CHAPTER IV

A SUBHARMONIC FUNCTION ON A CYLINDER

We study the boundary behavior of a subharmonic function on
a cylinder.

Let x = (xl,...,xh)s R' (n>3). A system of cylindrical
coordinates for x is given by

2 2 2
p = xl +eeot xn-'l

Xy = p sinol... ainoi_lcoso (1 =1,2,..., n-2)

i

(4-1) xn—l = p Binﬂl... Binen_2

<$2r 5020 <iw i(i=1,..., n-3).

where 0 < 0n-2 1

It can be shown, under the transformation (4=1), that

n 2
pn 2ainn 301...81n0 3 5 32
0= =1 ax
i
=3, Te2 . T3 | ) 9 , n=bh n-3 )
3;{0 sin 91...31n0n_3 500 EEI{D sin 01...sin9n_3 391)
n-3 d , n=k  n-5 n-i-3 n-i-2 )
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If a is positive real number and n > 3, we let C(a) denote the

upper half cylinder

. n m
cla) = {xeR|o0<p < 5, ond x > 0}.
If n =2, ve let Cc(a) be the upper half strip.

2 m m
c(a) = {x e R°|- 2a <% <35 endx, >0}

Let S be a function defined on C(a), we define

M(b) = sup {S(x)]xn =b, x e cla)} (v > 0)

and

M(b)* = max (M(b), 0}.

We first study a special form of the Bessel function. The
Bessel's differential equation

(4-3) XY+ xyt (2= W)y = 0

has a particular solution which is denoted by Jv(x)

I (x) = Al
v m=0 22V L 1p(yame1)

where ¥ is real and

Ma) = s e %% g (a > 0).
0

By integration by parts we obtain

¥ -t ta ), =t a-l
Mlotl) =/ et at =-e"t" b +as %% gt = a r(a).
0 0 0
Jy(x) is called the Bessel function of the first kind of order v.

We consider the differential equation



(4=1) xy"+ (142k)y'+ 3%y = 0.

It can be reduced to Bessel's defferential equation by letting

Yy = EE():#O).
x
kdu k-1
¥ . F e " kx' 7y u'  ku
- = — i  —
dx 2k k k+1
x x x
2 1]
4y = 4 u _ku
dx dx x_k N
= AT T kui§F+l- (k+1)x*, ku
b 2k+2
X x

2ku'  (k+1)ku
~ k+1 k+2
X X

"
= B
k

X

2
Substitute gf and X in (4-4) we obtain

dx2
u"  oky! !k+12ku u' ku 2 u
MET FoT e P0G - SR = 0
X X X X X
2
u" 2ku' = (k+1)ku u'  (1+2k)ku . Ay
2 SO 7 NI G Sy >~ st s o, SR S
X X X X b's X
2 2
u" u' k“u ATy
X1 TTE Rt N
X X b'd X
xau"+ xu'- k2u + lexgu = 0
x2u"+ xu'+ (laxe- ke)u = 0

This equation has a particular solution Jk(lx). Therefore




u = Jk(_}x)

v = 3, (Ax)

y = J0x) =
x
Jk(lx)
From thig we can conclude that % satisfies
x
J (Ax) " ( 2oy e Iy (xx)

(4-5) x(-=E

) + (1+21:)(—k—) +A x(—T-) = 0,

x

4.2 Lemma. Let - <a <b, <+« Suppose ﬂecl([ao.,'bol such
that @(a;) = 0 and # > 0 in (e;, b ). Assume that u end v belong to
c®(lagsPo1)s v(ay) > 0, ulag) # 0 end u(e) = 0 for some c eloy,b).
If u end v satisfy

(4-6) (B(t)u'(t))'+ pP(t)ul(t) = o

(4-7) (B(t)v'(t)) '+ pB(t)v(t) < ©

whenever 8, < t< 'b(.J where p is a real number, then v vanishes at

least once in (a.o.c).

Proof : Take ¢ to be the smallest number larger than 8 such
that u(c) = 0. Suppose that v(t) # O for any t ¢ (ao,c). Then by
the hypothesis that v(ao) > 0 and v is continuous, we get v> 0
on (a.o,c). We may assume that u> O on (ao,c), by multiplying, if
necessary u and the equation (4-6) by -1, and we then have that
u'(e) < 0. By multiplying (4-6) by v, (4=T) by u and subtracting,

we get
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[(B(t)(u'(t)v(t)=-v'(t)u(t))]* > o.

