CHAPTER V
THE POLARON EFFECTIVE MASS AT LOW TEMPERATURES,
DENSITY-MATRIX APPROACH

S0 far, we have seen that all approaches to the polaron
effective mass at finite temperatufes have dealt with the
evaluation of the partition function o¥ the diagonal part
of the density matrix of the polaron system. In this chapter
we shall extend the calculation of this quantity to a more
general one i.e., we shall directly investigate the polaron
. effective mass through the density matrix of the system.

We shall set out by giving briefly the statement of
our problem. Next we shall present quantitatively the
equivalence of the Feynman's approximate model of S; and
the two-particle model system; The successive section will
be due to a calculation of the quantities{ #(%))and ('F('\:).?@'»

! i K. (Fee)-Rea)
required to obtain the key quantity {€& . Such
a calculation enable us to carry out the polaron effective

mass in the last section.
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V.1l The Statement of the Problem.

We consider the density matrix of the polaron system

expressed in path integral form as

—n

" p) = L
3737 .8y o PLEY: A
/o(r rFsR) = | e 50(“" 20y P’ s (5.1)
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where symbolically (% ree): ¥(o) =

~

) denotes the path
performance under the boundary conditions ¥« ¥ and ?(p)::-\;’:
Recalling sec. IV.3, after averaging the lattice vibrational

part the action of the polaron at finite temperatures reads

$ 4 -1 4t t-5)
S - (v'(t) Yt 42 oc{ % f Fr-Fel e dbdss
-1 Jolo

- le-s) |
I /lrtt)-v’ml dtds} (8.2)

Feynman trial action atOK to flnlte temperatures is found

o

by Abe and Osﬁaka to be cwhw(;- lt—St)
S, = __j(r)zdt__/ /d’tdsert)- Fes)|* simh WE
(-

or ay b, P
p' epw -wlt- -8\
S, = -1 J(v)‘d-t _%{W (Fo-#®) e i
e — .
0 g
b (P
- 3“1’1 I /d-‘(t)-v-(S)) lHldtdS} (8.3)
e -
0

The physical picture underlying this approximation will be
pointed out in sec. II.2. Making use of the Feynman varia-

tional method given in detail in sec. III.2, we arrive at
£S-Ss)

/O (,:"F";P) >/j0soe Se . (5.4) .

where we have defined the average of any functional .g. to
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be performed with respect to So viz.,

- =y
so " V(p) =y
- e P& '
s it ) L
and '
< ~=
So v (.F) =V
= rCk) F
'/20 OGO( v =¥ /)¢ L E:41)
Precisely,
<S"‘so> = <g>‘<§o> (5.5)
go So
- where
' At-ﬂ |t-s| & i -1
{S-S5> +—— e [{F@I-#(s)| Sdtds
Se ] :
er-1 S
- - ik« (RLe)-Fesy
= 2 OC//dtdg ltSI L BT P & -P(8)
[ e$-1' ]d m‘< g
( B.54)
and
y ewg, ~W(t~5) wlt~-g) .
<So), = S| [obds| Z— ¢ +__u13__. . ]<(¢m-vcs1)>
Ss & | Sl P ( 5:5b)
Since S,is quadratic, the cumulant expansion of the
average(eik'(mu—“s))> retains only the first two cumulents(al)

K. (P L) (s) TR (P et) - LA LR e’ — i "
e.k(v )v‘)> X e.k 4G ¢<s\)§. %‘kfs“”m ¥(S)) >s° (&'44}) xm) ]

= (6.6
Furthermore, the path-integral method permits us to separate

/g into: '
E = F (.?:,C o)

(-}

eg° (6.7)

L)

ed See Reference (1) P. 184
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~ two factors in which F(p3Qu)is a multiplicative factor independent
of paths P(t) and the other is the exponential of the action
corresponding to the classical path .

