

����� ��� � �	���
 ����
������ � ��� �� � ������������ ������� �
�� � ! "�#������ ���
�$�%����&��
����	'("�)&*���"������ ! ��� ��� �
+ , - .�/0 1 2 3 4�5�6	1 7&1 3 8�/ 9 :�/ ;	< =>�2 3 ?�/ 2 .�/0 1 2

@�A B C�A D�E�F A�F G�@�AIHJ E�F K�L C�FM�N�O P Q

RS�TVU�W X S�Y�X�Z [X \] ^ _ `�XVa b R X�cVXd e f g�h�f i�W�j kd�i�l�W�m�W�nVcVo p i�a q m�j _�jS�rsrsW tu�vVw�x�y�x�z�{�| } ~ �	� ��� � �s� uV{
z�x���x tu���x tu�vVw�x ��x�| �����V� u�t�� {���| � �	x���tu���x ��� uV{�y�x�z�{�| �

����� tu�v	w�x�y�x�z�{�| � � � ������� ��� ��� ���V� ��� 	¡���� ¢ ¡
£¤&¥�¦�§ ¨©�¥�ª&¦ «�¬ ­�®

¯ °	±V²´³�µ ¶ · ¸ ¹ º »�¼�½ ¾ ¿ À
ÁÂ�Ã�ÄÂ Å�ÆÇ È É�Ê�Ë Ì Í Î�Ï�Ð�Ë Ñ�Ò Ó�Ô Õ�Ö�Ï ×Ç�ÅVØ�Ï�Ð Ù Ø

����� ���	�	
���
���
	����
�����
�� � ������
���
	��� ����� ��� � ��������
��	
� !��� �!"#� ��$�� � �% �
���

� �&���	�!$� ��	$���
	������
�"��������'� �!"

(*)�+�,�- . / / .	0 .�1�2�2�3	- .�) 2�- / 4 5�6

798�: ; ; <�= > ? > : @	A�B�C�D	E�: > > <�F%: A�G�?�= > : H�I�J K�I L M I I N*O�P Q�R�L�Q S OUT�O�V�K�M W O�N*O�P Q X

Y Z�[\] ^U_�^�`�[^�^�Z Y�_�Z�a \ Z�[�Z Y b�c�d e f�g f�h�c i d j k�f�l�h	m n o�p�q	r�d o�j r�o

s o�h�t�p n l�o�j n�f u v�t�n c o�l*t n d r�g

w t�r�m�e n i*f u�q	r�d o�j r�o

x�y�z�{ |�{ }�~ ��� }	� ~���~�� � ��� ��� � �

��� |��	����� � � ��|�� ����� �

� �!� �%��� � � � � � ����� � � �

��� ���������
	 ��	 �
������ �
	 ��� ��	����� � � � ����� �
� �
�
� ! "�#�$���%�& ' ��()* + ,
-*�,
.�,�" /�,�021 3 4�$�� 3 5 6�7������ 1�� $�8
9 ,
 :#;$
��%=<>?6;@:A;��6;.�,;"�5 �B��4
�C��%2D E + 9 � F �
"�5 6
7�G=�
H���5 �B��4
�2� %=()>;"�5 #;� " 9 � F �
" I J;K
L MON�P�Q;R;S�M�S�TCUOQ;VOW Q�V�U�XZY
P�SOP�S�[�L Y
\�L [�L U�]^\�]^_;S
U�S�`�U�L T2abV�Y
c;[
U�]^`�Q;_;SOL T
d�e�f�gCh�e�g
f�i�jlk�f�m
n�f�o;p�pOq rCn;s t u v w x y=z{�|;}B~ � � � � � � �
�
��~ �
� z ~���~ z � ��� z u � � v2z ��;�w
� � v
z � |;��� � � � � � � �2������?��� ¡�¢ £ ¤�¥�¦;§�¨�©�© ¦;¥ª§�¨�¥�«�¬2©�¦?­ ®�¥�¯ ¨�°2± ²
³ ´ µ ¶
¯ © ®�°
·�¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã�Ä

ÅÆ�Ç�È�É�ÊÆ
Ë;Ê�Ì Í Ê Î Ï Ð Ñ Ò Ê Ó É�Ô Õ�Ê�Ö ×
É�Ø Ù
Ø Ú Û�Ù
Ø Ü Ý�Þ Å É�ß
Ê à É�Ô áâ ã Ö�äâ Ö�å�Ö�Ý æ�Ö�çCè Í é Å Ø Í ê Ñ
È�×
É�Ø è�Ø Å�ë Õ�Ö�ÛCÞ Å É�ß
ìÆ�Ñ�Ë;í�É�Ñ�å�Ö�Ý ê Ù;Ø é ×
Ø ß î ï�ð ñ ò ó
ô õ ö�÷�ô ø ù ú û ü ý þ ÿ��� � � � ���
	�� �
� � ��� � ��� ��� ���� � ��� � ÿ��� � � � ���� þ ��� � � ��������� � � � � �
! " # $ % & '�(
)�)�(* +,)�-�(./ !�0�(1 /�2 1�3 4 1 " 5 '�6
! 7 ()�(* 8�* .
'�9�:�;
<�8 = >�6�? 7 (9 @ # A B 1�C D
* <
)�* E�F 2 G # :�HI(?�.
(
E�J/ % 2 > (�%�!" #
F)/ %�'�()�)�(* F K"�0�1�C D�* <)�* E�<
>�6�<) & $ K�?�.
(
E�J/ % 2 >�(%�F H�> = (1 " 5L?�.
(
E�J/ % 2 >�(%�K :�A C D�* <
)�* E�'�6 ! 7 (B H & F)/ %
?�. (E�J/ % 2 > (�%�K :�A * 6 ;�;�A (1 M N O P Q R
S T UIV�S W X Y T U Z [\] ^ _ ^�` a b c dIe�f
g
a�hi [�j
k�g [�l d�] m n
o p q�o aIr s qIp q t u l
v w t a x
y z {
|�} |�~���~
�
��} {
�I| � { � �� � �������� � � � � ���I� { |I� � y�� � � � � ����{ � �� � |�� � }
�

� �I��� � �� �����
� � � ¡ ¢ £ �I¤ ¥ ¦
��� §�¨�¥ �©
ª«���� � ¬ ­ � ���
� ®�� ¦ �¤�¯�¢�°�¦
� ª�±²I³�´�µ � ³�¶ ¯�· ¸ ��� ¹ ��� ª�� ��º ¥ ¦ ·
»�¼�½ ¾I¿ À Á Â ÃÅÄI¿ À Æ
Ç
Ç�½ ¿
ÄÉÈ Ä Ê Ë ¼�½ Ì�¿
¾�À Æ
Ç�Ç�Í�¼�ÎÐÏ Ñ Ò
Ó À Ñ Ô Ä�Õ Ö Ì�Ì × Ç Â Ä�ØÙ�»�Ä�¿�Ú�Ô ÛIÜ�Ý Ò Þ�Æ Í Â Ç�Í ß ¼�ÄÅ¾�¿ À Ï�À Ó Ì
à ¼�ÇIÔ Ä�á Ý Ó ½ »�¼�½ ¾�¿ À Á Â ÃâÄI¿ À Æ Ç�ÇI½ ¿
Ä�Ì�Æ ã ä ¿ Ô Û ß Ï ß ¼ ½ È àÙ�å�æ Ý ¿ Ô á ß Ì Ý ¿ å�Ø�¿
¾çÚ Â ½ Ä Âè Ä�Ô ÄIÓé ãIå�¿ Ä é Á�ÄIê Ñ Ä Ù è Ì�Æ
ã ä ¿ ¾�¿ À
Ò ¾ ß ë » Õ Ö ÜÅÛ�¿�Ú Â ½ ¾�Þ Ý ¿ Ó
ì Ú�å�¾�¿
À Ï�À Ó Ì à ¼�Ç
æ Ó ¿
Ø�íé Ú Á�Þ ¿�Ú�» ¼�½ ì Õ�À Ò ¾�À Ø�Íî Ë ½
È Õ ï�Ä à ¿�È Û�Ï × »�¼ ½
æ�Ó
¿
Ø�íé Ú Á�Þ�¿�Ú
» ¼�½ À Æ Ç�ÇI½ ¿ ÄI¾ Ý ¼�Ä�ã Ù Ë ì Õ�À Ò ¾�À Ø�Ì�Æ ð ñ ¾Iæ ¼�Ø�ë Á
Þ Ñ

ò�¿ æ Óé á�¿ æ ó é Ï�ô ¿ à Ï�À Ñ Þ�¿
å�ØÊ�¼�áÊ Ë ¼�Ä é àé Ï õ
à ¿ » ¿
Óé á�¿ Óé ãIå�¿ ¾�¿
À æ�¼�Ø�Á é Ó È Ï�¼�À Ñ Þ�¿
å�ØÊ�¼�áÊ Ë ¼�¼�¿ Ì�¿ À å Ñ ã Ù Ë Õ�Àî ¾�ö
¿ õ
Õ÷ ¾�¿
À ôî ¾�ö�¿ ø ù ú�û Þ�¿
å�ØÊ�¼�áÊ Ë ¼�¼�¿ Ì�¿
À å Ñ ã Ù�Õ�Àî ¾�ö
¿
À Ý Ó
Ø õ

User
Text Box
iv

��� � � � � � � � � � � � �
	��
�����
���� �����������
� � ��� �
��� �!#"�$�%�&�' () * +
, - .�- . / 0 , 1 0 / 0 * 2�3 ' () * +4, - .�) , 0 / 5 - .�3 '�() * +4, - .6) , 5 / * 3�7 , 5 / * 8 . * . 9 * 0 (:�3�; , * * . - :�<6, * 9 = 0 : >

?�@�A�B�B A�C4AED�F�F�?�@�A�G�F�@�B�H
I�J#K A�CML NO?�@�P�Q6F�NOF�C4BOP#R�G4P#R B STA�@�FO@
F�J�L A�U
L J�L B VWU�V

D�F�B�F�X�B�L C�YZR A�I6J B�V[X6P\D6FTL C[G�B�@
I�X�B4I6@
F�DM?�@�P�Y#@�A�N#NOL C
Y#]�B�^�F�G
L G\A�D4Q6L G4P#@[K

A6G�G�L G�B�]�?�@�P\R�]�? A�B�B A�@�A�G
L C�F�F_U
^4A�B�B A�@�A�H�P�G4P#J�`�?�a�] D�] ` B�^6F�G�L GZX�P�A�D4Q�L G�P\@bK

?�@�P#R�F G�G4P#@[R�F�@�Y\I4GcP#d U
@
L F�C6`�?�a�] D6] `fe�e4]�L G
U
C g�h i j k h j l�m�n i j o�]

p�q r s t�u�v wxv w�y z u�{�z y z s |}z ~�u���z �\��q�v s u�� scr w�u s ��v w}q rWu���q�q���~ q r s t�u�v w�z �#��y w���w�� s u s z q�� �

� q t�w � w�v � ~ q���wxr u���y s ~�s � u sE��u�� ~ wxs � w�~ q�r s t�u�v w�r u�z y ��v w�~}u�v w�� q�sM��w s w���s w����4��v z � ��s � w

��w � w�y q�����w�� s4~ s u���w�~ � ��� ��� �O� ����� � ����� � � ��� ��� � �T��� � �� ������ ��¡W �� ¢�£�� ��¤���� ¢��4� � ��� ����� ��� � ¥ ����� � ��¦

��� � � � § ¨
�4 �� ��� ��� �4¤�¢�� ��¢ ��� � �#����� � ��� ��� ��������� ©
� ����¡�� � ��� ��� ����� � ������� � ��� � �\� ¢ � � ����� �T� �#� ������� � ª §

« ��� � ¬ �M¢ � � ����� ��������� ©4� ����­4� � � ®�¯ °�± ²�³\´�µ ¶ °�·b¸�¹�º�¶ »O¼
° » °�± » µ ²�½E¹�½ ·_¾6²�¯ ¯ °�± » µ ²�½ ¿ À
Á�Â4Ã�Ä Å

Æ Ç�È�É�Ê�Ë Ì4Í ÇEË Ê Æ Î Ï�Ð
Í È�Ç�Ð_Ë ÊcÆ É�Ë ÑcÐ
Ë Ñ Ñ Ç�Î Æ Ò Æ Ë Ï�ÊcÐ�Ç Æ Ç�È Æ ÑcÒ�Ê ÐEÈ�Ï�Î Î Ç�È Æ ÑTÆ É ÇWÓ Ò�Í�Ô Æ Ñ[Õ�Ç Ó Ï�Î ÇcÆ É ÇWÑ Ï�Í�Î È�Ç

È�Ï�Ð�ÇMË ÑTÈ�Ï�Ö#×�Ë Ô Ç�Ð Ø Ù�É ÇcÏ�Õ Ú Ç�È�Æ Ë Û Ç[Ï Ó
Æ É ÇÝÜ�Þ�ß
Ò�àáÆ Ç�È�É�Ê�Ë Ì4Í ÇÝË ÑOÆ ÏÝË Ê È�Î Ç�Ò�Ñ Ç[Ñ Ï Ó Æ â�Ò�Î Ç Î Ç�Ô Ë Ò�Õ�Ë Ô Ë Æ ã

ä�å æ ç è�é æ�å ê ë�ì í�î�ï å ê ðEæ ç íEñ�ì è�ð
ì î�ò\ò�í�ì ï�ó
ì í�ï�ñ�è�ê ï å ô�å õ å æ å í�ï ö ÷�ø ùÝú�û�ü ú�ù�ý þ�û ÿ�� ý�� ù � ú�û��\ý�� � ��þ � û�ü
	 	�� �

��ý�ý
� � ù
�Mþ û��
�
������� ücû�� ��ù���þ û�� ù
��� ú�ùWþ ø ù�� � �
�Oû ÿ�� � �
ü
� ÿ � ú
��ü þ��
�����
��ù������
� � ü �Mþ ø ùWù � ù�ú�� þ � û�ü

ý�ù�� � û�� � �
�
����� þ ù�ú�ø�ü
� ��� ùáú
��üMú�û��\ý
� ù þ ù
� Mù�� � �!� ü � þ ùMþ ø ù��
� �
ü
� ÿ � ú ��ü þ�ÿ ���
� þ ��� üWþ ø ù_ý�� û���� �
�

� û��
� ú�ùáú�û
��ù � �6û�ü � ù
��� ù�ü þ � �"6þ ø ù#� � � � �Mû ÿ$� û ÿ þ %&��� ùáÿ �
� � �
� ù#'
�
� ù
�bû�üÝþ ø ù
� ùEÿ ���
� þ �Ýú
��ü�'�ù

�
(û�� ��ù
�)��ü �Oþ ø ù*� ù
� � ��'�� � � þ �û ÿ�þ ø ù!� û ÿ þ %&��� ù)� �$� �\ý
� û (ù
� �

�
ù�ý���� þ ��ù�ü þ,+-��þ ø ù���� þ � ú
� .�þ � ��ù�ü þ / �&�
� �4ü ��þ �
� ù � 01� �
�
� ù�� �Tû ÿ�� þ � �� ��û
�#ý
� þ ù��
.�ú�� ù�ü ú�ù 23��(�� � û�� / �-�
� �4ü � þ �
� ù � 01� �
26ú
�
��ù��$� ú$ ù
���$4�5�5 6 �6û � �
��(
� � û�� / ��� � �
ü � þ �
� ù �

User
Text Box
v

Acknowledgements

I would li ke to express my deepest gratitude and thanks to my advisors Assist. Prof. Dr.

