CHAPTER IV

VARIOUS APPROACHES TO THE POLARON EFFECTIVE MASS

.In the preceding chapter the polaron effective mass has been
estimated according to tﬁe definition proposed by Feynman in analogous
to that of a free particle. Viewing from different points, there are
still other possible definitions which lead to scmewhat different
but related resulting expressions for the effective mass. As it is
our aim to provide a complete review of the polaron effective macss
investigated using the similar mathematical technique as that of
Feynman, in this chapter we shall discuss qualitatively four alter-

" native approaches basing on different definitions to the quentity.
The first two will be that of the polaron at © K and the remaining
of the generalized problem at.finite temperatures. We are therefore
required to give the statement of the problem at finite temperature.
In addition,we shall introduce the polaron action at this general

state in the intermediate section.

IV.1l Schultz's Approximation

(15)

Schultz has developed a first order polaron effective mass

15 - See Reference (2) Appendix A.



- R

approxlmation to be utilized in his calculation of polaron mobility.
His procedure leads to the concept of virtual quasi-phonons and to
the usual set of Feynman diagrams in describing the polaron propa-
gator. .

From the foregoing chapter, we haye already seen that the polaron

ground-state nropagator is exactly

G (7 ct)]

]
e}
5
n
P
n

Kt 1) = < F vaet’ [ E vt >

= /ﬂ)?"c‘t)eis
2 (4.

‘The Feynman approximation is essentially to replace S'by the trial
action So. T o get the ultimately correct result, the contribution
of (S"’So> has to be included.‘ In real time this implies

! Vs

) . Y o .2 -iwit-s]
4 ._.?l_j;-’ﬁt-zxcf[[rct)-r‘cs)]e dtds +/(S"S¢>>‘:Uc
t i

(4.2)

Obviously, the replacement of S,by S, alone means that we just make

the zeroth-order approximation in the exact expansion

Cls= .CISQ C(CS-So) - e‘So[ l(s s°)+ cs So)+ J : (4'3)

Physically, such a zeroth-order approximation describes the
polaron as a two particle system composed of an electron of mass
Yn,ﬁ-d, connected to a fictitious second particle of mass M by a

spring of force constant }{ with the following relations:
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2
M ¥ -1 ; e = V-
. (co‘ ) i x " by »*
and
e 2yl
Y = ;qul:\d1 = v”zw (4.4)

The static properties of this system are obtained implicitly in the
corresponding zeroth-order propagator, jes"ﬁ?(t) with imaginary
time 1 = it . It is clear from the sec. III.2 that the zeroth-order
approximation of the ground- state ecnergy is readily

E~E = 2Cv-w) : (4.5)

and the consistent zeroth-order effective mass is merely

= 1+48 /4 Dz"wz = l')z = (4.6)
m, e A 1+( - ) X 1+ M

the total mass of the two-particle system.
Now going back to the expansion given by (4.3), if we manipu-

late the sum corresponding to the Feynman diagrams

- +

'y
-
+
'y
+
'
[
'
'
]
1
!
'
L
L

where the dashed line represent the quasi-phonons or specific con-
tribut'ions of eachh powér of (§=85,)we shall obtain the corrections
to the zeroth-order effective mass. Higher order approximation can
be achieved by summing over the diagrams containing one, two, etely
virtual quasi-phonons. Consequently, the transformation' function

of interest turns to
”»

t:.z
=2 » e gt } rdt*So .
Tt Ft) =[:Z)r<t>e[t" ][1+acs-s.>+ Les=g%ui]
Y (4.7)
y 8
where we exclude the free electron action /;:{f in the
£
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expression for S and So . Notice that because of the quadratic
S, any of the path integrals appear in (4.7) <can be reduced to the
evaluation of ordinary Riemann integrals. Since we have experienced

that
and

then the calculation of(4 .7) should concern with integral like :

4

52
} -rd.f +* SO
]:o?m e'[t[ a J ¢S-5,)

dzd Bt C ' "
%hfz// i
o (F-
lefclskV Sck)J‘Jdtdcr == dl/i’)rct) ez[t >

t [/"d.?-rs

—<S-So>T‘ oz?:ct) (4.8)

where

f = -F(sct-vy-§ct-a) | (4.9)
K

Similar expressions can be’ verified for higher powers of (S" So).

