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Chapter 1I
INTRODUCTION

In crystalline substances, whether metals or semi-
conductors, the coustituent atoms are highly ordered in
space, each atom being virtually fixed at the equillibrium
site; therefore the arrangement of the atoms in crystals
has only one configuration and has periodicity. An imme-
diate consequence of this periodicity is the Bloch~Floquet
theorem stating that the one-electron eigenfunctions are
of the form

P(2) - Yy(a) = or(ha)uy(a)s o ()

where the wave vector k is in the first Brillouin zone,
Uy (x) has the periodicity of the crystal structure and
n=1,2,5,000. is the band index. Thus, all eigenfunctions
(1.1) are extended: an electron described by (1.1) goes
everywhere in the crystal with equal probability Jjust as
in the free electron case, and the periodicity also leads
to the existence of gaps in the energy spectrum.

If metals are heated, or a large number of impurities
are present in semiconductors, the lattice in which the
electrons move will have several configurations and will
no longer be periodic. The electron wave function can now
no longer be described by Bloch waves. Such systems are
called " Disordered Systems " .

Disordered systems have recently attracted a great
deal of attention on the part of theoretical physicists.
Amorphous films of various materials and some kinds of glass
are electronic semiconductors. In addition these amorphous
materials are very useful in making switching devices. At
the present time, conducting glass is the heart of switching



devices. The semiconductors used in transistors and most
other electronic devices are crystalline. The theory of

their behaviour has been developed in great’ details 1in

the last 20 years and the agreement with experiment is good,
The study of non-crystalline semiconductors is much newer

and the mechanism by which they work is not fully understood,
so the theory of their behaviour is of great interest. Today
these devices cannot be produced in great quantities. Once
the theory is known, it will be of great help in their pro-
duction. And if disordered materials could replace crystal-
line semiconductors, this would be a successful step for

the industrial world, because disordered materials can be
used without purification or being made into crystals..The
crystalline semiconductors, however, have to be pure crystals
before they can be used, so they are harder to work with,

For a periodic structure, translational and point
symmetry can themselves provide a significant amount of
information about the wave functions and the spectrum.

For disordered systems, lMott and Twose'l were the first to
suggest that the solutions for the electron states in a
one-dimensional Kronig-Permeymodel were localized. A localized
state in disordered systems is defined as follows. For such

a state the soluticn of the Schrodinger equation, for a
particular energy eigenvalue, will decay exponentially with
distance from a particular point or region associated with

the solution. In one dimension all solutions are known to

be of this type and these are the most completely understood.
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There are obvious difficulties in carrying over the analysis
to the more realistic three-dimensional case. Although exact
conditions for the existence of such states have not been
formulated, .'f‘”ott2 has made some general arguments about the
conditions under which localized states may be expected to
appear in a realistic disordered system, Mott's arguments
are based upon consideration of the mean free path of the

electron,

Owing to the difficulties in carrying over the
analysis of the localified states, this thesis will not be
concerned with the localized states, the main emphasis will
be on the study of the density of states of disordered
systems. Klauder3 has investigated the modification of
electron energy levels of solids in the presence of a large
number of randomly distributed impurities by using the
diagrammatic perturbation methods familiar in field theory
and many-body studies. Lifshitz4 has paid particular
attention to the detailed study of the tail of the density
of states of disordered systems..Mott2 has given a very
detailed discussion on disordered systems including both
theorety and experiment as well as new ideas in predidting
the properties of disordered systems., His article is considered
to be among the first in stimulating scientific study in this

2 N.,T. lott, "Electrons in Disordered Structures,"
Advances in Physics, 16 (1967); 49.

? J.R. Klauder, "The lodification of Electron Energy
Levels by Impurity Atoms," Annals of Physics,14(1961), 43.

4 I.M. Lifshitz, "The Spectrum of Disordered Systems,"
Advances in TPhysics, 13(1964), 483,




field. E.N. Economou5 and co-workers also give a good re-—

view on disordered systems.