Pattarasinee Bhattarakosol for her contributions to all aspects of my works on this thesis. She

was a great advisor who provided a lot of advise for the thesis. I would also li ke to thank

Professor Fergus O'Brien who is my co-advisor for his support during I stayed and did research

at SERC, without his contributions and guidance work would not have been possible.

I am greatly thankful to DPST scholarship for the financial support since Master Degree

until I graduate Ph.D. I would li ke to thank my best friends for their help, caring and many

pleasant memories over years.

Finally, I would li ke to thank my parents for their love, support, and encouragement. I will

forever be indebted to them for everything they have done for me. My parents, my brother and

his family also stood by me.

Table of Contents

 Page

Thai Abstract ……………………………………………………………………….. iv

Abstract …………………………………………………………………………….. v

Acknowledgments …………………………………………………………….……. vi

List of Tables ………………………………………………………………….……. x

List of Figures ……………………………………………………………………… xi

1 Introduction ……………………………………………………………….……. 2

 1.1 Motivation ……………………………………………………………….……. 2

 1.1.1 Static Array ……………………………………………………….……. 5

 1.1.2 Function ………………………………………………………………... 6

 1.1.3 switch Statement ………………………………………………….……. 7

 1.1.4 Dynamic Array ………………………………………………………… 8

 1.1.5 Infinite Loop …………………………………………………….. ……. 9

1.2 Objectives ……………………………………………………………….……. 11

1.3 Scope of Work ……………………………………………………………….. 11

1.4 Contributions of the Dissertation …………………………………………….. 12

1.5 Expected Outcomes ………………………………………………………….. 13

1.6 Dissertation Organization ……………………………………………….…… 13

2 Related Work …………………………………………………………….…… 14

 2.1 Background …………………………………………………………….…… 14

 2.1.1 Erlang Programming Structure ……………………………….……... 14

 2.1.2 Faults and Failures in Erlang ………………………………………... 15

viii

 Page

 2.2 Related Work ……………………………………………………………….. 17

 2.2.1 Software Inspection ………………………………………………….. 17

 2.2.2 The Current Software Fault Detection Methods ……………….……. 18

 2.2.3 Erlang Programming Language ………………………………..……. 19

3 The Precompiled Fault Detection and Correction ……………………………... 20

 3.1 A Program Dependence Graph ……………………………………….……. 21

 3.2 Pattern Language …………………………………………………………... 22

 3.2.1 Using a Pattern ……………………………………………………… 23

 3.3 Detection Module ………………………………………………………….. 23

 3.4 Correction Module ………………………………………………………… 26

 3.5 Complexity ………………………………………………………………… 28

 3.6 Summary …………………………………………………………………... 29

4 The Implementation and Experimental Results of the Proposed Technique … 30

4.1 Implementation of Precompiled Fault Detection and Correction

 Technique …………………………………………………………………… 30

 4.2 Experimental Results ………………………………………………….……. 35

5 Theoretical Analysis …………………………………………………………... 41

 5.1 Fault Detection ……………………………………………………….……. 41

 5.2 Fault Correction ………………………………………………………. …... 43

6 Discussion and Conclusion …………………………………………………… 45

6.1 Discussion ……………………………………………………………..…... 45

6.2 Conclusion …………………………………………………………………... 46

ix

 Page

References ………………………………………………………………….…….. 48

Appendices ………………………………………………………………….…….. 52

 Appendix A ………………………………………………………………………. 53

 Appendix B ………………………………………………………………………. 57

 Appendix C ………………………………………………………………………. 68

Vita ……………………………………………………………………………….. 74

 x

List of Tables

 Table Page

3.1 Symbols used for syntactic entities in source code ……………………. 22

3.2 Named symbols used for syntactic entities in source code ………….... 23

4.1 The number of programming faults in each C application …………… 37

xi

List of Figures

Figure ��� ���

1.1 An example of an application that contains a static array index out-of-bound 5

1.2 An example of an application that contains a string array index out-of-bound 6

1.3 An example of passing wrong type of function arguments ……………….. 7

1.4 An example of no-default-case in switch statements ……………………… 8

1.5 An example of a dynamic array index out-of-bound ……………………… 9

1.6 An example of the first case of infinite loop ……………………………… 10

1.7 An example of the second case of infinite loop …………………………... 10

2.1 A structure of an Erlang program …………………………………………. 15

3.1 Precompiled Fault Detection and Correction in context ………………….. 20

3.2 The Program Dependence Graph for the small program shown on (b) …… 21

3.3 The detecting function of Precompiled Fault Detection and Correction ….. 24

3.4 An example of system graph (a) for a part of program in Figure 1.1 shown

 on (b) ……………………………………………………………………….. 25

3.5 An algorithm of a main functionality for detecting and correcting faults …. 26

3.6 An example of the pattern and match graphs for the program in Figure 3.4(b)

……………………………………………………………………………… 26

3.7 The correcting function of Precompiled Fault Detection and Correction

 technique …………………………………………………………………… 27

4.1 An example of a log file: array index out-of-bound detection …………….. 34

4.2 An example of a log file: string array index out-of-bound detection ……... 35

xii

Figure ��� ���

4.3 An example of a log file: passing wrong type of function argument

 detection ……………………………………………………………………. 36

4.4 A flowchart of the steps involved in the evaluation of using the PFDaC

 technique ………………………………………………………………….. 36

4.5 The resulting graph before and after correcting by the PFDaC technique in

 File1.c …………………………………………………………………….. 38

4.6 The resulting graph before and after correcting by the PFDaC technique in

 File2.c …………………………………………………………………….. 39

4.7 The resulting graph before and after correcting by the PFDaC technique in

 File3.c …………………………………………………………………….. 40

A.1 The interface prototype of the proposed technique for file inputs ………... 50

A.2 The interface prototype of array indices detection ……………………….. 51

A.3 The interface prototype of passing the wrong function argument type

 detection ………………………………………………………………….. 51

A.4 The interface prototype of switch statement case detection ……………… 52

A.5 The interface prototype of dynamic array index detection ………………. 53

A.6 The interface prototype of infinite loop detection ……………………….. 53

CHAPTER I

Introduction

The task of implementing a program without faults and errors is challenging. Currently,

various compilers have been progressively improved. However, some faults and errors

which are the results of human oversight are still l eft out and interrupt the system at the

operation time. The existence of the faults in applications can increase the number of

software failures and can, thus, decrease the reliabilit y of the software. Therefore, the

software reliabilit y can be improved if and only if the software failure can be avoided.

1.1 Motivation

Software reliabilit y is partiall y depended on capabiliti es built i nto the compilers. If the

interpreters or compilers are able to detect all common faults and errors, software

reliabilit y can be achieved. Although many languages are developed to serve various

types of humans' needs, only some of them can guarantee the reliabilit y of their

applications. The languages such as Java and Erlang are examples of high quality

programming languages [1,9] that reliabilit y of their applications can be ensured.

Java is a popular language which is widely used and classified as an object-oriented

language. It is incorporated significant error checking such as the feature of detecting

3

array indices exceeding the array bound during run-time. Since objects in Java programs

are responsible for operations to be performed, the parameters to perform such tasks are

checked and informed during the compile time. Thus, the faults can be detected and

corrected before the applications are delivered. Therefore, Java can be called as a

language that supports the fault-avoidance method.

Another functional programming language, Erlang, [1] is used to develop highly

reliable communication-software products. A characteristic of this language is the pattern

matching functionality which assists in tightly coupling faults and failures. Therefore,

whenever a failure arises, the Erlang interpreter can immediately locate the cause of such

failures. So, the software implemented in Erlang exhibit a very high level of software

reliability.

Even though programmers and testers have performed the verification for faults

detection during the software development process, unfortunately, there are some faults

and errors which cause the critical failures still remaining in the program. One reason for

the remaining faults and errors is the inefficient task of compilers. Since some compilers

cannot detect some faults or errors, therefore, there is no error or warning message

presented to programmers while the programs are compiled. Examples of the languages

that their compilers cannot fully detect faults are C, FORTRAN, Turbo Pascal, etc.

Considering C programs, for example, the faults include cases such as array indices

out-of-bound, passing the wrong types of function arguments, no-default-case in switch

statements, or infinite loops. Furthermore, it is not uncommon that programmers or

developers ignore warning messages at the compile time when, in fact, these warning

messages may indicate the potential for a critical fault during software execution.

4

Having a hidden fault in an application program can create the critical problems for

an organization. Although software faults are rare ones in production cases, once a fault

occurs, some critical system failures can occur. Thus, the programmers and testers must

ensure that the developed software operates under the fault-free situation. One way of

performing fault detection is to take an advantage of software inspection. A source code

is general examined by checking it for the presence of errors, rather than by simulating

its execution [10]. Using this mechanism, it can detect and eliminate faults and errors in

the software products developed during the software life cycle. Consequently, the

reliability of applications are increased. However, the fault detection method is likely to

fail unless the extreme care is taken during a program inspection process.

Since there are various types of applications such as game applications, network

applications, and web applications. Thus, different applications generally are developed

using different languages. For examples, the network management application may be

developed by C whereas the e-commerce applications on web will not be implemented

by C. Thus, there are some differences of errors existing in programs, depending on the

error-prone feature of the programming languages. For instance, in C++ and Java, many

mismatches between actual and formal parameters can be caught at the compile time, but

there might be an exception in C, etc. The following is a list of some classical

programming errors [10].

• array indices out of bound;

• mismatches between actual and formal parameters in procedure calls;

• nonterminating loops;

5

• use of uninitiali zed variables.

Considering the system software that is the heart of the computer’s operations, most

of these software are developed in C. Additionally, most compilers of the structured

programming languages are not able to detect all faults. Therefore, in this dissertation,

we will consider C as a representative of other structured programming languages and

study faults that lead to software failures.

1.1.1 Static Array

The C compiler does not have the checking of array indices whether they are out of

bound [24]. One example about an array index out of bound is shown in Figure 1.1.

Figure 1.1: An example of an application that contains a static array index out-of-bound.

Example 1.1. Considering the case of an array index out of bound in Figure 1.1. The

instruction at line 5 declares values for array arr[0] to arr[5] when the upper bound of

the arr array should be 4. Consequently, the value of temp[0] is replaced by the value of

arr[5] at line 6. Thus the value at the temp[0]’ s location is automatically eliminated.

This fault can affect the company’s profit and loss, which uses this code, in business.

6

Finally, it will affect the company's reputation in the negative manner.

Figure 1.2: An example of an application that contains a string array index out-of-bound.

Example 1.2. Another example of array index out of bound is shown in Figure 1.2.

The string “mathematical” which is 12 characters is greater than string “computer”

which is 8 characters. The fault occurs when the string “mathematical” is copied into

str1 at line 4.

1.1.2 Function

When a function is generally called, some parameters may be passed to the called

function. Since the old versions of C do not support function prototypes, therefore the

passed type of function arguments are not checked. On the other hand, in the modern C,

the programmers are able to declare the function before it is called. Thus, its parameters’

type are checked when the function is called. However, some functions are not declared

until the function has been used. Therefore, the compiler treats these functions as if it is

a non-prototype for function arguments. Consequently, the parameter checking is

ignored.

Example 1.3. Considering Figure 1.3 at line 14, the add function is declared, and the

passing arguments are the integer named x and y. However at line 11, the add function is

7

Figure 1.3: An example of passing wrong type of function arguments.

called and the passing arguments are sum and mon, which mon is declared as a character.

Since the type of passing parameter, mon, is different from the declared parameter, y, of

the add function, therefore there is no matched value.

1.1.3 switch Statement

In the switch statement there is the default case that is used when there is no match in the

switch statement. However, programmers may ignore the use of the default case with

various reasons. In some situation, it is dangerous if there is no matching case in switch

statement and the default case does not exist. Thus, the execution continues and a serious

accident occurs as shown in Figure 1.4.

Example 1.4. Considering the switch statement in Figure 1.4 at lines 6 to 11, it is a

program about the aircraft landing control system. The switch statement in the program

does not have default case. The failure may occur if the emergency case happens on that

8

Figure 1.4: An example of no-default-case in switch statement.

aircraft and it cannot be specified the type. The unidentified aircraft may land on the

runway that is not available. Therefore, If there is no matching case in switch statement,

it should have the default case for resolving this problem.

1.1.4 Dynamic Array

Dynamic array is another type of array. It involves dynamic memory allocation. A piece

of memory is allocated to define array index for a variable we have declared. Some

failures may occur if some variables use the memory storage over its declaration as

shown in Figure 1.5

Example 1.5. Considering an array index out of bound in Figure 1.5. The instruction at

line 6 declares values for array arr[0] to arr[256] when the upper bound of the arr array

should be 255. When the array temp was set the values from arr[0] to arr[256] at line 7,

the value of temp[0] is replaced by the value of arr[256]. Thus the value at the

temp[0]’ s location is automatically eliminated. This fault also affects the company’s

9

Figure 1.5: An example of a dynamic array index out-of-bound.

reputation in the negative manner.

1.1.5 Infinite Loop

Another failure that mostly meets in coding program is the infinite loop. In this

dissertation focuses on two cases of the infinite loop. First case is shown in Figure 1.6;

the value of total (or other values in while loop) will continue to increase infinitely. The

while loop is never stopped as the variable ok never be FALSE. Another case of the

infinite loop in this dissertation is shown in Figure 1.7. The value of total will continue to

increase infinitely as well, if the variable i has never been less than zero (negative

number) or greater than zero (positive number), respectively.

For more examples of problems, considering the examples of C programs in [4] the

errors include cases such as array indices out of bound, passing the wrong types of

function arguments, and no default case in switch statement.

Although programmers try to detect faults by running data test sets, or program

10

Figure 1.6: An example of the first case of infinite loop.

Figure 1.7: An example of the second case of infinite loop.

11

inspection software, unfortunately, only some faults can be detected before software is

delivered to users. Thus the reliabilit y of the software cannot be full y guaranteed in the

runtime process. The proposed technique called as Precompiled Fault Detection and

Correction (PFDaC) helps programmers detect significant faults and errors that might

be left in the programs. Additionally, it can also automatically correct some faults based

on the programmers’ desires.

1.2 Objectives

In this dissertation, our objectives are as follows:

1. To propose a method for detecting software faults in software programs to improve

the software reliabilit y by applying infrastructure of a functional programming

language to the structured programming language environment.

2. To develop a static detection tool that can detect software faults in applications to

improve the reliabilit y of software modules which are investigated.

1.3 Scope of Work

Presently, there are two classes of the programming languages: structured programming

languages, and object-oriented programming languages. As mentioned previously that

some defects in the structure programming languages are hidden during the compile time,

the software products cannot be called as high-reliable software.

