CHAPTER V

THE POLARON AT FINITE TEMPERATURES

Untll now, most of the polaron problems which have
been studled by many authoré are restricted to the case of
absolute zero temperature. The wmu.c general casc of polaron
state at finite temperatures will ve cousidered in %his chapter.
The polaron theory given in Chapter III, will now be reformu-
lated so as to be applicable also to the case of finite

temperatures.

V.l The Polaron Action

We must first determine the polaron action at finite
temperatures. According to Chapter II, the density matrix for
the canonical ensemble is related to the propagator, and the

canonical partition function can be written as

Z = dte pUx, by s p) = | draK(f, ~ifpsr 00, (5
For the polaron system, the propagator can be separated into

the electron and the phonon parts. The partition function is

then given by

. !c\)ld'C -
i dT d : (5.2)
dT O(B{‘el(t)e . Tg %E,K(%E,p,%b,O),

where we have used the lmaginary time 7 = it, i = 1 , and the

integration 1s over all paths r_,(7T) from Loq Pack to r ..
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The propagator K(qk,p ;qk,o) can be obtained from (3.16) and
(3.17) by letting t'= 0 and t'= -1p , thus

L » N - x>
K(%k, R;5%.,%) = — Mo N\ exp (155NN (5.3)
o ~ 211 sinh 3w, /
where
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+ ;2_2_ t/d\'['(‘h s‘me(ipn-)/‘qs C(s) sinw S ]
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= - T {2@osh pod, - 1) 3';_ 28x | 4t [(0) (9inhe,T + sinhay,(4-0))
2i sinhpoy S mw, ~
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P .
- = dtf dé LTI (8) sinhw T sinhm,_<p—6)] , (5:.4)
m*a, Kok
0 <o

where we have substituted s =¢.

The integration of the propagator is
pT

L

\ me G L . . P

\/;%hK(%b’mg‘:’o' - ('z«sinhpml) CXP{mw..sinh[éw‘./j/\dzd‘[‘kmrk(d)gmhw“”mhc‘”(’—") }X
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- Mw _not . . ~
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|
= i [N)
(Qs'“h@’z—‘> exp { 2ma, Sinhpuw, (Cosh A4, _\j:/;lrdsimr;mm } ,(5.5)
00 o7
where

A = 25inhw T sinhw (p-6)(03hRw =) + sinh@.T Sinhw s + sinhw, (B-T).

3inh o 6 + sinho sinhw (p-6) + 8inh o (A=T) inh @, Cp=6) ’
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By substituting A into (5.5), we obtain

BT
d%kK_coGE, ps%k,o) = (Qsmh /3_";3“) exP{#mffdr ddf’stc)rl"(m[ne
~ ~ - (5 6)

Therefore the canonical partltion function (5.2) becomes

&) W, (T=6)
(t6+(ﬁ+\)e L ]k.

dre\

1
2f(’—“ (-6 -0 (T-8)
Z :%hv e cye’s 2 exP dl’d62f’(t)r(dw[ (A e ( R)
~¢‘ meL

where the path integral does not depend on L. the integration

= (2sinh Rw.)™N 15 the
3=

partition function for the system of phonons in the absence of

of Io1 gives Just the volume V, and Z

the electron. Recalling the value of %I’k(r)f"‘(ds and £ from
(3.32) and (3.33), we obfain )

P PR _ 1T ~T-61
4 (d_!_'_ ia f drdé [ne + (h+De 1 , (5.7)
Z =zZnV %{e\me ° T Ll (D)~ Yel (6)\

where our units are such that h, ©_ and m are unity,

Therefore the polaron action at finite temperatures is glven by

p
H sl |+ N
S _. d~e' 1+__ dtds
— 7 d+ 312 lr (+) (.S)l I, m -£1())

(5.8)
Qo .
where the time variables T and €& are replaced by %t and s,

Now the polaron, after the phonons have been averaged

out, i1s described by the action (5.8). The electron is in
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the coulomb potential with the energy depending on the average
number of the phonons arising from the temperature depepdence.
Unfortunately, we cannot perform the path integration on S
since only quadratic actions lead to integrable path integrals.
We must choose an appropriate trial action that is integrable
and which imitates the exact action S in rough approximation.
The natural cholce for the trial actlon , by analogy with that
of the polaron state at absolute zero temperature, is given

by Osaka as

4 »
S‘ = j\(drel dt C jfdtdslvr (t) r (5)l1.6 w|t- Sl | f\[
dt g Ibw dtdsx
(o]
[Lad®- r (5]t (o' T E ‘ (5.9)

The kinetic energy part is the same as that of the exact action
(5.8) and the potential terms resemble the harmonic oscillator
potential with two ad Justable variational parameters O andw .

