[1 dl =4 o =
ﬂ’]i“ﬂi‘ll‘ﬂiq‘ﬁﬂ']’]llu’]L‘I]‘ﬂﬂ‘ﬂ“ll‘ﬂﬁ"ﬁ‘ﬂ‘wmw]iﬁ:ﬁﬂﬂ’]i‘Mi"}@@ﬂUﬂ']’]ﬁJNﬂW@’]ﬂ‘ll‘ﬂﬁIﬂi‘LLﬂi‘ﬁJ

fasalagnteildsunsudalaseadng

= =
wsanailssaun Alsiasgna

?awmﬁwuﬁ'ﬁﬂuzﬁqwﬁwmm?ﬁmsmmwﬁngmﬂ‘%‘tytyﬁwmmmmﬁmﬁﬂ'mﬁm
a11ITangINIseeNiamef niAdTIALIRAan
pUZANENmans ainasnsalnnAneae
UnnsAnwn 2547
ISBN 974-17-6584-3

-

a1avEIRaiIaINTaNIINeNaY

AN IMPROVEMENT OF SOFTWARE RELIABILITY BY DETECTING FAULTY CODE
IN STRUCTURED PROGRAMMING

Ms. Prattana Deeprasertkul

A Dissertation Submitted in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy in Computer Science
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic year 2004
ISBN 974-17-6584-3

Thesis Title AN IMPROVEMENT OF SOFTWARE RELIABILITY BY DETECTING
FAULTY CODE IN STRUCTURED PROGRAMMING

By Ms. Prattana Deeprasertkul

Filed of study Computer Science

Thesis Advisor Assistant Professor Dr. Pattarasinee Bhattarakosol
Thesis Co-advisor Professor Dr. Fergus O'Brien

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the

Requirements for the Doctor's Degree

THESIS COMMITTEE

TP B Thesis Co-advisor

(Professor Dr. Fergus O'Brien)

............... J:M% Member

(Associate Professor Wanchai Rivepibool)

(Dr. Virach Sornlertlamvanich)

wnalasau fdsuaigna :m?ﬂ%’ﬂﬂgqmwmL%@ﬁ@mmeﬁ@%lﬁLLqﬁmﬂm?mq@
saumauianatnvasllsunsuiadielnanimaldsunsuiialaseaing (AN
IMPROVEMENT OF SOFTWARE RELIABILITY BY DETECTING FAULTY CODE IN
STRUCTURED PROGRAMMING) . 711301 : fiaanansiatsd ms. AnsRu
Anslnea, @fl5nend7a : PROFESSOR FERGUS O’BRIEN, #141. ISBN

974-17-6584-3.

= = ,-.L’ 9, © o’ 1 dld &
Anenlinusulddiauanistliulssauindaera e flaanisnsagauaany
Aanann1e9lLlsunsy (Software Fault) ia51elasntmalilsunsaidalnseadie iasasdiagandiag
. ‘e e e o - .4
fldannsdnmanafinusilazsinnnsasiase uusazadalullsunsuiNaniaauliana o
= = = 1 13 = -] 9 =
Weannnadeuldsunsuuazudlaaauiianainuanit anntianainraellsunsuazinliiea
= 4 [:// dl = 91 9/ =
AIHNEANAATBITLLULIU (Software Failure) Asisiiapansianatnraslisunsugnudlalia
° Lo « o 4N
AMWIUAAAIAITNUNTO D AT IFZUUBAALAN NINTLA T
lunsAneilaqiiudaulugjariinisinnismssaaauainuiianainaaslilsunsuludos
o’ dl & o 1 a9
229NN UITEU LY iesanszuugansiiafludaqiiuisuialvgjuazdudan n1sneaa
aaulutieresnsimunssunLasi Wiseadad ldasunn saiulufinainusiazninis
whlatlymssnanalaenisnsmasauariuieanaipreslilsunsudaduaivnassanuianas

P oA -
ﬂﬂﬁ?%ﬂﬂﬁ’]uﬂ@u‘ﬂI‘ﬂi‘LLﬂi‘ﬁJ@ZQﬂﬂ‘ﬂﬁJi‘W@

AP ATIAANART R G Lo L I
= = = '8 =4 nﬂl e‘d‘

A1119%7 AINEINITAANALADT AN NATARVRNTENUTASY e,

Un1s@nun 2547 AN NATARNANTENUTAMIVN oo

User
Text Box
iv

4373824223 : MAJOR COMPUTER SCIENCE
KEY WORD: Software reliability / Software failure / Software fault / Fault detection / Pattern matching

PRATTANA DEEPRASERTKUL : AN IMPROVEMENT OF SOFTWARE RELIABILITY BY
DETECTING FAULTY CODE IN STRUCTURED PROGRAMMING. THESIS ADVISOR:
ASSIST. PROF. PATTARASINEE BHATTARAKOSOL, Ph.D., THESIS COADVISOR :
PROFESSOR FERGUS O’ BRIEN, Ph.D., pp. ISBN 974-17-6584-3.

Software reliability is an important feature of a good software implementation.
However, some faults that cause the software failures are not detected during the
development stages. These faults will create unexpected problems for users whenever they
arise. At present most of the current techniques detect faults while the software is running.

Unlike other techniques, the Precompiled Fault Detection and Correction (PFDaC)
technique introduced in this dissertation detects and corrects the faults before the source
code is compiled. The objective of the PFDaC technique is to increase software reliability
without increasing the programmers' responsibilities. The concept of “pre-compilation” is
applied to PFDaC in order to reduce the risk of significant damages during the execution
period. PFDaC technique can completely eliminate the significant faults in the program
source code. Consequently, the risks of software failure based on these faults can be

avoided and the reliability of the software is improved.

Department Mathematics Student’s signature........cooooieie
Field of study Computer Science Advisor's signature.............cccccoo

Academic year 2004 Co-advisor's signature........cocccceiiiviiiinenen.

User
Text Box
v

Acknowledgements

| would like to express my deepest gratitude and thanks to my advisors Assst. Prof. Dr.
Pattarasinee Bhattarakosol for her contributions to al aspeds of my works on this thesis. She
was a grea advisor who provided a lot of advise for the thesis. | would also like to thank
Professor Fergus O'Brien who is my co-advisor for his sippat during | stayed and dd research
at SERC, withou his contributions and guidance work would na have been passble.

| am grealy thankful to DPST scholarship for the financial suppat since Master Degree
until 1 graduate Ph.D. | would like to thank my best friends for their help, caing and many
pleasant memories over yedas.

Finaly, | would like to thank my parents for their love, suppat, and encouragement. | will
forever be indebted to them for everything they have dore for me. My parents, my brother and

his family also stood by me.

Table of Contents

ACKNOWIBAGMENTS ... o i e e e e e e e e te e e e aen s
Listof Tables ... om0
IS o o 1 == P
R 1011 0T [ot i o] o H P PRSPPI
0 1Y o (V7 {0 o P PP PRPRP
O 2 S ¥ [ot o] o T s PP
1.1.3SWItCh SEAEEMENTt et

1. 1. ADYNAMIC ATTAY ettt e et e et e e eae e e e e e b e e e e eae e

I Y g T T = I T o P

D2 o =0 £V P

1.3 SCOPE Of WOTK ot e e e e e

1.4 Contributions of the DISErtaion ... it e e

1.5 Expeded OULCOMES e i e,

1.6 Dissertation Organizationc.coevevieiieieanninnnennnns

2 REGEAWOIK ..o
P2 I == Yo (o £0] 0 T PP

2.1.1Erlang Programming SIrUCUIEoooiuiiiii i e

2.1.2Faultsand FailuresinErlangccooes

11

11

12

13

13

14

14

14

15

2.2 RE A OO WK e e e e e

2.2.1S0ftware INSPEAIONviiri i e e

2.2.2The Current Software Fault DetedionMethodscooevveent..

2.2.3Erlang Programming Languageccoovvviiiiiiiiiiin e eeieeanns

3 The Precompil ed Fault Detedionand Corredioncvoovvvvviiiiiiiiien e ennn,

3.1 A Program DependenceGraphcoooe e iiie e

3.2 Pattern LanQUEBJEocineiit it it e e e e e e et e e

3.2.2USINg aPaltern ..o i

3.3 DeCAiONMOAUE ...t e e e e

3.4 CorredioN MOAUEni e e e e

3.5 Complexity

3.6 Summary ..

4 The Implementation and Experimental Results of the Propcsed Tedhnique ...

4.1 Implementation d Precompiled Fault Detedion and Corredion

Tednique ..

4.2 Experimental RESUITS b et et e e

5 Theoretica ANAYSISvuiie e e e e i e e e

5.1 Fault Detedion ...

.2 AUt COr I ON e e e e e e e e e e e

6 DiscusIonand ConClUSION ..ot e

0.1 DISCUS T ON e,

6.2 Conclusion

viii

17

17

19

20

21

22

23

23

26

28

29

30

30

35

41

41

43

45

45

46

AONUUINYUINNS)
RN ITNINENAY

List of Tables

Table

3.1 Symbodsused for syntadic entitiesin source @de

3.2 Named symbals used for syntadic entitiesin source mde

4.1 The number of programming faultsin ead C applicaion

Page

22
23

37

Xi

List of Figures

Figure Page

11

12

1.3

14

15

1.6

17

2.1

3.1

3.2

3.3

34

3.5

3.6

3.7

4.1

4.2

An example of an applicaionthat contains a static array index ou-of-bound 5

An example of an applicaion that contains a string array index out-of-bound 6
An example of passng wrong type of functionarguments 7
An example of no-default-case in switch statements 8
An example of adynamic aray index out-of-boundcoenl 9
An example of thefirst case of infiniteloopc.ccoiviviviiene. 10
An example of the secndcase of infiniteloopcoceeeeeee. 10
A structure of an Erlang programoo oo 15
Precompil ed Fault Detedion and Corredionin context 20
The Program Dependence Graph for the small program shown on(b) 21
The deteding function d Precompil ed Fault Detedion and Corredion 24
An example of system graph (a) for a part of program in Figure 1.1 shown
OND) ..o . 25
An algorithm of amain functionality for deteding and correding faults 26
An example of the pattern-and match graphs for the program in Figure 3.4(b)
.. 26
The wrreding function d Precompil ed Fault Detedion and Corredion
EANIQUE ... e e e 20
An example of alog file: array index out-of-bound atedion 34

An example of alog file: string array index ou-of-bound @tedion 35

Xii

Figure Page

4.3

4.4

4.5

4.6

4.7

Al

A.2

A.3

A4

A5

A.6

An example of alog file: passng wrong type of function argument

(0 (=To (o] o I PP PPTPPIIRG |
A flowchart of the stepsinvolved in the evaluation d using the PFDaC
L€=T0 1] o [1= PSPPI | o
The resulting graph kefore and after correding by the PFDaC techniquein
Hlelc el . L. 50 38
The resulting graph kefore and after correding by the PFDaC techniquein
Ale2C ..ol B BN . 39

The resulting graph kefore and after correding by the PFDaC techniquein

The interfaceprototype of the propased technique for fileinpus............ 50
The interfaceprototype of array indicesdetedion bl
The interfaceprototype of passng the wrong function argument type

[0 5T 0 £ 0] o TR TR o ¥ |

The interfaceprototype of switch statement case detedion 52
The interfaceprototype of dynamic aray index detedion 53
The interfaceprototype of infinite loop detedionc............. 53

CHAPTER |

I ntroduction

The task of implementing a program without faults and errors is challenging. Currently,
various compilers have been progressvely improved. However, some faults and errors
which are the results of human oversight are still | eft out and interrupt the system at the
operation time. The existence of the faults in applications can increase the number of
software failures and can, thus, deaeese the reliability of the software. Therefore, the

software reli ability can beimproved if and orly if the software failure can be avoided.

1.1 Motivation

Software reliability is partialy depended on capabiliti es built into the compilers. If the
interpreters or compilers are éle to deted all common faults and errors, software
reliability can be adieved. Although many languages are developed to serve various
types of humans neeals, orly some of them can guarantee the reliability of their
applicaions. The languages such as Java and Erlang are examples of high quality
programming languages[1,9 that reliability of their applications can be ensured.

Java is a popuar language which is widely used and classfied as an oljed-oriented

language. It is incorporated significant error cheding such as the feaure of deteding

array indices exceeding the array bound during run-time. Since objects in Java programs
are responsible for operations to be performed, the parameters to perform such tasks are
checked and informed during the compile time. Thus, the faults can be detected and
corrected before the applications are delivered. Therefore, Java can be caled as a
language that supports the fault-avoidance method.

Another functional programming language, Erlang, [1] is used to develop highly
reliable communication-software products. A characteristic of this language is the pattern
matching functionality which assists in tightly coupling faults and failures. Therefore,
whenever a failure arises, the Erlang interpreter can immediately locate the cause of such
failures. So, the software implemented in Erlang exhibit a very high level of software
reliability.

Even though programmers and testers have performed the verification for faults
detection during the software development process, unfortunately, there are some faults
and errors which cause the critical failures still remaining in the program. One reason for
the remaining faults and errors is the inefficient task of compilers. Since some compilers
cannot detect some faults or errors, therefore, there is no error or warning message
presented to programmers while the programs are compiled. Examples of the languages
that their compilers cannot fully detect faults are C, FORTRAN, Turbo Pascal, etc.

Considering C programs, for example, the faults include cases such as array indices
out-of-bound, passing the wrong types of function arguments, no-default-case in switch
statements, or infinite loops. Furthermore, it is not uncommon that programmers or
developers ignore warning messages at the compile time when, in fact, these warning

messages may indicate the potential for a critical fault during software execution.

Having a hidden fault in an application program can create the critical problems for
an organization. Although software faults are rare ones in production cases, once a fault
occurs, some critical system failures can occur. Thus, the programmers and testers must
ensure that the developed software operates under the fault-free situation. One way of
performing fault detection is to take an advantage of software inspection. A source code
is general examined by checking it for the presence of errors, rather than by ssmulating
its execution [10]. Using this mechanism, it can detect and eliminate faults and errors in
the software products developed during the software life cycle. Consequently, the
reliability of applications are increased. However, the fault detection method is likely to
fail unlessthe extreme care istaken during a program inspection process.

Since there are various types of applications such as game applications, network
applications, and web applications. Thus, different applications generally are devel oped
using different languages. For examples, the network management application may be
developed by C whereas the e-commerce applications on web will not be implemented
by C. Thus, there are some differences of errors existing in programs, depending on the
error-prone feature of the programming languages. For instance, in C++ and Java, many
mismatches between actual and formal parameters can be caught at the compile time, but
there might be an exception in C, etc. The following is a list of some classical

programming errors [10].

» array indices out of bound,;
* mismatches between actual and formal parametersin procedure cals;

e nonterminating loops;

e use of uninitialized variables.

Considering the system software that is the heat of the computer’s operations, most
of these software ae developed in C. Additionally, most compilers of the structured
programming languages are nat able to deted all faults. Therefore, in this disertation,
we will consider C as a representative of other structured programming languages and

study faults that lead to software fail ures.

