Chapter IV

A PATH INTEGRAL APPROACH TO DISORDERED SYSTENS

This chapter is concerned with the application of the
Feynman's path integral formalism introduced in chapter III
to disordered systems.

Since the time-dependent Green function can be ex=-
pressed as

G(L"af}_‘;t) = J\I’J)(Pa/u‘y)lxr %S[_}}(‘U)J 5

whereN'is the normalization constant and S ;(c’i] is the
action, it follows that for disordered systems the averaged
time - dependent Green function may be taken as
N
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where <-"-> denotes the average over all the possible con-
figurations of ions.

Edwards and GulyaevlJwere the first to consider the
evaluation of Eq. (4.1) for the case of semiconductors with
high density of randomly distributed impurities.

Since the probability distribution P(R4.....Ry)for
completely disordered systems is
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where N is the number of the scattering centers and'V is

the volume of the system, therefore the averaged Green
function is
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This is an exact expression for the average time-dependent

Green function for completely disordered systems. By
writing t—>i’EP,Eq. (4.2) becomes 'KP
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By considering U(z(t )-R) weak, the exponential of U(z(rc )-R)
in Eq. (4.3) can be expanded and only the linear and quadratic

terms survive. Thus BEq. (4.3) becomes
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Considering energy 1" of the electron approaches—ed ,
therefore t must approach zero and hence _1_‘_('6 ) :is smalls,
Therefore an expansion of U(x(T )-R) in r(® ) can be made
and we need only keep the first two terms of .the expansion.
If we define
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The term{Up in the exponent of Eq.(4.5) becomes infinite

in the limit p-»>e ; however, we are free to choose our energy
origin wherever we please; if therefore we choose this
origin as U, the possibility of f3f5 reaching infinity is

removed., Hence Eq.(4.5) becomes I
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Eq.(4.4) can also be written as I coder SN
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where Vi [r( ¢ )-x( t")] is the correlation function of - the
potential and is equal to Jaﬁ U (_{L_ (t)..-&)u(&(ta)_&) :

Taking the Tourier transform with respect to k, the cor-
relation function of the potential W|xr( € )-x( f')] becomes

ufso-a] - v B e e [1h {am-a ]

It can be seen that the correlation function
Vi [(v\-—r( 'r)] depends on the form of the scattering potential.
If the scattering potentlal is a delta functioan, u(k) is a
constant, therefore the correlation function is again a
delta function. For a screened-Coulomb potential,

wlk)= AT .
k:-i- 73- where Ais the screening length, the

correlation function turns out to be an exponential having
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a characteristic length. As a model for theoretical study

it is, hovever, preferable to choose the correlation func-

tion as Gaussian function, w[ a(v1- gt_(t')] = 2xXp| - ("‘ (¢)= 2 (% ))
E )

where I is the correlation lengzth. The reason for choJ;ing

this function is that it can represent the characteristic

length of the exponential function as well as the charac-

teristic length of the delta function.

Benak14y 15 have studied the averaged Green function
of disordered systems by usiug the Gaussian correlation
function. In order to simplify the problem, he studied the
approximate form of the Gaussian correlation function, 1.e.

"keeping only the first two terms of the expansion. The

result is Ip 2
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Comnaring the two Eqs.(4.7)and (4.6), it can be
seen that the problem considered by Bezdk is essentially
the same problem as that considered by Edwards and Gulyaev.
The difference being that, instead of characteriziug the
potential by the density ¢f scatterers, § , as Edwards and
Gulyacv, Bezdk characterized the potential by two parameters:
1 (whose square is the variance of the potential energy) and
L (correlation length).

To solve the problem in Eqﬂ(4.6), Edwards and Gulyaev
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further simplified t{tis equation by replacing the non-local
effect, [_:g(t' )-ﬁt'&, by a local one, [_1_‘(1! )} 2, Thus Eq.
(4.6) becomes
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It can now be seen that the problem of evaluating the
averaged Green function by the method of Edwards and Gulyaev
is the same as that of the harmonic oscillator which has already
been calculated at the end of chapter III.
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Bezék, however, retained the non-local effect and set
about the problem by using the method described at the end of
chapter III, reducing the path integrals to a product of two

: {
functions, axp (-I\-Su) and F;l(IP),X .
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Thus Eq.(4.7) becomes G
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By using the principle of least action, SS& = ©
S for disordered systems can be calculated as follows: 1
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The characteristic frequency WE has been interpreted by
Bezdk as being due to itinerant oscillators.

Eq.(4.9) can be rewritten as T
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The solution of Eq.(4.40) is St
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where A ,B and C are constants.
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Substituting for C in Eq.(4.11), we obtain
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Substituting for A and B in Eq.(4.12), we obtain
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Hexre the " second effective mass " me has been introduced:

m, = miphe ok (Lphe)

Therefore the only function now remaining to be calculated

I

in order to obtain the averaged expression for the time-
dependent Green function is F,,(hp). Bezlk used a short-cut
by changing the exponent in the expression for F (EfO to

the integro-differential equation. The method is as follows: -

Since the exvonent in the integral of FY(BPD is
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By solv1ng the integro-differential equation and doing

Thus

direct path integration, Bezdk obtained
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Therefore in this way Bezdk was able to obtain the formula
for the averaged time-dependent Green function of disordered
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and with the restriction that
2

{|+ (:21) ‘§‘§“ = th”“ i,n‘
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Although Bezak has obtained the explicit formula for the
averaged time-dependent Green function of disordered systems,
the restriction which is a transcendental equation cannot be
solved exactly. In the next chapter, we will write the averaged
time~-denendent Green function in terms of cumulant series. In
this way the restriction in Bezdk's method is removed and the
averaged Green function can be evaluated.
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