We shall now deal with the density matrix for the reason
that 1t 1s closely related to the partition function., The
density matrix of the polaron is given by

£ (L ’..3:5 P) = f@fe‘(f) exp S , (5.10)

where the path integration goes gver all paths gel(t) from,gel

’ : /
to o1 with the boundary conditlons Eel(°> = Loy and gel(p)=’gel.

Hence, )

fcﬁgdc‘f)exp(S-S.) exp §
.

!
P({e\’rdi R)= 5 :
f‘@!’d(ﬁexps.
(o]

o@ﬁré‘cT) exps,
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PR X P = Cexp(s-s)) f(r , X5 p)
é 'P"V‘('{C\" ,{'d ;p) » (5~H)
/ ’ h
where ﬁr({d SESP) = expEe8) B (Fuskis P (52

Thus we obtaln the varlational principle according to which

the trial density matrix (5.12) would be minimized with respect
to the parameters C andwWw., In order to calculate the value of
Py 0 WO need to evaluate ¢S - $4% . This implles the expliclt
solution of the integro-differential equation, as already dis-
cussed in Chapter III and IV,

V.2 Model Lagrangian

To determine (S = Si) in the present case, we must
solve the 1ntegro-d1r£erential equation which is even more
complicated than that considered in Chapter III for the polaron
at absolute zero temperature. In order to avoid this difficulty,
we shall now conslder the model Lagranglan introduced by Osaka,

viz.,

e 52

+1 MR® -k (r =R

2 2

2, (5.13)

?

It =1 f
2

where M and k have the dimensions of mass and force consﬁant,
respectively.

The polaron system described by the trial action S1 can
be represented by the model Lagranglan (5.13), the validity of

which assumption wlll now be demonstrated. To accomplish this
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we shall flrst determine the classical path equation of motion
by the trial action Si‘ Since

p
SE o o Bw ) )
S, =0 = - - z(__!e\_(’) 8T, (hdt - & L dtds[r M-r (S)Jﬂ

2 dt ~e 2 Ew—l ~el ~el

[o]
-wlt-8' .
e 5[5\“) ()] + d’rds Eh =L o]«

It- sl &
e’ 0 “Am "fa‘”}%

P
et e gii=sl (=51
e
[_cﬁr_*— ZC{ o, dSU;\('f)-ge‘CS)]e *"crw_\‘/;s[g\m‘!e\(s)]e ﬂ{g\md*,
o

it follows that P
s _ @ A _
d La® _ 4c Ech _ fds[ e” S SRR c‘*"’f‘s‘}rl(s) (5.\4)
412w “ g éL' eP-y v ’
where the equality
p
pW
e ~w|t-s\ ] ' wl T-8\
(éoo— ds e A e dse = = »
-1 e d
o] o

has been used.

The density matrix (r_~sr..3 @) can be determined by usin
R, FerFers # g

(5.14) as P B

. ’ dre\ ~w|-S)
f5|(£n.¥;\ P = o@re]m exp[- j ot f[d*ds IY’d) f(S)\ e

5 ¢ P

j4- 81
ki e”""-.\/:/ dtds l;‘cld)—w,(S)lze“ ] (5.5)

o

By using the Gausslan integral method, the path integration

(5.15) can be performed .
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Thus s wH sl
e N'L’ \ 2 eatt-2l
B =T 9
o ,Hds[r!) -I, M
e -
LU wlt-st afr-s) Ls.16)
By substituting A = —5 ) o M e and lnterchanging
e - e -

the imaginary time t andg , (5.16) becomes
[

P
., LFhTL ¢ d%F ) Behydt - ¢ Fi?
F5, (L1 5 Lt 5 P) eXP{ "”N““[iis‘ Fgr;ﬁ)d? z[/‘[dfdslndmu
p o

o

+f/d’rds \;r:\cs) 1A - szd?ds zd(t)fd(s) AB

0 [+]

= exp {-.}I(a‘(p);y;‘cp)-36‘(0).};50))3 . (517)

The next purpose 1s to find the density matrix of the
model Lagrangian L'. With substitution of kr = [ (%) into
(5.13) we obtain

L= (35 -k (pMR SRR IOR) (5.18)
where the second part of L' has the form of the forced harmonic
oscillator Lagrangian. Therefore the density matrix of L' can

be easlly determined by using (5. 6), thus
p

f'(f;E';P) — /o@r(r)exp /(dr(c)),,kr(t)l d¢RK(R,p;R,0)