1.1.1 Static Array

The C compiler does not have the chedking of array indices whether they are out of

bound[24]. One example @ou an array index out of boundis shownin Figure 1.1.

1 m&nd) |

2 nt@e[S], tefnp(3] & result, sum,
3 char fen;

4 1= resulisum =10}

5 while(<=5

) temp{1}="art{i],

1 1=addi, 13

8 sum = addizum, tempf1]],
¥ 3

10

Figure 1.1: An example of an applicaion that containsa static array index ou-of-bound.

Example 1.1. Considering the cae of an array index out of boundin Figure 1.1. The
instruction at line 5 dedares values for array arr[0] to arr[5] when the upper bound &
the arr array shoud be 4. Consequently, the value of temp[0] is replaced by the value of
arr[5] at line 6. Thus the value & the temp[0]’s location is automaticdly eliminated.

This fault can affed the company’s profit and loss which uses this code, in business

Finally, it will affed the company's reputation in the negative manner.

foaind) {
char strl] = “computer”,
char stri | = “science”,
strepyistr]l, “mathematical™);
printf(“%s Yes”, strl, strd);

)

Th LR B el RO e

Figure 1.2 An example of an applicatlion that contains a string array index out-of-bound.

Example 1.2. Another example of array index out of boundis $own in Figure 1.2.
The string “mathematicd” which is 12 charaders is greaer than string “computer”
which is 8 charaders. The fault occurs when the string “mathematica” is copied into

strl at line 4.

1.1.2 Function

When a function is generally caled, some parameters may be passed to the cdled
function. Since the old versions of C do nd suppat function prototypes, therefore the
passd type of function arguments are not chedked. On the other hand, in the modern C,
the programmers are &le to dedarethe function beforeit iscaled. Thus, its parameters
type ae dhedked when the functioniscdled. However, some functions are not dedared
urtil the function has been used. Therefore, the compiler treds these functions asiif it is
a nonprototype for function arguments. Consequently, the parameter cheding is
ignored.

Example 1.3. Considering Figure 1.3 at line 14, the add function is dedared, and the

passng arguments are the integer named x andy. However at line 11,the add functionis

1 mamn() {

2 it arr[5], temp[3]. 1. result, sum;
3 char mon;

4 i1=result=sum=0»

5 while(i == 3) {

) temp(1] = arr1];

7 1=add(1, 1

8 sum = add(sum, temp[1]);
9
10
11

}

result = add{sum, o)
12 pript(result),
13)
14 it addint = ant) {
15 refarnGeFy)
16 %

Figure 1.3: An example of passing wrong type of function arguments.

called and the passing arguments are sum and mon, which mon is declared as a character.
Since the type of passing parameter, mon, is different from the declared parameter, y, of

the add function, therefore there is no matched value.

1.1.3 switch Statement

In the switch statement there is the default case that is used when there is no match in the
switch statement. However, programmers may ignore the use of the default case with
various reasons. In some situation, it is dangerous if there is no matching case in switch
statement and the default case does not exist. Thus, the execution continues and a serious
accident occurs as shown in Figure 1.4.

Example 1.4. Considering the switch statement in Figure 1.4 at lines 6 to 11, it isa
program about the aircraft landing control system. The switch statement in the program

does not have default case. The failure may occur if the emergency case happens on that

1 mani(){

2

3 Domestic=1:

4 International = 2;

-

& switchitype) {

7 case |

2 Eunway_Free(type),
o case 2

10 Runway Free(type).
13)

12 Lamdanig();

13

Figure 1.4: An example of no-default-case in switch statement.

aircraft and it canna be spedfied the type. The unidentified aircraft may land onthe
runway that is nat avail able. Therefore, If there is no matching case in switch statement,

it shoud have the default case for resolving this problem.

1.1.4 Dynamic Array

Dynamic aray is anather type of array. It involves dynamic memory all ocaion. A piece
of memory is allocated to define aray index for a variable we have dedared. Some
failures may occur if some variables use the memory storage over its dedaration as
shownin Figure 1.5

Example 1.5. Considering an array index. out of boundin Figure 1.5.The instruction at
line 6 dedares values for array arr[0] to arr[256] when the upper bourd of the arr array
shoud be 255. When the aray temp was <t the valuesfrom arr[Q] to arr[256] at line 7,
the value of temp[Q] is replacal by the value of arr[256]. Thus the value & the

temp[0]'s location is automaticdly eliminated. This fault also affeds the company’'s

main() {
int *arr, ®temp, 1, sum,
arr = malloc(l), temp = malloc(1),
1= suym=0:

L N W T e

while(1 <= 256) {
temp[1] = an1],
1= addi, 1),
sum = add(sum, tampl1]),

0)
1

=t =t D DD W] O

Figure 1.5: An example of a dynamic array index out-of-bound.

reputation in the negative manner.

1.1.5 Infinite Loop

Another failure that mostly meets in coding program is the infinite loop. In this
dissertation focuses on two cases of the infinite loop. Frst case is shown in Figure 1.6;
the value of total (or other values in while loop) will continue to increase infinitely. The
while loop is never stopped as the variable ok never be FALSE. Another case of the
infinite loop in this dissertation is shown in Figure 1.7. The value of total will continue to
increase infinitely -as well, if the variable i has never been less than zero (negative
number) or greater than zero (positive number), respectively.

For more examples of problems, considering the examples of C programs in [4] the
errors include cases such as array indices out of bound, passing the wrong types of
function arguments, and no default case in switch statement.

Although programmers try to detect faults by running data test sets, or program

L.i’ .\
_ Afl e of thefirs case o

Figure 1.6 se of infinite loop.
N

i

NghIIVINg
AP ITURAIVENRE

Figure 1.7: An example of the second case of infinite loop.

10

11

inspedion software, urfortunately, only some faults can be deteded before software is
delivered to users. Thus the reliability of the software caana be fully guaranteed in the
runtime process The propaosed technique cdled as Precompiled Fault Detection and
Correction (PFDaC) helps programmers deted significant faults and errors that might
be left in the programs. Additionally, it cen also automaticdly corred some faults based

onthe programmers desires.

1.2 Objectives

In this dissertation, ou objedives are asfoll ows:
1. To propose amethodfor deteding software faults in software programs to improve
the software reliability by applying infrastructure of a functional programming

language to the structured programming language environment.

2. To develop a static detedion tod that can deted software faults in applicaions to

improve the reli abilit y of software modues which are investigated.

1.3 Scopeof Work

Presently, there ae two classs of the programming languages:. structured programming
languages, and ohed-oriented programming languages. As mentioned previoudy that
some defeds in the structure programming languages are hidden duing the compil e time,
the software products canna be cdl ed as high-reli able software.

When the exeauting software was interrupted, o the software fail ure occurs, it can

be wmurnted as a st (or expense) of the organization. Resolving the failure software is

12

time-consuming, and it increases the risk of loosing customers of the organization.
Therefore, this reseach has an am to propcse a tedhnique that can increasse and
guarantee the reliability of the software product before the software ae delivered to
clients. The propcsed technique, PFDaC, isindependent from the dficiency of compil ers.
Therefore, it can be gplied to every programming languages. The significant functions
of PFDaC are automaticdly deted and corred faults in the structured programming
applications at the compil e time.

In this dissertation, we focus on the cae study of the investigated programs written

in C language. The foll owing C programming faults are considered.

static and dynamic aray indices out of bound,
» passngincorred types of function's arguments,
* no default case in switch statements,

» some caesof infinite loops.

* some caes of dynamic arays, this dissrtation focuses on the dynamic aray

indices which can be computed their values at compil ed time.

1.4 Contributionsof the Dissertation

The contribution d this dissertationis an introduction d the PFDaC technique. PFDaC
can automaticdly deted and corred the programming errors, which are the results of
programmers inadvertence and canna be deteded by compil ers, in the source @de prior

to the compile time. PFDaC can be gplied to C applicaions and it will be gplied to

13

other language applications in the future. Furthermore, the experimental results and

theoretical approval have been presented to support the design of PFDaC.

1.5 Expected Outcomes

1. To decrease the number of failures in software applications and improve the

software reliability.

2. To apply thistechnique to other structured programming languages.

1.6 Dissertation Organization

The rest of the dissertation is organized into five additional chapters. Chapter 2 discusses
the background and related works while Chapter 3 proposes an architecture of PFDaC.
Additionally the technique for pattern matching, detecting, correcting faults in software
source code are described in this chapter. The implementation and experimental results
of PFDaC technique are presented in Chapter 4. Furthermore, theoretical analysis of
fault detection and correction is shown in Chapter 5. Finally, discussion and conclusion

of this dissertation are elaborated in Chapter 6.

CHAPTER I1

Related Wor k

In this chapter, some characteristics of Erlang which is a functional language will be
presented to show the pattern-matching features. The methods, tools, and techniques

related to software fault detection are discussed to the related work section.

2.1 Background

2.1.1 Erlang Programming Structure

Erlang [1, 13] isafunctional programming language that was devel oped by Ericsson and
Ellemtel Computer Science Laboratories, According to the architecture of Erlang, the
programs in Erlang are mostly free from side-effects. Additionally, Erlang generally has
no reassignment statements.-. Furthermore, written programs in Erlang are about 5-10
times shorter than the equivalent programsin C [24].

An Erlang program consists of a set of functions which may be collected into
modules [1] as shown in Figure 2.1. If the failure occurs in function B of Module I, the
fault may be somewhere nearby it (in Function B or in some functions calling it).

In addition, neither global variables nor pointers are used in Erlang. Moreover, local

variables are assigned inside functions and these variables are never changed. All of

15

Modale M odbale [T
Messaze
Functicn & > Fuanction &
Messaze
* } — ¥ ¥
Fanctiem B Fanctiom B
* ¥ ¥ 4
Functicm C Fancticm C

Figure 2.1: A structure of an Erlang program.

these advantages help the Erlang programmers tradking faults more eaier and faster than
the similar functions in C programs when failures occur. In this sdion, the pattern
matching which is one significant charaderistic of Erlang is considered. It makes the

failures occur close to their causes.

2.1.2 Faultsand Failuresin Erlang

Although Erlang is a reliable programming language, there ae some faults and fail ures
that can be deteded in Erlang programming which are described as foll ows.

Example 2.1 The Nth element of the tuplein Erlang

-modu e(dividel).

-export([divide/Q]).

divide() ->

T={10,9,8,7,6,5,4,3,2} 1

D=1dveement(12,T),

io:format(“~w~n", [D]).

In Example 2.1, the processwill terminates with an error at run-time because T has

16

just 10 elements. But D is the result of 1 dviding by 12th element of T that is not
defined.

Example 2.2 if statement in Erlang

if

Score >= 80 -> io:format(* High Distinction~n");
Score >=70-> io:format(“ Distinction~n”);
Score >= 60 -> io:format(“ Credit~n")

end,

io:format(“~w-~n", [Score]).

Example 2.2is an example of if statement in Erlang. The failure will occur if Score
< 60, since there ae no any matching cases in if statement. Consequently, a runtime
error will be generated and the next instruction cannd be cntinuowsly exeauted.
Example 2.3 Function in Erlang
-modu e(com).

-export([compute/1]).
compute({add, A, B}) -> A +B;
compute({doulde, X}) -> X * 2;

compute({times, Y, N}) -> Y * N;

In Example 2.3, when the function is evaluated, arguments of the function are
matched against the patterns occurring in the function definition. The aguments, which

are variables, are dso chedked when the compute function is cdled. So, if the function

17

cdlsare asfollows:
>com:compute({ minus, 7, G). ..o <1>
>com:compute({add, ‘@, 10). .oocovvvriiiiieeriii <2>
then a runtime aror will occur. Because in <1> there is no clause defining { minus, 7,
0} in com:compute/l or in <2>*‘a isan incorred argument in computation.

As own in the dove examples of Erlang, programmers can deted faults' locaions
as onas the runtime error occurs. S0, the &bility to deted these faultsisthe advantage

of pattern matching in Erlang.

2.2 Related Work

2.2.1 Software lnspection

Since software faults and errors interfere with namal process various techniques have
been devised to minimizetheir effed. Many software inspediontoadls are used to insped
the running processes of software gplications, such as ICICLE [22], ASSST [16], and
Suite [5]. [15] compared the inspedion processes of these software techniques. One toodl
for identifying faults during inspedionsis a “chedlist”. This chedklist helps inspedors
by listing all the fault types to look for [19]. However, the software inspedionis usually
performed after the compile time. Furthermore, the diedlist for software inspedionis
defined manually. Thus, there is 9me posshility of human' s error that some faults may

be left out.

18

2.2.2 The Current Software Fault Detection M ethods

One critical problem which is considered by many researchers as an example is the
buffer overrun of array indices. This problem can be solved by either dynamic or static
techniques. Dynamic techniques such as Stackguard [3], CCured [17] and High Coverage
Detection of Input-Relate Security Faults [14] have been proposed to prevent the
incorrect memory accesses without eliminating bugs in the source code. These tools are
applied at run-time, in a reactive fashion, attempting to catch invalid accesses. On the
other hand, the static analysis tools proposed to prevent and detect buffer overrun cases
are mentioned in [9, 25, 26]. These static tools focus on either the buffer overruns, or
memory access error detection looking for equivalent faults to the dynamic techniques.
Once the problem of buffer overrun is detected, a warning message will be presented to
the users.

The structured programming languages, such as C, are widely used for developing
the software products. The C language programs are relatively large. When a failure
occurs, it has to take along time to find out the causes by tracing faults in the collected
log file. Currently, there are tools such as Purify and Valgrind that can detect an array
index out-of-bound. Purify is a commercia package tool that can find memory errorsin
programs, but it is very expensive [20]. Valgrind is a tool for finding memory
management problems in x86 GNU/Linux executables. Valgrind is licensed under the
GNU Genera Public License [23]. Software running under the current tools runs much
more slowly, making testing more time-consuming and tedious. Moreover, the existing

tools are applied at run-time, in a reactive fashion, attempting to catch invalid accesses

19

when they happen.

2.2.3 Erlang Programming L anguage

Even though many software detedion techniques and todls are propaosed, the reli abilit y of
the software gplicationis dill I argely reliant on the human designer’s «ills. Sincethe
techniques mentioned above caina avoid human errors, the potential improvement
offered by inherently reliable programming languages sich as Erlang [1] is needed.
Erlang is a functional programming language that can guarantee the software reli ability
withou permitting a wide range of human errors. The Erlang compiler uses a pattern
matching tedhnique that asgsts in tightly couping between faults and fail ures. Therefore,
it can deted most of the hidden faults sich as the incorredness of array indices, the
mismatch of function arguments types, and nodefault-case in switch statements.
Currently, the eisting todls are gplied at run-time atempting to catch faults when
failures appea in the system. However, it Is costly and time-consuming to return the
source @de for tradng these faults if the software system isreleased to user. Therefore,
the Precompiled Fault Detection and Correction (PFDaC) techniqueis proposed
to help resolving this problem. PFDaC would be gplied at the compil e-time with the
intent to reduce the time it takesto debug the cde that caused faults and failures. The
program source ®@de is analyzed by PFDaC medhanism before passng through the
compilation process The fault examplesin C [12, 24, which are the cae study, are
also addressin this dissertation. There ae some differences of detedion and corredion
procedures in ead case. Furthermore, the reliability feaures of Erlang are gplied to C

programming language by PFDaC technique.

