CHAPTER III

FEYNMAN PATH-INTEGRAL APPROACH TO THE POLARON AT ABSOLUTE

ZERO TEMPERATURE

As it is the basis of our present research, the whole chapter

(14)

will be given to a detailed study of Feynuan's original work

on the ground state energy and effective mass of the polaron.

III.1 The Polaron Action

Recalling that in sec. I.2 the classical Lagrangian describe

ing the motvion of the Fr¥hlich idealized polaron is found to be
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which involves both electron coordinates T and field coordinates 3~ .
For further wathematical consideration of the problen, this needs

to be reformulated guantum mechanically.
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Using Feynwan path-integral formulation of gquantum mechanics,
it is possible to eliminate the field coordinates from the Lagrangian
and then we are allowed to focus our attention on the behavior of
the electron alone.

T g i X R -
how, 1if we represent the polarization field F(r? by a compo-

sition of standing waves with real amplitudes:
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the expression (3.1) is siaplified to bao
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As a result, the propagator under our consideration is now of the form:
Y
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Providing that ecach lattice vibrational mode is coupled only to the
electron and not to the otfher wodes, for arviirary patihs of the

electron T{t), the second and the third terms of the Lagrangian

{(3.3) can be combined and written ceparately as
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for the &k *“% mode, where

- M 2 v .
= %{(Qﬁi-wf_ai) + e _ (3.5)



%2

cos k.v €)Y
' 2 \
Yult) = - 422 g { A
K k sin K.v¥(b)
(3.6)
Clearly, tne Lagrangian ‘Q’E is just that of a forced harmonic
oscillator of waich the path integral we have already worked out
in sec. II.2. Tdus the effect of the polarization field is now
represented by a system of mutually independent foiced harmonic:
osciilavors. Comnsequently, tne polar?n propagator becomes
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obtained explicitly by writing Q;. Qé v M¢ and \’Q(‘U instead of
x", x', and f(t) respectively in (2.36) and (2.33).

Since we are now coiacerning with the polaron at wosolute zero
temperature, all oscillators are assumed to be in their ground state
initially and finally. t is necessary to calculate the transform-
atio.n function in which the lattice is the uncoupled phononm vacuua
at t' and at t" . However, any linear transforamation on thg polaxon
propagator will unot c‘nange~ its asym;rf:otié decay rate, 'so wé can replace :
Cajt’ [ep€y  in (3.7) by
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Recalling that gé(Qf(\’:t) is the ground state harmonic-oscillator
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wave function waich is readily obtained in quentum mechanics as
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After some lengthy mathematical manipulation involving a kind of
Gaussian integration, we arrive at
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it foilow frou (3.7), (5.3) and ' (3.10) that -he field coordinates

are now entirely elinminated and the resulting provagator is
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To ¢stimate the ground state energy vhe real exponent is required,

aence the time variables are transformed to

o / ~, 7 ” l"’” digh s ) .
Zg. (3.M ) is then
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the factoré‘é&')é(a') is explicitly :
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and. setting for convenient h= w_ = Mege =1, the polaron
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propapgator reduces to |-

Jc" d'c+ [dtda' 8.
k (f)-?(a-)x

(3.15)

K, (#57e) = (@7 e

Rk 1L oS S
IGentifying K (FE3¥T) with féar(’t) e
o
the effective action of tne polaron after The phonon field has been

averaged out reads
o
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which manifests the electron considered at any particular time
" interacting " with its position at a past time by a reaction whicha
is inversely proportional to the distance traveled bctwéen these

two times and which dies out exponentially with the time difference.
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III.2 Evaluation of the Ground State Energy

In accordance with the greceding section, the polaron propagator

takes the form

v s
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(3.17)
with S iven by
! p
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We have discusscd in sec.IL that for a large time interval 7 3

& ¥ ;
7: (t=t), the asyuptotic rate of decay of (3.16) is

S 4%,
efﬁrc ) e

(3.19)

Consequently, to obtain the exact ground-state cnerxr = we must
q 3 :

et

evaluate the path integral (3+.17) for large 3 .
Unfortunately, the action & iz not quadratic in T and so
far only the path integral with a quadratic action can be performed

exactly. TFeynman remedied this situation by .introducing a quadratic

. . d
erinl action. &5 ;

A ~n|t-s|
L —‘;_ (:—l{)zdt —é:cgjaltc\s(_?ct)—-?cs)fe g

(3.20)

~with two adjustable parameters C and & to closely approximate

the actual action S « In fact, this So describes a simple

1 A82 47409,
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dhysical system in whica the eleciron is coupled by a harmonic force
to a fictitious secoud particle.The- phyéical picture and the sig-
nificance of this system as applied to the ﬁolaron problem will be
examined quantitatively in chapter V.

