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CHAPTER II

QUALITATIVE SURVEY

In proceeding to evaluate the polaron energy, the
baslic ideas of constructing the Feynman path integral and the
determination of a forced harmonic oscillator propagator in the
path integral formalism will be presented., The relationship
between the propagator and the density matrix, and the polaron

ground state energy, will also be consldered in thls chapter.

II.1 Feynman Path Integral

Conslder the motion of a particle starting from one
point to another. In quantum mechanics, we cannot speclfy
its exact position at any chosen time but we can only indicate
the probabllity of finding 1t at any given time and place. In
this case there are many possible paths that the particle has
the probabllity to take. In qontrast, in classical mechanlcs
the particle can move along one particular path for which the
action S = \[Ldt ls a minimum, where L is the Lagranglan of
the system. For simpliclity, we shall restrict ourselves to
the case of the particle moving in one dimenslon with the
position at any given time specifled by a coordinate x and the
path x(t). If the particle at an initial time t_ starts from
the point x

and goes to a final point X, at time © then the

a b?
classical path X is that for which the principle of least action
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is Satisfied, ioeo,

&8 = Oy (2.1)

and the classlical action 1ls gilven by
1

Sd. = f L()L(a)—(at)dt . (2.2)

In quantum mechanics, thg%e-is not only Jjust the
classical path but there are many possible paths which the
particle can take. The probability that the particle goes
from a polnt x, at time ta to the point xp at time ty 1s
glven by the absolute square of an amplitude K(b,a) which
1s the sum of the contributions¢ﬂx(tﬂ, one from each path
x(t),viz., |

Rebay = = #lxch] , (2.3)
, pains from
where the contribution of a path x(t) has a phase propor-

tional to the actlion S,

qu PLONGKOR] consT. exp [%‘ S (xh]] | (2.4)

T0 determine the probability amplitude K(b,a), we
have to compute the sum in (2.3) over all paths of infinite
number, and 1t 1s thus more appropriate to replace the inf=-
inite summation by path integration. In order to do'this,
we first choose a subset of all paths by dividing the ind=-
ependent time varlable into a serles of small intervals €.

This gives a set of values tg ,bt1,50500000s0.n

002332
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tN-l’ tb where € = t1+1 - tl’ Ne = tb - ta, to= ta and 'GN= tb'
At each time t, we select some speclal point x, with Xo= Xy
iN= Xy and then construct a path by connecting all the polints
with straight lines as shown in Fig.3.

A sum over all paths constructed in this manner can be
defined by taking a multiple 1integral over all values of X,
for 1 betwsen 1 and N-1 so that the propagator in Eq.(2.3)

becomes
0 o "

Kb,a) R I TS ¢[x<’n]dx.dxi......;..de_( ,  (2.5)

i P

where the integrations O;ZI X, and Xy are .not involved since
these are the fixed end points X and Xy A more representative
sample of the complete set of all possible paths between a and

b can be obtained by making € infinitesimal and by introducing
some normalizing factor, which 1s expected to depend on € ,
into BEq.(2.5). The probability amplitude can then be written

as

Keo,ay = lim [ [exp{is[xeh]] g% . dXw-t, (2:6)
e-»>0 A P[F [ ] A A

The integration in Eq.(2.6) can be written in a less restrictive

notation as
Yo

Kev,a) = ‘/exp[-% s[xd)]] D xct) , (2.7)

1 Xe

which 1s called a path integral", and the probability amplitude
of thils form is known as the Feynman propagator.
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Fig. 3 The construction of the path integral.
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II.2 Forced Harmonic Oscillator Propagator

In this section, we shall determine the Feynman propagator
of a forced harmonic oscillator for the reason that not only it
is a particularly interestig and simple example for the evaluatlion
of the path integral but also it is of much lmportance in the
solution of the polaron problem to be presented 1n the next chap-

ter. We thus consider a system whose Lagrangian has the form

2.2

L = %mia - mdx® + f£(t)x (2.8)

L
2

and for which the integration over all paths from (x,t) to
(x,t) of the propagator,
X

K(X,X) = j‘exp [_% S[x(t)ylﬂbx(t) ’ {2..)
where x'
3"
S[x(t)] = [[%m L. lmwx ¥ £(t)x ] t i (2.10)

must be carried'out.+'

To accomplish this , we first describe the path x(t) by
means of the classical path x(t) and the deviation y(t) from
the classical path, viz.,

x(¢) = x(t) + F(t) . (2.11)
Thus, in a path integral, the path differential x(t) can now
be represented by y(f), and the action (2.10) then becomes

S[(t)]

\[ [ %mx . ;mwx + f£(t)x ] + [%m&‘ -~ %m&f

+’ f” +mdiy + f£(t)y ]]dt (2.12)
j iy - gwy | dt ) (2.13)
*'
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where the resulting integral of S[X(%t)] is Syjand the

resulting integral for all terms which contain y as linear
factor in the integrand vanishes. Thls simple integral.is
called the Gaussian integral(le).

