CHAPTER II

A PASSAGE FROM R INTO Bn+2

In this chapter we construct a passage from any open
+ ;i
subset of the unit ball of R" into Bn . and study some interest ifg

results on the passage.

2.1 Notation

Let B and 9B be the open unit ball and the unit sphere in
the euclidean n-dimensional space Rn, n2> 2, IfMand N are in Rn,
MM-N} denotes the euclidean distance of M from N. We also let

2

+
llx-yf} denotes the distance of x from y in e,

Let E = {(xl,...{ xn,0,0)/(x T xh) € 3B} C Bn+2.

Note that E = 3B in the sense of 1-1 correspondence,

Wxgseens x5 0,0) = (xp,000; x ).

n+2

For any x = (xl,...,xh+2) e RW 7, we assign the number
r > 0 by letting r2 = xi+ ik, xﬁ.
2.2 The passage
n+2

2.2.1 Lemma Let x be any point in R N~ E. Then there exist a

function Q from Rn+2 N E onto B and a real-valued function )\

from B™*? \ E onto (0,1] such that
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(z € E).

) e R ~ <~ E, define

la(x) - w(= )%
lx - 2z}
n+2
Proof  For any x = (X;,...5% 5
Ax) = s

Tl

l+ux”2+/Ql+“

% 2l ]
X\ ) = br

where r2 = x2+ TR x2 .
X n
2

Since 1+ Uxito+ /11+nx”2) = hr?

_ 2./ 2, 2 2 L 2

= 1+ x5+ /&+2(r Xt xn+2)+ ix#f - br

2 2 2 2 I

2 1+ ixi+ /&—2r - 2xn+l 2xn+2+ b x4

= 1+ hxi°+ |1-uxu2| 2
It follows that A(x) ¢ 1.
Hence A maps B2 LB into (0,1].

2,2 2

Claim that Ar <1 and r"A° -« (l+axy ) +1 = 0 (1)

To show Ar < 1, we assume r # O.

(The caser = 0 is clear)

Since (l-r)2+ x2

2 2.¢
aai® Eois * ¢11+nxn ) -

hre >0

2 2 2 A
o L L W Y(1+ix0 <) -

hrz > 2r

2
1+ ﬂxne + /{l+le2) -
It follows that 1 > Ar. By replacing A

we have r2 Az - (l+ﬂxﬂ2)k +1 = 0,

hrz > 2r

2
= 2/(l+an2+/41+uxn2) - hrz)
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Now we define the function Q in R™'°< E by

Qx) = Q(xl,...,xn+2) = (Axl,...,xXn).

The point Q(x) is in B since ﬂQ(x)ﬁ2 =

i ™
>
b
"
>
R
A
=

Let z = (g,5..05 £,,0,0) € E. Then y(z) = (£,,...,€ ),

2
(Axi— gi)

(LR e =
=

bolx) = v(z)t®
ix - zuz

e

and

2 i 2
(xi— Ei) D X.51T %

M

e
=

n n n
2 2 2
A/ /B x4= 2AZ xi£i+ b si

n n n
2 2 2 2
7 xi- 2 ¥ xi€i+ x €i+ xn+l+ X 40
n
12r2- 2ATE>y E.+ 1
- 124
— n
lcliea o0 xi€i+ 1
o n
(1+4xp")r - 22 T xiEi
- (vy (1))

5 n
ixi"- 2 £ x.£.+ 1
i |
= ), o

The rest of the proof is to show that the function Q is
onto B and A is onto (0,1]. First, let M = (ql,...,qn) € B.
The point x = (ql,...,qn,0,0) € mn+2~\ E. Then we have A(x) = 1

and Q(x) = (ql,...,qn). Hence Q is onto B.

oo

o1
W i

001689

S
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Yor b & (0if]; 1ot = s (8,iv.,0) € WP yhere
a satisfies the equation 1 + aa = %
Obviously x ¢ E and A(x) == 1 s = b
l+a

This shows that A is onto (0,1].

The lemma is completely proved ¥

n+2‘\ E, their

Moreover A and Q are continuous on R
partial derivatives exist and continuous for all order, hence
we call % and Q are infinitely differentiable.

We introduce the function f defined by

£(x) =

f 1 a6(z) (x ¢ &2 ~ E)
E

o2
n ﬂx—zgn

where 6 is the surface area measure and én is the surface

area of the unit sphere in Rr™.