CHAPTER I11

The Precompiled Fault Detection and Correction

Achieving reliable software is an objective of developers and users. In order to prevent
such faults and errors, programmers and software inspectors must verify software for all
possible faults during the development stages, and also validate the software product
before delivering it. Therefore, it challenges researchers to develop methods or
techniques to detect or prevent the faults during development period in order to obtain a
high level of reliability for software products.

In this chapter, the architecture and processes of PFDaC technique are described.
The significant function of PFDaC technique is to perform the fault detection as a
software guard. It preprocesses the programs before the compilation takes place as
shown in Fgure 3.1. The corrected software can be compiled only after the detected

faults were corrected.

Cogrected

Program
Progragh

Figure 3.1: Precompiled Fault Detection and Correction in context.

21

1 mam) |
i nt i, sum,
3 sum=[;
- 4 =1,
@ @ 5 whileGi< 1) {
6 sum = add{sum, temp 1],
. . 7 1= add(i 1)
N £)
G ;o
10 prind);
L)
— control data
(@ (b)

Figure 3.2: The PDG for the small program shown on (b).

According to the functionality defined for the PFDaC technique, it consists of two
main modules: the detection module, and the correction module. Before describing the
PFDaC technigue in more details, a basic material on a program dependence graph and

the pattern language are introduced.

3.1 A Program Dependence Graph

The Program Dependence Graph (PDG) [2, 7] is a directed graph for a single procedure
of a program. The vertices of the graph represent constructs such as assignment
statements, call sites, parameters, and conditional branches. An edge between the vertices
indicates either a data dependence or a control dependence. The data-dependence edges
indicate possible ways in which data values can be transmitted. For example, in Figure
3.2, there is a data-dependence edge between the vertex for i = 1 and the vertex for while

(i < 11), which indicates that a value for i may flow between those two vertices.

22

A control-dependence elge between a source and a destination verticesindicaes that
the result of exeauting the source vertex controls whether the destination vertex is
reated. For example, in Figure 3.2, there is a cntrol-dependence alge between the

verticesfor while (i < 11) and the vertices for the two cdl sites onthe function add.

3.2 Pattern Language

The pattern language [11, 1§ is applied to ched the programming language constructs
such as variables dedarations, type dedarations, functions argument types, etc. To
illustrate the PFDaC approadh, an overview of the pattern symbals in a sample pattern
language for C is described. Table 3.1 lists the paitern symbals. The pattern have been
developed using these symbals and colleded in the Pattern Library. The bradkets|...]
and (...) in the aray and function entries, respedively, stand for a list of arguments that

can themselves be other identifiers or constants [11].

Table 3.1 Symbals used for syntadic entitiesin source code.
Syntadic Entity Pattern Symbol

variable v
array variable $q...]
function $f(...)
type $t
dedaration $d
expresson #
statement @

All pattern symbals can be named where name can be any symbols made of alphanu-
meric charaders. Named symbals can be used to expressconstraints within patterns, and

to restrict the matching of pattern [11]. Thelist of them are givenin Table 3.2.

23

Table 3.2 Named symbals used for syntadic entitiesin source ®de.

Syntadic Entity Pattern Symbal
array variable $q...]
function $f(...)

3.2.1 UsingaPattern

Using the symbadls previously mentioned, the patterns can be written. For example,
suppce that an array is neaded to locae in a source @de, a pattern is then $4...].
Therefore, the ettire arays in source @de ae scanned from left to right to be the
matches. Ancther example, if the locaion d add function is needed to seach in the

source @de, a named symbad $f_add(...) isused to be the pattern.

3.3 Detection Module

The detedion modue is an important modue that identifies and guarantees ftware
reliability for the hidden faults. This modue is resporsible for deteding faults that
canna be deteded by the ampil er, and informing the programmers abou faults.

When a programmer needs to compile aprogram, the program is firstly analyzed by the
PFDaC medhanism. Each statement is traced by the detedion function d the PFDaC
tedhnique to look for the faultsin the source @de. The detedion modue in the PFDaC
medhanism, then, generates a list of ead fault and wses it as inpu to the crredion

modue. Thisprocesscorrespondsto Step 1and Step 2in Figure 3.3.

Step 1: To deted the programming faults in program P, inpu P to PFDaC medhanism

24

—_—

Pattemn

/ | Library

Program

Lit of Cotrected
' Backis hmalyzer b Program

Step 3

Error Meszages
ot Warrings

Detection Mo dule Cosection MModule
Figure 3.3: The detecting function of Precompiled Fault Detection and Correction.

for analyzing each statement in P. The Parser parses the source code to discover which
statements contain the potential faults.

In PFDaC technique, the PDG is applied to easily describe the source code parsing.
A graph in Fgure 3.4 (a) [7] is a directed graph for the construction of a part of the
program in Figure 3.4(b). The vertices represent statements in the program such as data
types, variables, parameters, conditional branches, and assignment statements. The edges
between the vertices indicate data, control dependence, or declaration. A data edge
indicates a way in which a data value can be transmitted. For example, there is a data
edge between the vertex for i = 0; and the vertex for whilei <= 5, which indicates that a
value for i flows between these two vertices in Figure 3.4(a). A control edge indicates
whether the destination vertex (e.g. temp[i] = arr[i]) isreached by the result of executing
the source vertex (e.g. while i <= 5). A declaration edge indicates the declaration of
variables in programs (e.g. arr[5]). For example, a vertex ind(arr) = 5 means a size of

arr index isb.

25

main() |
int are 5], temp[5], L result, sum,
char mon,
1= result = sum =10,
while(1 <= 5 {
temp[i] = arefd),
1= add(y, 1),
sutm = addsum, temmp [i),
1

==t I = R EE T

— control
data
= ® declaration

Faa—
_—

@ (b)

Figure 3.4 An example of system graph (a) for a part of program in Fgure 1.1 shown
on(b).

The build-in reliabilit y feeures of Erlang are gplied to the PFDaC medanism. For
example, a tuple [1], which is used to store afixed nunber of elements, is data
structures as an array in C. The number and type of elements in the used tuple ae
matched with the dedared ore. If it is not matched, an error message gpeas to inform
the programmers.

In the PFDaC tedhnigque, a source @de is parsed to look for the required variable
dedarations, functions, or statements, e.g. int arr[5], add...). They match the pattern of
PFDaC tedhnique’ s faultsin the Pattern Library described in Sedion 3.2. These required
variable dedarations or statements are, then, generated to be the new patterns in the

Pattern Library by the Parser.

Step 2: The Pattern Matcher considers the used variables, function cdls, etc. to match
the pattern of dedarations which are generated in Step 1. The Pattern Matcher also

creaesalogfile for ead fault defined in PFDaC technique asfollow: assume that

26

1 Functien main FFD_function(F) |
4 i (D) == Trae) dthen O)

3 if (Dg) == Troe) then Ca),

4]

3 if Dy) == True) then Cyl)

& else

[y commpile F,

8

Figure 3.5: An algorithm of a main functionality for detecting and correcting faults.

method D; declares the detection of a fault type F; in the program P;. The Pattern
Matcher creates the log file, PiF1.log. In the log file, there are n potential faults of F;.
An algorithm of main functionality of PFDaC technique is shown in Figure 3.5.

An example of the pattern and the match graphs which are used to consider the
programsin Step 1 and Step 2 isshown in Figure 3.6. When the value of index i of arr in
the match part does not match with its value in pattern (ind(arr) = 5), this fault is
recorded in the list of faults. For example, wheni =5, it makes size of arr index is over
its declaration (size of arr index is 6). An error message appears to warn the

programmers and then, this fault is corrected in Step 3.

3.4 Correction Module

The aim of the correction module is to correct the faults detected from the detection
module. Whenever any faults are detected, they must be fixed in the proper way.
Otherwise, these faults may cause critical errors while the program is executed. Thus, the
programmers cannot ignore these faults. After all detected faults are eliminated, the

reliability of the programs is increased. To perform error correction, the PFDaC

27

pattern

emp(i] = arr(i

— pontral
data
---= declaration
COMmparison

Figure 3.6. An example of the pattern and match graphs for the program in Figure
3.4(b).

corredion modue dlows programmers to perform the crredion, bah manualy or
automaticdly. The achitedure of the arredionmodue is presented in Figure 3.7.

Step 3: The faults are automaticdly correded by the crredion function o PFDaC.
Some fault corredions cannd be aitomated. For example, the default case is
automaticaly added to the no-default-case in switch statement, bu the operations of
inserted default case must be determined by programmers.

The program source ®des are parsed to dscover which statements are nealed to
corred faults. The Parser & Corrector performs parsing and correding using the
information from ead log fil e provided by the detedionmodue. Ead fault-record in the
log file is generated to be the pattern in the Pattern Library. Thelog file dso exhibits the
faults locaions to the PFDaC corredion medianism (Ci, Cy, ..., Cy in Fgure 3.5).
Then, the Parser & Corrector considers statements in the program source @de to match
the pattern of faults in the Pattern Library. The deteded faults are crreded by the

Corrector mechanism of PFDaC or by the programmers. Therefore, the outputs of

28

Pattern
Library

Program List of Parser & Corrected
] —— Faults [Corrector ™1 P gram
Stepl &2 f Bep3
.";f *;z_
Detection Module ' orrection Module

Figure 3.7: The correcting function of Precompiled Fault Detection and Correction
technique.

PFDaC mechanism are the corrected programs. Then, these programs will be compile as

anormal process without any hidden faults.

3.5 Complexity

Considering the algorithm in Fgure 3.5, a program P with F fault types, and each fault
type has N potential faults. Therefore, the number of detected fault are F*N faults.
However, the detection module in Section 3.3 can detect N faults of a fault type in one
time detection. For example, in the testing program P, there are three faults of the fault
type Fi. All of these faults, which are in the same fault type, are detected in one
execution time for. the input P1. Therefore, if the input program contains k fault types,
PFDaC technique can detect all fault types by executing the program k times. The time

complexity of detection moduleis O(K).

29

3.6 Summary

In this chapter, the characteristics of the PFDaC technique are proposed. The PFDaC
technique consists of two modules: the detection module and the correction module. The
PDG and pattern matching are applied to consider faultsin the source code.

The program source code are parsed by PFDaC for checking faults in the detection
module. The PDG is used to describe the parsing source code. Each statement in
programs is traced for debugging the faults. The pattern matching feature is applied to
match used variables, function cals, or statements with the pattern in the Pattern
Library. The outputs of this module are errors or warning messages, and the log files.
The faults detected in the detection module can be solved in the correction module.
The corrected programs are not only the outputs of the correction module but also the

outputs of PFDaC.

CHAPTER IV

The implementation and Experimental Results of the

Proposed Technique

4.1 Implementation of Precompiled Fault Detection and

Correction Technique

Referring to the PFDaC tedhnique achitedure and agorithms in Chapter 3, this
techniqueisimplemented using C to perform the fault detection and corredion.

The inpus of the PFDaC mecdanism are assumed to be the gplicaionswrittenin C.
The exeaution d medhanism starts by asking programmers to enter a program file. The
interfaces of the PFDaC's prototype ae ill ustrated in Appendix A.

The main program algorithm is shown in Algorithm 4.1. This algorithm is the full
detail s of the dgorithm presented in Figure 3.5.. Algorithm 4.2 - Algorithm 4.5 show the
examples of fault detedion agorithms (Di(), D2(), ..., Da() in FHgure 3.5. An
algorithm for deteding array indices is s1own in Algorithm 4.2. The aray variables in
the sourcefile ae inspeded by comparing the dedared indices with the used indices. If
the fault of an array index out-of-boundis encountered, it is recorded into the log file

named as the array_log file. This methodis applicable for both static and dynamic aray

31

Algorithm 4.1 An algorithm of amain program

1. function main(P)

2 if check_sarray(char *name) == TRUE then

3 correct_sarray(char *name);

4: if check_function(char *name) == TRUE then
5: correct_function(char *name);

6 if check_switch(char *name) == TRUE then
7 correct_switch(char *name);

8 if check_darray(char *name) == TRUE then

o: correct_darray(char *name);

10: if check loop(char *name) == TRUE then
11: correct_loop(char *name);

12: dse

13: compile P;

index detection.

The case of function argument types is shown in Algorithm 4.3. The line of the
function declaration are recorded in the log file, functional log file. The type of
arguments in the function call are compared with argument types of the declared function.
If an argument type of a parameter in the function call is not matched with the pattern in
the functional _log file, this fault is recorded in the functional _log file.

Algorithm 4.4 illustrates the detection of no-default-case in a switch statement. If
there is a switch statement without the default case, the warning messages appear to
inform the programmer.

The other fault that is usually be detected during the execution time is the infinite
loop; Algorithm 4.5 shows the algorithm of infinite loop detection. If there is no any
statement which changes the value of a variable used in the conditional statement
described in Chapter 1, the error message appears to inform the programmer.

In order to implement al detection mechanisms into PFDaC, each detection

32

Algorithm 4.2 An algorithm of static array index detection

1. function check_sarray(char * name)

2 while read next character until end of file

3 if item == declared variable type

4: while read next character until new line

5: if item== array variable

6: put name and index in an array log file;
7 endif

8: endwhile

o: else

10: if item == array variable

11: compare this array index with index in log file;
12: endif

13: endwhile

Algorithm 4.3 An algorithm of function argument type detection

1. function check_function(char * name)

2 while read next character until end of file

3 if item == name of declared function

4 put function name, line and argument type

5: inafunctional log file;

6 else

7 if item == name of function call

8 compare function call and declared function in logfile;
9 endif

10: endwhile

mechanism is implemented as the header file (.h) and embedded in PFDaC using
#include statement. Therefore the source file is input to the detection mechanism before
being compiled by its compiler.

The conseguent of the #include statement is that the size of the PFDaC from using
these header files is the same as direct implementation of all detection methods in the
PFDaC at once. However, there is a benefit of implementing each detection into an
individual file. The reason of creating each detection mechanism as a header file of Cis

that any application can embed this mechanism individually without PFDaC. Therefore,

33

Algorithm 4.4 An algorithm of no-default-case detedion

1. function ched switch(char *name)

2 whileread next charader until end o file

3 if iteml == “switch”

4. item2 == itemi,

5: while read next charader until item2 ==}’
6 if item2 == “default”

7

8

set TRUE;
: endif
9: endwhile
10: endif

11 endwhile

12 if nad TRUE

13: display an error message;
14: endif

withou PFDaC, every program still can be verified using these headers.