To accomollsh the optimal resulis one must sum over Lo.an infinite

set of diagrams. As a result the path integrals come out to be very
laborious to deal with. Schultz made all calculations simpler by

worsing in a Hamiltonian operator formalism instead of in the path
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integralformalism. He has set up an extended Hamiltonian R which,
if treated by path integrals, would lead to an expansion such as
(4.7). It is clear from the two particle model system that S

corresponds to a Hamiltonian

R - ( P> )4(;1?;’)+52,uv/02f(4g-s,}+%w) (4.40)

2m,

parl:
here P is the momentum operatof canonically conjugate to the center-
of-mass coordinate |
(1,7-\-}4\?)/(\’”@“,4-“) 3
ﬁ is canonically conjugate to the interparticle separation F“TF"?
WMy = me({‘\’M is the polarlbn mass in zeroth-approximation ; s = 1--’-}%
‘and V:/E. One should recall that in the calculation of all
transformation functions the initial and final stetes should be the
ground harmonic oscillation state in their dependence on the internal
coordinate /5
Schultz has evaluated the first-order polaron effective
mass to estimate the accuracy of m or ::)P obtained by Feynman.
Studying the contributions of the three terms given in (4.8) he
was then led to introduce the extended Hamiltonian to be applied
in his approximation as
R = R +K, (4.11)
in which the unperturbed part Ro
R, = . %ﬁu‘ﬁ‘—(cs’-s\,w%w) + T T C.+2 wtb"\brc

and the perturbed part R, takes the form e XV
1 Ker .). - | -'S
gmee {2, R ik (41?6)”L(v bcx)) [llo»e +lo g Jedetne
R =g Li( e "+ )-
) V2 (4.42)

and where the condltn.ons that initially and finally in any

« —
transformation function the relative coordinate /0 and the
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field \b. ,\Q
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'

*-
shall be in their ground state and the f[{ ,‘CR.
field shall be in the vacuum state have to be imposed.-

In principle, the ground energy of the polaron is the lowest
eigenvalue of the extended Hamiltonian ® , or equivalently, the

e + 5 §
lowest pole of the Green function (E-R+’\€)1 when € = O . Within
Schultz's approximation the transformation function or the matrix
-~ " -b/ A
element under consideration is <P//c~oo\\.=.-—R+\€\P°;oo7. Letting
/
Cb = lpo oo) and s:x.mn.larly (1) —‘P 0;00) the transformation
’ "
from a state é at time 'L to the state § at time t for . the
; : s 1 /

system described by R becomes (é, E-Tﬂ‘eé}

Now making an approximation corresponding to the diagram

----

-,

¥ 4 t
writing Ry = R +{S-5S% = R,;+D,
and G, = (a-ao.‘.ia)",

after some mathematical detailed working in operator fo:rmalism,

it is found that

)= (B oty 9 b )

(4.14)

in which, generally ;
e W, - "R‘ D é' C

V(E,P) = 432 lR‘GF_ *+D|P ) (&.18)
has been introduced. Since the effect of V is (expected to be)
small and since the excited states of two-particle system lie
above the ground state, for most values of o4 , these states
considerably above theenergies of first excited states of the field,

2" .

all but the ground state of the /D-oscillation can be neglected

in performing (4.14). 1In other words this has the effect of

replacing V(E; ) by
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=3 /, -y
(0| Ve, ®)[0>=Veo(ELP) , which is spherical in P (4.16)

and similarly for R (B). Thus (4.14) is now
s L \ :
(({)’ E-ReiG ) T (#0300 B-Re+i&|B0 ;00> Noo(&~P)
And it follows that the first-order polaron self-energy E,(P) is

(a?7)

determined from the pole of (4.17) when € — ©

E, = Eo(P) + Voo (E4,P) (4.18)

1

where the zeroth-order self energy Bo(P) is defined as

E () = {Pojoa(R|Fe300> =& +::°  (4u9)

The explicit expression of \l (E,P) is verified to be

-et SE(_OC 5 c“‘“"ag[:) ]

VOOLE’P) - <S S )-\}dt (=] Q_-E —-e; )
. : (P—k)
x[é(M);:lv -Vb) xe‘(a- 2 -59) ] (4.20)

Defining the first order correction to the polaron energy
e = E(p)-ElP) = VeolE,P), (4.21)

and letting 1% =%, in terms of Ag ,
\/00 (.E1a,P) = LS>—<83>—A(AE,P)—‘&G(AE’P) ¢ (4-.9_2)

R Ve, ' _BRkEL
o - d d ~1- AE) 3‘(6 3.Yﬂ° 2)’.], x & g
J (s, 0) = B HHLAL OINGKORN ta.23)

o _( ‘)"k e _'\5-i'c't
o {w-as)T 51{8(x)v e zm‘, i xe e
J(AE,P) =2 ~E ‘l’-
2 (4.24)
The notatlon Jé(AEP) andA (b2."®) is reasonable as one can show

from (4.23), (4.24) and definitions of £<S%) and<§°> given in

(3.28b) and (3.28¢) that

Sé(o,o) = ¢S and t(%,(o,o) = <S> (4.25)

The transcendental equation (4.21) for AE or E,(P) canbe rewritten

2e(®) = [Jco,0) - bne®]+[80€0,0) = e (b, m)] (4.26)
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Clearly for P=0, the solution of (4.26) is 8E=0, or V,o(E,,0)30,
i.e. there is no correction to the Feynman energy at P:0 ¥l
since the term {S-S.)was purposely included in R to produce
first this result.