Thus the density matrix of our interest becomes

SRR DO LN *
P (y' » % ) ZF(psewe g (©.8)

with F(B), éo,<§> and £S) to be evaluated explicitly.
Following Feyman suggestion of the direct way in defining

an effective mass as we have mentiored in sec. III.3, we argue

that for a slow electron in the limits |*Z¥'\>0 and 200,

the asymptotic form of (5.1) should vary as
=R ﬂr‘z
™ | ¥

—-Ep- ZE
PP . ~ S 2 ©.2)
: (e ¥ 9) ) e
\V/I...\" - 0
® - 00
§ ] "’\2 €
the exponential term that depends on \P -y determines the
*

polaron effective mass Y0 .

V.2 The Two-Particle Model Lagrangian.

The trial ection SO has been introduced initially by
Feynman in order to imitate the effects of the real action S
and to render a performable path integral. The physical picture
of the polaron corresponding to this approximation is made
clearer when it is recognized that the system giving rise to SZ
can be equivalently represented by a simple two-particle model
system in which the electron is coupled by a harmonic force
to a fictitious second particle (See Fig.IV -). Let us justify

this quantitatively as follow.‘
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Consider such a two-particle model Lagrangian
L2z ] > =2
L, = §F24 L wy 2K (#-717, (810)
- \ '
where M and Y refer to the mass and position of the fictitious
‘ -
second particle. If we replace K¢ by ?Ct)and rearrange (5.10),
. we get 2 > -
. {4821 e +(.‘L Yo ixV+YwaY). ( 8.14)
OCo'-—(z"' 2K") S AR X)
Clearly, the second part is just the forced harmonic oscillator
Lagrangian whose corresponding propagator has been given in
/
sec. II.2. Then going into imaginary time and defining W -'-‘-/é ’
the density matrix of O(.o is readily
4
oY [(d"“)} K#2]dv
g(f Fip) = [DFtn e

3 A -1 (Frd? "d'c Mw
40("@'(;”;’5?) = (zsinh ﬁi‘_’;") 7;5‘\:(‘7:)6 ZL( fﬂ—

& mep )YC»I' )

pw ..u.Jl |

et -1 4

1 I'C-O‘ b
u Py l](r(t) rco’))d‘td(f (5.12)
If we set:
w'= w and M = 4C (®43)
w

besides the factor (zsiv\h F_i‘ﬁ* )-3, the action resulted by (5.12) .
is in the same form as Sogiven by (5.3). Therefore this
implies that practically, the two-particle model described
by fche Lagragian (5.11) can be used instead of So'

We note from (5.11) that the two-particle model system
can be viewed to‘ be consisting of two independent kinds of

motion, - one is free translation in three dimensions with mass



M+4 and the other is free vibration in three dimensions of

the reduced mass /u. = 1M with frequency V= 1/?} x

1+M ¥

- - -
V.3. Evaluation of the Quantities {¥(®)>ang (eI V)

We have seen from sec. V.l that to obtain the final

expression of the density métrix.fD we again encounter the

iKe(Pet) ~¥(s)) )

key quantity { e é- If we proved in the same
0

manner as that given by Feymman in Chap. III, the form of S,

in this case will give rise to the more complicated integro-
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differential equation which is difficult to handle. To remedy

this we choose another effective method introduced by

Feynman and Hibbs.

Recalling (5.6), we have expressed the key quantity as

ik (PR (s K CRtI=R o) - Ak (R SRS L k)~ a8 )P
{e v )) z e & 2 (3 > . (B.14)

So

Therefore a precise expression of (5.14) implies calculations

of (7‘,“'.)) and {#(£).F(S)>. To achieve this let us consider a

functional
’ -) - iy Fa =
; . P aT s‘,+jdt (k). P (2)
{Palt)((t)#ct) Ié’bé'(t):_‘? __)e b f
(e’ 2= A Rt
S|0_ I3 =7
/a'D(P(UH‘m . )eg°
- P(O)a'y‘-’
where{kt)is an arbitrary function of time.
Substituting
/ Bt
S, = S°+jdt§.(t).r(t)
0

(8.18)

(5.16)

and typically performing the path integrations in (5.15), the
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multiplying factors in the numerator and the denominator cancel
each other out, (5.15) reduces to

fd%,;jct}‘vm §’°_ g,
( e” > = e (5.17)

e
“o

where é; and §o stand for the corresponding classical actions of
the actions So/ and Sgrespectively.