When the executing software was interrupted, or the software failure occurs, it can

be counted as a cost (or expense) of the organization. Resolving the failure software is

12

time-consuming, and it increases the risk of loosing customers of the organization.

Therefore, this research has an aim to propose a technique that can increase and

guarantee the reliabilit y of the software product before the software are delivered to

clients. The proposed technique, PFDaC, is independent from the eff iciency of compilers.

Therefore, it can be applied to every programming languages. The significant functions

of PFDaC are automatically detect and correct faults in the structured programming

applications at the compile time.

In this dissertation, we focus on the case study of the investigated programs written

in C language. The following C programming faults are considered.

• static and dynamic array indices out of bound,

• passing incorrect types of function's arguments,

• no default case in switch statements,

• some cases of infinite loops.

• some cases of dynamic arrays, this dissertation focuses on the dynamic array

indices which can be computed their values at compiled time.

1.4 Contributions of the Dissertation

The contribution of this dissertation is an introduction of the PFDaC technique. PFDaC

can automatically detect and correct the programming errors, which are the results of

programmers inadvertence and cannot be detected by compilers, in the source code prior

to the compile time. PFDaC can be applied to C applications and it will be applied to

13

other language applications in the future. Furthermore, the experimental results and

theoretical approval have been presented to support the design of PFDaC.

1.5 Expected Outcomes

1. To decrease the number of failures in software applications and improve the

software reliability.

2. To apply this technique to other structured programming languages.

1.6 Dissertation Organization

The rest of the dissertation is organized into five additional chapters. Chapter 2 discusses

the background and related works while Chapter 3 proposes an architecture of PFDaC.

Additionally the technique for pattern matching, detecting, correcting faults in software

source code are described in this chapter. The implementation and experimental results

of PFDaC technique are presented in Chapter 4. Furthermore, theoretical analysis of

fault detection and correction is shown in Chapter 5. Finally, discussion and conclusion

of this dissertation are elaborated in Chapter 6.

CHAPTER II

Related Work

In this chapter, some characteristics of Erlang which is a functional language will be

presented to show the pattern-matching features. The methods, tools, and techniques

related to software fault detection are discussed to the related work section.

2.1 Background

2.1.1 Erlang Programming Structure

Erlang [1, 13] is a functional programming language that was developed by Ericsson and

Ellemtel Computer Science Laboratories. According to the architecture of Erlang, the

programs in Erlang are mostly free from side-effects. Additionally, Erlang generally has

no reassignment statements. Furthermore, written programs in Erlang are about 5-10

times shorter than the equivalent programs in C [24].

An Erlang program consists of a set of functions which may be collected into

modules [1] as shown in Figure 2.1. If the failure occurs in function B of Module I, the

fault may be somewhere nearby it (in Function B or in some functions calling it).

In addition, neither global variables nor pointers are used in Erlang. Moreover, local

variables are assigned inside functions and these variables are never changed. All of

15

Figure 2.1: A structure of an Erlang program.

these advantages help the Erlang programmers tracking faults more easier and faster than

the similar functions in C programs when failures occur. In this section, the pattern

matching which is one significant characteristic of Erlang is considered. It makes the

failures occur close to their causes.

2.1.2 Faults and Failures in Erlang

Although Erlang is a reliable programming language, there are some faults and failures

that can be detected in Erlang programming which are described as follows.

Example 2.1 The Nth element of the tuple in Erlang

-module(divide1).

-export([divide/0]).

 divide() ->

 T = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} ,

 D = 1 div element(12, T),

 io:format(“~w~n” , [D]).

In Example 2.1, the process will t erminates with an error at run-time because T has

16

just 10 elements. But D is the result of 1 dividing by 12th element of T that is not

defined.

Example 2.2 if statement in Erlang

...

if

Score >= 80 -> io:format(“High Distinction~n”);

Score >= 70 -> io:format(“Distinction~n”);

Score >= 60 -> io:format(“Credit~n”)

end,

io:format(“~w~n” , [Score]).

Example 2.2 is an example of if statement in Erlang. The failure will occur if Score

< 60, since there are no any matching cases in if statement. Consequently, a run-time

error will be generated and the next instruction cannot be continuously executed.

Example 2.3 Function in Erlang

-module(com).

-export([compute/1]).

compute({ add, A, B}) -> A + B;

compute({ double, X}) -> X * 2;

compute({ times, Y, N}) -> Y * N;

In Example 2.3, when the function is evaluated, arguments of the function are

matched against the patterns occurring in the function definition. The arguments, which

are variables, are also checked when the compute function is called. So, if the function

17

calls are as follows:

>com:compute({ minus, 7, 0}). <1>

>com:compute({ add, ‘a’ , 10}).<2>

then a run-time error will occur. Because in <1> there is no clause defining { minus, 7,

0} in com:compute/1 or in <2> ‘a’ is an incorrect argument in computation.

As shown in the above examples of Erlang, programmers can detect faults’ locations

as soon as the run-time error occurs. So, the abilit y to detect these faults is the advantage

of pattern matching in Erlang.

2.2 Related Work

2.2.1 Software Inspection

Since software faults and errors interfere with normal process, various techniques have

been devised to minimize their effect. Many software inspection tools are used to inspect

the running processes of software applications, such as ICICLE [22], ASSIST [16], and

Suite [5]. [15] compared the inspection processes of these software techniques. One tool

for identifying faults during inspections is a “checklist” . This checklist helps inspectors

by li sting all the fault types to look for [19]. However, the software inspection is usually

performed after the compile time. Furthermore, the checklist for software inspection is

defined manually. Thus, there is some possibilit y of human' s error that some faults may

be left out.

18

2.2.2 The Current Software Fault Detection Methods

One critical problem which is considered by many researchers as an example is the

buffer overrun of array indices. This problem can be solved by either dynamic or static

techniques. Dynamic techniques such as Stackguard [3], CCured [17] and High Coverage

Detection of Input-Relate Security Faults [14] have been proposed to prevent the

incorrect memory accesses without eliminating bugs in the source code. These tools are

applied at run-time, in a reactive fashion, attempting to catch invalid accesses. On the

other hand, the static analysis tools proposed to prevent and detect buffer overrun cases

are mentioned in [9, 25, 26]. These static tools focus on either the buffer overruns, or

memory access error detection looking for equivalent faults to the dynamic techniques.

Once the problem of buffer overrun is detected, a warning message will be presented to

the users.

The structured programming languages, such as C, are widely used for developing

the software products. The C language programs are relatively large. When a failure

occurs, it has to take a long time to find out the causes by tracing faults in the collected

log file. Currently, there are tools such as Purify and Valgrind that can detect an array

index out-of-bound. Purify is a commercial package tool that can find memory errors in

programs, but it is very expensive [20]. Valgrind is a tool for finding memory

management problems in x86 GNU/Linux executables. Valgrind is licensed under the

GNU General Public License [23]. Software running under the current tools runs much

more slowly, making testing more time-consuming and tedious. Moreover, the existing

tools are applied at run-time, in a reactive fashion, attempting to catch invalid accesses

19

when they happen.

2.2.3 Erlang Programming Language

Even though many software detection techniques and tools are proposed, the reliabilit y of

the software application is still l argely reliant on the human designer’s skill s. Since the

techniques mentioned above cannot avoid human errors, the potential improvement

offered by inherently reliable programming languages such as Erlang [1] is needed.

Erlang is a functional programming language that can guarantee the software reliabilit y

without permitting a wide range of human errors. The Erlang compiler uses a pattern

matching technique that assists in tightly coupling between faults and failures. Therefore,

it can detect most of the hidden faults such as the incorrectness of array indices, the

mismatch of function arguments types, and no-default-case in switch statements.

Currently, the existing tools are applied at run-time attempting to catch faults when

failures appear in the system. However, it is costly and time-consuming to return the

source code for tracing these faults if the software system is released to user. Therefore,

the Precompiled Fault Detection and Correction (PFDaC) technique is proposed

to help resolving this problem. PFDaC would be applied at the compile-time with the

intent to reduce the time it takes to debug the code that caused faults and failures. The

program source code is analyzed by PFDaC mechanism before passing through the

compilation process. The fault examples in C [12, 24], which are the case study, are

also address in this dissertation. There are some differences of detection and correction

procedures in each case. Furthermore, the reliabilit y features of Erlang are applied to C

programming language by PFDaC technique.

CHAPTER III

The Precompiled Fault Detection and Correction

Achieving reliable software is an objective of developers and users. In order to prevent

such faults and errors, programmers and software inspectors must verify software for all

possible faults during the development stages, and also validate the software product

before delivering it. Therefore, it challenges researchers to develop methods or

techniques to detect or prevent the faults during development period in order to obtain a

high level of reliability for software products.

In this chapter, the architecture and processes of PFDaC technique are described.

The significant function of PFDaC technique is to perform the fault detection as a

software guard. It preprocesses the programs before the compilation takes place as

shown in Figure 3.1. The corrected software can be compiled only after the detected

faults were corrected.

Figure 3.1: Precompiled Fault Detection and Correction in context.

21

 (a) (b)

Figure 3.2: The PDG for the small program shown on (b).

According to the functionality defined for the PFDaC technique, it consists of two

main modules: the detection module, and the correction module. Before describing the

PFDaC technique in more details, a basic material on a program dependence graph and

the pattern language are introduced.

3.1 A Program Dependence Graph

The Program Dependence Graph (PDG) [2, 7] is a directed graph for a single procedure

of a program. The vertices of the graph represent constructs such as assignment

statements, call sites, parameters, and conditional branches. An edge between the vertices

indicates either a data dependence or a control dependence. The data-dependence edges

indicate possible ways in which data values can be transmitted. For example, in Figure

3.2, there is a data-dependence edge between the vertex for i = 1 and the vertex for while

(i < 11), which indicates that a value for i may flow between those two vertices.

22

A control-dependence edge between a source and a destination vertices indicates that

the result of executing the source vertex controls whether the destination vertex is

reached. For example, in Figure 3.2, there is a control-dependence edge between the

vertices for while (i < 11) and the vertices for the two call sites on the function add.

3.2 Pattern Language

The pattern language [11, 18] is applied to check the programming language constructs

such as variables declarations, type declarations, functions’ argument types, etc. To

ill ustrate the PFDaC approach, an overview of the pattern symbols in a sample pattern

language for C is described. Table 3.1 li sts the pattern symbols. The pattern have been

developed using these symbols and collected in the Pattern Library. The brackets […]

and (…) in the array and function entries, respectively, stand for a li st of arguments that

can themselves be other identifiers or constants [11].

Table 3.1: Symbols used for syntactic entities in source code.

Syntactic Entity Pattern Symbol
variable

array variable
function

type
declaration
expression
statement

$v
$a[…]
$f(…)

$t
$d

@

All pattern symbols can be named where name can be any symbols made of alphanu-

meric characters. Named symbols can be used to express constraints within patterns, and

to restrict the matching of pattern [11]. The li st of them are given in Table 3.2.

23

Table 3.2: Named symbols used for syntactic entities in source code.

 Syntactic Entity Pattern Symbol
array variable

function
$a[…]
$f(…)

3.2.1 Using a Pattern

Using the symbols previously mentioned, the patterns can be written. For example,

suppose that an array is needed to locate in a source code, a pattern is then $a[…].

Therefore, the entire arrays in source code are scanned from left to right to be the

matches. Another example, if the location of add function is needed to search in the

source code, a named symbol $f_add(…) is used to be the pattern.

3.3 Detection Module

The detection module is an important module that identifies and guarantees software

reliabilit y for the hidden faults. This module is responsible for detecting faults that

cannot be detected by the compiler, and informing the programmers about faults.

When a programmer needs to compile a program, the program is firstly analyzed by the

PFDaC mechanism. Each statement is traced by the detection function of the PFDaC

technique to look for the faults in the source code. The detection module in the PFDaC

mechanism, then, generates a li st of each fault and uses it as input to the correction

module. This process corresponds to Step 1 and Step 2 in Figure 3.3.

Step 1: To detect the programming faults in program P, input P to PFDaC mechanism

24

Figure 3.3: The detecting function of Precompiled Fault Detection and Correction.

for analyzing each statement in P. The Parser parses the source code to discover which

statements contain the potential faults.

In PFDaC technique, the PDG is applied to easily describe the source code parsing.

A graph in Figure 3.4 (a) [7] is a directed graph for the construction of a part of the

program in Figure 3.4(b). The vertices represent statements in the program such as data

types, variables, parameters, conditional branches, and assignment statements. The edges

between the vertices indicate data, control dependence, or declaration. A data edge

indicates a way in which a data value can be transmitted. For example, there is a data

edge between the vertex for i = 0; and the vertex for while i <= 5, which indicates that a

value for i flows between these two vertices in Figure 3.4(a). A control edge indicates

whether the destination vertex (e.g. temp[i] = arr[i]) is reached by the result of executing

the source vertex (e.g. while i <= 5). A declaration edge indicates the declaration of

variables in programs (e.g. arr[5]). For example, a vertex ind(arr) = 5 means a size of

arr index is 5.

25

(a) (b)

Figure 3.4: An example of system graph (a) for a part of program in Figure 1.1 shown
on (b).

The build-in reliabilit y features of Erlang are applied to the PFDaC mechanism. For

example, a tuple [1], which is used to store a fixed number of elements, is data

structures as an array in C. The number and type of elements in the used tuple are

matched with the declared one. If it is not matched, an error message appears to inform

the programmers.

In the PFDaC technique, a source code is parsed to look for the required variable

declarations, functions, or statements, e.g. int arr [5] , add(…). They match the pattern of

PFDaC technique’s faults in the Pattern Library described in Section 3.2. These required

variable declarations or statements are, then, generated to be the new patterns in the

Pattern Library by the Parser.

Step 2: The Pattern Matcher considers the used variables, function calls, etc. to match

the pattern of declarations which are generated in Step 1. The Pattern Matcher also

creates a log file for each fault defined in PFDaC technique as follow: assume that

26

Figure 3.5: An algorithm of a main functionality for detecting and correcting faults.

method D1 declares the detection of a fault type F1 in the program P1. The Pattern

Matcher creates the log file, P1F1.log. In the log file, there are n potential faults of F1.

An algorithm of main functionality of PFDaC technique is shown in Figure 3.5.

An example of the pattern and the match graphs which are used to consider the

programs in Step 1 and Step 2 is shown in Figure 3.6. When the value of index i of arr in

the match part does not match with its value in pattern (ind(arr) = 5), this fault is

recorded in the list of faults. For example, when i = 5, it makes size of arr index is over

its declaration (size of arr index is 6). An error message appears to warn the

programmers and then, this fault is corrected in Step 3.

3.4 Correction Module

The aim of the correction module is to correct the faults detected from the detection

module. Whenever any faults are detected, they must be fixed in the proper way.

Otherwise, these faults may cause critical errors while the program is executed. Thus, the

programmers cannot ignore these faults. After all detected faults are eliminated, the

reliability of the programs is increased. To perform error correction, the PFDaC

27

Figure 3.6: An example of the pattern and match graphs for the program in Figure
3.4(b).

correction module allows programmers to perform the correction, both manually or

automatically. The architecture of the correction module is presented in Figure 3.7.

Step 3: The faults are automatically corrected by the correction function of PFDaC.