[}

- (2 sinh Qg_d')' /exp[-f('ig'+gr’)df +

U

Pw
-o 48l ! o'[t-s!
““?fdtds r(hr(s) P + el le ”bgdm,

(5.19)
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where t and § are imagilnary times and w' = ./k/M. The equation
of motion of the classical path I(%t) can be derived from the

action of the above equation, viz,

n 3
' Lpt, kot M, tds rchres) A
g = [ (zX¥+zL)dt + Mo LLCES Sl 2
| 4
(o] (o]
Therefore "
P l
. (5 .. !
65 = © = -FoF|+ |(EM-KE)SEMdt+ Me® | [dtdsFrBEDA
(] 2
o o
and hence -
BU, '
22 — 3 - - (t-5l "It-5\ )
rcty = k{‘(h-— Mot dS}Q‘S){ :u’ e + ', e } . (5.20)
. 3 P43y pu_

0

The density matrix (5.19) can now be determined by using the
Gaussian integral method and (5.20); we then obtain

B &
f'(f,flj ) = exp[-\/(-‘i FdiakEh)dt+ MTw_'}f/dtds fﬁ)f(s)/\’]
o o

= exp{-—‘z-(ftp)f(ﬁ)-fcomf(o))] , (5.21)

under the boundary conditions T(R) = r' and r(0) = r.

If we put w' = w and Mw' = 40, (5.20) is then identical to
(5.14); and if we further put r's fél and =T, (5.21) 1is
then the same as (5.17).

Consequently, we shall use the model Lagranglan instead
of the trial action Sl in the further calculation. That is,
the path integral of the trial action S1 will be replaced by
the path integral of the Lagrangian L',
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V.3 Evaluation of the Polaron Energy

Our first objective 1is to determine <S - Si> ia (5.12),
It can be expressed as (S - Si> = {(s8) = <Sﬁ> , Where

f
L | P SN R S
2 FRGESACY AW P
(-}
P
1A
O wit=sl | el
(Sy = -—2f]dtd5<lrc‘<*)-&|(5)\2>{ So €t e }.(5.23)

In order to calculate <S>, » Lt 1s necessary to determine

and

o0

! >wh1ch can be expressed as a Fourier transform,
|

: N K /(explik (£, -rye)]) . (5.24)
l!.cl(f) *ycl(s)l zﬂzkl

It follows that we must evaluate <exp [ ig.(gel(tf)- fel(s)]> .

Let us consider

<exp[i5-([;‘(t)-g'd(d)\]> : fo@r (@8] exp f‘f(T) ‘(T)dﬁ exp S, , (5:25)
r T S
where fo@%‘” e
foty = ik (Gct=T)=6t=€))

It is recalled that the path integration of the action
S1 can be replaced by that of the Lagrangian L'. Similarly
the path Integration of (5.25) can also be replaced by that
of the following Lagranglan,

L = 152+ 1MR% - x (z-)2 + £(t)or . (5.26)
2 ~ ~

2 ©. 2 ”
Let us lntroduce the following new varlables

%=f-§ » 6 =TI + MR ’ (5.27)
1+M
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then the Lagrangian (5.26) can be written as

L = 1(.&.'1 K o* [ fetyach) 4 L(Me) Q2e . F D). (5-28)
- 1 "\+!)% - 7.% +(M+\)"’()§( )+2 )‘“ TR

~

The classical path equation of motlion for q and Q can be

~ ~

obtained from the principle of least action. We obtain

¢ =vag = =£(t) (5.29)
and 5 = -f(t .29b
Q %érl , (5.29D)
2—_ _ 2
where Ve o= k(M+l) = 4C + w® -
M w

To solve (5.29a), we shall use the Green function method.

The Green function equation that satisfies (5.29a) 1s

(ff_»‘ G(sh = sd(s~-1 (5.30)
ds?
with the solution

G(s,t) "= Gl(S,t)H(t-s) - Gz(s,t)H(s-t) s
where Gy (s,t)

A sinh vs + B cosh vs ,

and Ga('s‘,t) A'sinh vs + B'cosh vs -

The constants A, B, A/and B' are readlly found, then we obtain

G(s,t) = = ginhvl (coThvf-co1hvp) 3inhvs H(t=8)
v

~ sinhvT (coshvs = sthvp sinh vs ) Het=s5),
A"

(5.31) .
From (5.29a) and (5.30), we have '
%d) = i(p)G({.’a,f)-i(o)G(ofr)—J‘f(S).G(S,’f)d% ,
~ i . )