Eq. (5.17) formally gives the characteristic functional needed

in computing(¥(t)) and (F ¥ (T which are to be employed in (5.14).

Differentiating (5.17) with respect to {Ct\ and evaluating

both sides when .grﬂ'.) =0, one easily find

P—d b /7
TwrYwodt <=/ -5, o
Fre® > o /25 B « 250
<V( )e so b:{(t) ’ ( W )So" 6?‘-'&) ;.:o (5-18)

Repeating the process to obtain the second derivative, this

yields

2

)
R S-S
(FA)TF ), = P

= gl |
By diw)

. (5.19)

-
=
=

_r 8% 3% %S
fz0 K‘bim%,f‘w) Dfit) ©Fe)

It is now clear that our problem turns to an evaluation
of §';. As we have discussed in sec. V.2 that the action Se
can be equivalently represented by a two-particle model Lagrangian
given by (5.10). Under the similar circumstance and with the
definition of g; the action So/ or the classical action gc’s ig! i

derivable from a model Lagrangian,

/ KN - - 2 by -
" '."j:. Mtht)__n Fee) - Y k) + LCEY)VLE),
[o = 2[: (B & 3 -] ‘? (5.20)

which is just the two-particle model system joined
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-

by an external forc.e_F 2

Introducing the relations

8 g se o .-; M.;
P owF-V, R LLERE, iy e 14M
T+ M

x S= K and W = A (5.21)
Pt 1+m o~ )

the Lagranglanoc can be réz:rltten, go:.ng to imaginary time, as

' l‘ [ U‘/"z‘t) )f)p m)+ )((t) p(tH mocht)-l»{(t\-‘RL'tﬂ (8.22)
Formalzy,ofo is merely composed of two forced harmonic oscilla-
tors, one with the reduced mass/u. , frequency ¢ coupled to
the force/i‘:;(t)and the other with total mass wn, , zero fre-
quency, coupled to the force ,?(_t) . This enables us to deter-
mine the contribution from each oscillztor to —éol independently.

Now we determine

= P | ik
fjto(,: ‘”’“}f‘f’ +){fct))+/~)l(t)[oct)]+f Ef4m R+ f(t) Rep)). (5.23)

Principle of least action then gives the equations of motion

for the classical paths Fct) and R(t) as

=2 7 P | .
Pests W aln -§it> e e
and M) o O e H }(t)/mo (5.25)

Eq. (5.24) may be solved conveniently by using the Green func-

tion method*the solution is

/Oct) z (f Sinh VG]s-‘tH-)D Sinh. Y )fsinh v - jds,g(S)Gcs 0 (5.264)

where

G 6,0 = S\:/h i (co*‘h Vi - Coth \/P)smh Vs Ht-S) -3mh Vh (csth \)‘5 —cath VPS\I\L\VS)H (s-%),

: 5.26b
and in which the boundary conditions : )

FCO) = /_5/ and ;CP) "-"}3’/ have‘ been imposed.
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Consider first part of (5.23)
B :

] dt[—-/fct) % pek) g Jimlom] /(P /oqs) -P- />co))+ﬁf)%t) /"6’00‘b (5.27)

o

Deducing f)(P ﬁ(o) from (5.26a) and substituting these into

(5.27) we get

fdt [-—/J.fza‘—)‘xf(t)/uj-(t)/)(t) zgmwfl (f)”*f %)eath VB + zﬁ )—e-

>z P P
+ 2P /dtj(t) Sinh vt ?.fjdtjt(t)smk V(p-t)
3/ v

P °

et '
*';2;} /dt d%ﬁs)]((k)siwk Apt)Sinhvs.  (5.284)