Referring to Algorithm 4.1 - Algorithm 4.5, the data stored in eadh log file ae arors
and warning messages based on ead fault case. Examples of log files are shown in
Figure4.1- Figure4.3.

According to the design of PFDaC, all corredion mecdhanisms are implemented as
the header files as ssme & the detedion methods. The resporsibility of ead corredion
medhanism isto trace eal record in the log fil e related to ead corrediontechnique. For
example, the corredion method for the switch statement withou the default case reads
the record in the switch_log file. Once arecord is read from the log file, the corredion
mecdhanism starts and the programmer choacses the proper corredion commands to be
added or modified. After the fault case inthe log file is correded, the record is flagged.

The compilationwill automaticaly start when all recordsin every log file ae flagged.

34

Algorithm 4.5 An algorithm of infinite loop cetedion

1. function ched_loop(char * name)

2. whilerea next charader until end d file

3 if item=="while”

4: while read next charader until item==")’

5: if item == variable in conditional statement
6 put variable namein alooplog file;

7 endif

8 endwhile

9: whileread next charader until item=="}"

10: if item ==variable

11 compare this variable with pattern of statement in log file;
12: endif

13 endwhile

14: endwhile

Code segment Log file
MName Size

1 mam) |

4 it are 3], temp[5], 1, result, sum; l.arr 3 -3 Patiern
3 cha mon 2 temp 5
4 1= result= sum = ['
s whlei <=3
fi

7

2

9

temp(i] = an1), 1. arr f = Error!

1= addly Ly | 2 farp f * Erver!

sum = addeum, temp(1]);
!

10
11

]

Figure 4.1 An example of alog file: array index out-of-bound etedion.

35

Code segment Log file
Name Size

I main() |
p char strl[]= “computer”; [sil 5
3 char sta2[]= “science”, 2. stad 2 * Pattern
- strepy strl, “ mathe matical™), | 1. wldl 12]_ » Erver!
! printf%s %", strl, sted);
6}

Figure 4.2 An example of alog file: string array index out-of-bound e@tedion.

4.2 Experimental Results

Since the caes of incorredness of array indices, the mismatch of function arguments
types, and nodefault-case in switch statements are mostly occur in C, a set of programs
containing these caes is implemented to validate the dficiency of PFDaC. The
comparisons among the normal exeaution processof these fil es and the processthat pass
through the PFDaC are performed.

There ae 20 smulated program files in C. The first group d these program fil es,
Filel.c, File2.c, File3.c, Filed.c, File5.c, Fileb.c, File7.c, and File8.c, contain two, ore,
one, two, ore, ore, ore, and ore, respedively, array. indices out-of-bound. The second
group d simulated program files, File9.c, Filel0.c, Filell.c, Filel2.c, Filel3.c, Filel4.c,
Filel5.c, and Filel6.c, have three ore, ore, ore, ore, ore, ore, and org, respedively,
faults abou passng wrong type of function arguments. In the last group, Filel7.c,

Filel8.c, Filel9.c and File20.c, ead hdds one of no-default-case in the switch statement.

36

Code segment Log file
Function Argument
Name Type

T man() |
2 mbar[3] temp[3], L vesult, sum;
3 char momn;

4 di=result=sum=10,

3 whiklie=3{
]

Y

g

temp([i] = artfi];

1= add(i I, 1 add 1. int

sut = addisum, temp [iT); 2 int
o)
| ..
1l pesult = add(zum, mon) 3 add 1 _iot
12 print(result); T char » Error!
13 } :
14 int addiint =, mt) | 1. add b int Patie
15 retumiz+y), 2 -
15] - §

Figure 4.3: An example of alog file: passing wrong type of function argument detection.

Fesults
of test

Figure 4.4: The flowchart of the steps involved in the evaluation of using the PFDaC
technique.

37

Table 4.1: The number of programming faultsin each C application.

Application # Faults # Failures # Failures
before correction after correction
Filel.c 2 900 0
File2.c 1 511 0
File3.c 1 2800 0
Filed.c 2 332 0
Fileb.c 1 1000 0
File6.c 1 1118 0
File7.c i 5 397 0
File8.c 3 74 0
File9d.c 1 1000 0
Filel0.c .t 440 0
Filell.c 1 1000 0
Filel2.c 1 1000 0
Filel3.c 1 3000 0
Fileld.c 1 1000 0
Filel5.c 1 400 0
Filel6.c 1 2250 0
Filel7.c 1 477 0
Filel8.c 1 165 0
Filel9.c 1 0 0
File20.c 1 825 0

Table 4.1 lists a number of programming faults existing in the applications and the
number of failures resulting from the detected faults.

Experiments were conducted follow the methodology described in Section 4.2;
PFDaC was executed for analyzing each application. Fgure 4.4 illustrates the flowchart
of the PFDaC technique evaluation steps. After implementing PFDaC to detect and solve
the faults in applications, a set of simulation data (1,000 data sets) has been applied in
order to measure the reliability of the software. The resulting graphs of the running
software using the data test sets in each case of faults before and after using the PFDaC

technique are presented in Figure 4.5 - Figure 4.24. These graphs confirm that the

38

proposed PFDaC technique can completely remove the failures from the applications.

E % B

Failures
r—y
=

Array indices out of bound

ey

e e A e ——— i —— | 3|5
7 8 9

== Before correctionin Fileg ¢
—&— Beafore correction in File3.c
=¥ Before correction inFile5.c
=== Before correction in File7.¢

g

= et

10

~=#- Before comection in File2.¢
= Before correction in File4.c
=& Before comrection in Fileg.c
~=— After corection in all files

-

Figure 4.5: The resulting graph of array indices out of bound cases before and after
correcting by the PFDaC technique in Filel.c, File2.c, Filed.c, File5.c, File6.c, and

File7.c.

Passing wrong types of function arguments

350 >
W ——8 +——+—¢ +———2
250 . '\
3 200 " v, PN 1
2
& 150
100 B—-4-8=f - P-4
50
o L&t te—t—r—t—%

1 2 3 4 5 6 7 8

—&— Before gortection in File§.c === Before coretion in Fileg.c
~— Before cormection in Filejg.c ~—* Before correction in File11.c
—X- -Before correctionin File12 ¢ —#—Before commaction in Fle13c
= == Before correction in File14.c - == Before correction in Fle1s.c
—=— Before correction.in FibLﬁ.c —&— After corection in all files

- m e m— meas mas m e moRemm o ome m oma o —— T —

39

[aam o A EmE Sa o BB e diae as. S ER e canan San an Lanae)
Inputs
9 10

Figure 4.6 The resulting graph of passing wrong types of -function arguments cases
before and after correcting by the PFDaC technique in File8.c, File9.c, Filel0.c, Filell.c,

Filel2.c, Filel3.c, Filel4.c, Filel5.c, and Filel6.c.

40

MNo-default-case in switch statements

100 e
80 ‘\‘/ _
70
60
s
ém ._\"’* X ’ V
40
30
V e mig- BB -y
10

1 2 3 3 5 & 7 B 9 10

—tp—Beafore cﬂ—-mocﬁmin Fie17.c = ‘Before Gorection inFile18.¢c
—@—Before camection in File19.c —%— Before corection in File20 ¢
= &= After correction in all files

-_——— = = -— = = = - - = = = = = o= -

Figure 4.7: The resulting graph of no-default-case in the switch statements cases before
and after correcting by the PFDaC techniquein Filel7.c, Filel8.c, Filel9.c, and File20.c.

CHAPTER V

Theoretical Analysis

Referring to the implementation and testing of PFDaC in Chapter 4, the experimental
results confirmed that the PFDaC technique is efficient and able to increase the reliability
of the software products during the development process. However, the argue of general
test cases may be arisen. Therefore, this chapter presents the theoretical analysisto ensure
that the proposed method can be applied to any languages and the reliability of the

software can be obtained.

Definition 1. D = (C, F) where
Cisafinite set of all commandsin source codes.
F isafinite set of all faults.

D iscalled the software fault detection domain.

5.1 Fault Detection

Definition 2. Let F’ be a set of faults detected by the PFDaC technique.
Fr={f|t0OF}

Definition 3. Let F, be a set of undetected faults or a set of faults which arenot in F’ .

42

Fu=F-F" o Fy={ful fuOF, f,OF}

Definition 4. Let D be the software fault detection domain. F is a set of faultsin D.

F={f|fOF OFy

Definition 5. Let C be a set of commands in source codes. Let F’ be a set of faults
detected by the PFDaC technique. Ds is called the detection function of the PFDaC
technique.

Di:C - F" or f{'=Dsc)wheref"[JF’,cC
Lemmal. Let D be the software fault detection domain and let F be a set of faultsin D.

Let F' isa set of fault detected by the PFDaC technique. Then F' [7F.

Proof. Let C be a set of commands in source codes. Generally, ¢ contains f or ¢ does not
containfwherec 0 C, fOF. By Definition5, ' =D¢(c) where f"OF’, cOC, thatis,
c contains f”. By Definition 2 and Definition 4, [0 F for every f" O F’, but Of O F".

Thus, F'OF.

Definition 6. Let C be a set of commandsin D. Let C’ be a set of commands containing

the faults detected by the PFDaC technique. ' Let C" be'a set of commands containing the

undetected faults or the faultswhich are notin F’. Let C" be a set of faultless commands.
C={clcOc oc'ocCy

Definition 7. Let C and F be a set of commands in source codes and a set of faults

detected, respectively. The product set C x F isdefined as

CxF={(cf)|cOC fOF)

43

Definition 8. Let D be the software fault detection domain. M(c, f) is a Boolean function
of fault detection of C x F and

M(c, f): C xF — Bwherec JC, f [JF, B = {TRUE, FALSE}.
Definition 9. M(c, f) istrueif and only if ¢ containsf.
Definition 10. Let C and F be a set of the commands in source codes and a set of the
faults detected, respectively. By the detection result R, we mean that the R consists of the
elements (c, f) in C x F for which M(c, 1) istrue.

R={(c,f)|cC,f [JF and M(c, f) = TRUE}

Theorem 1. Let D be the software fault detection domain. Let R = (C, F) be a set of
detection results where C is a set of commandsin D and F isa set of faultsin D. Let F’ be

a set of faults detected by the PFDaC technique. If R"= (C, F) then R’ [JR

Proof. Assume that R’ is a set of detection results where C is a set of commands, F’is a
set of faults detected by the PFDaC technique, and M(c, ') istrue. That is, (c, f) O R’
wherec 00 C, f'"OF’. By Definition2and Lemmal, f"O0Fand F'OF. Then, (¢, f) OR,

but ((c, f) O R’, by Definition 4 and Lemma 1. Thus, R' [0 R.

5.2 Fault Correction

Definition 11. Let F’ be a set of faults detected by the PFDaC technique. Let C' be a set
of corrected commands in source codes. C; is called the correction function of the

PFDaC technique.

C: F -C or ¢ =Cf)wherec, OC,f OF’

Definition 12. Let C"™" be a set of new commands which have been corrected in source
codes. Let C' be a set of corrected commands by the PFDaC technique. Let C" be a set of
commands containing the undetected faults or the faultswhich arenotin F”. Let C" bea
set of faultless commands.

C™={c|cOCc Oc'och

Definition 13. N(c, f) isa Boolean function of fault detection of C" x F and

N(c, f): C" xF = B wherec, [JC', f [JF, B={TRUE, FALSE}.

Definition 14. N(c;, f) istrueif and only if ¢, does not contain f.

Definition 15. Let C" and F he a set of the corrected commandsin source codes and a set
of the faults, respectively. By the correction result T, we mean that the T consists
of the elements (c;, f) in C" x F for which N(c;, f) istrue.

T={(c,)| c OC, fOJF and N(c, f) = TRUE}

Theorem 2. Let T = (C', F) be a set of correction results where C' is a set of corrected

commands and F isa set of faults. I1f T'= (C', F)then T' [JT.

Proof. Assume that T’ is a set of correction results where C' is a set of corrected
commands, F"is aset of faults detected by the PFDaC technique, and N(c;, ') is true.
That is, (¢, f) O T'wherec, O C', f'0F". By Definition 2and Lemma1, f'OF and F’

OF. Then, (¢, f)OT, but [¢, f) OT’, by Definition 4 and Lemmal. Thus, T' O T.

CHAPTER VI

Discussion and Conclusion

6.1 Discussion

The software reliability is a significant feaure of a good software implementation.
However, the software that has high-level of reliability is hard to be obtained, since some
faults cannat be deteded duing the software development process Consequently, these
faults cause unexpeded problems or the serious acddents whenever they arise.

At present, there ae many techniques for deteding faults, whereas most of these
techniques detea faults while software ae running. Thus, the software process is
interrupted when a fault occurs. Therefore, the PFDaC technique is propased to deted
and corred faults before the program is compiled. After the PFDaC process the software
applicaions are utili zed and the number of significant hidden faults is lower than the
general software. As the results presented in Chapter 4 and the theoreticd analysis in
Chapter 5, these processes confirm-the caability of the PFDaC technique in eliminating
the aiticd faults that arise in the programs. Therefore, the gplicaion software filtered
by the PFDaC technique will be dficient and software & the users expeded. However,
sincethe aoncept of the propased PFDaC tedhnique is the pre-compil ation fault detedion,

the PFDaC tedhnique excludes the detedion d cases that the variables values are

46

generated at run-time such as dynamic arrays and loops that are relied on the run-time
values.

Since the process of PFDaC generates the log files for storing all warnings and faults
cases, the size of each log file is depended on the number of cases that has been detected.
However, each log file is a text file. Therefore, the total size of this file for the entire
process will not be too large to be managed. Moreover, the overhead of PFDaC to
process the source fileis low as it treats the input as a sequential text file. Therefore, the
entire process of PFDaC is small and does not affect to the total compile time. So,
applying PFDaC to create a reliable software is an efficient method that requires small
resources both for the CPU and the disk spaces.

Although the experiment was ssimulated in C environment, this technique is not
limited only the C language. Therefore, if the programmers applied this technique to any

languages, reliability of the final software products can also be ensured to be achieved.

6.2 Conclusion

The existence of faults in application code are both inevitable and can give rise to serious
system outcomes. ‘It is the responsibility ‘of software developers to prevent and detect
these hidden faults as far as possible.

This research has proposed a new and significant technique called Precompiled
Fault Detection and Correction (PFDaC) technique. The concept of pattern matching
is applied to this technique for detecting and correcting hidden faults in the programs.

The C programming language is used to be the case study. The PFDaC technique has

a7

been tested by running a set of smulated programs with atest set of data, and the number
of faults is counted before and after the program passes through the PFDaC mechanism.
The results show that the number of faults that were detected by PFDaC is reduced or
totally eliminated after the PFDaC process. Therefore, the program will not be affected
by the detected faults while executing.

The applications that can run without termination or interruption from its internal
faults is certainly classed as reliable software. The PFDaC technique that supports
automatic fault detection and correction of software, can be considered as a step towards
increasing software reliability, in other words the software that has been preprocessed
through the PFDaC technique is shown to be much more reliable than software that is
directly compiled. Therefore, our technique can guarantee the reliability of al the

application software passed through.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Refer ences

Armstrong JL, Virding SR, and Williams MC. (1993). Concurrent Programming in
Erlang, Englewood Cliffs, New Jersey: Prentice Hall.