In order to investigate the motion of electrons
in a disordered system , it is reasonable to consider first
the simplest model which retains the essentials of the
disordered states. Until recently, the model was represented
by independent electrons interacting with a disordered
array of ions, and employed an effec¢tive medium approach
which treated the system as translationally invariant. The
electron wave functions can be obtained from the Schrodinger

equation:
%
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where R, denote the atomic sites and U(gfgdp denote the
interaction potential due to atoms at site ;1‘ « FYor a dis-
ordered system , R  are random variables, that is , they

have a probability distribution. This distribution may take
the form P(31...........§N) which includes correlation betweer
atomic sites. Even with this simplest model, the non-periodic
distribution of R, brings in its train severe mathematical
difficulties. No doubt eigenfunctions must exist, but they
will be very complicated because they have to express the

way in which an electron reacts to a highly irregular dis-—
tribution of potential, Moreover, if we want to determine

the density of states, we should in principle calculate

the wave functions for a fixed configuration of ions and

2 ©.N. Economou, and Others (comp.) Amorphous and
Liguid Semiconductors. ( J. Tauc, ed., Plenum Press i974).




then average over the ensemble of all possible arrangements
of ions. It is clearly impossible to do this in practice,
but the Green function formalism allows us to calculate the
ensemble averages of physical quantities without ever cal-
culating wave functions for a specific ionic arrangement.,

Ldwards® was the first to introduce the Green function,
G, which satisfies the equation

;Ijt Ko T (a-8)|¢ 6 (2,245 t,t) = d(a-2)i(t-t).

to disordered systems. G is a function which gives the effect
at (z,t) of a disturbance Y(r,t) at another neighborhood
and time. Thus

\y(-47t) = 5(‘7(",..,tt)‘}’( t)cl&

This is the essence of Edwards' method in which the electron'
motion is studied by utilizing the property of G properly
averaged over the distribution of atomic positions Ed_. Edwards
has also shown that the averaged density of states can be

now found from the averaged electron Green function (G) .

The problem of calculating the density of states then reduces
to that of finding the averaged electron Green function.
There are two important methods to obtain (G) . One is to
perform an expansion on (G)»in terms of the free electron
Green function, another is the method of path integrals

which appears in Feynman and Hibbs7.

.
7
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The detailed procedure for the evaluation of the
density of states in terms of the electron Green function
and how it can be used will be shown in chapteri . The way
to perform an expansion on {(G)in a perturbation expansion
of the free electron Green function will also be shown in .
chapterl , and a series of papers (Edward38’6’9 , Beeby and
Edwards10, Lukes?1and Ballentine2) used this method in
calculating the ensemble averaged Green function, hence
the density of states will be only briefly mentioned.

; By using a simple argument, Feynman can write the
electron Green function in the form of path integrals. His
argument will be discussed in chapter® and the mathematical
formulation for deriving this. expression directly from the
Schrédinger equation will also be shown. An example of per-

o s.F. Edwards," A New Method for the Evaluation of
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forming direct path integrations.is given in the case of a
free electron, In addition, this chapter describes another
method which was suggested in Feynman and Hibbs' book7 and
example showing its application will be given for the case
of a harmonic oscillator.

Fdwards and Gulyaev13

have pointed out that the
Feynman's path integral formalism helped to express the
averaged electron Green function of disordered systems in

the closed farm but they did not give details. In chapter IV,
the author tries to make a detailed derivation of this ex-
pression and will show that for a high density of scatterers,
by keeping only the first two terms of the expansion of the
exponent in this ‘exrression, the problem will become the

same as that considered by Bezdk14312 ,Bezdk set about the
problem by taking the auto-correlation function of the po-
tential as Gaussian but keeping only the first two terms

of the Gaussian expension and using the method suggested

in chapter III reduced the path integralsof {G) into the pro-
duct of two functions, the exponential of the classical
action 2nd the path integrals of the deviation from the clas-
sical path. The classical action of disordered systems can

1% s.F. Edwards, and Y.B. Gulyaev, " The density of

states of a highly impure semiconductor, " Proceedings of
the Physical Society, 83 (1964), 495,
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be evaluated without too much difficulty by using the prin-
ciple of least action, but the difficulty arises in carrying
out the path integrals. Bezak used short-cut by trying to
change the exponent in the path integrals to the integro-
differential equation. In this way he was able to obtain

the formula for the averesged Green function of disordered
systems. Bezédk's method will also be worked out from the'

beginning to the integro-differential equation in chapter IV,

In chapter V, we will use another method different
from that of Bezdk. Instead of trying to deduce an integro-
differential equation, we will write the averaged Green
function in terms of cumulant series introduced by Kubo16 .
The first two cumulants will be evaluated explicitly. The

discussion will be given in chapter VI.

e R. Kubo, " Generalized Cumulant Expaiision lethod,"
Journal of the Physical Society of Japan, 17 (1962), 1100.
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