To calculate the first-order effective mass my.it. is
necessary to expand (4.26) in poweré of Pz, noting that AFf is

2 2
alsoa function of P, then differentiating with respect to P

-
at ?ao) LECP) =0 gives

QAL _,[2“5_*»4';_)] ~f dagy _[5<J+Jo)
or ;
(A4 .
sy AZASERE NN
(sz po 1+[ Otﬁné.)] (4.27)
QLE  doe

Finally, the operation e

: L 9E; =i D(ag)
m, s opi"> *z(opz : (4.28)

is readily performed to obtain the.first-order effective mass my.
It is encouraging to compare this result with Feymman expression

for the effective mass given by eq. (3.90). In terms of m,, P

and jo
m = me = m, [1+2m, (3 ° <’J+’J ))] (4.29)

-.Combination of (4.29), (4.30) and (4.31) yields the relation:

-1
moemefi-[ 2] [1e 250 ] (+30)

For small &

[O<S-S°>

e B Ce)
B CAE) L‘o K
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and
Me

- - X
meq o)

%
so that m, = W\FC'\'\‘O(OC )] (4.31)

which gives the improvement over w\,. Though in this case m,
* %
never differs from ™Mby more than 10% it does not agree with ™Mp

to first order in & .

2L S-Sp)
\
® (4aE)
as X increases and Yh.f>1 for a1l K , the inequalities

i iy
me & imy "“o[1 + "‘omjméo) l< MO{H(%‘{ ')] =00
0,0

( DAE -
are justified. Therefore the correction made by m,to ™M, is

%
less than that made by Mg . Schultz argued that since the

For large 4 5 since( } increases from zero rapidly
0,0 '

difference between W, and Yh,‘ is very small one can consider the
free propagation of a slow polaron with sufficient accuracy

by neglecting quasi-phonon corrections.

IV.2 Marshall-Chawla Method

Considering a polaron in a weak magnetic field, Marshall
and Chawla have also computed the ground-state energy and
effective mass of the polaron following exactly the same tech-
nique used by Feynman in Chapter III. Their calculation (of the
effective mass) is based upon still another definition which is
equivalent to the free polaron effective mass as defined by
Frdhlich. 1In this section we shall outline the major steps of

this approach and present only the final results so obtained.
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Marshall and Roberts (unquiishéd) have pointed out that the
exact ground state energy of a polaron in a weak magnetic field
R can be expanded in powers of a magnetic field strength W as
Eg(OH) = BC) + b (TTH 4 O(HY) . | (4.32)
The zeroth-order term gives exactly the polaron self-energy while
the first-order term determines the inverse of the éolaron effect-

ive mass. To obtain both quantities one must evaluate Eg (0(,H)

which is, according to Feynman's path-integral formalism,’

. Y -

(oloi) =, - Jimant \n[ e Drct) (4.34
Ep(c,H) > ] g
all paths Wt satisfying th"e'_bouridary conditions r(oy= F (=0 If
the uniform magnetic field (applied in Z-direction) is defined

by the vector potential

A = HAR (4.28)
the polaron action in this case is then
g = 0.7 ~ .
= s —t-s - o -1
S = (-_'22+3H3)'c)d\: ¥ 2200[/6 )['r(\:)—r(s)] dtds.(4.36)
2
0 c o0

including the additional term due to the magnetic field. Following
Feynman method,the imaginary term in S need to be reconsidered
by replacing the time variable t by -i{
The corresponding trial action turns to
73 te-sl £
- - - -
s } [~ $) X - € Fler-Fee) [ dtds
8 _/( 2+|ng)dt 7_[[9 : [:r(\;} ree) ]
o o ‘ (4.37)