Anderson P, Reps T, and Teitelbaum T. (2003). Design and Implementation of a
Fine-Grained Software Inspection Tool. IEEE Transactions on Software
Engineering. 29, 8: 721-733.

Cowan C, Beattie S, Day R-F Pu C, Wagle P, and Walthinsen E. (1998). Automatic
Detection and Prevention of Buffer Overflow Attacks. 7" USENIX Security
Symposium.

Deeprasertkul P and Bhaitarasinee P. (2003). Software Fault Detection in C
Programs. 12" Internation Conference on Intelligent and Adaptive Systems and
Software Engineering. San Francisco, USA., 192-195.

Drake J, Mashayekhi V, Riedl J, and Tsai W. (1991). A Distributed Collaborative
Software Inspection Tool: Design, Prototype, and Early Trial. Technical Report
TR-91-30, University of Minnesota.

Fagan M. (1976). Design and Code Inspections-to Reduce Errors in Program
Development. IBM Systems Journal. 15, 3: 182-211.

Ferrante J, Ottenstein K, and Warren J. (1987). The Program Dependence Graph
and Its Use in Optimization. ACM Transactions on Programming Languages

and Systems. 3, 9: 319-349.

49

[8] Fetzer C, Felber P, and Hogstedt K. (2004). Automatic Detection and Masking of
Nonatomic Exception Handling. IEEE Transactions on Software Engineering.
30, 8: 547-560.

[9] Ganapathy V, Jha S, Chandler D, Melski D, and Vitek D. (2003). Buffer Overrun
Detection using Linear Programming and Static Analysis. 10™ ACM conference
on Computer and Communication Security. 345-354.

[10] Ghezzi C, Jazayeri M, and Mandriali D. (2003). Fundamentals of Software
Engineering. International edition. Upper Saddle River, New Jersey: Prentice-
Hall.

[11] Hagemeister J R, Bhansali S, and Raghavendra C S. (1996). Implementation of a
Pattern-Matching Approach for Identifying Algorithmic Concepts in Scientific
FORTRAN Programs. 3" International Conference on High Performance
Computing. IEEE computer society. Washington DC, USA., 209-214.

[12] Harbison S P and Steele Jr G L. (1995). C: A Reference Manual. Fourth Edition.
Upper Saddle River, New Jersey: Prentice-Hall.

[13] Hausman B. (1994). Turbo Erlang: Approaching the Speed of C, Implementations
of Logic Programming Systems. Vancouver: Kluwer Academic Publishers,
119-135.

[14] Larson E and Austin T. (2001). High coverage detection of input related security
faults, 12" USENIX Security Symposium.

[15] Macdonald F, Miller J, Brooks A, Roper M, and Wood M. (1995). A Review of
Tool Support for Software Inspection. Proceeding 7" International Workshop

Computer-Aided Software Engineering (CASE-95).

50

[16] Macdonald F. (1998). Computer-Supported Software Inspection. PhD thesis,
Department of Computer Science, University of Strathclyde.

[17]Necula G C, McPeak S, and Weimer W. (2002). CCured: Type-Safe Retrofitting of
Legacy Code. ACM Conference on the Principles of Programming Language
(POPL).

[18] Paul S and Prakash A. (1994). A Framework for Source Code Search Using Program
Patterns. |EEE Transactions on Software Engineering. 20, 6: 463-474.

[19] Rady de Almeida Jr J, Batista Camargo Jr J, Abrantes Basseto B, and Miranda Paz S.
(2003). Best Practices in Code Inspection for Safety-Critical Software. |[EEE
Software.

[20] Rational the Software Development Company. Rational PurifyPlus for Unix.

http://www.rati onal .com/products/pac/pplus ux.jsp.

[21] Royce T. (1996). C Programming. New Zealand: Macmillan Press Ltd.

[22] Sembugamoorthy V and Brothers L. (1990). ICICLE: Intelligent Code Inspectionin a
C Language Environment. Proceeding 14™ Annual Computer Software and
Applications Conference, 146-154.

[23] Seward J. The Design and Implementation of Valgrind: Detailed Technical Notes.

http://devel oper.kde.org/-sewardij/.

[24]Spuler D A. (1994). C++ and C Debugging, Testing, and Reliability: The
Prevention, Detection, and Correction of Program Errors. Englewood Cliffs,

New Jersey: Prentice-Hall.

51

[25] Wagner D. (2000). Satic Analysis and Computer Security: New Techniques for
Software Assurance. Ph.D. Thesis, UC Berkeley.

[26] Xie Y, Chou A, and Engler D. (2003). ARCHER: Using Symbolic Path-Sensitive
Analysis to Detect Memory Access Errors. o European Software Engineering
Conference and 11" ACM Symposium on Foundation of Software Engineering

(ESECIFSE).

AONUUINYUINNS)
ANRINTUNAINENRE

User
Text Box

Appendix A

According to the proposed technique architecture and algorithms in Section 4.1. it is
implemented by using C language to perform the detection and correction. The input of
our mechanism is an application in C. The execution of the proposed technique starts

with asking programmer to enter the program file in C, as shown in Figure A.1.

PN RN OG0 0 N 00:0.0.0500.0.9:0:00. 00000 ¢ 05000000 40 0:0:9:0:0:0:0:0:4
Program Files Checking
NN NN NN N R N N NN NN B R N RN N RN EEY

Input file name (sxx.c)

Figure A.1: The interface prototype of the proposed technique for file inputs.

A.1 Static Array

Figure A.2 presents a case of index out of bound of array arr. From Iigure A2, if the
programmer presses "y’, the declaration ot arr will be changed as the informed screen.

otherwise it is unchanged.
A.2 Function

Figure A.3 shows the error message when our mechanism detects the parameter’s type
mismatch (mon) from add function. When the programmer presses “y'. the mechanism

swaps to the program editor so that the programmer can correct the error immediately.

R N N N N XXX XXX KA A A KA AAKE
Program Files Checking
R N X XXX XXX KA XXX AA AL AAHE

Input tile name (xxxc) Addno.c
Error ine 5: an index of "arr’ 1 out-of-bound.

Do you want to change a declaration of “arr[3] to “are[6]?
Tes press [y] or Mo press[a]:

Figure A.2: Theinterface prototype of array indices detection.

Program Files Checking

N N N N N N OO I N NN N NN
Input file name (xxxc): Addno.c
Error line 11: incorrect type of ‘'mon’ an argument in ‘add’ function

Do yawwant to change &7
Yes press [v] or Mo press[a).

Figure A.3: The interface prototype of passing the wrong function argument type
detection.

55
A.3 switch Statement

Anather fault that can be deteded is default case missng. Fgure A.4 shows the warning
message obtained from medhanism when switch statement does not contain the default
case. If the programmer presses ‘y’, the mecdhanism will insert a default statement
withou any adions defined, and swap the chedking mode to the program editor. Then

the function d default case will be managed by programmer.

AR A HARAR TAKHAK: N XA XX XA XX AXKAKKKKK
Frogram Files Checkmg

EE 66 AR S S RS b b

Input file name (g%) Landing ¢
Error line 11 Heé “default’ casean swritch statement.

Do you want to add defanlt caze in switch statement?
Yes press [v] or Mo press[n]:

Figure A.4: The interfaceprototype of switch statement case detedion.

A.4 Dynamic Array
Fgure A.5 shows a cae of dynamic aray index out-of-bound dtedion.
A.5 Infinite Loop

Figure A.6 presents the interfaceof detedinginfinite loop.

56

R N N R N N X M NN A RN A XXM H A A A A AR
Program Files Checking
S B X M M X M A E KR

Input file name (xxxc). Addnelc
Error line 6 an index of “arr’ 15 out-of-bound.

Do you want to change 7
Tes press [v] or Mo press[n]:

Fgure A.5: The interface prototype of dynamic array index detection.

T F R R R K K R M M MM X N K
Program Files Checking
RN X N KRR R KX KX XXX XXX
Input file name (xxxc) Loopc
Errordsopatdme 57 Mo statement fon changing avalye of "ok’

Do wou want to add 117
Yes press{y] ar Mo peesslu]:

Figure A.6: The interface prototype of infinite loop detection.

Appendix B

This ®dion presents a following journal paper generated from this dissertation. This

paper isavail able online & www.sciencedir ect.com.

* P. Degrasertkul, P. Bhattarasineg and F. O'Brien, “Automatic Detedion and
Corredion d Programming Faults for Software Applicaions.”, Elsevier: The

Journal of Systems and Software, 2005.

ARTICLE IN PRESS

ELSEVIER

Available online at www.sciencedirect.com

The Journal of Systems and Software xxx (2005) XxXxX—Xxxx

d &< The Journal of
scIENcECDIREcT® systcms and
Software

www.elsevier.com/locate/jss

Automatic detection and correction of programming faults
for software applications

Prattana Deeprasertkul **, Pattarasinee Bhattarakosol *, Fergus O’Brien

b

& Department of Mathematics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
b School of Information Technology, Faculty of Informatics and Communication, Rockhampton Campus, Central Queensland University, Australia

Received 29 September 2004; received in revised form 9 February 2005; accepted 10 February 2005

Abstract

Software reliability is an important feature of a good software implementation. However some faults which cause software unre-
liability are not detected during the development stages, and these faults create unexpected problems for users whenever they arise.
At present most of the current techniques detect faults while a software is running. These techniques interrupt the software process

when a fault occurs, and require some forms of restart.

In this paper Precompiled Fault Detection (PFD) technique is proposed to detect and correct faults before a source code is com-
piled. The objective of the PFD technique is to increase software reliability without increasing the programmers’ responsibilities. The
concepts of “pre-compilation” and “pattern matching” are applied to PFED in order to reduce the risk of significant damage during
execution period. This technique can completely eliminate the significant faults in a software and thus, improves software reliability.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Programming error; Software fault; Software failure; Fault detection; Pattern matching; Software inspection

1. Introduction

The task of implementing a program without faults
and errors is challenging. Currently, the various compil-
ers for languages have been progressively improved.
However, some faults and errors which are the results
of human oversight are still left out and interrupt the
system processing at operation-time. The existence of
the faults in applications can increase the number. of
software failures and can thus decrease the reliability
of software. Of course, the software reliability is
improved if the risks of software failure are avoided.

Achieving reliable software is an objective of develop-
ers and users. In order to prevent such faults and errors,

* Corresponding author. Tel.: +6623145054; fax: +6622249852.
E-mail address: prattana.d@student.netserv.chula.ac.th (P. Dee-
prasertkul).

0164-1212/$ - see front matter © 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2005.02.027

programmers and software inspectors must verify soft-
ware for all possible faults during the development
stages, and also validate the software product before
delivering it. Therefore, it challenges researchers to
develop methods or techniques to detect or prevent the
faults during development period in order to obtain a
high level of reliability for software product.

Currently many software detection techniques have
been proposed and implemented. One of these tech-
niques is code inspection, first introduced by Fagan
(1976). This technique can detect the software coding
errors at early stage in lifecycle. Although code inspec-
tion’s effect is that software quality can be improved,
all the existing techniques for maintaining software reli-
ability are reliant on the ‘““checklist” approach to verify
the software instructions and data sets. If the software
size is small and not so complicated, the checklist
process can be performed manually, otherwise it can

mailto:prattana.d@student.netserv.chula.ac.th

ARTICLE IN PRESS

2 P. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx

become too unwieldy. In this paper, we show how to
automatically detect and correct the hidden faults in
the software application prior to compilation time.

1.1. Problem description

Software reliability is partially depended on capabili-
ties built into the languages’ compiler. If the interpreters
or compilers of languages are able to detect all common
faults and errors, software reliability can be enhanced.
Thus, Java and Erlang (Ganapathy et al., 2003; Arm-
strong et al., 1993) were developed with capabilities
aimed at the objective of obtaining software reliability.

Java is a popular language which is widely used and
classified as an object-oriented language. It is incorpo-
rated significant error checking such as the feature of
detecting array indexes exceeding the array bounds dur-
ing run-time, therefore containing the array indexes out-
of-bounds handling.

Another functional programming language, Erlang
(Armstrong et al., 1993) developed by Ericsson Sweden,
is used to develop highly reliable the communication soft-
ware products. A characteristic of this language is the
pattern matching functionality which assists in tightly
coupling faults and failures, so that, whenever a failure
arises, the Erlang interpreter can immediately locate the
cause of such failures. So, the software implemented in
Erlang exhibit a very high level of software reliability.

There are, however, some faults and errors that can-
not be detected by the compiler of software program-
ming languages. Considering C programs, for example,
the faults include cases such as array indexes out-of-
bounds, passing the wrong types of function arguments,
no-default-case in switch statements, or infinite loops.
Furthermore, it is not uncommon that programmers
or developers ignore warning message at compile time
when, in fact, there warning messages may indicate the
potential for a critical fault during software execution.

1.2. Approach

This paper proposes the design and implementation
of a technique that can improve the software reliability
of a system in a manner that cannot be achieved by
any current methods. The major difference of PFD from
the other existing techniques is the automatic detection
and correction of faults performed prior to compile
time. The software programs are preprocessed through
PFD for detecting and correcting faults. The program-
mers are not allowed to ignore any warnings of the po-
tential critical faults in the source code until proper
actions have been performed. Consequently, faults and
errors will be reduced, the system will then improve soft-
ware reliability. Note that this technique applies many
of the built-in reliability features of Erlang such as the
feature of detecting array indexes exceeding the array

bounds or the feature of detecting types of function
arguments matching.

1.3. Contribution

The contribution of this paper is an introduction of a
Precompiled Fault Detection (PFD) technique. This tech-
nique is a novel approach for automatically detecting
and correcting the programming errors, which are the
results of programmers inadvertence and cannot be
detected by a compiler, in the source code prior to com-
pilation time. The PFD technique can be applied to C
applications and will be applied to other language appli-
cations in the future. Furthermore, we present experi-
mental results that demonstrate an effectiveness of our
technique.

The organization of this paper is as follows: In Sec-
tion 2, the related work is discussed. Section 3 intro-
duces the problems and motivations considered in this
research. Section 4 presents an overview of pattern lan-
guage used in PFD technique. Section 5 describes an
architecture of PFD for detecting and correcting faults
and Section 6 describes an implementation details of
PFD technique. The testing method with results is
covered in Section 6. The experimental results are shown
in Section 7. Section 8 contains a discussion of our
research. The final section is a conclusion of this paper.

2. Related work

Since software faults and errors interfere with normal
processing, a number of techniques have been devised to
minimize their effect. Many software inspection tools are
used to inspect the running processes of software appli-
cations, such as ICICLE (Sembugamoorthy and Broth-
ers, 1990), ASSIST (Macdonald, 1998), and Suite
(Drake et al., 1991). Macdonald et al. (1995) compared
the inspection processes of these software techniques.
One tools for identifying faults during inspections is a
“checklist”. This checklist helps inspectors by listing
all the fault types to look for (Rady de Almeida Jr.
et al., 2003). The difficulty of manually verifying that
the software under inspection conforms to the rules is
partly to mistake.

