since $\theta(\mathbf{a},\lambda_n) = \gamma$ and $\theta(\mathbf{b},\lambda_n) = \delta + n\pi$ and $\theta(\mathbf{x},\lambda_n)$

is a continuous function of x, it must take on each of the value π , 2π ,..., n_{π} at least once on the interval (a,b). From Lemma 1.11, we note that none of these values can be taken on more than once. and since each corresponds to a zero of u_n , we have that the eigenfunction has exactly n zeros on (a,b).

To complete the proof we must show that $\lim_{k \to \infty} \lambda_k = \infty$. Suppose $\lim_{k \to \infty} \lambda_k = M$, $M < \infty$. Therefore, for given $\varepsilon > 0$ we can find a positive number N_ε such that for n, $m > N_\varepsilon$, $\left| \lambda_n - \lambda_m \right| < \varepsilon$. Since θ is a continuous function of λ , for any $\varepsilon_1 > 0$, there exists $\delta_{\varepsilon_1} > 0$ such that for $\left| \lambda_n - \lambda_m \right| < \delta_{\varepsilon_1}$, we have $\left| \theta(b, \lambda_n) - \theta(b, \lambda_m) \right| < \varepsilon_1$. Take $\varepsilon_1 < \pi$ and choose $\varepsilon = \delta_{\varepsilon_1}$, thus $\left| \theta(b, \lambda_n) - \theta(b, \lambda_m) \right| < \pi$. This contradicts $\left| \theta(b, \lambda_n) - \theta(b, \lambda_m) \right| > \pi$ since $\theta(b, \lambda_n) = \delta + n\pi$ and $\theta(b, \lambda_m) = \delta + m\pi$. Hence $\lim_{k \to \infty} \lambda_k = \infty$. #

Theorem 1.14 If q(x) < 0 and u is a nontrivial solution of u''(x) + q(x)u(x) = 0, then u has at most one zero.

<u>Proof</u>: Let x_0 be a zero of u, so $u(x_0) = 0$. Since u is nontrivial, $u'(x_0) \neq 0$ (Lemma 1.7)

case $1: u'(x_0) > 0$. Then u is a positive over some interval to the right of x_0 . Since u''(x) = -q(x)u(x) and q(x) is negative, we have u''(x) > 0 on the same interval. It follows that u' is an increasing function to the right of x_0 . To this end, we show that u has no zero to the right of x_0 . Suppose on the contrary that

there is a point x_1 to the right of x_0 such that $u(x_1) = 0$, we may take x_1 to be the consecutive zero. Then by Rolle's Theorem, there is a point $\bar{x} \in (x_0, x_1)$ such that $u'(\bar{x}) = 0$. This contradicts the fact that u' is increasing on (x_0, x_1) which follows from the given equation that u'' is positive on (x_0, x_1) . In similar way there is no zero to the left of x_0 .

case $2: u'(x_0) < 0$. By similar argument as in the first case, we have that u has no zero to the right and to the left of x_0 . Thus u has either no zero at all or only one.

B. Properties of the Special Type of S-L System.

From Lemma 1.7, Theorem 1.9 and Theorem 1.14, we have Theorem 1.15 as follows.

Theorem 1.15. There is a least characteristic value λ_0 of the system

(16)
$$f''(t) + \lambda P(t)f(t) = 0$$
, P is positive on [0, 1],

(17)
$$f(0) = f'(1) = 0$$

and λ_0 is positive. The solution f of the system with $\lambda = \lambda_0$ is nonvanishing in 0 < t \leq 1.

Theorem 1.16. Every nontrivial solution f_{λ} of (16) corresponding to any real value of $\lambda < \lambda_0$ and satisfying the single boundary condition $f_{\lambda}'(1) = 0$ is nonvanishing in $0 \le t \le 1$.