Now let us consider

fesg)?ﬁt) = jecs-s") S DF )

(3.21)
waere we have defined the average for any functional { by
| A
el 'y £ jég?,z}?(tﬂe DF (L) .
h (3.22).

It follows mathematically that for any random variable f the

inequality
<5y
<&y HIEE
S_&} <S-
can be imposed. Thus if we replace { e by @ (3.21) becomes
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e <S'S> - t
eDFE) > e Jo'br( ) %)

Since, as .’T—no, <S—‘Sa> is proportional toy"we thus write

<8-S = 8T (3.24)

Furthermorg, suppesing that the asymptotic decay of the propagator

corresponding to the action Sb is,

g ) <
=it)ye ~ € : /
DT (4 ‘ : (3.25)
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Obviously, Eo is the lowest energy for the system with action "
Therefore from (3.19), (3.23), (3.24) and (3.25), we bave

~EgT Yy -660- ;
b ¢ 8 . (3.26a)

or

which is the variational principle of Feynman..
If we let

E SSF o 4w (3.260)
eq. (3.25) ‘then reads .

Ey & E =Eo=2d _ (3.26¢)
OQur objective is to carry out E and then choose the best values of
the parameters C and “’ which yield a minimum value of E . The
resulting E is thus an upper bound to the required ground state
nergy E_ .
energy g

To obtain B , it is necessary to evaluate precisely the following

quantities :

Se ot o
E. = =lim I.nJe CD T (k)

o}

S ¥ (3.27)
and .. : oo (S-L)DFCL)
b = lim L¢8-8y s L oo '
D e / SSop () (3.28)

- <S> + <SO> 9
(3.29.a)
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To determine { 8>, we first replace the factor[rt-rs‘ in it by

a Fourier transform,

3 A
S oA —_ &
]v‘t-rs] = jd kzﬂzk"

(3.30)
This leads to
ik.CE-% s, k(P -7 Bt
TR 3 :/éﬁ?ct)e.e ! /aﬁrd)e _
. . ’ (3.31a)
k(B %) F £ (dF 2t P&t s
or <el > 0'> g ;.br .EXP[ E( ) -3 ff( _
T(t).Fibrat
+f7c ) J (3.310)
where
fty = iRot-T) ~ikdD (L-T)
(3.32)

and where we have neglected the normalization factor for the reason
which will be seen later.
= &
To find <So>, we have to compute <(Y‘,C_@> precisely,

‘noweveg we notice that once (3.31b) is performed, it follows that
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this {(Pq=%.)*> can be obtained immediately by
(=Tl )> = _[VQ< e b >J§ | (2.23)
=0

Furthermore, one can take an advantage from the definitions

of E, and LS°> to verify directly the relation between them as

PE,(C,w) = S (8.34)
c (oc )w ; '

which is a linear differential equation for E5 , providing that
<g°> is known, with the boundary condition that for C=o0 , i.e.,

in case of a free particle,

E,(O,m) = O X (2.358)
|k (r

Thus our problem reduces to the evaluation of { & -Y?.)} given
by (3.31b). Since the effect of the motion along the three rectangu-
lar components contribute additively to the exponent of (3.31b),

can equivalently consider in terms of a scalar X . Therefore, we

need full expression of

~ ]
4 W o i
< e x.(x'u x¢)>:/a§x(t)exp[ /(g— dt_ —//dtds(x,b-x)e 2o,

{cuxct)df] deg,
X

°
The path integration involved is then proceeded formally the same
as that presented in Sec. II.2. The result consists of two terms,’
one is the exponent corresponding to the classical pathX(t)and the un-

importarnt multiplying factor depending on . bnly. Within such a factor
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< e‘k"(x?-}q’) > = exp [-zifk"éf)dt —zsf[dtc{s (R X, - bl