(5.%2)
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where G(s,t) is given by (5.31).
Then

ZZ(T) = —% sinh v ( gink? vp —cosh®v p) " ? sinhvt (coth vT - coThvp)
~ ginh Vp

dsik (&T D-§t- 6))[ 5""“VT(coTth cwthvp) sinhvs ]

ds\k(dﬁ T)-0t- 6){ Sinhvt (Coshvs—coThvps‘mhvS)]
v

= (%l s5inhv (p-t) ¢.%L_5inhv‘r )/s'mhvp

+ ik sinhvT (sinhvip-2)< SinhV(P'G))/vsinth

~,g§X SWﬂwvci—z)Hcf—c)-ynhv(T~6)Hc+—6f}, £5.33)
v

under the conditions g(0) = g and a(p) = A -
To solve the differential equation (5.29b), we shall use the
same method as that applied to (5.29a). Then we obtain
d*G(s,1) ) des-1)
ds?

with the solution

(5.34)

Gs,t) = (3-P), g Het-8) + L (s-p His=T), (5.35)
I 13

Eqs.(5.29b) and (5.34) lead to b

Q) - Qcp)G(p +)-Qc0)G<o+>- JF(S)G(smds

M+
= Q.+ {(az-ao- iKWt (z-6) 1 ik _uf (*—z)H(“‘C)-(J'")H("%% :
v? v

I
_ _ (5.36
under the conditionsQ(jp) = Q2 and Q(0) = Q - 22
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The equation (5.25) can now be evaluated by using (5.29a,b)
and the path integration can be carried out by using the
Gaussian integral method. We thus %btain

<exp[i5.( el (0= r\cs))]> ol = exP{f{‘%(%.ﬁz‘ ()fn g

Q2942,R >

- (MeD G2 § feh] ot}

z
= exPi Q(M*l) %(p)% 8(0)%]+IK ::H‘) (%(t)—i(d))
_%ﬂ[g(ﬂ,gz_gw,gq{%. li(gm-g(g))g. (5-37)
We can determine (5.37) by using (5.33) and (5.36). In order
to connect the varlables in the Lagranglan L with that in the
action Sl, we replace the variables Ql’ Qy and Q2, Qs in the
above equation with r,, R, and r,, R,. Then, integrating (5.37)

with respect to the variable Rl’ under the condition Raz Rl’

we obtaln =
<exp‘.‘&(!‘e\cc)-«y,‘e\(d))]> — expi: M {2(6_2({2‘_*?7")%
ol 2(M+l) sinhvp
-00
+ 1% (n- R.){(binhV(fb-C)—Sm\nv([s-é)(coshvp-n)
dinhvp
-(coshv(rb-é)-coshvcp-é)) sinhv
~ (5inhv(p-T)=SiNhV(R-6) + SinhvT
- t\nhvd)”} '
exp --—Lq-[ (sinhvt - sthS)(S\nh(v)(p-t) -sinhv(p=~ 6))
2(M+)| ysinhv
¢ & sinhvlt—é] + i |6 Kw\r—éx} dR,
% av* [ 2v?

- exp{F(r 4P JexP z( (AR B +AR: -, 24K+ B j¢R,
-0

(5.39)
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where
°
F(T,4,p) = M i K (8InhVT -8inhv6)(sinv(p-T) - sinhy (B~ &))
72 (M+1) L vSinhv B
+£sinhv\t-6q+K1w 1161 Ko lt-61, (5.38a)
0% wt B av?
A = 2V __(coshvpp-i) ) 5560}
sinhvp
and
B - ¥ {sinhv(p—t)-SiﬂhV({b-ﬁ)("w"p")"'“”h“‘P'C)
sinhvp
-Coshv(b-é)) sinhvp - (sinhv (p=2) - sinhv (B=6)
+ $inhve = smhv&)} . (5.38¢C)
The integration of (5.38) can be easily performed by using
od
d){t-va -bl/4a
f? dr = -g— e ; then we obtain
-l
exp[ik.(r,Dr @) = ex lF(t’&B) expf~ M _(anapr) [T M_(z4r+ 8)"
< \-. el el )]> P } P{zthﬂ)( §on AZL-(M“)Q"PZI-_(H—*;)—%A—?S

rnT

e“? pigrinsi w KT (sinhVT=SinhVE) (sinh V(P -T)
Z(M-ﬂ) vsmhrp

- Jinhy (B~ d)-»ﬁ; 3inhviT -6\

2(M+\)( w" |1: -6\* &‘w‘\r-6\>
ave 2V

s+ K (coshvlt-sl-\)co"(h VA {cashv(/&- z+6)
A\ 2 T

v
- coshyv lt-d\] /ASinh"V__& coshllﬁ_]
7 [4 T

n' 1 -vic-¢l
- " exp{--K [_’-_C. {(1- e )+ (\’CO*hY_P_)(Coohvl.t-&l“)}
—— V3 2

()
(‘Jz - d - - )
+ It \( \ ltﬂ,m)]} (5-39)