Similarly we readily find, for the other part of §°/

b
fdt[——moR P Rt)] = = T LR )+Rfdt§<t> %4 Rfdtfm (pt)
(]

’P 2%
( t
£ aec dtdS.)Ht).E(S)(p—t)—— 3 (5.28b)
)
Under the boundary conditions
%2 CO) = 3/ and a&%) = a/,

Therefore combination of (5.28a) and (5.28b) gives time dependent

=y

expression of S but still in terms of j)" 5 'é/’ and _ﬁ'.

& { R ) 2y L, Y
Transform the result into the original coordlnates P, WY

YR d

-—
and Y’and set Y"-’Y, we come out with
e i il —*f/ -
dt o[ [ g 2)cosh1)r>+ 'z.r”""J—ﬂ maP(
?-S\Y\hVP

mhvt 4.t
+’°[/°‘t¢<t’/-§—?ﬁz;+%o%)] p
/A Simh v ($-t) 5 P
fdt}ﬁc} Sinh ¥p T me —)

I
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/dtds t)?cs) (&, Znn Ve t’g‘“hvsﬂ”——m—m)

LT e ™ B
/Ax/{‘.cmhlj"s\\/
i Ve + Sinh VI B-L)
s ‘ ,& s\Y\h
£ [ vkanh Y2 FHP)- jdtj(t){ Pt g
- 0 Sw (6.29)
To eliminate the second particle coordinate N out we perform
the integrat:.on a0 P
/db do DR EXY’G Y
CjY"a d¥ e e
el e o £ ; '
= AN ek ; (5.300)
=
where a formula , ¢ b®
- adxX4bx T 4
i d h;?e f
is used, and w -~
’ = - 27 2,92 7 Sinh ¥t
Y To(P*3R7°) cosh vp 22377 (P"-v-) 5dt () {2 et &
i ZS\WMVP[ S ) P ] { (1 Sin 'fn)}
£ ¢ A Sinh vipt) 4 (Bt H
A Th fcl't.y(t) —-“Q—Sinhvp _r; ) .;-}’ /dtols.f(t)gts)( x
‘th\)(l”'t)mw\q W Ly (13'*)5) (5,30 b)
¥V Simh vp . Yo P e 7
E = mVtanyp ONG : : (5.30¢)
i 'y gmh‘V’c +Sinh)(B-t)) _ M (5.20d)
and F = [/Avtanhgﬁ( .‘.yl [a(tj((t){ ( SihvE ) }}

Once (5.30a) is caPried out the action of one interest § can

be deduced immediately, sirce

j fﬂtf,;

—0o0

n.
0N

is directly proportional to € .
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Further calculation gives finally,

g b)
§°’ = D- :—C/LVCo*h Vi +i/u~ 1"‘" "/lz "‘// dt;(t){ g\Y\h vk % swmh

z)+

4E : i :
4 /‘A_? } +¥ Jdt_f{_t){/_:‘ (Smh"‘[)‘b & 3\\6\\'&—‘) Sinh Vit b (\”“W}
P S)Y\h VP $h ——P M 9
} at alsi(’c)j(cs){ i (i p-t) SN VS - & 5t *’“‘*")Smhv.b
VS nhVP
o (B) Sinl 5 (p—t) ‘ :
XS\“"‘L’-—E—' “‘“z)-l' /ﬁ—?— S} ( B.31)

ES

Recalling (5.16), if we set 5(1") =0 | we easily obtain
g) w _[/‘VCo’fh‘-’-?.L" M ]l—u; -\,lz (5.32)
o
Using a full expression of S;'given by (5.31), calculations
of the quantities{ »(t)) and L PCOIPCS)> op specially <¥(s)

.4 Vz(t)) and ZP%5) are straight-forward.