Proof: Let λ_0 be the least characteristic value of the system [(16),(17)] and let f be a solution of the system with $\lambda=\lambda_0$. For any $\lambda<\lambda_0$, $0\leq t\leq 1$, f_λ is a nontrivial solution of (16) satisfying $f_\lambda^*(1)=0$. Thus

(18)
$$f''(t) + \lambda_0 P(t) f(t) = 0$$
,

(19)
$$f_{\lambda}^{"}(t) + \lambda P(t) f_{\lambda}(t) = 0.$$

Multiplying the equation (18) by $f_{\lambda}(t)$, the equation (19) by f(t) and subtracting, we get

$$f''(t) f_{\lambda}(t) - f_{\lambda}''(t)f(t) = (\lambda - \lambda_0)P(t)f(t)f_{\lambda}(t) ,$$

$$\frac{d}{dt} \left[f'(t)f_{\lambda}(t) - f_{\lambda}'(t)f(t) \right] = (\lambda - \lambda_0)P(t)f(t)f_{\lambda}(t) ,$$

$$\left[f'(s)f_{\lambda}(s) - f_{\lambda}'(s)f(s) \right]_{t}^{1} = (\lambda - \lambda_0) \int_{t}^{t} P(s)f(s)f_{\lambda}(s)ds,$$

where $0 \le t \le 1$. Since f'(1) = f'(1) = 0,

(20) $-f'(t)f_{\lambda}(t) + f'_{\lambda}(t)f(t) = (\lambda - \lambda_0) \int_t^1 P(s)f(s)f_{\lambda}(s)ds$. Because f(0) = 0, at t = 0 we have $f_{\lambda}(t) \neq 0$. If $f_{\lambda}(0) = 0$, then λ is the characteristic value of the system $\left[(16,(17)\right]$ which is less than the least characteristic value λ_0 , a contradiction. Also at t = 1 we have $f_{\lambda}(t) \neq 0$. If $f_{\lambda}(1) = 0$, then $f_{\lambda}(t)$ is trivial solution by Lemma 1.7. Now suppose there exists $t_0 \in (0,1)$ such that t_0 is the greastest zero, that is, $f_{\lambda}(t_0) = 0$. With this value of t_0 , the relation (20) becomes

(21)
$$f(t_0)f'_{\lambda}(t_0) = (\lambda - \lambda_0) \int_{t_0}^{1} P(s)f(s) f_{\lambda}(s)ds.$$

Without loss ng of generality we assume

(22)
$$f_{\lambda}(t) > 0 (t_0 < t \le 1)$$

and
$$f(t) > 0$$
 (0 < t < 1) (Theorem 1.15).

And since $\lambda < \lambda_0$, (21) yields that $f_\lambda^*(t_0)$ is negative. But $f_\lambda(t_0) = 0$, so $f_\lambda(t) < 0$ ($t_0 < t < 1$). This contradicts (22). Hence there is no greatest zero of f_λ in (0,1). This yields Theorem 1.16. #

Let f_1 and f_2 be any two linearly independent solutions of the second order differential equation, the wronskian of f_1 and f_2 is $f_1(t)$ $f_2'(t)$ - $f_2(t)$ $f_1'(t)$ and is denoted by $W(f_1, f_2)$.

Theorem 1.17 If $f''(t) + \lambda P(t)f(t) = 0$ and f_1 , f_2 are linearly independent solutions, then its wronskian is constant.

Proof: We consider

(23)
$$f_1''(t) + \lambda P(t) f_1(t) = 0$$
 and

(24)
$$f_2^{ii}(t) + \lambda P(t) f_2(t) = 0$$
.

Multiplying (23) by $f_2(t)$ and (24) by $f_1(t)$ and subtracting, we have

$$f_1(t)f_2''(t) - f_2(t)f_1''(t) = 0$$

$$\frac{d}{dt} (f_1(t)f_2'(t) - f_2(t)f_1'(t)) = 0.$$

Hence $f_1(t)f_2'(t) - f_2(t)f_1'(t) = k$, where k is constant. Therefore $W(f_1, f_2)$ is constant.

C. Variational Behaviour of Eigenvalues

Theorem 1.18 Let

(25)
$$f''(t) + \lambda P_1(t) f(t) = 0$$
 and

(26)
$$f''(t) + \lambda P_2(t) f(t) = 0$$

satisfy the conditions f(0) = f'(1) = 0 where P_1 , P_2 are positive continuous functions on [0,1]. If $P_1(t) \ge P_2(t)$. Then the first eigenvalue $\lambda_{0,1}$ of (25) is less than or equal to the first eigenvalue $\lambda_{0,2}$ of (26).