Since the right hand side of the above equation is independent of
the boundary condition, the suffix rl, rq assoclated with the



averaging can be omitted. We obtalin
i T g c ke - coth Y2)(coshviz- \-\)}
éxﬂ_%,(x‘d( =L ))]> = expi-K %3_00{(!—-6 )+ 0O £ (coshviz-¢
+ U)z t‘6‘ (l-\C‘d\)] R (5[@0)
Nﬁ.\ [

where the fact that <exp [15.(£e1(?)-£el(& ))]> becomes unity

in the case of X tending to zero has been used.

Now the average of the polaron action can be obtained

by using (5.22)5 (5.24), and (5.40),
(%)

(8) = <£ [[dtds| &% exP{'Kz{i&{(‘-é""‘ﬁ'mt—co*hvmtwshv'*'s""
2R Vo -
o -00

A
b [£-s| (1= zeh ]+
2v? &
{ eﬂ C—H--Sl+ : e‘n‘-stk. (5.41)
e | &

After performing tge Integration on X, we obtain

<5> = oL vp dr{ e,ﬁ EC i p" (VttS)§(|-E")*(l-coThvp)x
“l'/z B_‘ $ e&_‘ i v

€
o
. -4

3
ccosh V‘C—l)} +w2c (v —%)] .

(5.42)

The next object is to find (Sl> . We must first
determine <|rel(z)-rel(d)|2> and then substitute the result
To accomplish this, we apply the second order different-

in (5.23).
lation to (5.40), thus
S - -6\
<\[e‘(5)-3~d(5)\1> = 3[\]\(:’ {(|-cvn )+(|—co“h\%&)(coshwt-dl-l)}
+ whz-61 (- ‘E:ﬂ)] ; (5.43)
[

V"
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Hence p
2 3 =v|t-s\
(Y —  -3C de’rds{ (V-w ’%(\-evl )+(l-COTh‘{ﬁ)(COSthijl“)}
2 v3 “
o
2 . .
+&§\*—s\(r-”“s‘fl{ " éwnsl—l—énfﬁ
! it L e’
— _3cg(co'(\n VR _2_) . (5.4%)
Vo 2 VP

Since the free energy can be expressed in terms of

the canonical partition function and the diagonal density

matrix as
F = -!._ in 2 ’ _
=P s
z = L4/ R\ )
/Py k5 B » (T 72N %)
- 80 \ ‘
then the trial free energy is gliven by
9
Ph' _— _/La ln fe.xp(s-s.) f&(gcl,g’d;/%) dg‘e\
-
= - {%-5) _ inZs , (5.45)
£ P

where ZS is the partition function derived from the density
4

matrix }% (Eel’ o1 P ). The second term of the free energy
T oq

(5.45) can be derived from the relation

O Inls - < S , (5.46)

dc c
which 1s derived from the definitions of lnz, and (8,) -
1

By performing the integration on (5.46) and transforming the

variable C in the integral term of (S,) into the term of the

new varlatlonal parameter v by using the relation v2= 4C +cu2,

W
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we obtain

lnZ - \n(mfo) +/
Sy

— <3lncadp T/[V&>dc 3CR <cﬁh4& )
2 2y

v C
= —5\n(2rfp) 3\n(%) - 3ln sinh VR/2 (5.47)
sinh wp /g
under the condition that Z34 is the partition function of the
-32

free electron when C=0, which is given by (27p) .
Flnally, we can determine the value of the polaron
free energy F by minimizing the value of Ftr' which can now
be evaluated with the use of (5.45), (5.41), (5.44), and (5.47),
with respect to the variatlional parameters v and w, Therefore,

the polaron average energy, which is closely related to the

free energy as follows

E (b dBF
oRr

’ (5048)

and the polaron self energy at any arbitary temperature T,

Es = E = %kT > (5.49)

where the last term is the free electron energy, can be obtained.
The results of the numerical calculations of the polaron
average energy and self energy from the expressions (5.48) and

(5.49) will be presented in Chapter VII.
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