V.4 Evaluation of the Polaron Effective Mass.

We have already stated in sec.V.1 that the approximation

of the effective mass can be obtained, once the density matrix

(33 S>,
JASE 2k JD(’”’"’ c:r-‘tp,c,w)e AR L0 ( B.33)

is known. S has been expressed in (5.32) and from the definition

offand(S)one can easily verify that

s, c B in L7 5p))

wz Constant,

@ ln (Feps cow es")]

w = ConsS¥ant (5.34)

Therefore our task is to search the expressions of(S')and Flp W) .

First we consider ‘Q,A k3A

B‘
-3 P ._|t-s) " b_s\ 3 » :
($'> = 2 OQ// nri)e - J[ ka_J%;kze : (5 ?TSQ)

in wh:.ch

r"*lv
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4
eP-1

3
)]

s A - 2 a2z
9 A =gl sCrit) Ve -.%. .
gl & 4¢ )>$°5 ] «s.350)

and

B = L (Far-¥w)) ( 8.35C)
; S
To find 8 , the formula (5.18) is employed. That is
-/
? S.
7¢s)
gct);o ‘D'f

- s 2 (s’t‘) N b % b
= r”{/f (Shanyt . ek P Snh R siabatg _ SianZiBo2) siam ?)Mzct-g
M

=7
- <';:(‘t)> "<;Cs)>§ = .6_53
So : o b?(t)

oy

s_cs)=o

Sinhvp Qosh ¥B SinhvYp oosh Y§ ®

. P
. iy LBL) 5 e
- ?/{,;cf- (Smh Vip-t) S\’nh—v—(z—p— sinh 1{_& _ sinh L(;_'i’s'.nh'é
. Sinh vp Coshvp ‘
: 2

&5
sy A s oosh\:i{b +H(fi)}
a8 {s'mwr;us 2 [Finh v (e-£)=smn v(s-£)] +ﬁ'(w)} + 304 Sinnvist)
: P S‘MV\VP

%[ Ceshh z%ih cosh V(p- (&is)-4 (t_é_s )} :

—~

Given t>$ , final expression of P is simply
) cosh ¥ Qr*_:.%.::ﬁ) 5 (t-9) ]G-‘"- *)

e -l, e
Sinh Zz_?

- nie, cinh viges
B = B(FUFY p,-t,s,y,/_;.‘d)-;/,«[ Z oh
N _ (B.%6Q)

2+ 2 .
The relations (5.14b) and (5.22) reveal that/,,«a«-%’,, and
7- -

Pl 4-%; . Hence B becomes
- = apay 2 . Sinhy (£-5) v (p=Lt+s) A PN
B =B plawing foashy thinigome v (B08) | uh et e
: yeop

Sinh 't/ﬁ

ks

(6.6 D)

Our next object'ive is to compute A in which the un-
known quantity is <(;(t3-—;cs))z>§°.
The expansion of <(‘\=ct)_?CS))‘>s° is simply
<(¢ct)_§‘-cs:}2>so

Making use of the formula (5.20), this is

= <@ )7, +<Feo)y, —2<Feodey
o
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.2,
Se
LR = [ 2
Sea b&(t’ 8{(3)

;‘“’B-{cﬂTS %%(t)bg‘-s)] \8“
0

boBCEs aé’\ 58 55 l\

r 8ss 850 , 0%
i 6§cs) 5,}“;) 3:;&) 8,}csn

+l ﬁ.}tt) B,}cS)

,;ao
(:5.37)
Calculating one rectangular component of the first square
bracket of (5.37), we find that (5.37)
1. il e ls -t
b[. ] /u.{ S (Sinh Hp-t)simh vt +4Smn V(e >smhvbsmww:>smw