Some fault corrections cannot be automated. For example, the default case is

automatically added to the no-default-case in switch statement, but the operations of

inserted default case must be determined by programmers.

The program source codes are parsed to discover which statements are needed to

correct faults. The Parser & Corrector performs parsing and correcting using the

information from each log file provided by the detection module. Each fault-record in the

log file is generated to be the pattern in the Pattern Library. The log file also exhibits the

faults’ locations to the PFDaC correction mechanism (C1, C2, …, Cn in Figure 3.5).

Then, the Parser & Corrector considers statements in the program source code to match

the pattern of faults in the Pattern Library. The detected faults are corrected by the

Corrector mechanism of PFDaC or by the programmers. Therefore, the outputs of

28

Figure 3.7: The correcting function of Precompiled Fault Detection and Correction
technique.

PFDaC mechanism are the corrected programs. Then, these programs will be compile as

a normal process without any hidden faults.

3.5 Complexity

Considering the algorithm in Figure 3.5, a program P with F fault types, and each fault

type has N potential faults. Therefore, the number of detected fault are F*N faults.

However, the detection module in Section 3.3 can detect N faults of a fault type in one

time detection. For example, in the testing program P1, there are three faults of the fault

type F1. All of these faults, which are in the same fault type, are detected in one

execution time for the input P1. Therefore, if the input program contains k fault types,

PFDaC technique can detect all fault types by executing the program k times. The time

complexity of detection module is O(k).

29

3.6 Summary

In this chapter, the characteristics of the PFDaC technique are proposed. The PFDaC

technique consists of two modules: the detection module and the correction module. The

PDG and pattern matching are applied to consider faults in the source code.

The program source code are parsed by PFDaC for checking faults in the detection

module. The PDG is used to describe the parsing source code. Each statement in

programs is traced for debugging the faults. The pattern matching feature is applied to

match used variables, function calls, or statements with the pattern in the Pattern

Library. The outputs of this module are errors or warning messages, and the log files.

The faults detected in the detection module can be solved in the correction module.

The corrected programs are not only the outputs of the correction module but also the

outputs of PFDaC.

CHAPTER IV

The implementation and Experimental Results of the

Proposed Technique

4.1 Implementation of Precompiled Fault Detection and

Correction Technique

Referring to the PFDaC technique architecture and algorithms in Chapter 3, this

technique is implemented using C to perform the fault detection and correction.

The inputs of the PFDaC mechanism are assumed to be the applications written in C.

The execution of mechanism starts by asking programmers to enter a program file. The

interfaces of the PFDaC's prototype are ill ustrated in Appendix A.

The main program algorithm is shown in Algorithm 4.1. This algorithm is the full

details of the algorithm presented in Figure 3.5. Algorithm 4.2 - Algorithm 4.5 show the

examples of fault detection algorithms (D1(), D2(), …, Dn() in Figure 3.5). An

algorithm for detecting array indices is shown in Algorithm 4.2. The array variables in

the source file are inspected by comparing the declared indices with the used indices. If

the fault of an array index out-of-bound is encountered, it is recorded into the log file

named as the array_log file. This method is applicable for both static and dynamic array

31

index detection.

The case of function argument types is shown in Algorithm 4.3. The line of the

function declaration are recorded in the log file, functional_log file. The type of

arguments in the function call are compared with argument types of the declared function.

If an argument type of a parameter in the function call is not matched with the pattern in

the functional_log file, this fault is recorded in the functional_log file.

Algorithm 4.4 illustrates the detection of no-default-case in a switch statement. If

there is a switch statement without the default case, the warning messages appear to

inform the programmer.

The other fault that is usually be detected during the execution time is the infinite

loop; Algorithm 4.5 shows the algorithm of infinite loop detection. If there is no any

statement which changes the value of a variable used in the conditional statement

described in Chapter 1, the error message appears to inform the programmer.

In order to implement all detection mechanisms into PFDaC, each detection

Algorithm 4.1 An algorithm of a main program

1: function main(P)
2: if check_sarray(char *name) == TRUE then
3: correct_sarray(char *name);
4: if check_function(char *name) == TRUE then
5: correct_function(char *name);
6: if check_switch(char *name) == TRUE then
7: correct_switch(char *name);
8: if check_darray(char *name) == TRUE then
9: correct_darray(char *name);
10: if check_loop(char *name) == TRUE then
11: correct_loop(char *name);
12: else
13: compile P;

32

Algorithm 4.2 An algorithm of static array index detection

1: function check_sarray(char *name)
2: while read next character until end of file
3: if item == declared variable type
4: while read next character until new line
5: if item == array variable
6: put name and index in an array log file;
7: endif
8: endwhile
9: else
10: if item == array variable
11: compare this array index with index in log file;
12: endif
13: endwhile

Algorithm 4.3 An algorithm of function argument type detection

1: function check_function(char *name)
2: while read next character until end of file
3: if item == name of declared function
4: put function name, line and argument type
5: in a functional log file;
6: else
7: if item == name of function call
8: compare function call and declared function in log file;
9: endif
10: endwhile

mechanism is implemented as the header file (.h) and embedded in PFDaC using

#include statement. Therefore the source file is input to the detection mechanism before

being compiled by its compiler.

The consequent of the #include statement is that the size of the PFDaC from using

these header files is the same as direct implementation of all detection methods in the

PFDaC at once. However, there is a benefit of implementing each detection into an

individual file. The reason of creating each detection mechanism as a header file of C is

that any application can embed this mechanism individually without PFDaC. Therefore,

33

Algorithm 4.4 An algorithm of no-default-case detection

1: function check_switch(char *name)
2: while read next character until end of f ile
3: if item1 == “switch”
4: item2 == item1;
5: while read next character until item2 == ‘ } ’
6: if item2 == “default”
7: set TRUE;
8: endif
9: endwhile
10: endif
11: endwhile
12: if not TRUE
13: display an error message;
14: endif

without PFDaC, every program still can be verified using these headers.

Referring to Algorithm 4.1 - Algorithm 4.5, the data stored in each log file are errors

and warning messages based on each fault case. Examples of log files are shown in

Figure 4.1 - Figure 4.3.

According to the design of PFDaC, all correction mechanisms are implemented as

the header files as same as the detection methods. The responsibilit y of each correction

mechanism is to trace each record in the log file related to each correction technique. For

example, the correction method for the switch statement without the default case reads

the record in the switch_log file. Once a record is read from the log file, the correction

mechanism starts and the programmer chooses the proper correction commands to be

added or modified. After the fault case in the log file is corrected, the record is flagged.

The compilation will automatically start when all records in every log file are flagged.

34

Algorithm 4.5 An algorithm of infinite loop detection

1: function check_loop(char *name)
2: while read next character until end of f ile
3: if item == “while”
4: while read next character until item == ‘)’
5: if item == variable in conditional statement
6: put variable name in a loop log file;
7: endif
8: endwhile
9: while read next character until item == ‘ } ’
10: if item == variable
11: compare this variable with pattern of statement in log file;
12: endif
13: endwhile
14: endwhile

Figure 4.1: An example of a log file: array index out-of-bound detection.

35

Figure 4.2: An example of a log file: string array index out-of-bound detection.

4.2 Experimental Results

Since the cases of incorrectness of array indices, the mismatch of function arguments’

types, and no-default-case in switch statements are mostly occur in C, a set of programs

containing these cases is implemented to validate the eff iciency of PFDaC. The

comparisons among the normal execution process of these files and the process that pass

through the PFDaC are performed.

There are 20 simulated program files in C. The first group of these program files,

File1.c, File2.c, File3.c, File4.c, File5.c, File6.c, File7.c, and File8.c, contain two, one,

one, two, one, one, one, and one, respectively, array indices out-of-bound. The second

group of simulated program files, File9.c, File10.c, File11.c, File12.c, File13.c, File14.c,

File15.c, and File16.c, have three, one, one, one, one, one, one, and one, respectively,

faults about passing wrong type of function arguments. In the last group, File17.c,

File18.c, File19.c and File20.c, each holds one of no-default-case in the switch statement.

36

Figure 4.3: An example of a log file: passing wrong type of function argument detection.

Figure 4.4: The flowchart of the steps involved in the evaluation of using the PFDaC
technique.

37

Table 4.1: The number of programming faults in each C application.

Application # Faults # Failures
before correction

Failures
after correction

File1.c
File2.c
File3.c
File4.c
File5.c
File6.c
File7.c
File8.c
File9.c

File10.c
File11.c
File12.c
File13.c
File14.c
File15.c
File16.c
File17.c
File18.c
File19.c
File20.c

2
1
1
2
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1

900
511

2800
332

1000
1118
397
74

1000
440

1000
1000
3000
1000
400

2250
477
165
0

825

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 4.1 lists a number of programming faults existing in the applications and the

number of failures resulting from the detected faults.

Experiments were conducted follow the methodology described in Section 4.2;

PFDaC was executed for analyzing each application. Figure 4.4 illustrates the flowchart

of the PFDaC technique evaluation steps. After implementing PFDaC to detect and solve

the faults in applications, a set of simulation data (1,000 data sets) has been applied in

order to measure the reliability of the software. The resulting graphs of the running

software using the data test sets in each case of faults before and after using the PFDaC

technique are presented in Figure 4.5 - Figure 4.24. These graphs confirm that the

38

proposed PFDaC technique can completely remove the failures from the applications.

Figure 4.5: The resulting graph of array indices out of bound cases before and after
correcting by the PFDaC technique in File1.c, File2.c, File4.c, File5.c, File6.c, and
File7.c.

39

Figure 4.6: The resulting graph of passing wrong types of function arguments cases
before and after correcting by the PFDaC technique in File8.c, File9.c, File10.c, File11.c,
File12.c, File13.c, File14.c, File15.c, and File16.c.

40

Figure 4.7: The resulting graph of no-default-case in the switch statements cases before
and after correcting by the PFDaC technique in File17.c, File18.c, File19.c, and File20.c.

CHAPTER V

Theoretical Analysis

Referring to the implementation and testing of PFDaC in Chapter 4, the experimental

results confirmed that the PFDaC technique is efficient and able to increase the reliability

of the software products during the development process. However, the argue of general

test cases may be arisen. Therefore, this chapter presents the theoretical analysis to ensure

that the proposed method can be applied to any languages and the reliability of the

software can be obtained.

Definition 1. D = (C, F) where

 C is a finite set of all commands in source codes.

F is a finite set of all faults.

 D is called the software fault detection domain.

5.1 Fault Detection

Definition 2. Let F′ be a set of faults detected by the PFDaC technique.

F′ = {f′ | f′ ∈ F′ }

Definition 3. Let Fu be a set of undetected faults or a set of faults which are not in F′ .

42

Fu = F - F′ or Fu = {fu | fu ∈ F, fu ∉ F′}

Definition 4. Let D be the software fault detection domain. F is a set of faults in D.

 F = {f | f ∈ F′ ∪ Fu}

Definition 5. Let C be a set of commands in source codes. Let F′ be a set of faults

detected by the PFDaC technique. Df is called the detection function of the PFDaC

technique.

Df : C → F′ or f′ = Df(c) where f′ ∈ F′, c ∈ C

Lemma 1. Let D be the software fault detection domain and let F be a set of faults in D.

Let F′ is a set of fault detected by the PFDaC technique. Then F′ ⊂ F.

Proof. Let C be a set of commands in source codes. Generally, c contains f or c does not

contain f where c ∈ C, f ∈ F. By Definition 5, f′ = Df(c) where f′ ∈ F′, c ∈ C, that is,

c contains f′. By Definition 2 and Definition 4, f′ ∈ F for every f′ ∈ F′, but ∃ f ∉ F′.

Thus, F′ ⊂ F. �

Definition 6. Let C be a set of commands in D. Let C′ be a set of commands containing

the faults detected by the PFDaC technique. Let Cu be a set of commands containing the

undetected faults or the faults which are not in F′. Let Cn be a set of faultless commands.

C = {c | c ∈ C′ ∪ Cu ∪ Cn}

Definition 7. Let C and F be a set of commands in source codes and a set of faults

detected, respectively. The product set C × F is defined as

C × F = {(c, f) | c ∈ C, f ∈ F}

43

Definition 8. Let D be the software fault detection domain. M(c, f) is a Boolean function

of fault detection of C × F and

M(c, f): C × F → B where c ∈ C, f ∈ F, B = {TRUE, FALSE}.

Definition 9. M(c, f) is true if and only if c contains f.

Definition 10. Let C and F be a set of the commands in source codes and a set of the

faults detected, respectively. By the detection result R, we mean that the R consists of the

elements (c, f) in C × F for which M(c, f) is true.

R = {(c, f) | c ∈ C, f ∈ F and M(c, f) = TRUE}

Theorem 1. Let D be the software fault detection domain. Let R = (C, F) be a set of

detection results where C is a set of commands in D and F is a set of faults in D. Let F′ be

a set of faults detected by the PFDaC technique. If R′ = (C, F′) then R′ ⊂ R

.
Proof. Assume that R′ is a set of detection results where C is a set of commands, F′ is a

set of faults detected by the PFDaC technique, and M(c, f′) is true. That is, (c, f′) ∈ R′

where c ∈ C, f′ ∈ F′. By Definition 2 and Lemma 1, f′ ∈ F and F′ ⊂ F. Then, (c, f′) ∈ R,

but ∃(c, f) ∉ R′ , by Definition 4 and Lemma 1. Thus, R′ ⊂ R. �

5.2 Fault Correction

Definition 11. Let F′ be a set of faults detected by the PFDaC technique. Let Cr be a set

of corrected commands in source codes. Cf is called the correction function of the

PFDaC technique.

 Cf : F′ → Cr or cr = Cf(f′) where cr ∈ Cr, f′ ∈ F′

44

Definition 12. Let Cnew be a set of new commands which have been corrected in source

codes. Let Cr be a set of corrected commands by the PFDaC technique. Let Cu be a set of

commands containing the undetected faults or the faults which are not in F′. Let Cn be a

set of faultless commands.

Cnew = {c | c ∈ Cr ∪ Cu ∪ Cn}

Definition 13. N(cr, f) is a Boolean function of fault detection of Cr × F and

 N(cr, f): C
r × F → B where cr ∈ Cr, f ∈ F, B = {TRUE, FALSE}.

Definition 14. N(cr, f) is true if and only if cr does not contain f.

Definition 15. Let Cr and F be a set of the corrected commands in source codes and a set

of the faults, respectively. By the correction result T, we mean that the T consists

of the elements (cr, f) in Cr × F for which N(cr, f) is true.

 T = {(cr, f) | cr ∈ Cr, f ∈ F and N(cr, f) = TRUE}

Theorem 2. Let T = (Cr, F) be a set of correction results where Cr is a set of corrected

commands and F is a set of faults. If T′ = (Cr, F′) then T′ ⊂ T.

Proof. Assume that T′ is a set of correction results where Cr is a set of corrected

commands, F′ is a set of faults detected by the PFDaC technique, and N(cr, f′) is true.