+jfxc’c)>‘c<t)dt] i : 3 e

/
i ¢ [ Sa] > : (3.370)

o
where X(f)must satisfy the equation given by : SSO-‘?- Oy Sens,

d%% [ = = |/ Awit-8] _ -
a{fi) = 20 J{RQ XYL ds -fcby L A3 38
Since the initial and final positions do not affect the asymptotic
dec:ay rate, the classical equation of motion for)?c{) can be solved
explicitly with the boundary conditions :
X(0) e lR) = O ' (3.39)
/

Integrating the first terms in §° by parts once, then using the identitic

(3.37) and (3.39).,-eq. (3.37a) _can be simplified to

e;k,cx,-x,)> egf,ccm‘cc't)dt

{

1]

(3.40a)

or e
ika (Xc7) =Xca)

e * (3.40b)

- To solve the integro-differential equation (3.38) with (3.39) for

arbitrary X(t), Feynman defined in addition

~wlt-g)_
AT %’f‘? Xds > (3.41)

so that
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c{ZZCt) = ooz[th)—)?ct)] ek (3.42)
dt*

and in terms of Zc¢ty, (3.37) reduces to

dz‘)‘fcn oo [)_c“) —Zch] 7 f G : (3.43)
di w Io¢
®  -wlt-s)
in which the equality /dse = Z has been imposed. After Z<¢b)
. (-]

is eliminated from (3.43) , we are left with the ordimary fourth
" order differential equation for)-C-(t) which is readily solved. One
comes out with

Xt & -%x[sinhvct-c)z-{ct-'c)-smhvct-d‘)Hct-e)] ,
+ J;‘sf[ smkvct-—c)Hct-‘t)-smkw(t-c)Hct-cr)]

r 2 ;
-%osz.“{ct-zmct-r)-ct-o-mct-m] > (3.44)

2 2

where Y = &+ 6o

and where the transient terms at the end points have been ignored i-n
assuming that over the large interval CO0,7T) most of the contribution
is during " Ti> ., A <<T .

Imposing the boundary equations given by (3.39) on the substitution

of X¢zy and X¢a> into (3.40) finally leads to

' -17-a) 2 :
¢ eikxtXeer =X -2eke( - € ) - Bakelt-al
s €

(3.45)

or
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<el <t) cs)> . e

(3.46)
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It is now clear that the normalizatiom factor in (3.31) can be

dropped out since in this case é .is corr ectlj normalized, as we can
checkx by setting T<=°in (3.46) .

Using (3.45) and recalling (3.29).»'(3.30). (3.33), (3.34) and (3.35)
the calculation 0f{ S, L So) and E, is now straightforward, in the

limit T->00, the consequent results are :
ﬁ .
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e ac
N ETIAPES Y kS )‘*U‘l"“"" 5 2 S30
LB 285 | (3.49)
and £ i g(y_w) : (3.50)

It follows immediately from (3.26c) and (3.29) that the required

~energy expression reads
2
E - 4ﬁ"}(u-w)--«S) . (3.51)

with {S? given by (3.47). To obtain the best approximation for the

actual ground state -ES , the two adjustable parameters ") and P

have to be varied separately to yiecld a minimum ©E . This can be
accomplished generally by minimizing (3.51) with respect to both Y
e B30 =

2w d
give two defining cquations for the optimal\) and W | viz.,

and @ ., These E.D_%-.=o; OF
vk

co % ¢
I %'OCV dtCF(%)J 2e {i;-; (\-e )_*_C\}’j rc'e
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— e e
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and
%]

g o4 3 -% = - Y -y ‘
A IR e [F(T)] e {wr—g(we )}d'ﬁ (3.53)

[=] 5 z_wz. _‘)f
where Fe) = f.w’c'*'LD—“'e )J

Unforf,unately. the integrations.involved in these equation.sb cannot

"be calculated in closed form and the numerical method must be employed
in solving the exact values of Y and W which in turn give general
result of E . However,Feynman showed that it is possible to analy-.
t;’.cally estimate E in the two limiting case : the case of large o
and small CC. |

For large OC or strong coupling which corresponds to large V ,-

if we first choose wW=0 , &4S> reduces to

Y ), 2R g Ve "%
(8% s n'zocu"’fe dT(1-e ]
[e]
4 o
£ ===}
1
RVLAKSN
ek .
LY (3.55)