Similarly to Chapter III

E(KyH) = Eo(C,H) =lim —‘,J:<S—S°>5°= EoldsH) ~48> +<Su> (4.28)
TS0 ' = » '
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. wherel Eo (061) , LS and £ So>
take the same form as given' in sec. III.Z.
The real advantage of this approach avises from the fact
that for a sufficiently weak magnetic field, the inequality
Eold,H) & E(X,H) (4.29)
still holds(lé) and this indicates that an extension of Feynman's
variational principle for this case is still applicable.
Evaluation of the key gquantity (e'ikm‘:“)> , which in
. turn renders {S), < Se> and EolX;R) , is then proceeded in the
same manner as that of Feynman except that the three rectangular
components (%), gt) and FCt) of the classical path-'v_:(‘h) involved

have to be solved separately. The resulting integrodifferential

equations for these components are found to be

o Towit-s| o A

X(t) = ZCfe [ R =X8))ds + iHy - {'sc ° (4.400)

e ) R Y= T . Mg

gx) = 2¢c/ e [Gt1-§¢8) Jde —=iHX =Ty » (4.400)
@PX

= & —w{t=5] =

AT Qc/ew‘-s[%(‘bS-zth)]dS --f%. ( 4.40¢)
[+

In the limit 79”, the above equations may be solved by the Fourier

transform method. Substitution of X,J, % thus obtained finally
s o : 7) -
yields B ) _4_[)(_7-ct)dt
e gl o Al S 2/, 2

exp.[ (K3, k; ) Gug 5 (1C-1) + k; G, (1T-0)

(4.44)

16 See Reference (6) Appendix.
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in which :
G, (1T-01) = Gw(m-mn L HE-0 W Y™ - OCH?) (4.a2q)
and i
G, gt =i VAV W)= w ufie-on ] (4.a2b)
. 'Making use of (4.41) leads to all other required quantities
{8y = lim OCT-1¢..2} /e [(”'T' k¥ de ykdedr
T->0 ° %
1 % o
.y -1 ¢ G .
ot T 2v([Feo) ]%e dr +C_,;H.oc'n - j[ Few] Tide + O(’)
v s .
o ¢ (4.43)
B /PN iKelin, =F) 5 7 declor
LRy il B 0’//8 [-VR.<€ )]
3 | T'—)OO 2 0 Y E:O
o %J"w‘-w‘)—.‘inzv—dwz-w")%-o Ce) (4.44)
and
\ 1
EoliH) = '%H +/C { S} dc
o .
A 2,2 2
= %(v—w)-\--inv-\-O(H) (4.45)

where v,_ b iR

Y%= wry ac
w

Recalling (4.38) & (4.39) the equations (4.43), (4.blk) toget.her

with (4.45) give precisely the upper-bound energy E(0¢H), Equating



66

1
this EWXH) to ECO"-{-%‘_/" (X) H+O(H') one obtains the self-energy
A |

o
EW) =€ (ot)-4v(v—w)—rr'bcv [ 1(1—- )+w?=]ze-'zd*t:
o (a.4a7)
and the effective mass
X | "
m, X)) [s-(«--— )% 1oc7rzw j[rcz)] e d'z:_] (4.48)
(¢}
where the optional values of parameters ¥ and e to be'employed

are just those which minimize EF(OC)

For small OC
*
“ 4 73 x? :
Mg = 1+3%s L2 x4 0(X). (4.49)

Comparing with
M) = 14 Loc+ 72 octs O (),
F 6 2416 -
the difference is extremely small.

For large X "

V' = %Toc‘mcoc’); W = 14 00€ 2y

4

(4.50)

IV.3 The Polaron Action at Finite Temperatures

We now extend our study to the polaron problem in general
' stateyi.e., we inténd. to examine the behavior of the electron-
lattice system at arbitrary temperatures through the correspond-
ing action. 1In this situation effects of the thermodynamic
properties of the system arise from the interaction between a

large number of elactrons and the phonon system.
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Assuming that there are no direct interactions of electrons
with one another and the interaction of each electron with its
surrounding lattice is independent of the presence and inter-

action of other electrons with the lattice, the partition function

(17)

for this system has been ~obtained - by Krivoglaz-Pekar

(18)

independently by Osaka by means of ordered-opération method.

and

This can also be done simply by making use of Feynman's path
integrations provided in sec¢. III.l.