+ SN U(RE-9)SIN ¥S +A SN V(BS) simh ¥S Sinh (BS) s;nh'/_:
2 2 i3

. -t
- 2SNV (Bt IS Vs - 8Sinh v(g_z-_gc,\.v.w (85 smmzzs) pi hp. IS

28 o /A UZ;—*').S]
™M B zM

sw.hvu—%)s\..wm—ct )4-_._{&(\5 -(k=5) ) (=91}
(5. 35a)

A
2/*{ Vsmh ‘./.Y’

The second squaré bracket results just, for 1 Tectangular

component, and for. 'E)O", it is
’ 2 v 7.9
ir = (W-wW®) (x-x)
108 g
.2
zr sivh YR coth V( "’——(———m) R~ ](X—x) (6.38b)
M
N S\V)V) ‘!-?
. : 8° (5.38C)
where s
W E) =
simh¥3 (S\Wh% +2$Mh%9‘nh wes US\ h‘Lt )+ 4t
and M P
W (S ) = /M (ng\\’WS'-l-QS\'Vohz} $iwh V(L—;,"})s,‘nh vs )+/A s

'W

S V\'b ; M
Combination of (5 38a) and (5.38¢c) g:.ves suddenly i ((Pcb)-’v‘(s)))

Vol ) ey s A
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and substitution of this into (5.35) shows

i () Stnh v (B=tt5))
V Sinh VP
2

or, in terms of V¥ and w ,

A=

+.§*ﬁ\.—(P_(t-s3)(t—3)] (5.39a)

v\ Sian Y82 Ginl V (Ratesl) 4 w? (B-(k-s))(k-3)
3] \ —

Al 2[4 (- Sinh Vb Tz B
my

(5.390)

The next quantity needed to be considered is the
multiplicative factor'F('(a-,c,w) which corresponds to the trial
action So . We can calcula’ge this more easily by making use
of the two-particle model Lagrangian. It is evident from
sec. V.2 that the only effect of replacing _S0 by the one
obtained from the model Lagrangian a[o is that the coni‘:ributes v
a path-independent multiplying factor to the corresponding
density matrix. Similarly, the partition function corresponding
to the action So should ~be, different from the partition
function resuiting from the two-particle model system by a

multiplying constant. Thus

+ ¢ & b
( ¥y =V -idté(r’-n‘t‘ r2]
sp./ac?’-i".g,) =.Constant.sg{'J;z§\‘;m-. S ? g
, Wen) WS ..fdl: %_(_mz?‘-{-}‘;?‘—zmn?*( 1
) ’\‘) = f . A
Yew) = ¥/
; 3 .
/14w \* .y, VB
28inh <
V F(5;c,w) = cmskm—,vkm% ) ( /8 )
[EEER Y \a‘; . V3 \.:’ . o) X
Fanke s x\_.ﬂwn-,z) (6.4
- sTan |
F(P;C,w)‘ = Con \,_“.:_ / |
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Physically, the resulting partition function on the right of
the above equation is simply a constant multiplied.; by two
factors, one is the contribution from the center-of-mass
motion with the total mass (4+M) , 'the othex f;r'om a simple
harmonic oscillator of reduced massf and frequency Vv .
The unknown 'constant' can be determined by imposing the
boundary condition: For fixed w and K.':O,F(f;;C,W) reduces
%

to- the value for a free electron viz., (.f?p) To accomplish

‘'this we rewrite (5.40) in terms of )X and W :

o\ V -3 ]
F (pyC,w) = Constant. (“ S ) (1%\‘»“% l/){a-co‘) (6.41)

2T B
) ;
Setting W =0 and F‘(f),c,w) (-%—ﬁp) z’ yields
f 3 ;
Comstant = ( 25N 2 ) (5.42)
Finally, recalling (1+M)= y_z , we have
wa
-
%2/ 3 Smh P2
Fipe,w) = (..‘_ ) ( , 1) (6.43)
2Tp O)S\nh\éﬁ

Substitution of F(py¢,w) and  Se ~into (5.34) enables

us to compute 4§°> e .