That is, (cr, f′) ∈ T′ where cr ∈ Cr, f′ ∈ F′. By Definition 2 and Lemma 1, f′ ∈ F and F′

⊂ F. Then, (cr, f′) ∈ T, but ∃(cr, f) ∉ T′ , by Definition 4 and Lemma 1. Thus, T′ ⊂ T. �

CHAPTER VI

Discussion and Conclusion

6.1 Discussion

The software reliabilit y is a significant feature of a good software implementation.

However, the software that has high-level of reliabilit y is hard to be obtained, since some

faults cannot be detected during the software development process. Consequently, these

faults cause unexpected problems or the serious accidents whenever they arise.

At present, there are many techniques for detecting faults, whereas most of these

techniques detect faults while software are running. Thus, the software process is

interrupted when a fault occurs. Therefore, the PFDaC technique is proposed to detect

and correct faults before the program is compiled. After the PFDaC process, the software

applications are utili zed and the number of significant hidden faults is lower than the

general software. As the results presented in Chapter 4 and the theoretical analysis in

Chapter 5, these processes confirm the capabilit y of the PFDaC technique in eliminating

the criti cal faults that arise in the programs. Therefore, the application software filtered

by the PFDaC technique will be eff icient and software as the users expected. However,

since the concept of the proposed PFDaC technique is the pre-compilation fault detection,

the PFDaC technique excludes the detection of cases that the variables’ values are

46

generated at run-time such as dynamic arrays and loops that are relied on the run-time

values.

Since the process of PFDaC generates the log files for storing all warnings and faults

cases, the size of each log file is depended on the number of cases that has been detected.

However, each log file is a text file. Therefore, the total size of this file for the entire

process will not be too large to be managed. Moreover, the overhead of PFDaC to

process the source file is low as it treats the input as a sequential text file. Therefore, the

entire process of PFDaC is small and does not affect to the total compile time. So,

applying PFDaC to create a reliable software is an efficient method that requires small

resources both for the CPU and the disk spaces.

Although the experiment was simulated in C environment, this technique is not

limited only the C language. Therefore, if the programmers applied this technique to any

languages, reliability of the final software products can also be ensured to be achieved.

6.2 Conclusion

The existence of faults in application code are both inevitable and can give rise to serious

system outcomes. It is the responsibility of software developers to prevent and detect

these hidden faults as far as possible.

This research has proposed a new and significant technique called Precompiled

Fault Detection and Correction (PFDaC) technique. The concept of pattern matching

is applied to this technique for detecting and correcting hidden faults in the programs.

The C programming language is used to be the case study. The PFDaC technique has

47

been tested by running a set of simulated programs with a test set of data, and the number

of faults is counted before and after the program passes through the PFDaC mechanism.

The results show that the number of faults that were detected by PFDaC is reduced or

totally eliminated after the PFDaC process. Therefore, the program will not be affected

by the detected faults while executing.

The applications that can run without termination or interruption from its internal

faults is certainly classed as reliable software. The PFDaC technique that supports

automatic fault detection and correction of software, can be considered as a step towards

increasing software reliability, in other words the software that has been preprocessed

through the PFDaC technique is shown to be much more reliable than software that is

directly compiled. Therefore, our technique can guarantee the reliability of all the

application software passed through.

References

[1] Armstrong JL, Virding SR, and Williams MC. (1993). Concurrent Programming in

Erlang, Englewood Cliffs, New Jersey: Prentice Hall.

[2] Anderson P, Reps T, and Teitelbaum T. (2003). Design and Implementation of a

Fine-Grained Software Inspection Tool. IEEE Transactions on Software

Engineering. 29, 8: 721-733.

[3] Cowan C, Beattie S, Day R-F Pu C, Wagle P, and Walthinsen E. (1998). Automatic

Detection and Prevention of Buffer Overflow Attacks. 7th USENIX Security

Symposium.

[4] Deeprasertkul P and Bhattarasinee P. (2003). Software Fault Detection in C

Programs. 12th Internation Conference on Intelligent and Adaptive Systems and

Software Engineering. San Francisco, USA., 192-195.

[5] Drake J, Mashayekhi V, Riedl J, and Tsai W. (1991). A Distributed Collaborative

Software Inspection Tool: Design, Prototype, and Early Trial. Technical Report

TR-91-30, University of Minnesota.

[6] Fagan M. (1976). Design and Code Inspections to Reduce Errors in Program

Development. IBM Systems Journal. 15, 3: 182-211.

[7] Ferrante J, Ottenstein K, and Warren J. (1987). The Program Dependence Graph

and Its Use in Optimization. ACM Transactions on Programming Languages

and Systems. 3, 9: 319-349.

49

[8] Fetzer C, Felber P, and Hogstedt K. (2004). Automatic Detection and Masking of

Nonatomic Exception Handling. IEEE Transactions on Software Engineering.

30, 8: 547-560.

[9] Ganapathy V, Jha S, Chandler D, Melski D, and Vitek D. (2003). Buffer Overrun

Detection using Linear Programming and Static Analysis. 10th ACM conference

on Computer and Communication Security. 345-354.

[10] Ghezzi C, Jazayeri M, and Mandrioli D. (2003). Fundamentals of Software

Engineering. International edition. Upper Saddle River, New Jersey: Prentice-

Hall.

[11] Hagemeister J R, Bhansali S, and Raghavendra C S. (1996). Implementation of a

Pattern-Matching Approach for Identifying Algorithmic Concepts in Scientific

FORTRAN Programs. 3rd International Conference on High Performance

Computing. IEEE computer society. Washington DC, USA., 209-214.

[12] Harbison S P and Steele Jr G L. (1995). C: A Reference Manual. Fourth Edition.

Upper Saddle River, New Jersey: Prentice-Hall.

[13] Hausman B. (1994). Turbo Erlang: Approaching the Speed of C, Implementations

of Logic Programming Systems. Vancouver: Kluwer Academic Publishers,

119-135.

[14] Larson E and Austin T. (2001). High coverage detection of input related security

faults, 12th USENIX Security Symposium.

[15] Macdonald F, Miller J, Brooks A, Roper M, and Wood M. (1995). A Review of

Tool Support for Software Inspection. Proceeding 7th International Workshop

Computer-Aided Software Engineering (CASE-95).

50

[16] Macdonald F. (1998). Computer-Supported Software Inspection. PhD thesis,

Department of Computer Science, University of Strathclyde.

[17] Necula G C, McPeak S, and Weimer W. (2002). CCured: Type-Safe Retrofitting of

Legacy Code. ACM Conference on the Principles of Programming Language

(POPL).

[18] Paul S and Prakash A. (1994). A Framework for Source Code Search Using Program

Patterns. IEEE Transactions on Software Engineering. 20, 6: 463-474.

[19] Rady de Almeida Jr J, Batista Camargo Jr J, Abrantes Basseto B, and Miranda Paz S.

(2003). Best Practices in Code Inspection for Safety-Critical Software. IEEE

Software.

[20] Rational the Software Development Company. Rational PurifyPlus for Unix.

http://www.rational.com/products/pqc/pplus_ux.jsp.

[21] Royce T. (1996). C Programming. New Zealand: Macmillan Press Ltd.

[22] Sembugamoorthy V and Brothers L. (1990). ICICLE: Intelligent Code Inspection in a

C Language Environment. Proceeding 14th Annual Computer Software and

Applications Conference, 146-154.

[23] Seward J. The Design and Implementation of Valgrind: Detailed Technical Notes.

http://developer.kde.org/_sewardj/.

[24] Spuler D A. (1994). C++ and C Debugging, Testing, and Reliability: The

Prevention, Detection, and Correction of Program Errors. Englewood Cliffs,

New Jersey: Prentice-Hall.

51

[25] Wagner D. (2000). Static Analysis and Computer Security: New Techniques for

Software Assurance. Ph.D. Thesis, UC Berkeley.

[26] Xie Y, Chou A, and Engler D. (2003). ARCHER: Using Symbolic Path-Sensitive

Analysis to Detect Memory Access Errors. 9th European Software Engineering

Conference and 11th ACM Symposium on Foundation of Software Engineering

(ESEC/FSE).

Appendices

Appendix A

User
Text Box

54

Figure A.2: The interface prototype of array indices detection.

Figure A.3: The interface prototype of passing the wrong function argument type
detection.

55

A.3 switch Statement

Another fault that can be detected is default case missing. Figure A.4 shows the warning

message obtained from mechanism when switch statement does not contain the default

case. If the programmer presses ‘y’ , the mechanism will i nsert a default statement

without any actions defined, and swap the checking mode to the program editor. Then

the function of default case will be managed by programmer.

Figure A.4: The interface prototype of switch statement case detection.

A.4 Dynamic Array

Figure A.5 shows a case of dynamic array index out-of-bound detection.

A.5 Infinite Loop

Figure A.6 presents the interface of detecting infinite loop.

56

Figure A.5: The interface prototype of dynamic array index detection.

Figure A.6: The interface prototype of infinite loop detection.

Appendix B

This section presents a following journal paper generated from this dissertation. This

paper is available online at www.sciencedirect.com.

• P. Deeprasertkul, P. Bhattarasinee, and F. O’Brien, “Automatic Detection and

Correction of Programming Faults for Software Applications.” , Elsevier: The

Journal of Systems and Software, 2005.

ARTICLE IN PRESS
www.elsevier.com/locate/jss

The Journal of Systems and Software xxx (2005) xxx–xxx
Automatic detection and correction of programming faults
for software applications

Prattana Deeprasertkul a,*, Pattarasinee Bhattarakosol a, Fergus O�Brien b

a Department of Mathematics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
b School of Information Technology, Faculty of Informatics and Communication, Rockhampton Campus, Central Queensland University, Australia

Received 29 September 2004; received in revised form 9 February 2005; accepted 10 February 2005
Abstract

Software reliability is an important feature of a good software implementation. However some faults which cause software unre-
liability are not detected during the development stages, and these faults create unexpected problems for users whenever they arise.
At present most of the current techniques detect faults while a software is running. These techniques interrupt the software process
when a fault occurs, and require some forms of restart.

In this paper Precompiled Fault Detection (PFD) technique is proposed to detect and correct faults before a source code is com-
piled. The objective of the PFD technique is to increase software reliability without increasing the programmers� responsibilities. The
concepts of ‘‘pre-compilation’’ and ‘‘pattern matching’’ are applied to PFD in order to reduce the risk of significant damage during
execution period. This technique can completely eliminate the significant faults in a software and thus, improves software reliability.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Programming error; Software fault; Software failure; Fault detection; Pattern matching; Software inspection
1. Introduction

The task of implementing a program without faults
and errors is challenging. Currently, the various compil-
ers for languages have been progressively improved.
However, some faults and errors which are the results
of human oversight are still left out and interrupt the
system processing at operation time. The existence of
the faults in applications can increase the number of
software failures and can thus decrease the reliability
of software. Of course, the software reliability is
improved if the risks of software failure are avoided.

Achieving reliable software is an objective of develop-
ers and users. In order to prevent such faults and errors,
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2005.02.027

* Corresponding author. Tel.: +6623145054; fax: +6622249852.
E-mail address: prattana.d@student.netserv.chula.ac.th (P. Dee-

prasertkul).
programmers and software inspectors must verify soft-
ware for all possible faults during the development
stages, and also validate the software product before
delivering it. Therefore, it challenges researchers to
develop methods or techniques to detect or prevent the
faults during development period in order to obtain a
high level of reliability for software product.

Currently many software detection techniques have
been proposed and implemented. One of these tech-
niques is code inspection, first introduced by Fagan
(1976). This technique can detect the software coding
errors at early stage in lifecycle. Although code inspec-
tion�s effect is that software quality can be improved,
all the existing techniques for maintaining software reli-
ability are reliant on the ‘‘checklist’’ approach to verify
the software instructions and data sets. If the software
size is small and not so complicated, the checklist
process can be performed manually, otherwise it can

mailto:prattana.d@student.netserv.chula.ac.th

2 P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
become too unwieldy. In this paper, we show how to
automatically detect and correct the hidden faults in
the software application prior to compilation time.

1.1. Problem description

Software reliability is partially depended on capabili-
ties built into the languages� compiler. If the interpreters
or compilers of languages are able to detect all common
faults and errors, software reliability can be enhanced.
Thus, Java and Erlang (Ganapathy et al., 2003; Arm-
strong et al., 1993) were developed with capabilities
aimed at the objective of obtaining software reliability.

Java is a popular language which is widely used and
classified as an object-oriented language. It is incorpo-
rated significant error checking such as the feature of
detecting array indexes exceeding the array bounds dur-
ing run-time, therefore containing the array indexes out-
of-bounds handling.

Another functional programming language, Erlang
(Armstrong et al., 1993) developed by Ericsson Sweden,
is used to develop highly reliable the communication soft-
ware products. A characteristic of this language is the
pattern matching functionality which assists in tightly
coupling faults and failures, so that, whenever a failure
arises, the Erlang interpreter can immediately locate the
cause of such failures. So, the software implemented in
Erlang exhibit a very high level of software reliability.

There are, however, some faults and errors that can-
not be detected by the compiler of software program-
ming languages. Considering C programs, for example,
the faults include cases such as array indexes out-of-
bounds, passing the wrong types of function arguments,
no-default-case in switch statements, or infinite loops.
Furthermore, it is not uncommon that programmers
or developers ignore warning message at compile time
when, in fact, there warning messages may indicate the
potential for a critical fault during software execution.

1.2. Approach

This paper proposes the design and implementation
of a technique that can improve the software reliability
of a system in a manner that cannot be achieved by
any current methods. The major difference of PFD from
the other existing techniques is the automatic detection
and correction of faults performed prior to compile
time. The software programs are preprocessed through
PFD for detecting and correcting faults. The program-
mers are not allowed to ignore any warnings of the po-
tential critical faults in the source code until proper
actions have been performed. Consequently, faults and
errors will be reduced, the system will then improve soft-
ware reliability. Note that this technique applies many
of the built-in reliability features of Erlang such as the
feature of detecting array indexes exceeding the array
bounds or the feature of detecting types of function
arguments matching.

1.3. Contribution

The contribution of this paper is an introduction of a
Precompiled Fault Detection (PFD) technique. This tech-
nique is a novel approach for automatically detecting
and correcting the programming errors, which are the
results of programmers inadvertence and cannot be
detected by a compiler, in the source code prior to com-
pilation time. The PFD technique can be applied to C
applications and will be applied to other language appli-
cations in the future. Furthermore, we present experi-
mental results that demonstrate an effectiveness of our
technique.

The organization of this paper is as follows: In Sec-
tion 2, the related work is discussed. Section 3 intro-
duces the problems and motivations considered in this
research. Section 4 presents an overview of pattern lan-
guage used in PFD technique. Section 5 describes an
architecture of PFD for detecting and correcting faults
and Section 6 describes an implementation details of
PFD technique. The testing method with results is
covered in Section 6. The experimental results are shown
in Section 7. Section 8 contains a discussion of our
research. The final section is a conclusion of this paper.
2. Related work

Since software faults and errors interfere with normal
processing, a number of techniques have been devised to
minimize their effect. Many software inspection tools are
used to inspect the running processes of software appli-
cations, such as ICICLE (Sembugamoorthy and Broth-
ers, 1990), ASSIST (Macdonald, 1998), and Suite
(Drake et al., 1991). Macdonald et al. (1995) compared
the inspection processes of these software techniques.
One tools for identifying faults during inspections is a
‘‘checklist’’. This checklist helps inspectors by listing
all the fault types to look for (Rady de Almeida Jr.
et al., 2003). The difficulty of manually verifying that
the software under inspection conforms to the rules is
partly to mistake.