We have realized from sec. II.3 that giving a transformation
("’"t"\v‘ t & for any system <the density matrlx of the system :
}P(Y"V »P) for the canonical ensemble at temperauure Tal ~4s-

ne
easily obtained by the relation »
= W L RER
P & < PpLiemat Fh-1p| R , o)
and the partition function '
F: (4.52)
d-F {Fy=1p|F O
/
where we have set t =0

For our electron—lattlce system, dealing with the J.magn.nary

time ¥ =it etc. Z becomes separable as

: 7. A f
Ziot = J‘“’ ‘56"(%)9[ ) ct aQ&&QfS}}QEO))%cT)’CA'BS)

-~
o AL

17 See Reference (7) P. 21

18 Yukio Osaka, "Polaron State;‘ at a Finite Temperature.',

Progress of Theoretical Physics, 22 (1959) 437.
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f =2
Al el d?.‘
2 (d%) | ‘
3, al.LQ B3 |Q. O
Zyy, = |97 SrEy | % Rﬂ % >\Zc1:)’
2’ X (4.53)

Making use of the expression for the propagator of the forced

harmonic oscillator derived in sec. II.2
i

<QE$/QR.O>Y (‘t)= (M{QJL_ )2@(9{ L iz((_-os\n@w ..1)Q -

? ,ZﬂGMh?Uh Z&ﬂh@wL
(2 -T) -
|2 &
Y J“,:fﬂ/dmf(e) ch)s.n»\wrcsmhwcr?-av)]}
g (4.54)

Performing the Gaussian integral on « the trace of the K th

oscillator is finally

=1 . ('?
- v, WL
/dQE<Q?<§/QﬁO>¥“_ (2sinh -2-4) eXP{ b J Ix’ c'cn)(a‘)x

ML k
[
=) . - ‘C -
x( A @i ¢ +(Br)e ¥ )d‘tdo‘]} B

(4.85)

"where the definition for the average number of phonons in ft th
mode
A L.
etT-1
has been employed. Clearly, if we set N =0the propagator is

reduced to the transformation function from ground state to
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ground state. Substituting (4.55) into (4.53), performing the
integration over ':'}"’, since the path integral is independent

-/

of » , the integration yields first the volume V, and we have

o‘z)”’cd)e‘zo (a—‘C) exp&—-—‘i-——- 2":‘((‘15)‘3,(0')%
B S NEE EMe I E R R
L= e -8 Q-0
x['ﬁew“ § (A1) g T )] (4.56)
-N
where th=Ca.s{v\h?léU9-) is merely the partition function
-for the system of phonons alone.

- Recalling the definition of OC and the result of i ‘é(")‘)nw)v ch

-Q
is finally 3 S OC 3
b= = Jinfer \ge . & 4Tdry
Zi © zthjgbr c)c)eXP{ zj( ,,_) * 23,)_!
) 0 o o
: B <5 o6 R L of™
Lne +(h+1)e ] .
X (RCT - P O] (4.57)

where again we have set W, =1,

Consequently, the polaron action at finite temperatures is

explicitly,
? 3
B i g (PP ~{t-sl $P s
S =-% (é,{)dt 4,.9(_ %_ | [dkds _€ + i g [ e dtdS},
2 )\d 22| %1 \FekyF) e )xF(t\-7C3)\
o oo e .
C4.68)

in which the phonon variable is no longer appear. In terms of -
electron's position S manifests the electron in the couloub

potential with tﬁe energy depending upon the average number of

phonons.



‘IV.4 Krivoglaz-Pekar Approach

Krivoglaz and‘Pekar have proposed another effective
approach to the polaron at finite temperatures. Instead of
dealing with wave functions ©r other characteristic functionals
of the polaron, they worked the results oqt in operator
formalism by means of a so-called "method of traces" accompanied
with an ordered-operator calcution introduced earlier by Feynman.
However, trying not to go beyond the path-integral formalism,
we shall present here prineipal ideas of this method and con-
centrate on the various limiting resulis of the polaron effective
mass. '

Krivoglaz and Pekar generally considexxa system consisting
of a crystal and a conduction electron described by the

Hamiltonian, in operator form, = &
hz — QOV' wE e 3 lﬁor
H = V+Lvsw+qx.kal -Lz,.(via:e +sz<:| e ) (459

”"e&& 7 -

To obtain the self-energy and the eerctlve mass of the system

in principle, it is necessary to evaluate precisely the trace

of the operator é-ﬁlH . After the ellmlnatn.on of vibrational
degree of freedom of the system py ordering the operators involved

in |H , this quantity is left with the operator depending on the

electron's position W only and is denoted by

-3 1H s
Zz & .Sp.ep = Sp.IL(Y‘) - (a4.60)
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The difficulty in calculating sp-L®comes from the fact that it
is not "disentangled'" without restriction of the coupling

constant to be weak. To avoid this the approximation is then made
to H and the appropriate variational principle has to be imposed.