On substituting Eq. (2.13) into Eq. (2.9) we obtaln

K ", x"

I

o 1
U 8o g 15
0 ¥

I

exp[t Sq1 F t, 1) (2.14)

° 1'“
fe*ﬂ%fv?}"*%wzf)c‘ﬂﬁbycﬁ
[+ T'

where

F .1

is only a functlion of the tlmes at the end points, since
all paths y(t) start from and return to the point y=0.
The path integrand F (t,t) can be evaluated by writing

y(t) as a Fourier sine series,

yh = 3 o snarl 5 (2.15)

and then by consldering the paths as functions of the
coefficlents .ay instead of functions of y(t). The result 13(1 9)

Fat) = (ppmw . (2.16)

29ih sinw "=t

The problem of finding the propagator in the form
of Eq. (2.9) or Eq. (2.14) is reduced to merely that of

18 see Reference (4) P. 58
19 see Reference (4) P. T2
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determining the classical action of the system, which we shall
now consider. In Eq.(2.13) the classical action of the systen

can be represented as .
+II
% 2.2 g
SC\ _ /[ %w_x _v_{\_wx +‘FchX]dT © o (2.17)
+I

We must first evaluate the classical path of the system
by using the principle of least action, according to which the
classlcal path X has to satisfy the condition

T
b u b = /[%.ziai_g_w%zzam&hsx ] df
¢ +II *’
— i 6% +/{_m§_m°\fg+ ] sxdt. (2.18)
1/ /3

Since the end points of the paths are fixed, the first term of

(2.18) vanishes., Therefore we obtain

E(t) $ePile) = £(6) . (2.19)

m
To solve the differential equation of X(t), we shall
use the Green function method. The Green function equatlon

satisfying (2.19) is defined by
2
(£,+¢) Gesh = scs-h (2.20)

with the boundary conditioms
G(t,t) = G(t,8) = O : (2.21)
The solution of Eq.(2.20) when s is not equal to t 1s given by

G(s,t) = Asinws + Bcosws , (2.22)

where A and B are constants.
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By applying the conditions (2.21) to Eq. (2.22) we obtain

G(s,t) = G1(s,t)H(t-s) ¥ G2(s,t)H(s-t) 5 {2.23)
where

G1(s,t) = B (cosws = cotwt'sinus) , (2.24)
and G,(s,t) = B'(cosws - cotwt'sints) . (2.25)

The constants B and B' can be determined by using certain
properties of the Green function, the first of which is that

G(s,t) must be continuous at s = &,

G1(t,t) B Ga(t,t) . (2.26)
We thus obtain
B = B' (cos wt = cot wt“sin wt ) . (2.27)
(cos Wt = cot wt' sin wt) ‘

The second property of G(s,t) to be used is that its derivative
must satisfy the equation

[e4(est) -6l | gy = 1 (2.28)

where G' is the derivative of the Green function with respect

to the variable s. On substituting the derivative of G, and G

1 2
from Eq.(2.24) and Eq.(2.25) into the above equation, we obtain

[BN»(-sin.wt - cot wt' cos wt) = Bul=-gin wt - cot wt cos wti}

- l ] (2029)
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By making use of the value of B from Eq.(2.27) in Eq.(2.29),

the constant B' can be determined as

B’ [ cos wl - col wl sinwl]
w [ cof wt'= colwl’ |

(2.30)

and hence

; _ { ok wt B Co‘wt"%inwt ] . (2.31)

w [ colwl - cofwl’ ]

By substituting the values of B and B' into Eq.(2.24) and
Eq.(2.25), we obtain

- ginws-1 sinw -1 , (2.32)

G (5,h) = :
RN wsinw ('~
nd \ / ) u
& G sty ~sinwt-1) sinwd-9) . (2.33)
2 (> W sinw (-1
Thus the Green function (2.23) 1s readily found to be
G s.h — Bsinws-hsinwd™) Ht9)_ sinwd-Dsinwdts) He-t,
bl ws‘nw(t""t’) w Sinw(t"«f)
(2.34)

The classical path X(%) can be determined by considering the

two equations

£(s) + w’E(s) = £(s) (2.35)
m
and a
(L +w?) Gsh = des-hy (2.36)
as

which lead to '
tll tll
2 - = [tz -H-fie) Gesblds
ﬁi(s)(c%1+d)6<s,1)-6cs,t) ‘fgz*“’z?x‘s’l ds f[ch)écs b an‘ G &b
tl . t :
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"

and 1" ' 1! \
T 4T6.H | | chdRe x‘c‘r)nr‘i/%(s)(}cs,’f)dS- (2.37)
ds
dS +I *l 1.,/
Then we have an explicit solution for X(t) as
1'" Jcn . .
g = = [ Geshds + X des |, (228
m dt T
1/
After substitution of the second term we obtain
, _
1 / "
/ P 7 ~* 'J
_ | xsmw(f-T)*X sinw(f-H (2.39)
. e s hdss L o ’
05 m/f(s)G : sinw (t-=1)
1‘1

where we put the boundary comditions of the classical path

X(t) in general form as

) =X, %) = X N (2.40)