One critical problem which is considered by many
researchers as an example is the buffer overrun of array
indexes. This problem can be solved by either dynamic
or static techniques. Dynamic techniques such as Stack-
guard (Cowan et al., 1998), CCured (Necula et al., 2002)
and High Coverage Detection of Input-Relate Security
Faults (Larson and Austin, 2001) have been proposed
to prevent the incorrect memory accesses without elimi-
nating bugs in the source. These tools are applied at run-
time, in a reactive fashion, attempting to catch invalid
accesses. On the other hand, the static analysis tools

P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx 3

ARTICLE IN PRESS
proposed to prevent and detect buffer overrun cases are
mentioned in (Wagner, 2000; Ganapathy et al., 2003;
Xie et al., 2003). These static tools focus on either the
buffer overruns or memory access error detection look-
ing for equivalent faults to the dynamic techniques.
Once the problem of buffer overrun is detected, a warn-
ing message will be presented to the user.

Even though many software detection techniques and
tools are proposed, the reliability of the software appli-
cation is still largely reliant on the human designer�s
skills. Since the techniques noted above cannot avoid
human errors, the potential improvement offered by
inherently reliable programming languages such as
Erlang (Armstrong et al., 1993) is needed. Erlang is a
functional programming language that can guarantee
the software reliability without permitting a wide range
of human errors. The Erlang compiler uses a pattern
matching technique that assists in tight coupling
between faults and failures, therefore it can detect most
of the hidden faults such as the incorrectness of array
indices, the mismatch of function arguments types,
and no-default-case in switch statements.

This paper proposes a technique that is to apply to
program�s source code before passing through the com-
pilation process. The software source code will be ana-
lyzed to automatically detect and correct the coding
errors before they will be released. This technique is
called Precompiled Fault Detection (PFD). In this paper,
we address the fault examples in C (Spuler, 1994; Harb-
ison and Steele Jr, 1995) which are the case studies and,
hence, they have a little difference of detection and cor-
rection procedure in each other. The reliability features
of Erlang are applied to C programming language by the
PFD technique.
3. Problem descriptions and motivations

Having a hidden fault in an application program
can create the critical problems for an organization.
1 #include <stdio.h>
2 main() {
3 int F_cls[5], B_cls[5], E_cls[10], i, j;
4 char cls;
5 for(i = 0; i <= 5; i++) {
6 printf("%d: ", i++);
7 scanf("%d", &F_cls[i]);
8 }
9 printf("\n");
10 for(i = 0; i < 5; i++) {
11 printf("%d: ", i++);
12 scanf("%d", &B_cls[i]);
13 }
14 …
15 switch(cls){
16 case 'f' :
17 INSURANCE(cls);
18 for(j = 0; j <= 5; j++)

19
20
21
22
23
24
25
26
27 }
28 INS
29 {
30 if
31
32 e
33
34 e
35
36 }

Fig. 1. An example of an applic
Although software faults are rare ones in production
cases, once a fault occurs, some critical system failures
can occur. Since these faults cannot be detected by the
compiler, it is the responsibility of programmers and
testers to ensure that the developed software contains
minimal faults. One way of performing fault detection
is to take an advantage of software inspection. A
source code is general examined by checking it for
the presence of errors, rather than by simulating its
execution (Ghezzi et al., 2003). Using this mechanism,
it can detect and eliminate faults and errors in the
software products developed during the software life
cycle. Consequently, the reliability of applications are
increased. However, fault detection is likely to fail
unless extreme care is taken during a program inspec-
tion process.

Currently, the various compilers for languages have
been progressively improved. However, programming
languages have the different errors which still exist
in the programs, depending on the error-prone fea-
tures of the language. For instance, in C++ and
Java, many mismatches between actual and formal
parameters can be caught at compile time, but there
might be an exception in C, etc. The following is a
list of some classical programming errors (Ghezzi
et al., 2003).

• array indexes out of bounds;
• mismatches between actual and formal parameters in
procedure calls;

• nonterminating loops;
• use of uninitialized variables.

Fig. 1 shows a program about the seat allocation of
flight. The program contains various faults including ar-
ray indexes out-of-bound, passing incorrect types of
function parameters and no-default-case in switch state-
ments. The C compiler cannot detect these faults that
have been identified as being responsible for many sys-
tem essences.
 printf("Seat %d\n", F_cls[j]);
 break;

 case 'b' :
 INSURANCE(cls);

for(j = 0; j < 5; j++)
 printf("Seat %d\n", B_cls[j]);
 break;

 …

URANCE(int class)

(class == 1)
 printf("ins of first class: 400,000\n");
lse if(class == 2)
 printf("ins of business class: 100,000\n");
lse
 printf("ins of crew: 100,000\n");

ation that contains faults.

B_cls

0 1 … 4

F_cls

 1 2 … 5

After F_cls
index over bound

Before F_cls
index over bound

0 1 … 4

0 0 … 0

B_cls

0 1 … 4

F_cls

 1 2 … 5

5 1 … 4

6 0 … 0

When B_cls is
set the values

0 1 … 4

F_cls

 1 2 … 5

0 1 … 4

7 8 … 10

B_cls

Fig. 2. Memory allocations for F_cls�s index out of bound; the
replacement of F_cls with B_cls.

Table 1
Symbols used for syntactic entities in source code

Syntactic entity Pattern symbol

Variable $v
Array variable $a[. . .]
Function $f[. . .]
Type $t
Declaration $d
Expression #
Statement @

4 P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
Example 1. Considering array indexes out-of-bound in
Fig. 1, the instructions at line 5 to 8 declare values for
array F_cls [0] to F_cls [5] when the upper bound of
array F_cls should be 4. When array B_cls is declared
the values from B_cls [0] to B_cls [4], the value of B_cls

[0] replaces the value of F_cls [5]. Thus a person at F_cls

[5] location is automatically eliminated. This error
affects the company�s reputation in negative manner.
Fig. 2 shows the results of booking process and the
memory declarations for F_cls and B_cls.

Example 2. When a function is generally called, param-
eters are passed to a called function. Since the old ver-
sions of C do not support function prototypes,
therefore the passed type of function arguments are
not checked. On the other hand, in the modern C, the
programmers are able to declare the function before it
is called. Thus its parameters� type are checked when
the function is called. However some functions are not
declared until the function has been used. Therefore
the compiler treat these functions as if it is a non-proto-
type for function arguments. Once the function is recog-
nized as the non-prototype for function arguments, the
parameter checking is ignored.

Considering Fig. 1 at line 28, the INSURANCE func-
tion is declared and a passing argument is an integer
named class. However at lines 17 and 22, INSURANCE
function is called and the passing argument is cls, which
is declared as a character. Since the value of passing
parameter is ‘‘f’’, which is different from the declared
parameter of INSURANCE function, there is no
matched value in the if-statement and then the else com-
mand at lines 34, 35 are executed.

Example 3. Considering switch statement in Fig. 1 at
lines 15 to 27, there is no default case. If the user types
‘‘F’’, instead of ‘‘f’’, to retrieve an insurance value of the
first class, an user does not receive any values from the
execution. Consequently, the user may misunderstand
that the program is wrong, or malfunction occurs. If
there is no matching case in switch statement, the default

case should be defined in order to inform user that the
program performs its task and cannot find any matching
cases.

For more examples of the problems, considering the
examples of C programs in (Deeprasertkul and Bhattar-
asinee, 2003) the errors include cases such as array in-
dexes out of bound, passing the wrong types of
function arguments, and no-default-case in switch

statement.
Although programmers try to detect faults by run-

ning test data, or program inspection software, unfortu-
nately some of faults may not be detected before
software is delivered to users. Even though the faults
do not cause an interruption in the software execution,
the result from its execution cannot be trusted and, in
a worse case, can produce a plausible but incorrect
result. Thus the reliability of the software is not as high
as expected. The PFD technique proposed in this paper
helps programmers detect which faults and errors might
be left in the programs. PFD can also automatically cor-
rect some faults if the programmers desires. The details
of PFD technique are explained in Section 5 and 6.
4. Pattern language

The pattern language (Paul and Prakash, 1994; Hage-
meister et al., 1996) is applied to check the programming
language constructs such as variables declarations, type
declarations, functions� argument types, etc. To illus-
trate our approach, we describe an overview of the pat-
tern symbols in a sample pattern language for C. Table 1
lists the pattern symbols. We have developed the pat-
terns using these symbols and collected them in Pattern

Library. The brackets [. . .] and (. . .) in the array and
function entries, respectively, stand for a list of argu-
ments that can themselves be other identifiers or con-
stants (Hagemeister et al., 1996).

All pattern symbols can be named where name can be
any symbols made of alphanumeric characters. Named
symbols can be used to express constraints within pat-
terns, and to restrict the matching of pattern (Hagemei-
ster et al., 1996). The list of them are given in Table 2.

Table 2
Named symbols used for syntactic entities in source code

Entity Pattern symbol

Array variable $a_name[. . .]
Function $f_name(. . .)

P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx 5

ARTICLE IN PRESS
4.1. Writing a pattern

Using the symbols previously mentioned, the patterns
can be written. For example, suppose we want to locate
the arrays in a source code, a pattern is then $a[. . .].
Therefore, the entire arrays in source code are scanned
from left to right to be the matches. Another example,
if we want to locate INSURANCE function in source
code, we use a named symbol $f_INSURANCE(. . .) to
be the pattern.
5. The proposed technique

PFD technique performs the fault detection as a soft-
ware guard. The PFD preprocesses the programs before
the compilation takes place as shown in Fig. 3. Only
after the detected faults were corrected can the corrected
software be compiled.

According to the functionality defined for PFD, it
consists of two main modules: detection module, and
correction module. Before describing our system in
more detail, we formally introduce the definitions of a
set of PFD faults, a fault detection function, and a fault
correction function.

Definition 1. Let F be a set of all faults and let F 0 be a
set of faults detected by PFD. Let Fu be a set of
undetected faults. A fault f is a fault in F 0 if the fault f is
Step 2 Step 1

Pattern
Matcher

Program
Source Code Parser

Error Messages
or Warnings

Pattern
Library

List o
Fault

Detection Module

Fig. 4. The functionality of Pre

Program PFD
Program
corrected
by PFD

Compiler

Fig. 3. Precompiled Fault Detection in context.
detected by PFD. A fault f is a fault in Fu if it is not a
fault in F 0.

F 0 ¼ F � F u or F 0 ¼ ff 0jf 0 2 F ; f 0 62 F u; g

Definition 2. Let S be a set of statements in source code.
Df is called a detection function of PFD if all faults of F 0

in S are detected by Df.

Df : S ! F 0 or f 0 ¼ Df ðsÞ where f 0 2 F 0; s 2 S

Definition 3. Let Sr be a set of corrected statements in
source code. Cf is called a correction function of PFD
if all faults in F 0 are corrected by Cf.

Cf : F 0 ! Sr or sr ¼ Cf ðf 0Þ where sr 2 Sr; f 0 2 F 0

When all faults in F 0 are corrected, all corrected state-
ments Sr are executed without the faults in F 0.
5.1. Detection module

The detection module is an important module that
identifies and guarantees software reliability for the hid-
den faults. This module is responsible for detecting
faults that cannot be detected by compiler, and informs
the programmers about faults.

When the programmers need to compile the pro-
grams, the programs are first analyzed by PFD. Each
statement is traced by Df of PFD to look for the faults
F 0 in source code. PFD then generates a list of each fault
to be used as input to the correction module. This pro-
cess corresponds to Step 1 and Step 2 in Fig. 4.

Step 1: To detect the programming faults in program
P, we first input P to PFD for analyzing each statement
in P. The Parser parses the source code to discover
which statements contain the potential faults.

A graph in Fig. 5(a) (Ferrante et al., 1987) is a direc-
ted graph for the constructs of a part of program in Fig.
5(b). The vertices represent statements in the program
such as data types, variables, parameters, conditional
branches, and assignment statements. The edges be-
f
s

Analyzer
Corrected
Program

Source code
Compiler

Step 3

Correction Module

compiled Fault Detection.

entry main

ind(F_cls) = 5 ind(B_cls) = 5 ind(E_cls) = 10 for i = 0; i <= 5; i++

print i++ write F_cls[i]
 control
 data
 declaration

1 main() {
2 int F_cls[5], B_cls[5], E_cls[10], i, j;
3 char cls;
4 for(i = 0; i <= 5; i++) {
5 printf("%d: ", i++);
6 scanf("%d", &F_cls[i]);
7 }

Fig. 5. An example of system graph (a) for a part of program in Fig. 1 shown on (b).

1 Function main_PFD_function(P) {
2 if (D1() == True) then C1();
3 if (D2() == True) then C2();
4
5 if (Dn() == True) then Cn();
6 else
7 compile P;
8 }

...

Fig. 6. An algorithm of a main functionality of PFD for detecting and
correcting faults.

6 P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
tween the vertices indicate data, control dependence, or
declaration. A data edge indicates a way in which
the data value can be transmitted. For example, there
is a data edge between the vertex for for(i = 0; i<= 5;
i++) and the vertex for print i++, which indicates that
a value for i flows between these two vertices in Fig.
5(a). A control edge between a source vertex and a des-
tination vertex indicates whether or not the destination
vertex (e.g. print i++, write F_cls[i]) is reached by the
result of executing the source vertex (e.g. for(i = 0;
i < = 5; i++)). A declaration edge indicates the decla-
ration of variables in programs (e.g. F_cls[5]). For
example, a vertex ind(F_cls) = 5 means that a size of
F_cls index is 5.

The pattern matching in Erlang (Armstrong et al.,
1993) provides the basic mechanism by which values
become assigned to variables. Then, the value of these
variables have been bound. The build-in reliability fea-
tures of Erlang, such as the tuples are data structures
which are used to store a fixed number of elements,
are therefore applied in PFD.

In our approach, a source code is therefore parsed for
looking for the required variable declarations or state-
ments, e.g. int F_cls[5], INSURANCE(. . .). They
match the pattern of PFD�s faults in Pattern Library

described in Section 4. These required variable declara-
tions or statements are then generated to be the new pat-
terns in Pattern Library by the Parser.

Step 2: The Pattern Matcher considers the used vari-
ables, function call, etc. to match the pattern of declara-
tions which are generated in Step 1. The Pattern

Matcher also creates a log file for each fault defined in
PFD as follows: Assume that method D1 declares the
detection of a fault type F1 in program P1. The Pattern
Matcher creates the log file, P1F1.log. In a log file, there
are n potential faults of F1. An algorithm of main func-
tionality of PFD is shown in Fig. 6.