Krivoglaz and Pekar have proved a theorem stating that:

% 4 A a

an

j"wfﬂlhd{gﬂq 1
-]

'x_ - sp.eo

P AQ
= sp.€ e . (a.61)

‘where A and B are self-conjugate operators, 7\-1 is an ordering
index and X is an arhitrary parameter, introducing a certain

average, defined by

: 8
ki sefe QY _
sp. ef

Q

and letting
then

- In according with this theorem 9 ;55
“Co

/7
A" z, = Z e :
i ’ /
- ;H g
where Z/ e'P = Sp L(r )

i

Here the effect of atomic wvibrations on .the electron is approxima-
- ted by the attraction of a second particle whose system is

represented by the Hamiltonian

ETERNe, | S o e <4é4)
4 amg T e o

I
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and the average &’ and 9 in (4.62) are derived to be:

ga pan
g 1, d\VR-lz lVl:lz.-.—o

y = —3ln(28inh %‘hw) + (oz

2 QR) »cbﬂst@ﬂt
To reduce the complexity in computing 9 , the additional

s v 4
Hamiltonian W has been constructed and this gives rise to =

as can be visualized in (4.65). It is just

\n.r * -\k
H = m'—zl'“-z = g+ Mep 2 ,.l?xsafv*dl&e +Vﬁ.dl e (4.67)

a transition of H given by (4.64). This can be thought of as
.equivalent to the addition of a third particle undergoing one-
dimensional harmonic oscillations of frequency cUt about a

fixed equilibrium position and having an infinitesimally weak
interaction with the first particle. Here c”& and C“: are
annihilation and creation operators for the oscillation quanta

of this third particle.

The problem is thus turned to the mathematical manipulation

7
oL 22, 9’ and ‘% . The final results comes out as

$hw :
@y y ¥/ Suh 2 vt oy phy_ 3 200, T
Z>/21 = 2 (5)(@)‘exp{§}ﬁwm C‘th? }
. P k(4-2 ) (4. £ 8}
in which 1 BX Cothh
-~ ?mo('t L1-Z ))

&L = "L;vkl d(r-g)e Sty xsﬁgu %

o

: hv

B P?_V-ush*’ (1—‘*‘5

X eXP{ %M\)‘tv (Co‘{\'\ 2 ) (4—-69)
Sinh P%):

e

and :
4y =1 A -

0 g g (4.70)

-E +
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Specially, for the Frohich polaron

L \2
w =t . o .L..( 2T )
K A - IR
setting as before:
w = = =

one easily deduces from (4.68)

l \in 2 Y30 sinh 24 3 ln Sinh 8% 3 L 3w’ 2 Vot oo cothhy
NZ, = WMZ g3lnk-3Insinh 54 3nsSinh 23 sF s g

3 ' e A
‘?/’L 3 cosh %('&*Q"E)Gl(" %'C)
+ o Too? -%t)
2Sinh 2 ot PPR0 Ty T 4 i ) Vv Cosh3vi J
T2Sinh 5 ﬁ (1 2-..5 )+ i {Cdrhg- P av

( 4.74)
for arbitrary coupling constants &€ and ’temperatures \:—- ’
D
where the parameters y and w have to be varied so as to

maximize In 24

- At low temperature i.e. T—0 , ?_pOO eg. (4.71) reduces to

o)
\v\z" = ln2z +’;‘>\nw 'P‘J w—1)_2' T o

00
P B i
T Rag) o s g
(]
(4.72)

~for arbitrary coupling constants oC
The states éccessible to the polaron at very low temperatures
are those with small momenta in which any internal degrees

of freedom aré not excited. - If the energy diétribution of
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the system is of the form

E:%'\‘QP €P+ -------- : (4.73)

where P is the total momentum of the system, then the polaron

effective mass
% 1
mKf-’ ¥ 2%,

is introduced. Expression of \Y\Z in powers of 'g , gilves

: *
(o) ©) . A5 m
hz = Mz -p(g,-e J+3n "K°_ _gﬁ’g B <o T
(a.74)
CO) . 1 3 :
where Z is the partition function for the entire non-

(o)
interacting electron-phonon system and & is the non-

interacting ground state energy. Noting that in this way
the polaron effective mass is defined implicitly in the ¢ =~
independent term. Therefore if one expands In 21 in powers

A

of '-g and identifies various powers of $ with the corres-

ponding terms in (4.74), the effective mass is then determined.