One critical problem which is considered by many
researchers as an example is the buffer overrun of array
indexes. This problem can be solved by either dynamic
or static techniques. Dynamic techniques such as Stack-
guard (Cowan et al., 1998), CCured (Necula et al., 2002)
and High Coverage Detection of Input-Relate Security
Faults (Larson and Austin, 2001) have been proposed
to prevent the incorrect memory accesses without elimi-
nating bugs in the source. These tools are applied at run-
time, in a reactive fashion, attempting to catch invalid
accesses. On the other hand, the static analysis tools

ARTICLE IN PRESS

P. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx 3

proposed to prevent and detect buffer overrun cases are
mentioned in (Wagner, 2000; Ganapathy et al., 2003;
Xie et al., 2003). These static tools focus on either the
buffer overruns or memory access error detection look-
ing for equivalent faults to the dynamic techniques.
Once the problem of buffer overrun is detected, a warn-
ing message will be presented to the user.

Even though many software detection techniques and
tools are proposed, the reliability of the software appli-
cation is still largely reliant on the human designer’s
skills. Since the techniques noted above cannot avoid
human errors, the potential improvement offered by
inherently reliable programming languages such as
Erlang (Armstrong et al., 1993) is needed. Erlang is a
functional programming language that can guarantee
the software reliability without permitting a wide range
of human errors. The Erlang compiler uses a pattern
matching technique that assists in tight coupling
between faults and failures, therefore it can detect most
of the hidden faults such as the incorrectness of array
indices, the mismatch of function arguments types,
and no-default-case in switch statements.

This paper proposes a technique that is to apply to
program’s source code before passing through the com-
pilation process. The software source code will be ana-
lyzed to automatically detect and correct the coding
errors before they will be released. This technique is
called Precompiled Fault Detection (PFD). In this paper,
we address the fault examples in C (Spuler, 1994; Harb-
ison and Steele Jr, 1995) which are the case studies and,
hence, they have a little difference of detection and cor-
rection procedure in each other. The reliability features
of Erlang are applied to C programming language by the
PFD technique.

3. Problem descriptions and motivations

Having a hidden fault in an application program
can create the critical problems for an organization.

Although software faults are rare ones in production
cases, once a fault occurs, some critical system failures
can occur. Since these faults cannot be detected by the
compiler, it is the responsibility of programmers and
testers to ensure that the developed software contains
minimal faults. One way of performing fault detection
is to take an advantage of software inspection. A
source code is general examined by checking it for
the presence of errors, rather than by simulating its
execution (Ghezzi et al., 2003). Using this mechanism,
it can detect and eliminate faults and errors in the
software products developed during the software life
cycle. Consequently, the reliability of applications are
increased. However, fault detection is likely to fail
unless extreme care is taken during a program inspec-
tion process.

Currently, the various compilers for languages have
been progressively improved. However, programming
languages have the different errors which still exist
in the programs, depending on the error-prone fea-
tures of the language. For instance, in C++ and
Java, many mismatches between actual and formal
parameters can be caught at compile time, but there
might be an exception in C, etc. The following is a
list of some classical programming errors (Ghezzi
et al., 2003).

e array indexes out of bounds;

e mismatches between actual and formal parameters in
procedure calls;

e nonterminating loops;

e use of uninitialized variables.

Fig. 1 shows a program about the seat allocation of
flight. The program contains various faults including ar-
ray indexes out-of-bound, passing incorrect types of
function parameters and no-default-case in switch state-
ments. The C compiler cannot detect these faults that
have been-identified as being responsible for many sys-
tem essences.

1 #include <stdio.h> printf("Seat %d\n", F_cls[j]);
2 main() { 20 break;

3 int F_cls[5]; B_cls[5], E_cls[10], i, j; | 21 case'b':

4 charcls; 22 INSURANCE(cls);

5 for(i=0;i<=5;i++) { 23 for(G=0;j <5; j++)

6 printf("%d: ", i++); 24 printf("Seat %d\n", B_cls[j]);
7 scanf("%d", &F_cls[i]); 25 break;

8 |} 26

9 printf("\n"); 27 }

10 for(i=0;i<5;i++) { 28 INSURANCE(int class)

11 printf("%d: ", i++); 29

12 scanf("%d", &B_cls[i]); 30 if(class==1)

13} 31 printf("ins of first class: 400,000\n");
14 .. 32 elseif(class == 2)

15 switch(cls){ 33 printf("ins of business class: 100,000\n");
16 case 'f': 34 else

17 INSURANCE(cls); 35 printf("ins of crew: 100,000\n");

18 for(j =0;j <=5; j++) 36 }

Fig. 1. An example of an application that contains faults.

ARTICLE IN PRESS

4 P. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx

Before F_cls 1]l 2] .15
index over bound

After F_cls l ---Euuuunu.'u-uu:— - —
index over bound : :

When B_cls is {
set the values TN S O

Fig. 2. Memory allocations for F_cIs’s index out of bound; the
replacement of F_cls with B_cls.

Example 1. Considering array indexes out-of-bound in
Fig. 1, the instructions at line 5 to § declare values for
array F_cls [0] to F_cls [5] when the upper bound of
array F cls should be 4. When array B cls is declared
the values from B _cls [0] to B_cls [4], the value of B cls
[0] replaces the value of F_cls [5]. Thus a person at F_cls
[5] location is automatically eliminated. This error
affects the company’s reputation in negative manner.
Fig. 2 shows the results of booking process and the
memory declarations for F_cls and B_cls.

Example 2. When a function is generally called, param-
eters are passed to a called function. Since the old ver-
sions of C do not support function prototypes,
therefore the passed type of function arguments are
not checked. On the other hand, in the modern C, the
programmers are able to declare the function before it
is called. Thus its parameters’ type are checked when
the function is called. However some functions are not
declared until the function has been used. Therefore
the compiler treat these functions as if it is a non-proto-
type for function arguments. Once the function is recog-
nized as the non-prototype for function arguments, the
parameter checking is ignored.

Considering Fig. 1 at line 28, the INSURANCE func-
tion is declared and a passing argument is an integer
named class. However at lines 17 and 22, INSURANCE
function is called and the passing argument is ¢/s, which
is declared as a character. Since the value of passing
parameter is “‘/”’, which is different from the declared
parameter of INSURANCE function, there is no
matched value in the if-statement and then the else com-
mand at lines 34, 35 are executed.

Example 3. Considering switch statement in Fig. 1 at
lines 15 to 27, there is no default case. If the user types
“F”, instead of “f”, to retrieve an insurance value of the
first class, an user does not receive any values from the
execution. Consequently, the user may misunderstand
that the program is wrong, or malfunction occurs. If

there is no matching case in switch statement, the default
case should be defined in order to inform user that the
program performs its task and cannot find any matching
cases.

For more examples of the problems, considering the
examples of C programs in (Deeprasertkul and Bhattar-
asinee, 2003) the errors include cases such as array in-
dexes out of bound, passing the wrong types of
function arguments, and no-default-case in switch
statement.

Although programmers try to detect faults by run-
ning test data, or program inspection software, unfortu-
nately some of faults may not be detected before
software is delivered to users. Even though the faults
do not cause an interruption in the software execution,
the result from its execution cannot be trusted and, in
a worse case, can produce a plausible but incorrect
result. Thus the reliability of the software is not as high
as expected. The PFD technique proposed in this paper
helps programmers detect which faults and errors might
be left in the programs. PFD can also automatically cor-
rect some faults if the programmers desires. The details
of PFD technique are explained in Section 5 and 6.

4. Pattern language

The pattern language (Paul and Prakash, 1994; Hage-
meister et al., 1996) is applied to check the programming
language constructs such as variables declarations, type
declarations, functions’ argument types, etc. To illus-
trate our approach, we describe an overview of the pat-
tern symbols in a sample pattern language for C. Table 1
lists the pattern symbols. We have developed the pat-
terns using these symbols and collected them in Pattern
Library. The brackets [...] and (...) in the array and
function entries, respectively, stand for a list of argu-
ments that can themselves be other identifiers or con-
stants (Hagemeister et al., 1996).

All pattern symbols can be named where name can be
any symbols made of alphanumeric characters. Named
symbols.can be used to express constraints within pat-
terns, and to restrict the matching of pattern (Hagemei-
ster et al., 1996). The list of them are given in Table 2.

Table 1
Symbols used for syntactic entities in source code

Syntactic entity Pattern symbol

Variable $v
Array variable $a[...]
Function $M...]
Type $t
Declaration $d
Expression #
Statement @

ARTICLE IN PRESS

P. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx 5

Table 2
Named symbols used for syntactic entities in source code

Entity Pattern symbol

Array variable
Function

$a_namel. .]
$f_name(. . .)

4.1. Writing a pattern

Using the symbols previously mentioned, the patterns
can be written. For example, suppose we want to locate
the arrays in a source code, a pattern is then $a[...].
Therefore, the entire arrays in source code are scanned
from left to right to be the matches. Another example,
if we want to locate INSURANCE function in source
code, we use a named symbol $f INSURANCE(...) to
be the pattern.

5. The proposed technique

PFD technique performs the fault detection as a soft-
ware guard. The PFD preprocesses the programs before
the compilation takes place as shown in Fig. 3. Only
after the detected faults were corrected can the corrected
software be compiled.

According to the functionality defined for PFD, it
consists of two main modules: detection module, and
correction module. Before describing our system in
more detail, we formally introduce the definitions of «
set of PFD faults, a fault detection function, and a fault
correction function.

Definition 1. Let F be a set of all faults and let ' be a

set of faults detected by PFD. Let F* be a set of

undetected faults. A fault fis a fault in F” if the fault f'is
corrected

@ by PFD @

Fig. 3. Precompiled Fault Detection in context.

Program
Program

detected by PFD. A fault f'is a fault in F“ if it is not a
fault in F'.

F'=F—F or F={f|f €F.f' ¢F"}

Definition 2. Let S be a set of statements in source code.
Dyis called a detection function of PFD if all faults of F’
in § are detected by D,

D;:S—F or f'=Dys) wheref €F seS

Definition 3. Let S be a set of corrected statements in
source code. Cris called a correction function of PFD
if all faults in F" are corrected by Cr.

Cy:F'—= 8" or s,=Cs(f") wheres, €8, f'€F

When all faults in F’ are corrected, all corrected state-
ments S are executed without the faults in F'.

5.1. Detection module

The detection module is an important module that
identifies and guarantees software reliability for the hid-
den faults. This module is responsible for detecting
faults that cannot be detected by compiler, and informs
the programmers about faults.

When the programmers need to compile the pro-
grams, the programs are first analyzed by PFD. Each
statement is traced by Dy of PFD to look for the faults
F' in source code. PFD then generates a list of each fault
to be used as input to the correction module. This pro-
cess corresponds to Step 1 and Step 2 in Fig. 4.

Step 1: To detect the programming faults in program
P, we first input P to PFD for analyzing each statement
in P. The Parser parses the source code to discover
which statements contain the potential faults.

A graph in Fig. 5(a) (Ferrante et al., 1987) is a direc-
ted graph for the constructs of a part of program in Fig.
5(b). - The vertices represent statements in the program
such as data types, variables, parameters, conditional
branches, and assignment statements. The edges be-

Pattern
/ Library

Program
Source Code

Pattern
Matcher

- Corrected
Listof || Program
Faults Source code

Error Messages
or Warnings

Step 3

Detection Module

Correction Module

Fig. 4. The functionality of Precompiled Fault Detection.

ARTICLE IN PRESS

6 P. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx

: —> control

. > declaration

fori=0;i<=5;i++

1 main() {

2 int F_cls[5], B_cls[5], E_cls[10], i, j;
3 charcls;

4 for(i=0;i<=5;i++) {

5 printf("%d: ", i++);

6 scanf("%d", &F_cls[i]);

7}

Fig. 5. An example of system graph (a) for a part of program in Fig. 1 shown on (b).

tween the vertices indicate data, control dependence, or
declaration. A data edge indicates a way in which
the data value can be transmitted. For example, there
is a data edge between the vertex for for(i =0; i<=5;
i++) and the vertex for print i++, which indicates that
a value for i flows between these two vertices in Fig.
5(a). A control edge between a source vertex and a des-
tination vertex indicates whether or not the destination
vertex (e.g. print i++, write F_cls[i]) is reached by the
result of executing the source vertex (e.g. for(i=0;
i <=135; i++)). A declaration edge indicates the decla-
ration of variables in programs (e.g. F_c/s[5]). For
example, a vertex ind(F_cls) =5 means that a size of
F cls index 1is 5.

The pattern matching in Erlang (Armstrong et al.,
1993) provides the basic mechanism by which values
become assigned to variables. Then, the value of these
variables have been bound. The build-in reliability fea-
tures of Erlang, such as the tuples are data structures
which are used to store a fixed number of elements,
are therefore applied in PFD.

In our approach, a source code is therefore parsed for
looking for the required variable declarations or state-
ments, e.g. int F_cls[5], INSURANCE(...). They
match the pattern of PFD’s faults in Pattern Library
described in Section 4. These required variable declara-
tions or statements are then generated to be the new pat-
terns in Pattern Library by the Parser.

Step 2: The Pattern Matcher considers the used vari-
ables, function call, etc. to match the pattern of declara-
tions which are generated in Step 1. The Pattern
Matcher also creates a log file for each fault defined in
PFD as follows: Assume that method D; declares the
detection of a fault type F; in program P;. The Pattern
Matcher creates the log file, P\ F;.log. In a log file, there
are n potential faults of F;. An algorithm of main func-
tionality of PFD is shown in Fig. 6.

An example of the pattern and the match graphs
which are used to consider the programs in Step 1 and
Step 2 is shown in Fig. 7. When the value of index i of

Function main_PFD_function(P) {
if (D;()==True) then C,();
if (D,() == True) then C();

else

1
2
3
4 :
5) if (D,()==True) then C,();
6
7 compile P;

8

}

Fig. 6. An algorithm of a main functionality of PFD for detecting and
correcting faults.

F_cls in match part does not match with its value in pat-
tern(ind(F_cls) = 5), this fault is recorded in the list of
faults. For example, when i = 5, it makes size of F_cls
index is over its declaration (size of F_cls index is 6).
An error message appears to caution the programmers
and this fault is then corrected in Step 3.

5.2. Correction module

The aim of the correction module is to correct the
detected faults during the detection module. Whenever
any faults are detected, the programmer must correct
them, otherwise the source code are not accepted by
the compiler. Thus the faults cannot be bypassed by
the programmer. A resulting program becomes more
reliable since these detected faults which cause the criti-
cal system failures are corrected. Note that the correc-
tion module "is" optional, ‘i.e., a programmer might
prefer to fix a program manually instead of using auto-
matic correction.