Integration yields
(4-8) [B(6)(a (&)v(e)-v* (tule))], > o

But

[B(t) (u' (t)v(t)=v'(t)u (t))]: = @(c)u'(c)v(c)
0

< 0

since @#(c) > 0, u'(c) < 0 and v(c) > 0. This contradicts (L4-8).
Therefore v  vanishes at least once in (BO,C).

Jv( at)

4.3 Theorem. Let a > 0, Then the function t - never

t

Jv(lt)

vanishes in (0, =], Moreover, inf

> 2a
O<te-L
2a

> 0 wherev 89:'2}
£V 2

A =vn-1la. (n> 3).

-3

: tan (at) is creasing

Proof : We can show that the function

i I
n (0,23) and

Lim £ tan (at) = AL

g+o0*t

2 (0 <t <-L), We consider that

a
— >
Therefore Y tan(at) a s

n-2

(tn-a(COS(a‘t) ok +tn-27\2cos(at) aacos(at)-(n-a)tn-3a. sin(at)

-t

+) 21-,!1"2coes( at)

n

t -ecos(at){lz-ag-(n-a)% tan(at)}

t“'2coa(at){(n-z)ae-(n-2}§-tan(at)}

% B
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o ' o
(b-9) (tn 2(008(&1’-)') + ‘tu 2A2coa(at) < 0
where ;\2 = (n-—l)a.2 and the last inequality follows from the fact that
J =
%tan(e.t) 5> a2, The function v(m) satisfies (4=5) and for vy = 3
tV 2
ve get '
J () J (at) J (at)
(4-10) () + B2 32— = 0.
t\J t t\J tV :

Multiplying (4-10) by 1:“'2 and rearranging we obtain

(at) J (xt)
(b-11) (¢ “‘2(——) B A = o
t t
By (4-9),(4-11) and Lemma 4.2 for a,= 0, b = E:— » B(t) = tn—2’ p = 3
J-{(\t) "
and v(t) = cos(at) we get that # 0 for any t in (0,—] since
£V 2a

v(t) never vanishes in (O,.é.l‘.). Since
a

G J,(it) AV
t »0" ¢V 2"r(v+1)
J,(xt)
it follows that inf u > 0. This completes the proof.
T t
0<t52a

For each b > 0 and n > 2, we introduce

D(b) = cla) N{x e Rnfo <x <b}
and

E(b) = C(a) N{x ¢ Rnlxn= B >0},

Therefore by Theorem 3.14, thereisageneralized Dirichlet solution,
denoted by h,, for the indicator function Xg(1) of a subset E(b) of
aD(b). We note that 0 < h < 1. The following theorem indicates the

growth of h.b(x) with respect to b.
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4.4 Theorem. Let a > 0. If we fix each point x in C(a), then

there exist positive numbers A and B such that

h, (x) w vl e~ AP (b > B)
where A = vn=I a, (n > 2).
Proof : First we prove for the case n = 2. We represent a

point in R2 as a complex number in C and recall that an analytic
function f such that f' # 0 on a domain D € is called a conformal
mapping. It is well known that every harmonic function of u, v
transforms into a harmonic function of X, ¥ under the change of
variables

u+idiv = fx + iy)
where f is analytic function. To see this, let H denote any harmonic
function of u and v. By this transformation H(u,v) is transformed
into a function H(u(x,y), v(x,y)). Let

H*(xay)

I

H(ulx,y), v(x,y)).

By differentiation we havs

-a.Ii* = a—H. ﬂ + a—H ﬁ- ﬂ* = —a—I'-I- 21_1- + —aﬁ E:-

ax du X v ax ° By du yy v 3y

2 2 2 2 2 2 2

a—.’i;: ﬁi—%.p-ag[-a-_g.-s'2+_ai.-a£]+_aﬂ.§_g+ﬂ[-a—}i_vlz+i.gﬂ]