Eibanding 1Y!21 in powers of -:-b one finds that
’ ce) :
hz = Inz -T%(1c0+5_1+3‘_z4.-~--)9 (4.78)
" and 00
% 3wt A ,) VT -2
f= 9 -84 3504 &Ky w)f (-804 1 M (476)

Comparing (4.75) with (4.75) one obtains

¥ "’;:lfx
m = e

KP s ¢
’t 7; & ..V'C i

' o 2
- Sroxef(gh1)s Zon(B)0F (T mE ) e ae)

o7
-
> w® 3 s St M e TR (477)
ke . ex "'1-[1‘*'99' e [ (1‘5-)4’th J- T
o4 Vv Alg ] 5
w2 5T %
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Reca ll:.nr (3.90), 1earrangn.np; of (4.77) reveals

T'K? » GX{){ V¥iw* 1} > m WFQ

vi/wl-

the relation between the Feynman's effecctive mass and

At low temperatures and weak coupling, basing on the two

|
equations 272.0and ?_(_"E‘zo §
° W

the appropriate value of¥ andware
estimated in the same manner as proceeded by Feynman in chapter III.

The asymptotic expression tor 1n Z,I-. is then

[n zy= W2 P14 f% iy B 5 oy 42057, (4.72)
which renders
g i oc P -
» mkP “ H"q; +0.0244% , w = 3. (4.89)

At low temperatures and strong coupling, BY>>1 dnéa Yoy g &
w

one can approximate

ln Sinh 89/ ¢ (BB In 24 |

s

ot LI 1) o &
" S'mh?;“_-/

and expand. the integral term of (4.71) in power of first expression

°

under the radical sign to obtain

!V:Z = lnz +5\n_--—. +?>\V\?.+blw3' how_ . aw?
1 (w ) il %_Z-. i"" -;Ifi'
2 2inl coth £ 2 wk . B >
THE P (vyz[1+ = =5 (5 eoth B 1)) (4.81)
The extremum of 1n Z,1 occurs when
2
= Y = 4 ST e
CU-— 1+ .. e ce s o a qrd.t’ bt (4082)
on substltutlon of (4. 82) into (4.81), one has
i é“_o_(. bkl l 2 21
Mz = Inz® "+ 3l v +3ﬂ?>?u3‘pcn ‘4._) yc;s (4.83)
'_and this in turn gives
- 2 4 ‘
m G RS =% 4 (4.84)
(w (q ) e 200%16 & |
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IV.5 Hellwarth-Platzman Method.

An extension of Feynman's pafl integral variational cal-
~culation of the polaron problem has been employed by Hellwarth
(19)

and Platzman to investigate the polaron properties at arbi-

trary temperatures under gn applied uﬁiform magnetic field A .
This approach concerns with an attempt to find an approximate
expression for the free energy of the polaron in a static mag-
netic field. The explicit form of the result is given in terms
of a model system with a two-parameter action functionallso
instead of the actual action S , taen the variational method
is imposed to achieve the optimal result obtained by this
approéch caﬁ be derived for any values of the field, temperature
and coupling constant. Practically, however, various limiting
cases have been worked out. .

Now let us go through some important steps of this method.
Studying of sec. IV.2 and V.3 manifests that the appropriate
action of the polaron at arbitrary temperature P in a magnetic

(]

field'ﬁ applied in 2 ~direction should take the form
i p P

ﬁ d” ’ +iHywIX ) 4 ﬁ ‘k‘[dtfds X
°

.—h. ..\_T: .-w lt—-Sl w“\t’s
% elk (¥ s)[( n+1)e l]

(4.85)

19 See Reference (8)
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G \
where n = —?;:r-; i
If we let H=0,8=00 ,w.=0 eq. (4.86) reduces to the action of the

polaron at ground state in ‘absence of a magnetic field as used by

Feynman. The approximate free energy F of the problem is given by

g s(¥ety
efp - [oé rikye C ]

AT R R TN
e< Va'érct)e ] : (4.86)

where we have defined the average of {L Ad to be taken with the

n”

weighing function Sp

CAY = faéFttaALFm]e&/{gwcuego. (4.87)

Hellwarth and Platzman introduced a somewhat general trial action Sg

to. be employed in (4.86) as

0 (’p P ]
2 1R ety di [ defFet)-rFes)x
_ﬁ%(;}c)+lH\j(t)K(t)]dt—%\}]éWC(W)j t]dsf
o o / A ‘
[(Wxt)e s, g SN (4.88)

= 4 e
in whichlV=2§$T; and ? and W are adjustable parameters
It follows from (4.86)

Hi R A R e M U

where we have defined

Fo =—%—©l Ar ("c)e : (4.89b)
Yo e
(3= _‘\__\o)jdt (ds C(W)dw[mﬂ k=g | g o
2p
o

X

* wER=B)D (488 E)
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3= WA ‘b'S\ - lt_s\ ‘ E'd‘%—;‘;)
(g>='é.‘>_é_fgf__£<, dS[(\?\H)@ 3 SAek Ke
' ( 4,88 4)