2.2.2 Lemma f is harmonic in mn+2 i R
Proof In stead of f, we will prove that the

function g defined by



{

17

Bl W LF e
E  ix - zf

: e % n+2
is harmonic in R \ E.

+
We first show that g is finite on B° © \ E.
+2
Let r_ = dist (x,E), distance of x from E (x ¢ RN °N\NE).
Since E is compact, ro> (9,8
Hence for all z € E, lx - zll > r_ and we have
2 s %n
f——l,—ndo(Z) < [ T—<3elz) e - JL T
B Ux—zﬂ B I‘n' r
o o
That is g is finite on E. (1)
n+2 1 " - n+2
Let x ¢ B '~ ~ E. There is B(x_,§) with B(x_,8) C R

Let b = distance between E and E(xo,a), then b > 0.

Choose x e B(xo,é), m=1,2,... such that gir x = x_.

o
m-»co
Then llx - zll 3 b, i.e. e — < = (z ¢ E)
o n n
Ix -z}

Since f lq do(z) < » , by Lebesgue Dominated Convergence
E b

Theorem (1.1.2) we have

PETRR G S g s gim f —=—— do(z)

x+x E x-zj" mw E fx -z
o m

-

[ 2im —F— do(z)
E mso fx ~z)
‘m

dg(z) .
E uxo-zﬂn

X By
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n+2
That is fim g(x) = g(xo) (xoe R s B
XX
o
+ A
Hence g is continuous on Rr" ¢ \ E. (2)

- +2
Let x_ € Rn+2 N E. For all p < § where B(xo;é) B2 CNE

we have

——— [ g(x)dg(x) ;
& 3B( )
Un+2p xoap

L(g; xosp)

0 &
= SRS—L I S da{aidelx)
on+2pn+l BB(xo,p) E bx-z)"
R &
= Aarae ——= do(x) do(z)
Eo +291’1-"]' aB(xO,p)“x—zln

where the last equality follows from theorem 1.1.3.

. . 2 2 o n+2 -
Since the mapping x> EeNAS harmonic in R N E
Hx—zH
= n+2
and B(xo,p) CR \ E, by theorem 1.2.3
L Ot do(z) = —=tee
Ve S lerd P
n+2f  BOP ‘ T
So we cbtain
1
gk sp) = [ dgln) = gix) (3)
o) : n o
E on-zﬂ

: +
From (1),(2),(3) and theorem 1.2.6, g is harmonic in R- s E.

. o R TR
It follows immediately that f is harmonic in R \ E p

We call f the harmonic function associated with E .




2.2.3 Lemnpa If f is the harmonic function associated with E,
n/2
+
then f(x) = A {x) (x ¢ R® s E)

1-Jo(x) §°

where )\ and Q are the functions given by lemma 2.2.1.

Proof Let x ¢ Rn+2 N\ E. According to lemma 2.2.1,
i
lax) =yl = fx - 28X 2 (x) (z ¢ E).
Then f(x) g o I °-—2;7; do(z)
On B lx-zlf
n/
- ¥ 2 (x)

= S = 45(y(z))
% B BQx)=plz))"

n/p ) 2
o A “x) F 1-llo(ll do (X)

1-flat))® %a 8B Jalx)-)"
By theorem 1.2.4 (Poisson integral formula),

2
L 1-Yg ()l

5 e do(N) = 1
n 3B fQ(x)-N] '
n/2
Hence the last equation becomes f(x) = _l___i£l§. #
1-fe(x)|
2.2.4 Lerma If X is the function as in lemma 2.2.1, y = r2
2
then LA g—’-‘-+ |va] = 0
Y

where V denotes the (n+2)-dimensional gradient vector operator.

19
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- - 2 2
Proof Let v = xl+ boa T MLy BB Xy
; dA o« 24 8 3k
Since 3;.(\(,“) ol 2 ax.+ 3T 53X
i i i
A , .
2x, == (1.5 4s
n { laY
(ox, 42 (j = n+l, n+2)
O
A A 9 5 ax)
VA = (Zxﬁ57’°.°’2xﬁ;;’ 2xn+13;, xn+2aT
_RERE IRy X2
Then |vA| = ¥y (37) + L (37) (1)

Return to the proof of lemma 2.2,1, A satisfies

yxa <1 and yAE- [l Sy ¢ T]R +1 = 0 (2)
Thus T = YA/-do=Ho4 %-.