ax® WA ax 2k T ovdu ax v 2 " ax awav ax T 2 x

ot o %, u 0%, B avp, o8 2%, av 2%, % g,
2 2 1

Py U ooy W "an2 Yy dvdu dy  ov 3y2 dy dudv 3y av2 3y
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Adding,
323* agH* . .ol 3211 _‘(ﬁu oH 32v 82v 32H u,\2, ,9u,2
2 TwmiRt ARt Pt g e
ax y ax 3x 3y du
§2H au v , Ju v 32H V2, 3V, 2
+ — — —— — i e e —rmae
2w oxax tayay) e (G G0
32 32 32 82
Since u, v and H are harmonic,—‘g‘-+J= 0, X +ZX =0 and
2 2 2 2
ox 3y ox y
2
-3—-2-% + _3__}21 = 0, Also, by the Cauchy-Riemann equations, %u_ =3
Ju v x Ay
v u
and il 3y Therefore
BQH* aau* \
-—5 + ——'—2 & 0
ax oy

and H* is a harmonic function of x and y.

'1 v
_ E
A /_ B '
E
b
r ) f !
C D Aj C D VB
-5 2 n X -1 ° g
2a 2a
z-plane w-plane
Fig. I

Consider the set S of the form

-1 /si_l_z_he(ab)- sil_zg(ax) )

a

§={(xy)|-5r <x <z, 0<y<2iml
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We want to find the harmonic function H which satisfies the following

boundary conditions :

=1 2 2 ;
0 (c sinh #éinh sa:E—sin !ax[)
-y 5 Fr—
H(x, 81800 Ysinh {)etni(ex); ., (. S exe ol

end H(x,0) = 0

LR |
H(" 2_8..’ Y) = H(Ea’ '.V')

(- o <% <32 .

To do this we transform S on the z-plane into the w-plane by the conformal
mapping w = sin(az). As indicated in Fig.I, the image of the base of S

is the segment of the u-axis between the point u = =1 and u = 1, the

image of the side AC and BD are the segments A'C' and B'D' on the u-axis
respectively, and the image of the curve AEB is

2 = gin he(ab)}. By interchanging the

A'E'B' = {(u,v) € w-plane | IS
variables u and v to polar coordinates, we can write
u = rcos® v = rsiné

and A'E'B' = {(u,v)| r = sin h (ab), 0 < © < v}. A harmonic function H

of r and © on the semicircle center at 0 with radius R = sinh(ab) > 1 is

tan—l QRE sigc

Riad 2

(k-12) H(r, 0) =

3 ro

H is zero on A'B' and unity on the curve A'E'B', Changing to the

coordinates x and y by means of the transformation

(4-13) W

]

sin(az) = sin (ax+iay)

sin(ax)cosh(ay)+ i cos(ax)sinh(ay),
we find that u

sin(ax)cosh(ay), v = cos(ax)sinh(ay). Therefore
r cos @ =  sin(ax)cosh(ay)

r sin @ = cos(ax)sinh(ay)
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and r = Ainha(ay)i-sine(ax), Q.= tan (%ﬁ%)'tm (cot(ax)tanh(ay)).

The function H given by equation (4=12) therefore beccmes

1 2RVeinh=(ay)+sin? in(tan™t ax)tanh .
g-(,,,).%tmlﬂﬂMMM

ne-( s:lnha( aar)+ain2(ax) )

Since H is harmonic on the semicircle, H* must be a harmonic function of x
end y in 8. The boundary conditions for the two functions must be the same

on corresponding parts of the boundaries. Fixing (x,y) in S we see that

2im RH*(x,y) = 2im R 2 tan /31 "'Bi;ér_ax sin ta.n'l cotlax)tanh
» 0

R R R%-( sinhetay)-rsine(ax))

2 2 -1
- i._%_ tan-l 2!:411_@ ‘g{!d-sin !a.x!sin(tan (cot!u!tﬂ(gxn

1-t2(sinh?(ay)+sin®(ax))

= -:-:- /sinhafw)"-sinz(ax) sin(tan'l(cot(ax)tanh(aw))

where the last equality is obtained by using L' Hopital rule. This

together with the fact that

zim M = 11. .
b+ e 2
we can find a constant A such that
H*(x,y) < AR (b > B)

Since hb is the generalized Dirichlet solution for Xg(b)? b.o- H* is

harmonic on § and h.b- H* < 0 on 38. 8Since hb' H* satisfies the maximm

prineiple on S, hy- B¥ cannot attain its supremum on S. Since § is
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compact, hy~ H* attains its supremm on §, in fact, on 3S. Therefore
h - H* 5 0 on S. Fixing (x,y) e s € D(b), we have

h (x,y) < H¥(x,y).
Therefore for sufficiently large b we obtain
h(x,y) < A i
where A is a constant. This completes the proof for the case n = 2.