An example of the pattern and the match graphs
which are used to consider the programs in Step 1 and
Step 2 is shown in Fig. 7. When the value of index i of
F_cls in match part does not match with its value in pat-

tern(ind(F_cls) = 5), this fault is recorded in the list of
faults. For example, when i = 5, it makes size of F_cls
index is over its declaration (size of F_cls index is 6).
An error message appears to caution the programmers
and this fault is then corrected in Step 3.
5.2. Correction module

The aim of the correction module is to correct the
detected faults during the detection module. Whenever
any faults are detected, the programmer must correct
them, otherwise the source code are not accepted by
the compiler. Thus the faults cannot be bypassed by
the programmer. A resulting program becomes more
reliable since these detected faults which cause the criti-
cal system failures are corrected. Note that the correc-
tion module is optional, i.e., a programmer might
prefer to fix a program manually instead of using auto-
matic correction.

The correction module is Step 3 in Fig. 4.
Step 3: Most faults F 0 are automatically corrected by

Cf of PFD. Some fault corrections cannot, however, be
automatic. For example, the default case is automati-
cally added to the no-default-case in switch statement,
but the operations of inserted default case must be deter-
mined by the programmers.

The Analyzer in correction module performs this task
by using the information from each log file provided by

match

entry main

ind(F_cls) = 5 ind(B_cls) = 5 ind(E_cls) = 10 for i = 0; i <= 5; i++

print i++ write F_cls[i]

pattern

 control
 data
 declaration
 comparison

i = 5

Error!

Fig. 7. An example of the pattern and match graphs for the program in Fig. 5(b).

1 function check_array(char *name)
2 while read next character until end of file
3 if item == declared variable type
4 while read next character until new line
5 if item == array variable
6 put name and index in an array log file;
7 endwhile
8 else
9 if item == array variable
10 compare the array index with index in the log file;
11 endif
12 endwhile

(a)

1 function check_function(char *name)
2 while read next character until end of file
3 if item == name of declared function
4 put function name, line and argument types in the
5 functional log file;
6 else if item == name of function call
7 compare function call and declared function in log file;
8 endif
9 endwhile

P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx 7

ARTICLE IN PRESS
the detection module. The log file exhibits the fault loca-
tions to PFD correction mechanism (C1,C2, . . . ,Cn in
Fig. 6).

5.3. Complexity

Considering the algorithm in Fig. 6, a program P

with F fault types, a fault type has N potential faults.
Therefore, the number of detected fault are F*N faults.
However, our approach mentioned in Section 5.1 can
detect N faults of a fault type in one time detecting.
For example, in a program P1, there are three faults of
the fault type F1. All of three faults are detected in
one execution time of the program input P1. Thus, we
implemented PFD that can detect all fault types by exe-
cuting the program F times. The time complexity of
detection module is O(F).
(b)

1 function check_switch(char *name)
2 while read next character until end of file
3 if item1 == “switch”
4 if item2 == “default”
5 set TRUE;
6 endif
7 endif
8 endwhile
9 if not TRUE
10 display an error message;
11 endif

(c)

Fig. 8. Three examples of fault detection algorithm in PFD. (a) An
algorithm of array index detection. (b) An algorithm of function
argument types detection. (c) An algorithm of no-default-case in switch

statement.
6. PFD Implementation

According to the PFD architecture and algorithm in
Section 5, PFD is implemented by using the C language
to perform the fault detection and correction. The input
of the PFD is an application written in C. The execution
of PFD starts with asking the programmers to enter a
program file.

The detection mechanism is the header files embed-
ded in PFD implementation. Each source file is first
passed to the detection mechanism. Fig. 8 shows the
examples of fault detection algorithms in PFD
(D1(),D2(), . . . ,Dn() in Fig. 6). An algorithm for detect-
ing array indexes is shown in Fig. 8(a). The array vari-
ables in source file are inspected to compare the
declared indexes to the used ones. A fault is recorded
in a log file, if the array index exceeds its bound. The
case of function argument types is shown in Fig. 8(b).
Fig. 8(c) illustrates the detection of no-default-case in
switch statement.
The detection mechanism is used to parse the source
code of a given program for finding the potential faults.
The given program input is parsed repeatedly to detect
at all programming faults defined in PFD and the
results of online checks are written out to log files by

Log fileCode segment
Name Size

1 main() {
2 int F_cls[5], B_cls[5], E_cls[10], i, j;
3 char cls;
4 for(i = 0; i <= 5; i++)
5 {
6 printf("%d", i++);
7 scanf("%d", &F_cls[i]);
8 }

9
10 }

1. F_cls
2. B_cls
3. E_cls

1. F_cls

5
5

10

6

Pattern

Error!

...

Fig. 9. An example of a log file: array indices out-of-bound detection.

8 P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
the detection mechanism. These log files are then pro-
cessed to classify each fault. An example of a log file is
shown in Fig. 9. Therefore, the outputs of this process
are the log files and errors or warning messages.

The correction mechanism is also the header files in
PFD implementation. This task traces each record in
the log files provided by detection mechanism. The
PFD requires access to the source code for correcting
according to each record. If each fault in the log file is
corrected, that record is flagged. After the given pro-
gram is analyzed by PFD the compiler of language is
called to compile the program.
Random
data

Data
files

Run source
files

Run corrected
source files
7. Experimental results

To validate PFD technique, we first defined a set of
programming faults which mostly occur in C programs
such as the incorrectness of array indexes, the mismatch
of function arguments types, and no-default-case in
switch statements. These faults are encountered in the
real applications. We used the applications containing
them to make sure that our PFD correctly detects faults
during the detection module and effectively corrects
them during the correction module. Experiments were
conducted following the methodology described in Sec-
tion 5: We executed the PFD for analyzing each applica-
tion. Table 3 lists a number of programming faults
existing in the applications and a number of failures
resulting from the detected faults. These testing applica-
tions are the prototypes of the seat allocation system
Table 3
The number of programming faults in each C application

Application # Faults # Failure

Before using PFD After using PFD

1 S_Darray.c 2 9000 0
2 SeatRev.c 3 9002 2
3 MedOrd.c 2 9001 1
4 Fmap.c 3 987 0
5 SeatCls.c 2 424 0
6 PatType.c 1 296 6
7 Swcases.c 1 1443 0
8 SeatPrice.c 1 1755 4
and medical system. A source file S_Darray.c and Med-

Ord.c contains two array indexes out-of-bound each.
SeatRev.c, which is the seat reservation program, has
three array indexes out-of-bound. Fmap.c, SeatCls.c,
and PatType.c have three, two, and one faults, respec-
tively, about passing wrong type of function arguments.
Swcases.c and SeatPrice.c hold one of no-default-case in
switch statement each.

Fig. 10 illustrates a flowchart of PFD evaluation
steps. After implementing PFD to detect and correct
the faults in applications, a set of simulation data
(10,000 data) has been applied in order to measure the
resulting reliability of software. The resulting graphs
of running software using the test data set before and
after using PFD are presented in Fig. 11. Since there
are a large number of testing data (10,000 data), all of
them cannot be clearly represented in this paper. Thus,
the graphs in Fig. 11 illustrate the only 100 testing data
inputs. The number of failures, which are the effects of
Number
of

failures

Number
of

failures

Compare

Results
of test
case

Fig. 10. A flowchart of the steps involved in the evaluation of using
PFD.

Programs

#F
ai

lu
re

s

Before Correction After Correction

100

80

90

70

60

50

40

30

20

10

0
1 2

2

3 4 5 6 7 8

4
0

47

3
10

0
7

0

13

10

90 92 91

63

Fig. 11. A resulting graph before and after correcting by PFD.

P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx 9

ARTICLE IN PRESS
the faults in Table 3, are completely removed from the
applications. However, the failure occurrence after using
PFD of SeatRev.c, MedOrd.c, PatType.c, and Seat-

Price.c shown in Table 3 are not the effects of faults
defined in PFD.
8. Discussion

Generally application code may contain faults both
visible and invisible. These faults may cause the prob-
lems incorrect usage for the applications, thus effecting
the reliability of usage. The reliability of software is a
function of the number of faults in the program, there-
fore software developers must try to eliminate as many
faults as possible. The consequence of fault elimination
is that the risk of software failure is reduced and the reli-
ability of the software can be significantly increased.

The objective of PFD is to detect the faults, and assist
the software developer to correct these faults before
passing the source code through to the compiler. These
detected and corrected faults in the application software,
after applying the PFD technique, will not occur again
in the compiled applications.

Referring to the results presented in Section 7, these
results confirm that the PFD technique has the capabil-
ity of eliminating the critical faults that arise in C pro-
gramming, such as the static array index out-of-bound,
the passing of incorrect type of function arguments, or
the no-default-case in switch statements. Software appli-
cations that utilize PFD during the software develop-
ment process contain a significantly lower number of
hidden faults than the software that compiles directly.
Therefore the application software filtered by PFD will
be efficient and reliable software as the users require.

The three cases of faults, the static array index out-of-
bound, the passing of incorrect type of function argu-
ments, and the no-default-case in switch statements,
are representative of the scope of the PFD technique,
a technique that has a wide applicability not restricted
to the three chosen cases. In addition, we will apply this
PFD technique to other programming languages.
9. Conclusion

The existence of faults in application code are both
inevitable and can give rise to serious system outcomes.
It is the responsibility of software developers to prevent
and detect these hidden faults as far as possible. Cur-
rently there are a number of fault detection techniques
such as buffer overrun or memory access error detection
algorithms. But these techniques perform the fault
detection at run-time, and may be unable to identify
the fault�s location easily, so that fault repair is difficult.

This paper has proposed a new and significant tech-
nique called Precompiled Fault Detection (PFD). The
pattern matching in Erlang is applied to this technique
for detecting and correcting hidden faults in a C imple-
mentation. The proposed technique has been tested by
running a set of simulation programs with a test set of
data, and the number of faults is counted before and
after the program passes through the PFD. The result
shows that, after passing the PFD, the number of faults
from the application program is reduced or totally elim-
inated. Therefore the program execution will not be
effected by the hidden faults.

The applications that can run without termination or
interruption from its internal faults is certainly classed
as reliable software. The PFD technique that supports
automatic fault detection and correction of software,
can be considered as a step towards increasing software
reliability, in other words the software that has been pre-
processed through PFD is shown to be much more reli-
able than software that is directly compiled. Therefore,
PFD can guarantee the reliability of all the application
software passed through.
Acknowledgment

We would like to thank Dr. Rob Rendell who was a
staff at Software Engineering Research Centre, RMIT,
Melbourne, Australia for his valuable comments on
problems encountered in programming languages.

10 P. Deeprasertkul et al. / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
References

Armstrong, J.L., Virding, S.R., Williams, M.C., 1993. Concurrent
Programming in Erlang. Prentice Hall.

Cowan, C., Beattie, S., Day, R-F, Pu, C., Wagle, P., Walthinsen, E.,
1998. Automatic Detection and Prevention of Buffer Overflow
Attacks, 7th USENIX Sec. Symposium.

Deeprasertkul, P., Bhattarasinee, P., 2003. Software Fault Detection in
C Programs, 12th Int. Conf. on Intelligent and Adaptive Systems
and Software Engineering.

Drake, J., Mashayekhi, V., Riedl, J., Tsai, W., 1991. A Distributed
Collaborative Software Inspection Tool: Design, Prototype, and
Early Trial. Technical, Report TR-91-30, University of Minnesota.

Fagan, M., 1976. Design and code inspections to reduce errors in
program development. IBM Systems Journal 15 (3), 182–211.

Ferrante, J., Ottenstein, K., Warren, J., 1987. The program depen-
dence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems 3 (9), 319–349.

Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D., 2003.
Buffer Overrun Detection using Linear Programming and Static
Analysis, 10th ACM Conference on Computer and Communica-
tion Security.

Ghezzi, C., Jazayeri, M., Mandrioli, D., 2003. Fundamentals of
Software Engineering. Prentice-Hall (International edition).

Hagemeister, J.R., Bhansali, S., Raghavendra, C.S., 1996. Implemen-
tation of a Pattern-Matching Approach for Identifying Algorith-
mic Concepts in Scientific FORTRAN Programs, 3rd International
Conference on High Performance Computing, pp. 209–214.

Harbison, S.P., Steele Jr., G.L., 1995. C: A Reference Manual, fourth
ed. Prentice-Hall.
Larson, E., Austin, T., 2001. High Coverage Detection of Input
Related Security Faults, 12th USENIX Sec. Symposium.

Macdonald, F., Miller, J., Brooks, A., Roper, M., Wood, M., 1995. A
Review of Tool Support for Software Inspection, Proceeding 7th
International Workshop Computer-Aided Software Engineering
(CASE-95).

Macdonald, F., 1998. Computer-Supported Software Inspection, PhD
thesis, Department of Computer Science, University of Strathclyde.

Necula, G.C., McPeak, S., Weimer, W., 2002. CCured: Type-Safe
Retrofitting of Legacy Code, ACM Conference on the Principles of
Programming Language (POPL).

Paul, S., Prakash, A., 1994. A framework for source code search using
program patterns. IEEE Transactions on Software Engineering 20
(6), 463–474.

Rady de Almeida Jr., J., Batista Camargo Jr., J., Abrantes Basseto, B.,
Miranda Paz, S., 2003. Best practices in code inspection for safety-
critical software. IEEE Software.

Sembugamoorthy, V., Brothers, L., 1990. ICICLE: Intelligent Code
Inspection in a C Language Environment, Proceeding 14th
Annual Computer Software and Applications Conference,
pp. 146–154.

Spuler, D.A., 1994. C++ and C Debugging, Testing, and Reliability:
the Prevention, Detection, and Correction of Program Errors.
Prentice-Hall.

Wagner, D., 2000. Static Analysis and Computer Security: New
Techniques for Software Assurance, PhD. Thesis, UC Berkeley.

Xie, Y., Chou, A., Engler, D., 2003. ARCHER: Using Symbolic Path-
Sensitive Analysis to Detect Memory Access Errors, 9th European
Software Engineering Conference and 11th ACM Symposium on
Foundation of Software Engineering (ESEC/FSE).

Appendix C

This section presents a following conference paper which is a part of this dissertation.

• P. Deeprasertkul and P. Bhattarakosol, “Software Fault Detection in C

Programs.” , Proceeding of 12th International Conference on Intelli gent and

Adaptive Systems and Software Engineering, San Francisco, USA., June 9-11, pp.

192-195, 2003.

 SOFTWARE FAULT DETECTION in C PROGRAMS

P. Deeprasertkul
Department of Mathematics, Faculty
of Science, Chulalongkorn University,
Phayathai Road, Patumwan, Bangkok,

Thailand, 10330.
Prattana.D@student.chula.ac.th

P. Bhattarakosol
Depar tment of Mathematics, Faculty
of Science, Chulalongkorn University,

Phayathai Road, Patumwan,
Bangkok, Thailand, 10330.
Bpattara@sc.chula.ac.th

F. O’Br ien
 Royal Melbourne Institute of

Technology, Melbourne,
Australia.

Abstract

 The analysis of software failures is significant for
improving the software reliability. Therefore we need to
understand and detect faults that are causes of the failures
in order to improve software reliability.