By differentiating (2) with respect to y and T we have

2
YR N T
8 o 2 an B‘T = 2
Y YA -1 YA =1
It is easy to compute A2: + y(gLJ2+ (32 = o
i Y R% 9T
3 2 _
Then by (1), hx—a;w jwal” =0

2.2.5 Lerma let Q = (ql,...,qn) be the function defined in

lemma 2.2.1, that is qi(x) xix(x) O e R P

Then Itil =2, 'vq,- qu 0 (L < i, s nand i# j3)

where vV is the (n+2)-dimensional gradient vector.



e

: n+2
Proof Let x = (xl,...,xn+2) e R %, B
3q. 99,
Since Vg, = (5;£ S SEL (i =1,2,...,n).
1 n+2
) A ' A
= (x, 22 ..., AP, = L., X, — )
i axl i axi 3 3xn+2
g - afi ga.0 FLARY .- a
Then quﬂ LI ) (ax} ks (an+2) ARl *§ ox,
L, g=p B
= x50+ 2 2xg 5y
” 2 BANA R 2
= (P ) of e
By lemma 2.2.k4, |vqi| o

The remainder of the proof is directly calculated and by

lemma 2.2.4 again we have

n+2 2
w A oA 3N
v4,* vq, = xrx il y ) + Ax. ~— + Ax., =—
1 J i k=1 8Xk J Bxi s8 an
2 3 . " BA
= x3%y |oa] "+ ij 2xi us # AiXQXj'E;
5 2 Ny
s xixJ (]Vll + b =l 0 "

2.2.6 Lemms If £ is the harmonic function associated with E,
Q= (ays+..» @) is the function as in lemma 2.2.1, then the

functions qif, i=1,2,...,n, defined by

21



n+2

(%fﬂﬂ = qﬁﬂ f(x) {x ¢ & TNE)

+
are harmonic in Rn 2\ E and satisfy

*
o ° =
£ A g+ 2(Wfwg) = 0
* 3
where A is the (n+2)-dimensional Laplacian operator.

Proof For i = 1,...,n the real-valued function ¢i

defined by ¢i(Cl,...,Cn) = Ci is harmonic and Q(x) € B,

hence by theorem 1.2.4 (Poisson Integral Formula)

(o) = 2 SRz MG () e .
c’n 28 jalx) - §°
n/2
Since ¢i(Q(x)) = qi(x) and f(x) = “ ((tg , the last
- Qx|
equation becomes
=
;) £00) 8Tt L= (’;) g, () as()
x) =N
By lemma 2.2.1,
(0, 8)(x) =21 B,(¥(z) ddz)
o % E “x—zk

Let u be a measure defined by W(F) = é ¢i(1Kz))d°(z)

for all Borel set F (- E. ThenH is a signed measure of bounded

variation by Theorem l.l.l.
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Then (g f)(x) = %— II llln
n E §ix-2z

d u(z).
Hence the functions qif are harmonic in Bn+2\.E £ = Jawenegti)s

We complete the proof by showing that f xqi+ 2(vf-vqi)= Os

Since f and qif are harmonic, A*(qif) = A*f = O. By the fact that

1]

* * i .
a* (fq;) = £ p*qu+ 2@ Eevay) + qp £

Therefore 0

1

£ 8 q;+ 2w f'ti) #

2.3 Superharmonicity on the passage

In this section we shall study superharmonic properties
on the passage from any open subset of the unit ball of Rn into

mn+2‘

2+:3+1 Theorem If u is superharmonic in B and let
¥ (x) = £()u(R(x)) (x ¢ B*ZNE)

where f is the harmonic function associated with E and Q is the

x i : " s
function defined as in lemma 2.2.1l, then u is superharmonic
: n+2
in R\ E.
&
In particular if u is harmonic in B, then u is harmonic

in Rn+2\~E.

BRI | Nl <
The following theorem shows that theorem 2.3.1 has a

generalization.
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Let w denote an arbitrary open subset of B, R denote
= 1 ‘

the inverse image of w under Q, i.e. 2 = Q I{w o
Since Q is continuous, Q is also open. In the case w = B,

' we have @ = Rn+2\.E.

2032 Theorem If u is superharmonic in @ and
*
u (x) = f£(x)u(Q(x)) (xe 2),
then u”® is superharmonic inQ . In particular if u is harmonic

s ;A ~ s
inw, then u is harmonic inf .

To prove theorem 2.3.2 and hence theorem 2.3%.1, we need

the following theoreme.

2.3.3 Theorem Let u be a function having continuous second

partial derivatives thereon in ¢ and

. .
u (x)CE=ttautatcy) (xe Q)
where f is the harmonic function associated with E and Q is the

function defined as in lemma 2.2.1.
X % 2
Then AU (x) = AS(x)E(x)Au(Q(x))

where A¥ and A denote the (n+2)- and n-dimensional Laplacians.