The correction module is Step 3 in Fig. 4.

Step 3: Most faults F' are automatically corrected by
Cyof PFD. Some fault corrections cannot, however, be
automatic. For example, the default case is automati-
cally added to the no-default-case in switch statement,
but the operations of inserted default case must be deter-
mined by the programmers.

The Analyzer in correction module performs this task
by using the information from each log file provided by

ARTICLE IN PRESS

P. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx 7

pattern e

—> control
data

-------- » declaration
comparison

Fig. 7. An example of the pattern and match graphs for the program in Fig. 5(b).

the detection module. The log file exhibits the fault loca-
tions to PFD correction mechanism (Cj, Cs,...,C, in
Fig. 6).

5.3. Complexity

Considering the algorithm in Fig. 6, a program P
with F fault types, a fault type has N potential faults.
Therefore, the number of detected fault are F*N faults.
However, our approach mentioned in Section 5.1 can
detect N faults of a fault type in one time detecting.
For example, in a program P, there are three faults of
the fault type F;. All of three faults are detected in
one execution time of the program input P;. Thus, we
implemented PFD that can detect all fault types by exe-
cuting the program F times. The time complexity of
detection module is O(F).

6. PFD Implementation

According to the PFD architecture and algorithm in
Section 5, PFD is implemented by using the C language
to perform the fault detection and correction. Theinput
of the PFD is an application written in C. The execution
of PFD starts with asking the programmers to enter a
program file.

The detection mechanism is the header files embed-
ded in PFD implementation. Each source file is first
passed to the detection mechanism. Fig. 8 shows the
examples of fault detection algorithms in PFD
(D10), Dx(), ..., D,() in Fig. 6). An algorithm for detect-
ing array indexes is shown in Fig. 8(a). The array vari-
ables in source file are inspected to compare the
declared indexes to the used ones. A fault is recorded
in a log file, if the array index exceeds its bound. The
case of function argument types is shown in Fig. 8(b).
Fig. 8(c) illustrates the detection of no-default-case in
switch statement.

1 function check_array(char *name)
2 while read next character until end of file

3) if item == declared variable type

4 while read next character until new line

5 if item == array variable

6 put name and index in an array log file;

7 endwhile

8 else

9 if item == array variable

10 compare the array index with index in the log file;
11 endif

12 endwhile

(@

1 function check_function(char *name)

2 while read next character until end of file

3 if item == name of declared function

4 put function name, line and argument types in the

'y functional log file;

6 else if item == name of function call

7 compare function call and declared function in log file;
8 endif

9 endwhile

(b)

1 function check_switch(char *name)

2 while read next character until end of file
3 if iteml == “switch”

4 if item2 == “default”

5 set TRUE;

6 endif
7

8

9

1

1

endif
endwhile
if not TRUE
display an error message;
endif

.)

()

Fig. 8. Three examples of fault detection algorithm in PFD. (a) An
algorithm of array index detection. (b) An algorithm of function
argument types detection. (c) An algorithm of no-default-case in switch
statement.

The detection mechanism is used to parse the source
code of a given program for finding the potential faults.
The given program input is parsed repeatedly to detect
at all programming faults defined in PFD and the
results of online checks are written out to log files by

ARTICLE IN PRESS

. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx

Code segment

1 main() {

2 int F_cls[5], B_cls[5], E_cls[10], i, j;
3 charcls;

4 for(i=0;i<=5;i++)

5 4

6 printf("%d", i++);

7 scanf("%d", &F_cls[i]);

8}

9

1

o

Log file
Name Size
1. F_cls 5
2. B_cls 5 > Pattern
3. E_cls 10
1. F.cls 6 |-—) Error!

Fig. 9. An example of a log file: array indices out-of-bound detection.

the detection mechanism. These log files are then pro-
cessed to classify each fault. An example of a log file is
shown in Fig. 9. Therefore, the outputs of this process
are the log files and errors or warning messages.

The correction mechanism is also the header files in
PFD implementation. This task traces each record in
the log files provided by detection mechanism. The
PFD requires access to the source code for correcting
according to each record. If each fault in the log file is
corrected, that record is flagged. After the given pro-
gram is analyzed by PFD the compiler of language is
called to compile the program.

7. Experimental results

To validate PFD technique, we first defined a set of
programming faults which mostly occur in C programs
such as the incorrectness of array indexes, the mismatch
of function arguments types, and no-default-case in
switch statements. These faults are encountered in the
real applications. We used the applications containing
them to make sure that our PFD correctly detects faults
during the detection module and effectively corrects
them during the correction module. Experiments were
conducted following the methodology described in Sec-
tion 5: We executed the PFD for analyzing each applica-
tion. Table 3 lists a number of programming faults
existing in the applications and a number of failures
resulting from the detected faults. These testing applica-
tions are the prototypes of the seat allocation system

Table 3
The number of programming faults in each C application
Application # Faults # Failure
Before using PFD After using PFD

1 S Darray.c 2 9000 0

2 SeatRev.c 3 9002 2

3 MedOrd.c 2 9001 1

4 Fmap.c 3 987 0

5 SeatCls.c 2 424 0

6 PatType.c 1 296 6

7 Swecases.c 1 1443 0

8 SeatPrice.c 1 1755 4

and medical system. A source file S__Darray.c and Med-
Ord.c contains two array indexes out-of-bound each.
SeatRev.c, which is the seat reservation program, has
three array indexes out-of-bound. Fmap.c, SeatCls.c,
and PatType.c have three, two, and one faults, respec-
tively, about passing wrong type of function arguments.
Sweases.c and Seat Price.c hold one of no-default-case in
switch statement each.

Fig. 10 illustrates a flowchart of PFD evaluation
steps. After implementing PFD to detect and correct
the faults in applications, a set of simulation data
(10,000 data) has been applied in order to measure the
resulting reliability of software. The resulting graphs
of running software using the test data set before and
after using PFD are presented in Fig. 11. Since there
are a large number of testing data (10,000 data), all of
them cannot be clearly represented in this paper. Thus,
the graphs in Fig. 11 illustrate the only 100 testing data
inputs. The number of failures, which are the effects of

Run corrected
source files

Number
of
failures

— (]

failures

Results
of test
case

Fig. 10. A flowchart of the steps involved in the evaluation of using
PFD.

ARTICLE IN PRESS

P. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx 9
100 90 92 91
90]] } OBefore Correction M After Correction %
80 1
70 1 53
8 60 1
2 501 47
S
* 401
30 1
20 1+ 13 = 10
1977 o 2 1 0 0 f 0
0 T T [T T
1 2 3 4 5 6 7 8
Programs

Fig. 11. A resulting graph before and after correcting by PFD.

the faults in Table 3, are completely removed from the
applications. However, the failure occurrence after using
PFD of SeatRev.c, MedOrd.c, PatType.c, and Seat-
Price.c shown in Table 3 are not the effects of faults
defined in PFD.

8. Discussion

Generally application code may contain faults both
visible and invisible. These faults may cause the prob-
lems incorrect usage for the applications, thus effecting
the reliability of usage. The reliability of software is a
function of the number of faults in the program, there-
fore software developers must try to eliminate as many
faults as possible. The consequence of fault elimination
is that the risk of software failure is reduced and the reli-
ability of the software can be significantly increased.

The objective of PFD is to detect the faults, and assist
the software developer to correct these faults before
passing the source code through to the compiler. These
detected and corrected faults in the application software,
after applying the PFD technique, will not occur again
in the compiled applications.

Referring to the results presented in Section 7, these
results confirm that the PFD technique has the capabil-
ity of eliminating the critical faults that arise in C pro-
gramming, such as the static array index out-of-bound,
the passing of incorrect type of function arguments, or
the no-default-case in switch statements. Software appli-
cations that utilize PFD during the software develop-
ment process contain a significantly lower number of
hidden faults than the software that compiles directly.
Therefore the application software filtered by PFD will
be efficient and reliable software as the users require.

The three cases of faults, the static array index out-of-
bound, the passing of incorrect type of function argu-
ments, and the no-default-case in switch statements,
are representative of the scope of the PFD technique,
a technique that has a wide applicability not restricted
to the three chosen cases. In addition, we will apply this
PFD technique to other programming languages.

9. Conclusion

The existence of faults in application code are both
inevitable and can give rise to serious system outcomes.
It is the responsibility of software developers to prevent
and detect these hidden faults as far as possible. Cur-
rently there are a number of fault detection techniques
such as buffer overrun or memory access error detection
algorithms. But these techniques perform the fault
detection at run-time, and may be unable to identify
the fault’s location easily, so that fault repair is difficult.

This paper has proposed a new and significant tech-
nique called Precompiled Fault Detection (PFD). The
pattern matching in Erlang is applied to this technique
for detecting and correcting hidden faults in a C imple-
mentation. The proposed technique has been tested by
running a set of simulation programs with a test set of
data, and the number of faults is counted before and
after the program passes through the PFD. The result
shows that, after passing the PFD, the number of faults
from the application program is reduced or totally elim-
inated. Therefore the program execution will not be
effected by the hidden faults.

The applications that can run without termination or
interruption. from its internal faults is certainly classed
as reliable software. The PFD technique that supports
automatic fault detection and correction of software,
can be considered as a step towards increasing software
reliability, in other words the software that has been pre-
processed through PFD is shown to be much more reli-
able than software that is directly compiled. Therefore,
PFD can guarantee the reliability of all the application
software passed through.

Acknowledgment

We would like to thank Dr. Rob Rendell who was a
staff at Software Engineering Research Centre, RMIT,
Melbourne, Australia for his valuable comments on
problems encountered in programming languages.

ARTICLE IN PRESS

10 P. Deeprasertkul et al. | The Journal of Systems and Software xxx (2005) xxx—xxx

References

Armstrong, J.L., Virding, S.R., Williams, M.C., 1993. Concurrent
Programming in Erlang. Prentice Hall.

Cowan, C., Beattie, S., Day, R-F, Pu, C., Wagle, P., Walthinsen, E.,
1998. Automatic Detection and Prevention of Buffer Overflow
Attacks, 7th USENIX Sec. Symposium.

Deeprasertkul, P., Bhattarasinee, P., 2003. Software Fault Detection in
C Programs, 12th Int. Conf. on Intelligent and Adaptive Systems
and Software Engineering.

Drake, J., Mashayekhi, V., Riedl, J., Tsai, W., 1991. A Distributed
Collaborative Software Inspection Tool: Design, Prototype, and
Early Trial. Technical, Report TR-91-30, University of Minnesota.

Fagan, M., 1976. Design and code inspections to reduce errors in
program development. IBM Systems Journal 15 (3), 182-211.

Ferrante, J., Ottenstein, K., Warren, J., 1987. The program depen-
dence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems 3 (9), 319-349.

Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D., 2003.
Buffer Overrun Detection using Linear Programming and Static
Analysis, 10th ACM Conference on Computer and Communica-
tion Security.

Ghezzi, C., Jazayeri, M., Mandrioli, D., 2003. Fundamentals of
Software Engineering. Prentice-Hall (International edition).

Hagemeister, J.R., Bhansali, S., Raghavendra, C.S., 1996. Implemen-
tation of a Pattern-Matching Approach for Identifying Algorith-
mic Concepts in Scientific FORTRAN Programs, 3rd International
Conference on High Performance Computing, pp. 209-214.

Harbison, S.P., Steele Jr., G.L., 1995. C: A Reference Manual, fourth
ed. Prentice-Hall.

Larson, E., Austin, T., 2001. High Coverage Detection of Input
Related Security Faults, 12th USENIX Sec. Symposium.

Macdonald, F., Miller, J., Brooks, A., Roper, M., Wood, M., 1995. A
Review of Tool Support for Software Inspection, Proceeding 7th
International Workshop Computer-Aided Software Engineering
(CASE-95).

Macdonald, F., 1998. Computer-Supported Software Inspection, PhD
thesis, Department of Computer Science, University of Strathclyde.

Necula, G.C., McPeak, S., Weimer, W., 2002. CCured: Type-Safe
Retrofitting of Legacy Code, ACM Conference on the Principles of
Programming Language (POPL).

Paul, S., Prakash, A., 1994. A framework for source code search using
program patterns. IEEE Transactions on Software Engineering 20
(6), 463-474.

Rady de Almeida Jr., J., Batista Camargo Jr., J., Abrantes Basseto, B.,
Miranda Paz, S., 2003. Best practices in code inspection for safety-
critical software. IEEE Software.

Sembugamoorthy, V., Brothers, L., 1990. ICICLE: Intelligent Code
Inspection in a C Language Environment, Proceeding 14th
Annual Computer Software and Applications Conference,
pp. 146-154.

Spuler, D.A.; 1994. C++ and C Debugging, Testing, and Reliability:
the Prevention, Detection, and Correction of Program Errors.
Prentice-Hall.

Wagner, D., 2000. Static Analysis and Computer Security: New
Techniques for Software Assurance, PhD. Thesis, UC Berkeley.
Xie, Y., Chou, A., Engler, D., 2003. ARCHER: Using Symbolic Path-
Sensitive Analysis to Detect Memory Access Errors, 9th European
Software Engineering Conference and 11th ACM Symposium on

Foundation of Software Engineering (ESEC/FSE).

Appendix C

This section presents a following conference paper which is a part of this dissertation.

P. Degorasertkul and P. Bhattarakosol, “Software Fault Detedion in C
Programs.” , Procealing of 12" International Conference on Intelligent and
Adaptive Systems and Software Engineeing, San Francisco, USA., June 9-11, pp.

192-195, 2003.

SOFTWARE FAULT DETECTION in C PROGRAMS

P. Deeprasertkul
Department of Mathematics, Faculty

Phayathai Road, Patumwan, Bangkok,
Thailand, 10330.
Prattana.D@student.chula.ac.th

P. Bhattarakosol
Department of Mathematics, Faculty
of Science, Chulalongkorn University, of Science Chulalongkorn University,
Phayathai Road, Patumwan,

Bangkok, Thailand, 10330.
Bpattara@sc.chula.ac.th

F.O’Brien
Royal M elbourne Institute of
Technology, M elbour ne,
Australia.

Abstract

The analysis of software failures is significant for
improving the software reliability. Therefore we need to
understand and detect faults that are causes of the failures
in order to improve software reliability.

We studied the Erlang programming language, a
language that is used for high reliability software. Its
faults and failures occur close together because of the
pattern matching supported in Erlang. Therefore, faults
which occur in Erlang can be easily and rapidly detected.
The paper proposes how the lessons learnt from the Erlang
infrastructure can be applied in C programming language
environment. The proposed fault detection software has
been created to perform as a software guard that can
rapidly detect faulty code in C programming language.
This detection software will operate at compiled time.

Keywords: Software reliability, Software failures,
Software faults, Erlang programming language, Pattern
matching.

1 INTRODUCTION

In software reliability, analysis of software
failures is a very important subjed. The evauation o
software reliability canna be done withou software
failure data. Therefore, to improve the software reliability,
we ned to understand haw failures occur, and-how faults
that cause the software failure ae deteded. Furthermore,
improved software engineeing - techniques, better
programming languages and letter quality management
are very important fadors in improving software
reliability[18].