Before proving this theorem, we will show the following theorems:

Theorem 1.19. The differential equation $f''(t) + \lambda P(t)f(t) = 0$ with f(0) = f'(1) = 0 must be satisfied by any extremizing function

(27)
$$I = \int_{0}^{1} f'^{2}(t) dt$$

with respect to continuously differentiable functions f which satisfy the normalization condition

(28)
$$\int_{0}^{1} P(t) f^{2}(t) dt = 1.$$

Proof: We consider the problem of extremizing the quantity

(29)
$$I = \int_{0}^{1} \emptyset'^{2}(t)dt + a_{1}[\emptyset(0)]^{2} + a_{2}[\emptyset(1)]^{2}$$

with respect to continuously differentiable functions Ø which satisfy the normalization condition

(30)
$$\int_{0}^{1} P(t) \phi^{2}(t) dt = 1$$

where P is a positive continuous function and a_1 , a_2 are nonnegative constants.

Let a = a(t) be a continuous differentiable function with $a(0) = -a_1$, $a(1) = a_2$. Thus (29) can be written as

(31)
$$I = \int_{0}^{1} \left[\emptyset'^{2}(t) + \frac{d}{dt} \left(a(t) \emptyset^{2}(t) \right) \right] dt.$$

Using the method of isoperimetric problem ([8], Chapter 4), we form, from the integrand of (30) and (31),

$$\emptyset^* = \emptyset^{2} + \frac{d}{dt} (a\emptyset^{2}) - \lambda P \emptyset^{2}$$

$$= 0^{2} + 2a\emptyset0^{2} + 0^{2} \frac{da}{dt} - \lambda P \emptyset^{2},$$

where $-\lambda$ is an undetermined multiplier, and it follows that

$$\frac{\partial \emptyset^*}{\partial \emptyset} - \frac{d}{dt} \left(\frac{\partial \emptyset^*}{\partial \emptyset^*} \right) = 0 ,$$

$$2a\emptyset^* + 2\emptyset \frac{da}{dt} - 2\lambda P\emptyset - \frac{d}{dt} \left(2\emptyset^* + 2a\emptyset \right) = 0 ,$$

$$\emptyset^{ij} + \lambda P\emptyset = 0 .$$

That is $\emptyset''(t) + \lambda P(t)\emptyset(t) = 0$ must be satisfied by any extremizing function for this problem.

In the free-end-point problem, we get $\frac{\partial \emptyset}{\partial \emptyset}^* = 0$ at t = 0 and t = 1. This yields $\emptyset^*(t) + a(t)\emptyset(t) = 0$ at t = 0 and t = 1. Since $a(0) = -a_1$, $a(1) = a_2$, we obtain

(32)
$$\emptyset'(0) - a_1 \emptyset(0) = 0$$
,
 $\emptyset'(1) + a_2 \emptyset(1) = 0$.

In a fixed-end-point problem, we replace (32) by the condition (33) $\emptyset(0) = \emptyset(1) = 0$

In a free-fixed problem, we must have one condition from each of (32) and (33). Hence the differential equation $f''(t) + \lambda P(t)f(t) = 0$ with the condition f(0) = f'(1) = 0 is a free-fixed problem with $a_2 = 0$, and this system is satisfied by an extremizing function $1 = \int_0^1 f'^2(t)dt$ with respect to continuously differentiable $0 = \int_0^1 f'^2(t)dt$ which satisfy $\int_0^1 P(t)f^2(t)dt = 1$.

Note that this system is linear and homogeneous. Since P(t) > 0 for $0 \le t \le 1$, any $f(\ddagger 0)$ may therefore be supposed, when necessary, to satisfy the normalization condition (28). If $\int_0^1 P(t) f^2(t) dt = c^2 \text{ we replace f by } f/c \text{ then we have (28).}$

Theorem 1.20. The first eigenvalue λ_0 is the minimum of the integral (27) with respect to those functions f which satisfy the normalization condition (28). Let f_m (m = 0,1,...) be the eigenfunction which satisfies $f_m''(t) + \lambda_m P(t) f_m(t) = 0$ in [0,1] and $f_m(0) = f_m'(1) = 0$, then the minimum of I under f(0) = f'(1) = 0 is achieved when $f = f_0$.