Proof Since f is harmonic and u” = fu(Q) or £(u o Q),

e £ 8% o Q+2@ £« u o Q))+(u o Q) A¥ £

f'A*(u 0Q)+ 20f* V(uo Q))e"
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™M S

Since further Vfe+ Y(u o Q) =

du
: (Vf 'qu)ra—q- where Q = (quun-qn).

1 J

(Uf Vq.)-g%
1 J 9y

(1)

™M S

we get £d = £8(uo0Q) + 2
J

: n
Next we claim that & (u o Q) = Z-EE & q.+ AZAu.
j=1%3 I

Infact, since

2 n
—35 (u 0 Q) 5—%{- X
ax i j=1

q
au ’ j (i = 1,.00, n+2)

(=>4

n 3 > n- 5q.
- g 3y S.5F ,;__;13_; (38

J

32u aqki
9

=

=

e
Q

+
wegetl‘(qu)=.Z -——2-(qu)
v i

n+2 @ q. n+2 A aqj naau 3%y,
=z I £ —+ 1 I

iy P 5 o
Jui 4el 999 Pt Awl foll T4 kP Wy 2

u_ p r; ;1 32u (n+23a. 39,
e, Magr . de, 0a, .t ax"’.!' ° B,
1 J 3=1 k=1 " "k " ilis=l 3

I
Tl

n 0t K n n aau
= 2= Fa+ 3 2= (va,.94)
j=1 994 I' 501 k=12 W% A | k
n 2 2
o 2
o BB Bl A s B (see 2.2.5)
P 7 3 2 3,2
j=1 "7 39, Qe

" u * 2
=il a—q A qj“" A Au.
J=1"77]
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Therefore the equation (1) becomes

in . n
A%N® &« £] % %l;- A ay A2Au}+ 2z (Vf-qu)%‘;-
t3=1 J y j=1 b
2 o [ )
= X fA+ I |fA qj+ 2( W'qu)] —a- .
j=1* j
By lemma 2.2.6, A¥u* = Azf Au y

We end this chapter with the proof of theorem 2.3.2.

In the particular case, if u is harmonic ing, then
Au = O, By theorem 2.3.3, A¥*d* = 0. sSince u and f have
continuous second partials thereon, u* also has continuous
second partials. Hence u* is harmonic inQ .

Theorem 2.3%.3 also implies theorem 2.3.2 in the case
where u is superharmonic and has continuous second partials on
we By theorem 1.3.5, &4 u £ O.

Since Azf > 0, we have i ¢ O.
Using theorem 1.3.5 again, & is superharmonic in Q.

To complete the proof of theorem 2.3.2, let a e Q.
Then Q(a) € w. Sirce w is open, there is an open ball B(Q(a), p)
with compact closure B(Q(a), < w . Let N = Q”l [B(Q(a),p )] &
/(J is an open neighbourhood of a since Q is continuous.
By theorem 1.3.9, it suffices to prove that u is superharmonic
in M.

Since u is superharmonic in ~w  and -,‘E(Q(a),p o,

by theorem 1.3.8 there is an increasing sequence { uj} of super-



a7
harmonic functions having continuous second partials such that

a = 2a -u, on B(Q(a),P)
3+

For each J = 1,25e004949 let
u’:.'(x) = f(x)uj(Q(x)) (x € )f).

By theorem 2.3.3, A* uti(x) = Aa(x)f(x)ﬁ uj(Q(x)).

* %
Since uj is superharmonic, Auj < O. Hence A uj £ O.

-~

*
By theorem 1.3.5, uj is superharmonic in N,

Since %im 1’1*.(x) fm f(x)u.(Q(x))
joe j e \

£(x)uQ(x)) = u (x)

*
and £ > 0, then u is the limit of an increasing sequence {ﬁ‘j}

of superharmonic functions in)l'.

* *
By theorem l.3.4, 'u is either superharmonic or u = % on
each component of){) o

* . ,
Suppose u =% on a component C off.

Then ¥ (x)

1}

f(x)u(Q(x)) and f is finite yield

U= o onQfC] and S u(MaM == .

]
This is impossible since u is superharmonic in ® and
and QiCl T B (R(a),H & w,

by theorem 1.3.7 / u(M)anw < &

B(q(a), )

* . i e
Hence u 1is superharmonic in N it
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