To find the classical action (2,17), we integrate

M S | % = fdng _fbzidt
Ol = %(”i]_/{\%x » WX L -1 3 ,
t t
and since mX + mwX —)cc‘b - @ ,
1t follows that .
Scl = %{ x'% = ®¥% 1) 1+ fhxdt L @an

*l
Differentiating Eq. (2.39) with respect to t, we obtain

Y w T ‘ "__/ % | . Y
Xt = W s K S [ ds fasmas-t,

Y (2.42)
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n

ena XD = -;,%(,ﬁ)[x X“S‘U(t't’]“‘Wﬁs{(S)Smw(t—S)
¥ (2.4%)

By substituting Eqs. (2.42),(2.43), and (2.39) into (2.41),

the desired classical actlion of the system can thus be

determined as !

t
Sel - mw [(x"za« X% cos wct=1) — Zxk"*gi/;tfd) sinw(t-1)
‘ 2sinw™t) ne
Tﬂ -'t' _tl t
+ 'ZXv/;tc(—t) sinopy e t)+smw<’c—‘u i/:“{C%sﬂs)Gcsbl .
m?w
¥ ' ¥ 1’ (2.44)

After substituting G,(s,t) from Eq. (2.32) into Eq. (2.44),

we obtain the classlical action

"

f

S - _._Yﬂ_wvr_,_[(xuxﬂ) sosw(t-1) - 2xx+2x dtfch sinw k-1
¢l zsmwcf-t) +’
+’ "
- LY; d’gfd‘.)sinwctf-t) ';h%/:i’rfct) sinwcl -1
'G Y F |
dsf(S) sin w (5-1) ] . (2.45)

Recalling the expressions (2.14) and (2.16) for the propa-
gator K(x,x), we finally obtain the forced harmonic oscill-
ator propagator based on the Feynman path integral, the

Gausslan integral and the Green function method, as

1

x.x _ mw _ 2 i
e ( zn'iﬁsinooct-t)) exP(R Sd] ’ (2.46)

where the classical action i1s given by (2.45) .
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II.3 Density Matrix

In this sectlon, the relation between the density
matrix and the propagator, including their asymptotic
forms which are related to the ground state energy, will
be presented.

Consider a system, initlally in a given state\y(x2t3

4

at time t: which develops into any state‘y(xztﬁ at time t
as a consequence of the action of the propagator K(x)t; x,t)
for the time development of the state of the system.The

final state i1s glven as follows
Yo't A f K, 5x, H Yo, 1h dx' .

For a stationary system} the Hamiltonian does not
have an expliclt time dependence, and in this case the sol-

utlion of the Schrddinger equation

Y L SV ’ (2.48)
HY (x', 1) pa—
is of the form
: L Ent o
\Y (X',f) = z Coeh " Wn(x’) _ 2 A, Yn XV, (2.49)
n n

where E, and Yn are, respectively, the eigenfuntions and
eigenvalues of H for the time independent Schr6dinger equa=~ -

tion

HYn ol ST A - (2.50)

The coefficlent a, are easily‘obtained by multiplication
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¥*

of (2.49) by the functionﬁﬁxv followed by integration

over all x7 thus

an = /*f’: XYY, hdx . o (25

Then the final stateV(x’t’) can be written in terms of the
initial stateV (x,t) as

"i‘E T" "
Yix', 1 - Coe " 7% Yo x)

_L . 4 "
% Il -+ Tl—*” 2ol ’
fZ*K,m%menEwﬂ )lf(x,&-)dx. (2.52)
n
- 00

By comparing the above eguation with (2.47), we finally

¥
2

obtain the desired expression for the propagator,
» B by / & \ ’ _LE (1,'1_'*!)
K(X,’F‘,Xj) = zwn (X)«//h(x’)eﬁ n
n
I 7 T O S B (2.53)
In statistical mechanics, a statlonary system in thermal
equilibrium wilth its surroundings is described by a cano~-
nical ensemble with the denslty matrix at any temperature T
defined by
X -RE
pext,xsp)y = ZY Y xhe e (2.84)

where g ‘i%" andk is the Boltzmann constant.
By comparing the expression (2.53) and (2.54), we obtain
the relation between the denslty matrix and the propagator

as
% x x5 = KX, -ifpsx0)

K «x", x', -ifip) . (2.55)
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This result 1s particularly useful since it provides an easy
method for finding the ground state energy of a quantum mechani-
cal system., When the system 1s consldered at very low temp-
eratures, i.e., as/3 approaches an infinite value, the expo=-
nential terms of (2.54) survive only for the lowest E, , say

Eg, the ground state energy. Therefore Eq.(2.54) becomes

(;Eg/3 . (2056)

p (x',¥;p)

pre

The quantum mechanical form of (2.56) can be obtained by taking
the imaginary time interwval (O, -1hY ) in (2.53). Thus, for

very large # » we obtain

-E
€ 35

Kx', -ind 5 %,8 )0 e . (2.57)

This result leads to an effective evaluation of the polaron

ground state energy.
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