_ ?lwhr’ 6 oy '“/):_“’ 2
<§.>§. = acC 5 1 (V ) -c _gct%cowghfa-puu )

9""‘-\.&1}
wecomstant, wseomsiant.
Knowing that (B.44)
b % 2 % c
= - _ow % + &S
/“ (1 _{5:.) ? /{‘: = —J‘ and Y w el

eq. (5.44a) can be performed directly to give
(#7- #) W‘e,ose«:!n‘)‘3
A Ty 2 [V y, { 50 "'
i > Hilias (1‘.“—’1)(—-%"‘“ —f"’) ( )
9 .

25
oI Sy (L e - ]

v*

(s 45)
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Collecting all necessary results given explicitly by (5.43),
(5.45), (5.32) and (5.35a), we obtain the general expression

for the approximate density matrix

i
wva, 1y Y S\“"\-P) { ¢ VPogth Vb .
O =) (BT Jerfhe- R0

W =(k=s) ~ [t 1ol VN
P 2}‘-0(( [alkdgt_(v:-l—‘\)e . ]fd y Q.G’ks
° - .

+\V"’T°’\”_1( @ )(‘ﬂ*cosech‘ﬁ‘) 1(1"- )'—’-V'—(" yz)L)”'
20 33,7

(5.46)
with the expression of A and B given by (5.39b) and (5.36b)
respectively.

' o -
Restrict ourself to a case of a slow electron i.e.,|P%r|—0,

the :mtegral in the exponent of (5.46) can be simplified by

k.8 (L t,8,, -
expanding e | SPetsS, ) in powers of 8 . That is
K.B ;
e‘ = 1+| (k'&)__.-_-. v T

According to our definition of mass we need only consider
the terms that are proportn.onal to 1”’-*‘( s therefore we pick
up only the second-order term in (5.47). Aséuming isotropic
medium and choosing a direction of —é along the wave vector": ,.
we have __(ﬁ.-E )t - '_,’;EBI . Consequently, the E'-integration

is performable and the result is

dk Ve | l (5.48)
= Aol e To 1

where



have been applied.

Collecting all terms in the exponent of /0 that involve
-~p =, 2 A
| ¥7=%7| , we come out with

gt osech )31 1 (1-u™)?
Rt ~ ot b Bl o 2*L0- )

.98

-3
+ u—u—w‘r) o) /"‘"df(cﬂ 3

- \b-%)

3
rre BT }, (5.29)

' - i 4
where we have exclude {¥”=V¥")

from the expression of ® and
el 4
defined the remaining as B .

At very low temperature T->® or as 32 , we look for

terms inside the square bracket of the above expression which

are independent of B , clearly, the third one is required and

the fourth one needs further consideration.

Partial integration of the fourth term yields

ﬁ//dtds((vxﬂ)—lt_sl+%‘elt4)) Ja

B (P’ ,Q,V W)A (P,’(’S,V,W)

At lp-s\ - Smhu(\""‘; c,o&"\vg ot
fo(s(( n)e i )((‘ ) . U

Z4Ta
A Swah W %
0 2

-
4

-« 4

2

) *
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g\nh\/(.f’ S)S\whﬂf >3
B A Tl
Sywh P
>
(5.50)
For large P 5
. i -|P-5) | £=S\ W o
R Wil Ao il SEUC, St e B
[U"“)e’ + . -1 i
s V(23 ) coth % & ot
y (1+ e )
%‘l\hl’\ ‘_}_p'
and L ;
RSV E SRS v
g o g ¢ 5 .61
Sinh v§ ( ) ( )
2
Eq. (5.50) in the limit p>>1 Dbecomes
2
(A)
“F/dse (£ C-ghee )+ 2 0-5)]
- -2
1-95 - +o=atg.gy) * 5.52
wfa( )(xe>w(P)) (8.52)