There are two approacdhes that have been widely
studied to improve the reliability of software. Thefirst one
is fault avoidance It is the avoidance of faults that are
deteded before the software is delivered to the austomers.
Ancther approad is fault tolerance [5] where faults are
deteded duing software exeaution. However, it takes a
lot of time and money to develop this fault tolerant
architecture. In addition, fault-free software is very
difficult to develop in structured programming languages,
such as C because the mnstructs of these programming

languages such as array index and function argument
pasdng, often lead to software failures. Since the C
program structure is generally large, when some failures
oceur, it is time-consuming to deted faults which cause
the fail ures.

In this paper, we studied the functional
programming language, Erlang [1, 12, 19]. This
programming structureis snall and it has noreassgnment
statements. Its locd variables are assigned inside
functions and rever changed. These alvantages of Erlang
help the distance between faults and fail ures to be shorter
than similar programs in C. Thus, we will propcse a
correspording approach that can rapidly deted faulty code
in C at compil ed-time.

The remainder of this paper is organized as
follows. The Literature Reviews is introduced in Sedion
2. Sedion 3 is Faults and Failures in C. Sedion 4
describes Solution for Fault Detedion. Thefina Sedionis
the Conclusion and Future Work of this paper.

2 LITERATURE REVIEWS

Currently, there ae many approaches, models
and tools for estimating and predicting software
reliability. Software Reliability Engineaing or SRE[8] is
one well-known approach for estimation software
reliability. The objective of this approad is the reliable
behavior of software systems. The dynamic reliability
estimation is one dassficdion d the software reliability
assesanent. It determines the airrent software reliability
by using statisticd theory ‘techniques to falure data
obtained - during software -test. or during software
operation. These faillure data occur when the software is
exeauting. They are the resulting behavior when the
software does not deliver the service expeded by the user,
or the program's behavior departs from the spedfication.
They may mean the inability to perform an intended
function spedfied by a requirement or the halting of the
software program due to the incorred code or data.

Nowadays, there is increasingly interest in the
integrating previously existing software components for
building the software system products. This approach is
cdled Component-Based Software Engineering or CBSE.

Therefore, the reliability assessment of components that
are integrated into system is very significant. Component
Based Reliability Estimation (CBRE) [6] and Software
component religbility analysis approach [3] are two
approaches for the estimation of the software system
reliability using reliabilities of its components. In addition,
there are a lot of current methodologies to be used for
developing the reliable software. The objective of these
methodologies is to develop the fault-free software. One
of these methodologies is Cleanroom software
development [7] based on avoiding software faults. It
avoids the costly fault-removal processes by writing code
increments and verifying their correctness before the
softwareis tested.

The structured programming languages, such as
C, are widely used for developing the software products.
The C language programs are relatively large. When a
failure occurs, we have to take a long time to find out the
causes by tracing faultsin the collected log file. Currently,
there are tools such as Purify and Valgrind that can detect
an array index out of bound. Purify is a commercial
package tool that can find memory errorsin programs, but
it is very expensive.[13] Valgrind is a tool for finding
memory management problems in x86 GNU/Linux
executables. Valgrind is licensed under the GNU General
Public License.[16] Software running under the current
tools runs much more slowly, making testing more time-
consuming and tedious. Moreover, the existing tools are
applied at run-time, in a reactive fashion, attempting to
catch invalid accesses when they happen.

The functional programming languages are used
for high reliability software. One of these programming
languages, which have been studied and described in this
paper, is Erlang. It generaly has no reassignment
statements and has small programs that are about 5-10
times shorter than equivalent programs in C.[20] An
Erlang program consists of a set of functions which may
be collected into modules [1] as shown in Figure 1. If the
failure occurs in function B of Module I, the fault may be
somewhere not far from it (in-Function B or in some
functions calling it). In addition, neither global variables
nor pointers are used in Erlang. Moreover, |ocal variables
are assigned inside functions. These variables are never
changed and so functions ‘have no side-effects. Allof
these advantages help the distance between faults and
failures to be shorter than similar programsin C.

3 FAULTSAND FAILURESInC

Software reliability is defined as the probability
of failure-free operation of a computer program for a
specified environment in a given time. A good software
process should have the objective of developing fault-free
software. The minimizing software faults have a
significant impact on the number of system failures. Many

program failures and faults are often a consequence of
human errors.

Modulel Modulell
M essage
Function A Function A
M essage
v A v A
Function B Function B
vy A Y A
Function C Function C

Figure 1 Structure of An Erlang Program.

Currently, the structured programming
languages, such as C, are widely used for developing the
software products. The fault-freesoftware is very difficult
to develop in these programming languages, especialy C,
because the mnstructs of these programming languages
such as array indices and function argument passng by
reference often lead to software failures [19, 11, 15]. The
paper focuses on three faults, which mostly occur in C
programs.

3.1 Static Arrays

The C compiler does not have the chedking of
arrays indices whether they are out of bound [19]. One
example about an array index out of boundis own in
Example 3.1
Example 3.1 Array index out of bound

intarr_a[10], arr_b[3];

i=12
/* Thisisafault since'i’ will be used as an index of an
array, arr_g[i], and 12 is out of bourds) */
arr_b[2] = 2;
arr_ai] =0;

X = 100/arr_b[2];

J* The fail ure will occur since 100is divided by arr_b2] =
0; */
}

3.2 Functions

In the old versions of C that do nd support
function prototypes, there is no chedking of the types of
arguments passd to functions [11]. However, in modern
C, if afunction is defined using a prototype, but is cdled
in a separate file without a previous dedaration in the
current fil e, this causes the compiler to believeit isanon-

prototype for the function's arguments. Hence it performs
no type cheds on arguments passed to the function. This
may cause the problem of arguments not matching the
types of arguments or the wrong number of arguments
passd as Example 3.2.

Example 3.2 Passing the wrong argument

main()

{
char *g;
inti;

compute(, i);

/* Thisis afault becaise the type of an argument 'a’ does
not match the dedared argument in compute function
(num1)*/

}

int compute(int numl, int numz2)

{

X =numl+num2; /* Thefailureoccurs*/

}
33 Switch Statement

It is dangerous if there is no default label in
switch case, or no else clause since eeaution then
continues with the statement foll owing the switch or if
conditional statement. It is shown in Example 3.3 that is
about the arcraft landing control system. The fail ure may
occur if the emergency case happens on that aircraft and it
cannot be spedfied the type. The unidentified aircraft may
land onthe runway that is not avail able. Therefore, it may
have the default statement for resolving this problem.
Example 3.3 No Default Label in Switch case

Domestic = 1;
Internationa = 2;

switch(typeX{
casel:
Runway_Fredtype);
case2:
Runway_Fredtype);
}
Landing();

[*This is dangerous if there is no default label in switch
case. The unidentified aircraft may land an the incorrea
runway. */

4 SOLUTION FOR FAULT DETECTION

Generally, C language programs are relatively
large. When a failure occurs, we have to take along time
to find ou the causes by tradng faultsin the mlleded log
file. Furthermore, some faults canna be dedked such as
array indices out of bound Therefore, it is hard to detect
these faults.

This proposed software will help to resolve the
following problems.

1. The airrent tools are expensive and very hard
to write.

2. Software running under the aurrent tools runs
much more slowly, making testing more time-consuming
and tedious.

3. The «isting todls are gplied at run-time, ina
readive fashion, attempting to catch invalid accesses
when they happen. The proposed tool would be gplied at
compile-time, in a pro-adive fashion, with the intent to
reduce the time it takes to debug the wde by causing
faults and failures to be more tightly coupled.

All advantages of the Erlang programming
language which are described in Sedion 2 help the
distance between faults and failures to be shorter than
similar programs in C. Furthermore, it has the pattern
matching construct [1, 12] which is one alvantage
because it asdsts in tightly coupling between faults and
failures. If there is not one variable, clause of function, or
message matching with their patterns, the fault messgeis
immediately displayed to programmers. To make C
programming language behave like the tightly coupling
between faults and failures in Erlang, we have aeded
software that work as software guards to detect the faults,
which were mentioned in previous ®dions. This ftware
will chedk C programs before they are compiled by C
compiler as shown in Figure 2.

o |
C programs Pre-compiler
(Guardsto > c
deted faults) Compiler

Figure 2 Pre-compiled program

In traditional C, there is no cheding of the
indices of array whether-or not they are out of boundand
no cheking of the types of function's arguments
Therefore, the proposed software has two following main
functions.

4.1 Fault Detection. In this part, it has three
functions that automaticaly deted the ading errorsin the
programs. The first function is the aray indices chedking
whether or not they are out of bound. The second is the
default label chedking in switch case. And the last
functionis the type of function’ s arguments checking.

4.2 Fault Recovery. If some faults occur, the
error message will be displayed to warn the programmers.

Then, the proposed software automatically recovers some
faults.

[£ T

Figure 3 The pre-compiler architecture
5 CONCLUSIONS AND FUTURE WORK

This paper investigates the problem of fault
detection in C programs. Since C language programs are
relatively large, when a failure occurs we have to take a
long time to find out the causes by tracing faults in the
collected log file. And some faults cannot be checked such
as array index out of bound. It is therefore hard to detect
these faults In this paper, like the tightly coupling

between faults and failures in Erlang, we have aeded the
software that work as a software guard for deteding
faults, the faults that are the aray indices out of bound
and the incorred type of function's argument, at pre-
compiled time. The proposed software helps the faults to
be deteded easily and rapidly when the failures occur in C
programs. In addition, the software which failures are
reduced will be more reliable. The maximum time
complexity of detedion software’s agorithms is O(nlogn)
where n is the number of charadersin eat C program.

The implementation of the proposed detedion
software have been creded and operated at pre-compiled
time. The examples illustrate a programming style for C
based systems, that can be exforced through this pre-
compiled programs, and raise the level of reliability
towards that is achieved in Erlang implementations.

Ancther issue not addressed by this paper still
has to be analyzed. In particular, the faults are deteded by
the fault detedion software, how to manage these faults.
Therefore, the eror handling mechanism will be aeaed
in the nea future.

ACKNOWLEDGEMENT
We would like to thank you Dr. Rob Rendell who was a

staff at Software Engineeing Reseach Centre, RMIT,
Melboune, Australia for his valuable @mments in

Program checking srchitecturs
p:}

. L 4‘
Firel anil Cha k: S
Bt Ty Y i %
i & P -
Ihak | t

I [ST Yy, Erm o Comgidu
[— A" Himdling
Fradl wmd
Boa Ty heck type
ol B e o furs ten
ST enfa ALEEL
an—T

problems of programming languages
REFERENCES

[1] Armstrong, J.L., Virding, SR. and Williams, M.C.,
Concurrent Programming in Erlang, Prentice Hall,
1993.

[2] Cockburn, A., Writing Effecive Use Cases, Addison-
Wesley, 2001

[3] Everett, W.W., “Software Component Reliahility
Analysis’, ASSET'99, Proc. IEEE, pp. 204-211,
1999.

[4] Fraser, C., Hanson, D., A Retargetable C Compiler:
Design and Implementation, Addison-Wesley, 1995.

[5] Jalote, P., Fault Tolerance in Distributed Systems,
Prentice Hall, 1994

[6] Jantao, P., Software Reliability, Dependable
Embedded Systems, Carnegie Mellon University,
Pittsburgh, USA, 1999.

[7] Krishnamurthy, S., Mathur A., “On the Estimation of
Reliability of a Software System Using Reliabilities
of its Components’, Software Reliability Engineaing
Proc. |EEE, The Eighth International Sympasium on,
pp. 146-155, 1997.

[8] Linger, R.C., “Cleanroom Process Model”, IEEE
Software, 11(2):50-58. 1994

[9] Lyu, M.R., Handbook of Software Reliahility
Engineeing, McGraw-Hill, 199.

[10] Musa, J., Software Reli ability Engineaing, McGraw-
Hill, 199.

[11] Harbison, S.P. and Stede Jr, G.L., C: A Reference
Manual, Fourth Edition, Prentice-Hall, 1995.

[12] Hausman, B., Turbo Erlang: Approaching the Speed
of C, Implementations of Logic Programming
Systems, 119-135, Kluwer Academic Publishers,
1994.

[13] Pham, H., Software Reliability and Testing, IEEE
Computer Society Press 1995.

[14] Rational the software development company,
“Rational PurifyPlus for Unix”,
http://www.rational.com/media/products/pac/
D610C_PurifyPlus-UNIX.pdf, 2002.

[15] Royce T., C Programming, Maamillan Press 1996.

[16] Samani, M.M., Sloman, M., Monitoring Distributed
Systems (A Survey), Imperial College Reseach
Report; 1992

[17] Seward, J., “The design and implementation of
Valgrind: detailed technicd notes”’,
http://devel oper.kde.org/~sewardj/, 2002.

[18] Sommerville, |., Software Engineeing, Sixth Edition,
Addison-Wesley, 2001

[19] Spuler, D.A., C++ and C Debugging, Testing, and
Reliability: The prevention, detedion, and correction
of program errors, Prentice-Hall, 1994.

[20] Whatis.com, “Erlang programming language-a whatis
definition”, http://www.techtarget.com/definitiory
0,,sid9_gci212072,00.html

Vita

Name: Ms. Prattana Deegorasertkul.

Date of Birth: 8" Decanber 1975.

Education:

Ph.D. Program in Computer Science, Department of Mathematics, Faaulty
of Science, Chulalongkorn University, Thailand, (June 2000— May 2005.
Visiting Ph.D. reseaccher in SERC at Royal Melbourne Ingtitute of Tedhndogy,
Melbourne, Australi a, (October 2001— September 2002).
M.Sc. in Computer Science, Department of Computer Engineeing, Faaulty of
Enginee, Chulalongkorn University, Thalland, (June 1997— May 2000.
B.Sc. in Science, Department of Mathematics, Faaulty of Science, Mahidd

University, Thailand, (June 1993— March 1997).

Publications;

P. Deeprasertkul, P. Bhattarakosol, and F. O’ Brien, “ Automatic Detedion and
Corredion d Programming Faults for Software Applicaions’, Elsevier: The
Journal of Systems & Software. 2005.

P. Degrasertkul and P. Bhattarakosol, “Software Fault Detedion in C
Programs’, 12th International Conference on Intelli gent and Adaptive Systems

and Software Engineeing, San Francisco, USA., June 9-11, pp 192195, 2003.

75

Scholar ship and Awards:
Development and Promotion of Science and Technology Talents (DPST) Scholarship

of Thailand for B.Sc., M.Sc., and Ph.D.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Content
	Chapter 1 Introduction
	Chapter 2 Related work
	Chapter 3 The precompiled fault detection and correction
	Chapter 4 The implementation and experimental results of the proposed technique
	Chapter V Theoretical analysis
	Chapter VI Discussion and conclusion
	References
	Appendix
	Vita