~Making use of the formula

/&)xct)expwxcb)j&udt L ; dt / ds dct-s)

= N exp[-5 Jdtfdsf(t)jc“)d (t-s)

("
0
which is valid for )c(o):)cc?), ci(O)-.-.acfP) and where & (t —S)

(4.90)

is an operator with positive nonzero eigenvalues with a well-defined

ks ‘
inverse d (t-S),, the -resulting expression for F, is found to be

+00
gFo —Zs \W(bn)"‘ L l““'{-W H bn},
£ he-oo “nse (4.91)
b . :
where og _ 1
M e (dw. cOWIW [ ]-
n (W2 +w)
o} , (k.92)
Once Fy is calculated,{S)is easily obtained by the felation;
B V::} : . (4.93)

as can be verified from (4.89b), (4.89¢c) and (4.87)

Performing the differentiation of F,eq. (4.93) shows

€35 gv‘“a[m-»’vvszc [CEtWas,) |+ (4.94)
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here ;
YC, T b, —Wa - (4.95)

Again the formula (4.90) is applled in computlng the average
lE (Yt—rs) >

L e within A and this yields
Ko=) -k D+ (kitkiiE ,
{e ) B g
(4.96)
where
Det—s) = @ Z, (1= COSW, (b-s )/ s
" (4.97)
and
' S W (1= CosWn (£-8)) /(12 1 2
Ge-5) = § W, (1= CosWn / W EWAR ) (4.98)

THapefore equations (4.91), (4.94), (4.96), (4.97) and (4.99)
together give the general approximation to the free energj 4
at ény temperature, magnetié field and coupling constant.

The most accurate F would be attained by considering H to be
pure imaginary so that F;’<Sﬁ’<5>is an upper bound to F and
then minimizing the result by varying the function C(W),
however t; obtain the solution of the full vériation problem
a digital computer has to be employed. To be consistent
with Feynman's approximation, in their work Hellwarth and

Platzman considered a simpler two parameter function for

C(W). They chose

Y=14 ama CLW) = cdlw-w). (4.99)
‘DPhis choice corresponds to S,in the form
L I(d’ dt C[/dtdS[LNi-‘x)e 1 +Ne }(Q—Ys)q'

. . Jio (4-.400)
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which is solely the Feynman polaron trial action at finite

temperature. From (4.92) bn , for this model becomes

G W:(W%_‘_Vz)liw;l\‘i_wz) i (a.101)
where yt = OOF 4 % (a.402)
and all sums over n can be donefusing a formula
~4 :{O Svosi\lgf i [ e‘ql%]+ 2 coshaf } /Za . ( 4.103)
nz-R "M z:;RtTTY_-

For small magnetic fields H and finite coupling constants,
the sums containing inF, , (S°>and {S)can be expanded in
a power series to order HZ . Limiting to the case of low
temperatures i.e.,->00 , the term proportional to H> in £8>
can be further expanded in powers of % . Considering only
contributions from the resulting terms which are proportional
to P to the free energy TF(H) one thus obtains the magnetic
contribution F(E)
oF = pHI(S (;z—zmp)/eaf. (4.102)

It is well-known that for a free electron viz., for &C=0, at
finite temperatures in a weak magnetic field the free energy
is 3 ‘

AR T o s (4.108)

Fo - o m .

24 e

(20) has shown.that the complete effect of

Furthermrore, Blount
electron-lattice interactions can be taken into account by

replacing the free mass by the exact effective mass .

This leads Hellwarth and Platzman to

20 ;
E.I. Blout, "Bloch- Electrons in a Magnetic Field.",

Physical Review, 126, (1962) 1636.
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define the polaron effective mass by

oF = %_‘:‘2 ( ! )7. (4.1006)
24 HP _
It follows immediately from (4.104) that the approximate

polaron effective mass in this approach is

1 2 6 X % '
_ (w 2%
( rh ) - &7) (EEL"Z"“F). (4.407)
HP
Recalling that
‘/7.
(:;7. = My y» the zero-order polaron effective

mass on the total mass of two-particle model system,
eq.(4.107) can be rewritten as
* -2 )
(m ) & (3mo_2mp) mg (4-1031
HP : :
Hellwarth and Platzman concluded that if the best
model S, can be maintained by fully optimized the infinite

set of parameters b from (4.108)¢
n -

hnH-—+mP — My,

Landau s Pekar

. Feynman, Sholy

- © Mmarshall, Stewarl

Lee,Low,Pines

u{fechve mass

o 1o 20

Coupling constant

Fig. III Conparison of theP olaron Effective Mass as a Function

- of the Coupling Constant Approached by Various Me thods.
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