 We studied the Erlang programming language, a
language that is used for high reliability software. Its
faults and failures occur close together because of the
pattern matching supported in Erlang. Therefore, faults
which occur in Erlang can be easily and rapidly detected.
The paper proposes how the lessons learnt from the Erlang
infrastructure can be applied in C programming language
environment. The proposed fault detection software has
been created to perform as a software guard that can
rapidly detect faulty code in C programming language.
This detection software will operate at compiled time.

Keywords: Software reliability, Software failures,
Software faults, Erlang programming language, Pattern
matching.

1 INTRODUCTION

 In software reliabil ity, analysis of software
failures is a very important subject. The evaluation of
software reliabil ity cannot be done without software
failure data. Therefore, to improve the software reliabil ity,
we need to understand how failures occur, and how faults
that cause the software failure are detected. Furthermore,
improved software engineering techniques, better
programming languages and better quali ty management
are very important factors in improving software
reliabil ity[18].

 There are two approaches that have been widely
studied to improve the reliabil ity of software. The first one
is fault avoidance. It is the avoidance of faults that are
detected before the software is delivered to the customers.
Another approach is fault tolerance [5] where faults are
detected during software execution. However, it takes a
lot of time and money to develop this fault tolerant
architecture. In addition, fault-free software is very
difficult to develop in structured programming languages,
such as C because the constructs of these programming

languages such as array index and function argument
passing, often lead to software failures. Since, the C
program structure is generally large, when some failures
occur, it is time-consuming to detect faults which cause
the failures.

 In this paper, we studied the functional
programming language, Erlang [1, 12, 19]. This
programming structure is small and it has no reassignment
statements. Its local variables are assigned inside
functions and never changed. These advantages of Erlang
help the distance between faults and failures to be shorter
than similar programs in C. Thus, we wil l propose a
corresponding approach that can rapidly detect faulty code
in C at compiled-time.

 The remainder of this paper is organized as
follows. The Literature Reviews is introduced in Section
2. Section 3 is Faults and Failures in C. Section 4
describes Solution for Fault Detection. The final Section is
the Conclusion and Future Work of this paper.

2 LITERATURE REVIEWS

 Currently, there are many approaches, models
and tools for estimating and predicting software
reliabil ity. Software Reliabil ity Engineering or SRE[8] is
one well -known approach for estimation software
reliabil ity. The objective of this approach is the reliable
behavior of software systems. The dynamic reliabili ty
estimation is one classification of the software reliabili ty
assessment. It determines the current software reliabili ty
by using statistical theory techniques to failure data
obtained during software test or during software
operation. These failure data occur when the software is
executing. They are the resulting behavior when the
software does not deliver the service expected by the user,
or the program's behavior departs from the specification.
They may mean the inabil ity to perform an intended
function specified by a requirement or the halting of the
software program due to the incorrect code or data.
 Nowadays, there is increasingly interest in the
integrating previously existing software components for
building the software system products. This approach is
called Component-Based Software Engineering or CBSE.

Therefore, the reliability assessment of components that
are integrated into system is very significant. Component
Based Reliability Estimation (CBRE) [6] and Software
component reliability analysis approach [3] are two
approaches for the estimation of the software system
reliability using reliabilities of its components. In addition,
there are a lot of current methodologies to be used for
developing the reliable software. The objective of these
methodologies is to develop the fault-free software. One
of these methodologies is Cleanroom software
development [7] based on avoiding software faults. It
avoids the costly fault-removal processes by writing code
increments and verifying their correctness before the
software is tested.

 The structured programming languages, such as
C, are widely used for developing the software products.
The C language programs are relatively large. When a
failure occurs, we have to take a long time to find out the
causes by tracing faults in the collected log file. Currently,
there are tools such as Purify and Valgrind that can detect
an array index out of bound. Purify is a commercial
package tool that can find memory errors in programs, but
it is very expensive.[13] Valgrind is a tool for finding
memory management problems in x86 GNU/Linux
executables. Valgrind is licensed under the GNU General
Public License.[16] Software running under the current
tools runs much more slowly, making testing more time-
consuming and tedious. Moreover, the existing tools are
applied at run-time, in a reactive fashion, attempting to
catch invalid accesses when they happen.

 The functional programming languages are used
for high reliability software. One of these programming
languages, which have been studied and described in this
paper, is Erlang. It generally has no reassignment
statements and has small programs that are about 5-10
times shorter than equivalent programs in C.[20] An
Erlang program consists of a set of functions which may
be collected into modules [1] as shown in Figure 1. If the
failure occurs in function B of Module I, the fault may be
somewhere not far from it (in Function B or in some
functions calling it). In addition, neither global variables
nor pointers are used in Erlang. Moreover, local variables
are assigned inside functions. These variables are never
changed and so functions have no side-effects. All of
these advantages help the distance between faults and
failures to be shorter than similar programs in C.

3 FAULTS AND FAILURES in C

 Software reliability is defined as the probability
of failure-free operation of a computer program for a
specified environment in a given time. A good software
process should have the objective of developing fault-free
software. The minimizing software faults have a
significant impact on the number of system failures. Many

program failures and faults are often a consequence of
human errors.

 Figure 1 Structure of An Erlang Program �

 Currently, the structured programming
languages, such as C, are widely used for developing the
software products. The fault-free software is very diff icult
to develop in these programming languages, especiall y C,
because the constructs of these programming languages
such as array indices and function argument passing by
reference, often lead to software failures [19, 11, 15]. The
paper focuses on three faults, which mostly occur in C
programs.

3.1 Static Arrays

 The C compiler does not have the checking of
arrays indices whether they are out of bound [19]. One
example about an array index out of bound is shown in
Example 3.1
Example 3.1 Array index out of bound
…
{
 int arr_a[10], arr_b[3];
 ...
 i = 12;
 /* This is a fault since 'i ' will be used as an index of an
 array, arr_a[i], and 12 is out of bounds) * /
 arr_b[2] = 2;
 arr_a[i] = 0;
 ...
 x = 100/arr_b[2];
 …
/* The failure wil l occur since 100 is divided by arr_b[2] =
 0; */
}

3.2 Functions

 In the old versions of C that do not support
function prototypes, there is no checking of the types of
arguments passed to functions [11]. However, in modern
C, if a function is defined using a prototype, but is called
in a separate file without a previous declaration in the
current file, this causes the compiler to believe it is a non-

Message

Message

Module I

Module II

…

…

Function C

Function A

Function B

Function A

Function B

Function C

prototype for the function's arguments. Hence it performs
no type checks on arguments passed to the function. This
may cause the problem of arguments not matching the
types of arguments or the wrong number of arguments
passed as Example 3.2.
Example 3.2 Passing the wrong argument
…
main()
{
 …
 char *a;
 int i;
 ...
 compute(a, i);
/* This is a fault because the type of an argument 'a' does
 not match the declared argument in compute function
 (num1)*/
 …
}
…
int compute(int num1, int num2)
{
 …
 x = num1 + num2; /* The failure occurs * /
 …
}

3.3 Switch Statement

 It is dangerous if there is no default label in
switch case, or no else clause since execution then
continues with the statement following the switch or if
conditional statement. It is shown in Example 3.3 that is
about the aircraft landing control system. The failure may
occur if the emergency case happens on that aircraft and it
cannot be specified the type. The unidentified aircraft may
land on the runway that is not available. Therefore, it may
have the default statement for resolving this problem.
Example 3.3 No Default Label in Switch case
...
Domestic = 1;
International = 2;
…
switch(type){
 case 1 :
 Runway_Free(type);
 case 2 :
 Runway_Free(type);
}
Landing();
…
/*This is dangerous if there is no default label in switch
case. The unidentified aircraft may land on the incorrect
runway. * /

4 SOLUTION FOR FAULT DETECTION

 Generally, C language programs are relatively
large. When a failure occurs, we have to take a long time
to find out the causes by tracing faults in the collected log
file. Furthermore, some faults cannot be checked such as
array indices out of bound. Therefore, it is hard to detect
these faults.

 This proposed software will help to resolve the
following problems.

 1. The current tools are expensive and very hard
to write.

 2. Software running under the current tools runs
much more slowly, making testing more time-consuming
and tedious.

 3. The existing tools are applied at run-time, in a
reactive fashion, attempting to catch invalid accesses
when they happen. The proposed tool would be applied at
compile-time, in a pro-active fashion, with the intent to
reduce the time it takes to debug the code by causing
faults and failures to be more tightly coupled.

All advantages of the Erlang programming
language which are described in Section 2 help the
distance between faults and failures to be shorter than
similar programs in C. Furthermore, it has the pattern
matching construct [1, 12] which is one advantage
because it assists in tightly coupling between faults and
failures. If there is not one variable, clause of function, or
message matching with their patterns, the fault message is
immediately displayed to programmers. To make C
programming language behave li ke the tightly coupling
between faults and failures in Erlang, we have created
software that work as software guards to detect the faults,
which were mentioned in previous sections. This software
will check C programs before they are compiled by C
compiler as shown in Figure 2.

Figure 2 Pre-compiled program

 In traditional C, there is no checking of the
indices of array whether or not they are out of bound and
no checking of the types of function’s arguments
Therefore, the proposed software has two following main
functions.
 4.1 Fault Detection. In this part, it has three
functions that automatically detect the coding errors in the
programs. The first function is the array indices checking
whether or not they are out of bound. The second is the
default label checking in switch case. And the last
function is the type of function’s arguments checking.
 4.2 Fault Recovery. If some faults occur, the
error message will be displayed to warn the programmers.

 C programs Pre-compiler
(Guards to

detect faults)

C

Compiler

Then, the proposed software automatically recovers some
faults.

Figure 3 The pre-compiler architecture

5 CONCLUSIONS AND FUTURE WORK

This paper investigates the problem of fault
detection in C programs. Since C language programs are
relatively large, when a failure occurs we have to take a
long time to find out the causes by tracing faults in the
collected log file. And some faults cannot be checked such
as array index out of bound. It is therefore hard to detect
these faults � In this paper, like the tightly coupling
between faults and failures in Erlang, we have created the
software that work as a software guard for detecting
faults, the faults that are the array indices out of bound
and the incorrect type of function’s argument, at pre-
compiled time. The proposed software helps the faults to
be detected easily and rapidly when the failures occur in C
programs. In addition, the software which failures are
reduced will be more reliable. The maximum time
complexity of detection software’s algorithms is O(nlogn)
where n is the number of characters in each C program.

 The implementation of the proposed detection
software have been created and operated at pre-compiled
time. The examples il lustrate a programming style for C
based systems, that can be enforced through this pre-
compiled programs, and raise the level of reliabili ty
towards that is achieved in Erlang implementations.

 Another issue not addressed by this paper stil l
has to be analyzed. In particular, the faults are detected by
the fault detection software, how to manage these faults.
Therefore, the error handling mechanism wil l be created
in the near future.

ACKNOWLEDGEMENT

We would like to thank you Dr. Rob Rendell who was a
staff at Software Engineering Research Centre, RMIT,
Melbourne, Australia for his valuable comments in

problems of programming languages

REFERENCES

[1] Armstrong, J.L., Virding, S.R. and Wil liams, M.C.,

Concurrent Programming in Erlang, Prentice Hall ,
1993.

[2] Cockburn, A., Writing Effective Use Cases, Addison-
Wesley, 2001.

[3] Everett, W.W., “Software Component Reliabili ty
Analysis” , ASSET’99, Proc. IEEE, pp. 204-211,
1999.

[4] Fraser, C., Hanson, D., A Retargetable C Compiler:
Design and Implementation, Addison-Wesley, 1995.

[5] Jalote, P., Fault Tolerance in Distributed Systems,
Prentice Hall , 1994.

[6] Jiantao, P., Software Reliability, Dependable
Embedded Systems, Carnegie Mellon University,
Pittsburgh, USA, 1999.

[7] Krishnamurthy, S., Mathur A., “On the Estimation of
Reliabil ity of a Software System Using Reliabilities
of its Components” , Software Reliabil ity Engineering
Proc. IEEE, The Eighth International Symposium on,
pp. 146-155, 1997.

[8] Linger, R.C., “Cleanroom Process Model” , IEEE
Software, 11(2):50-58. 1994.

[9] Lyu, M.R., Handbook of Software Reliabili ty
Engineering, McGraw-Hill , 1996.

[10] Musa, J., Software Reliabilit y Engineering, McGraw-
Hill , 1999.

[11] Harbison, S.P. and Steele Jr, G.L., C: A Reference
Manual, Fourth Edition, Prentice-Hall, 1995.

[12] Hausman, B., Turbo Erlang: Approaching the Speed
of C, Implementations of Logic Programming
Systems, 119-135, Kluwer Academic Publishers,
1994.

[13] Pham, H., Software Reliabili ty and Testing, IEEE
Computer Society Press, 1995.

[14] Rational the software development company,
“Rational PurifyPlus for Unix” ,
http://www.rational.com/media/products/pqc/

 D610C_PurifyPlus_UNIX.pdf, 2002.
[15] Royce, T., C Programming, Macmillan Press, 1996.
[16] Samani, M.M., Sloman, M., Monitoring Distributed

Systems (A Survey), Imperial College Research
Report, 1992.

[17] Seward, J., “The design and implementation of
Valgrind: detailed technical notes” ,

 http://developer.kde.org/~sewardj/, 2002.
[18] Sommervil le, I., Software Engineering, Sixth Edition,

Addison-Wesley, 2001.
[19] Spuler, D.A., C++ and C Debugging, Testing, and

Reliabil ity: The prevention, detection, and correction
of program errors, Prentice-Hall, 1994.

>��@�Whatis.com, “Erlang programming language-a whatis
definition” , http://www.techtarget.com/definition/ �

 0,,sid9_gci212072,00.html��

Vita

Name: Ms. Prattana Deeprasertkul.

Date of Birth: 8th December 1975.

Education:

• Ph.D. Program in Computer Science, Department of Mathematics, Faculty

of Science, Chulalongkorn University, Thailand, (June 2000– May 2005).

• Visiting Ph.D. researcher in SERC at Royal Melbourne Institute of Technology,

Melbourne, Australia, (October 2001 – September 2002).

• M.Sc. in Computer Science, Department of Computer Engineering, Faculty of

Engineer, Chulalongkorn University, Thailand, (June 1997 – May 2000).

• B.Sc. in Science, Department of Mathematics, Faculty of Science, Mahidol

University, Thailand, (June 1993 – March 1997).

Publications:

• P� Deeprasertkul, P� Bhattarakosol, and F� O’Brien, “Automatic Detection and

Correction of Programming Faults for Software Applications” , Elsevier � The

Journal of Systems & Software � 2005.

• P� Deeprasertkul and P� Bhattarakosol, “Software Fault Detection in C

Programs” , 12th International Conference on Intelli gent and Adaptive Systems

and Software Engineering, San Francisco, USA., June 9-11, pp� 192-195, 2003.

75

Scholarship and Awards:

Development and Promotion of Science and Technology Talents (DPST) Scholarship

of Thailand for B.Sc., M.Sc., and Ph.D.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Content
	Chapter 1 Introduction
	Chapter 2 Related work
	Chapter 3 The precompiled fault detection and correction
	Chapter 4 The implementation and experimental results of the proposed technique
	Chapter V Theoretical analysis
	Chapter VI Discussion and conclusion
	References
	Appendix
	Vita