<u>Proof</u>: We will show this theorem by using expansion Theorem. (6], p.427)
We expand the arbitrary function f eligible for the minimization
of (27) in accordance with

(34)
$$\begin{cases} f(t) = \sum_{m=0}^{\infty} c_m f_m(t) \\ \infty \\ f'(t) = \sum_{m=0}^{\infty} c_m f'(t) \end{cases}$$

where
$$c_m = \int_0^1 P(t) f_m(t) f(t) dt$$
.

Subtracting the first equation of (34) for one factor of (28), we obtain

$$\int_{0}^{1} P(t)f^{2}(t)dt = \sum_{m=0}^{\infty} c_{m} \int_{0}^{1} P(t) f_{m}(t)f(t)dt = \sum_{m=0}^{\infty} c_{m}^{2} = 1,$$

where the interchange of summation and integration is justified by the uniform convergence of the series expansions. Subtracting the second equation of (34) for one factor of (27), we obtain

$$I = \sum_{m=0}^{\infty} c_{m} \int_{0}^{f} f'_{m}(t)f'(t)dt = \sum_{m=0}^{\infty} c_{m} \{ [f'_{m}(t)f(t)]_{0}^{1} - \int_{0}^{f} f''_{m}(t)f(t)dt \}.$$

Since
$$f_m^{\dagger}(1) = 0$$
 and $f(0) = \sum_{m=0}^{\infty} c_m f_m(0) = 0$ where $m = 0, 1, 2, ...,$

$$I = -\sum_{m=0}^{\infty} c_{m} \int_{0}^{f} f_{m}''(t)f(t)dt$$

$$= \sum_{m=0}^{\infty} c_{m}^{\lambda} \int_{m}^{1} P(t) f_{m}(t) f(t) dt$$

$$= \sum_{m=0}^{\infty} \lambda_m c_m^2$$

$$= \lambda_0 + \sum_{m=0}^{\infty} (\lambda_m - \lambda_0) c_m^2.$$

Since $\lambda_{\rm m} > \lambda_0$ if m > 0, it follows that I $\geqslant \lambda_0$. The equality sign holds if $c_0 = 1$ and $c_1 = c_2 = \ldots = 0$. This means that if $f = f_0$, then I = λ_0 . #

Proof of Theorem 1.18

First, we transform (25) and (26) into an extremizing function $\mathbf{I}^{(1)}$ for $\mathbf{P} = \mathbf{P_i}$, $\mathbf{i} = 1,2$ (Use Theorem 1.19). Let $\mathbf{K}^{(1)}$, $\mathbf{K}^{(2)}$ be the classes of functions eligible for the minimization of $\mathbf{I}^{(1)}$ and $\mathbf{I}^{(2)}$, respectively, that is, members of $\mathbf{K}^{(1)}$ and $\mathbf{K}^{(2)}$ satisfy the same conditions. Since $\mathbf{P_1} \geqslant \mathbf{P_2}$ in [0,1], we have

(35)
$$c^2 = \int_0^1 P_1(t) f_{(2)}^2(t) dt \ge \int_0^1 P_2(t) f_{(2)}^2(t) dt = 1,$$

where $f_{(2)}$ are any member of $K^{(2)}$ and c is a positive constant (ingeneral c is different for different member of $K^{(2)}$) defined by the left hand equation of (35). It is obvious that for any function $f_{(2)}$ in $K^{(2)}$, there is a corresponding member $f_{(2)}/c$ in $K^{(1)}$ with $c \ge 1$. Therefore, if any member $f_{(2)}$ in $K^{(2)}$ renders I of (27) equal to $I^{(2)}$, there exists a member $f_{(2)}/c$ in $K^{(1)}$ renders I equal to $I^{(1)}$ where $I^{(1)}(f_{(2)}/c) = \frac{1}{c^2} I^{(2)}(f_{(2)}) \le I^{(2)}(f_{(2)})$. From this we have that the minimum of I with respect to $K^{(1)}$ is less than or equal to its minimum with respect to $K^{(2)}$. By Theorem 1.20, it follows that $\lambda_{0.1} \le \lambda_{0.2}$.