Next we prove for the case n > 3, let

Vv

3 X if p=20
2 T(v+l)
F, (30) = (hes
J (Ap
Y if 0 <p 5-JL
pv 2a

where v = E%i » A = /o=l a. Thus by Theorem 4.3, Fu(lp) is positive

in To, —é] and let

We define a function Hb by

ainh(Axn) valp)

Hb(x) = i

K sinh(Ab)

For p > 0 , we consider that



61

J xe) 4 J (ap)

1 -2; v
8t (x) = % sinh(xb)[np_‘ vpv ) sinh(Ax_)+( =

)“sinh(lxn)
(o]

+(Jv(xo)

<) (stan0x,)")

sinh()txn_)Jv(lp)[ oV {Jv(lp)).,+ E{J‘,(m)s sinh(ax_)
Ko Vsinh()Ab) J,(p) ¥ S sinh(Ax)

Jv(kp) ..+ Qﬁ(JU(Ap)) ,+;‘2 J“(Ap) -A2 Ju(lp) >

v o] p\) p“ 0

=, (x) [—22((

where the first equality is obtained by using (4-2) and the last

equality follows from the fact that Jv(lp) satisfies

v
P

u"(p) + -g-;—g-u'(p) * Agu(p) = 0,

Thus H  is harmonic on D(b) \ Z* where Z* = {x ¢ D(b)|p = 0} is a polar
set. Since H  is continuous on Z¥, Hb is harmonic on D(b). hb and Hb

are bounded harmonic functions that satisfy

gim (Hb(x) - hb(x) = 00 (y € aD(b)\2)

X+Yy
where Z is the intersection of the sphere center 0 radius 5& and the

hyperplene X, =b which is a polar set in R” (n > 3). It follows

from Theorem 2.24 that hb < Hb' Therefore



sinh(lxn)Fv(Ap)
K sinh(ab)

In

hb(x)

sinh(xxn)Fu(Ap)f g .az
K " Ab  -Ab
e e

2 sinh(xxn)FU(;p) ( 1 ]
K elb(l_e-EAb)

This shows that for each x fixed in C(a), there exists a positive

number A which is independent of b such that

hb(x) SR e TR

for all sufficiently large b.

4.5 Definition The limit inferior %im inf F(b) is defined by
b

2im inf F(b) = sup {inf F(x)}.
b b x> 3
4.6 Theorem. Let a > 0 and let S be a subharmonic in c(a).

Assume that

£im  sup S(x) < o0 (y € ac(a))
X >y

and suppose that

gin  inf 7P yp)t < o

b+

where X = /n-1 a, Then S < 0 in c(a).
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We note that an analogous result for a subharmonic function
on a cone has been given in [10].
Proof : For any fixed b, we consider Sb defined by
+
§,(x) = s(x) - M(b) b, (x) (x e D(b)).
Since hb is harmonic and S is subharmonic in D(b), Sb is subharmonic
in D(b). By the hypothesis that

gim sup S(x) < 0 (y € 3c(a))
X+y

and the property of hb we get Sb satisfying

2im sup sb{x) < 0 (y € ap(b)).
X+y

Therefore by Theorem 2.6, Sb(x) € 0, This gives
+
S(x) < M(b) hb(x).

Keeping x fixed we have that

&
gim inf e m(p)

b+

(L]

0.

Let € > 0 be given. By Theorem 4.4 we can find positive numbers A and B

Sheh thak
h(x) < ae™® (b > B).

We can find a sequence of positive numbers bJ’ J =1,2,... tending to

infinity, with the property that for all sufficiently large J

=Ab
3 +
e M(b‘j) < €/, .
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Since x is in D(bj) and bJ > Bavhen J is sufficiently large, we conclude
that 8(x) < e. By letting € + 0 we get S(x) < O for x ¢ C(a)
4.7 Corollary. Let a > 0, let h be harmonic in the cylinder C(a)
such that it vanishes on the boundary 3C(a). If max {Ih(x)|l|xn| = b}

X
= 0(e b) as b > @ where A = /n-1 a, then h = 0 in C(a).

Proof : Since h is harmonic, h is subharmonic and superharmonic
on C(a). By Theorem 4.6, h <0 and h > 0 in C(a). Therefore h = 0

in Cc(a).
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