Next, we expand each radical term in powers of 1 sy the multi-

plication of the two series gives 3 terms proportional to -‘t-},_

~and this in turn make the whole (5.52) independent of B - Let

us write down explicitly the p-independent contributions to

ll/

F(v in the limits |¥“~-%]->© and fp - 00

\
M

4T

]dsa -— “§ [1.\/ (1—.— )(4‘ )+i V"

F(V'#;/;P)Nexlo{- \?”—;’”[(1-0-5:)‘) $LEE oL
4 ; % .

_§/‘
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-VS

-Vs i
SPLe-t)(-¢ )+ SIH0-% ) 6Fgs]?
- 2 -7
?ncB w ‘\'( (1_ (‘H-e 5)+%;"J [1 ("“1)(“"375)4-::131 z}

(5.53)

Express this asymptotic form of/O(V "'f:) as

RE#p) o epf-tivirr]

we suddenly obtain the approximatlon to the polaron effective

mass #\ at extremely low temperatures, as

o Lk
e e Tl .L 2T3-o[w°' o O - =3 4 wb ob®
¢ B £ v‘-+ = fdse {3 -5-;}(1-%‘,)(1—-e ) +3 ;zs
Vs 0 [
S [2(1___ (+e )-t-w ][; (L) (v-2 )+ '\i%’- ]

| (6-54)
in which we recall that the two parameters ¥ and «w to be em-

*
ployed so as to attain the optional value of v are those
obtained by Feynman in Chapter III.
Obviously, for k=0 y V2w the polaron effective mass

reduces to

+ ;
5 SR Lo (5-55)
ey ! '

the .effective mass of bare electron in absence of electron-
lattice interaction.

In case of weak coupling, A= 0 |, in which Yo W i
setting v = (14¢)w ; €<<1 in (5.54) and keeping the order

’ s
of expansions in powers of € up to © or X€, we find
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00 /|
* L -2 - sret e
= 1=-4e +1.22 7% (1-4¢ - 32 15 i P -wS
m =1 € kit ( )[dge {3—“[1—“3(1 e -ws)]
; % b |
- s S
l{%[ ¢ 1A c.us.(1 )]
L
3x5 gt | i w18 .1 (1 _ws- :
W S e <8 L R LYY (5.56)
Performing the integrations and ignoring terms of order higher
: 2
than (°, we have, in terms of € and w ,
¥*
w :‘(-—4&1'\-10C+ e_-g‘-[_ig_%____\(‘lq +2‘L{r+ 218 5.5
In this limit the apbropriat‘e values of W and © and (5.57)
found to be
W=3 and & =32 |
* N
therefore our ™ in terms of . coupling constant X is
% 2
™oz g+ 2 koK (-0.007-0022)
14+ 0 299 -0 (%) (5.88)

For strong coupling, 0(,))1; VO 4 3 '.3-“ £<£1, expanding

-vs
the radical terms in (5.54) in powers of ;‘; , and neglecting e ,

we finally arrive at

ol -2 2 T I PR
b= grrrie et fas st (L) 1o 3 w5254 (B I 0-8 5]
-9
3x5 4 i \Z - 5
t s () -2 es ] (5.53)

Keeping only zeroth-order terms in the expansion, we have

% -2 -3 L F ~ -8 { -2‘2 & 172 -3 3 3%5 | ‘Ji‘*
b ooy e o [as ()% 24 (5T R4S
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The suitable w and v to be used in this case are

b
w = 1 and V'S(%%)

¥
As a result, the value of v takes the anomalous form:

« 0(06_0’)-0(0(—1)4-“;—5_ (5.61)

2 3
)(1= MW, 4C, = MW,

Fig.IV The Two Coupled Particle

Model Model

Fig.V The Three Coupled Particle
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