The asymptotic formula of (3.55) , for Y>>1.can be considered as

follows
o viT(F) Lot d)
X3)* = T34 (Ocv)r('l
a0
o 7(4) Y (4

1]
F—l(
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 yctem
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et
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I
< |~
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e
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<zt gera-vay))

g . : :
Tk {1-&\)-211/\'2.} 9 : :
where T(z)is a gamma function defined by
00 .
AL, g
ra = [ETEH [ (Rez>o)
A ;

W¢ZYyis a psi function given by

= fl_ N .:T'/(Z)
Y(z) dz(:ln (z) ] e

and where we have applied a gamma function property (T (142 ) = 2_;.1"(,;—_-)9
and neglected terms of higher order than ;1; .
Nevertheless, this wW=0 case contains a discontinuity at o0 = 6 and

Feynman avoided the disadvantage by choosing another corresponding <.,

For large ¥ , w # O the integral ;b)comes out as

0 B 1
v \% x!-wz . w T T2 .
epo.» Oc(-ﬁ)z{ j iy )} [t ch—é”t)] & as
Y YT -4 % AN
o S S OC(%)’-J(a-e ) 2[1-55 (1-€7 )€ dx
fo]
o0
L J o ztnz_w‘[t"‘afc
= L fl1r sy £ J
{
2

(3.57)
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‘ =V
in which we have used the asymptotic form (3.16) and taken € —>O.

Within this approximation the expression for E 1is

3 oL /y3 4ln2 - w” (3.58)
E = B(v-20) =35 +—5_717') '

which is readily to be minimized with respect to both WV and W
independently. Operating %—%:O gives
3 M K v 4 & ( 12.—00") V. (3.59)
4 2 A ’ :
which is easily solved by the iteration method.
s Yoo (3.59) simplifies to
pd
.?.’. -— g— Vv 3 - o,
¢ 21k
giving the asymptotic solution for (3.59) as
! 2
P =2% oy 24X, (3.00)
3 q.%
Applying this to (3.59) yields the general solution
(3.61)

o
v — %%—.—(A\V\Z"wz)

Our next step is to work out the corresponding numerical

value of W so as to get explicit ¥ or the minimum E .

Differentiating (3.58) with respect to @ and equating the result

®E = O, one has

to zero i.e., =—/ =
dw

xw (3.62)

('n'v)‘lz 5 2
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As an approximation we may replace V2 by its asymptotic value given

by (3.60) and this gives

.63
(L | (3.03)
Recalling (3.61) the resulting ¥ is then
2 ;
v =~ 4% _-(alnz-1) ' (3.64)
aT

Thus in case of large . , the minimum E is approximately (3.58)

with w and v given by (3.63) and (3.64) successively, i.e.,

— — —

2 2 ‘
g o %X _awmi—20==tacel ~2.83 ( 3.68)
a1 L

For small X, if we extremely take (=0, it is evident from

(3.53) that the minimum will occur when V=% . Therefore for X ~©0
" it is reasonable to set

Vo= (1+€)W ;5 €2, (3.66)
and we notice that € = is of order of & .
Consider £S) in this limit, substituting v in terms of € and w
and treating € émall yield

. iy —% -17:. 0
sy = M2Kv| [wWeizewr-& )]e dT  (se7)

o

Expanding the radical term in the integral in powers of &€ leads

to _
% i3
_1 -—i - = —'wt —-'tl
! bl A \.—f".:/_ alE N C\t
(o = dtay (et 5el0-a s

o
o
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= oC(2) ,J’t’sl"e—t1_é‘“"‘)dt]

oL (&%)[1- e(é{(yw)"— 1})']

|}

X +Xe(1-P),

(3.68)
1
where P = %[ (1 +w)/_2_ ' } \ ‘(3-69)
and in which we have kept only terms up to o‘(&er €:.2 . Now the
expression of E turns out to De
E = Zwe — - KE(1~P) " (3.90)

concerning two parameters € and W ., Our objective is then to search
for the appropriate € and W go that E can attain miniznum. We first

minimize (3.70) with respect to €, that is

b.._E.: = O
. o€
which gives at once
E = :.'Z'__O—C e K
o =B, (3.71)

Since € is small this equation is valid for small € only. Elimination

of € in (3.70) results

2 1
g = —X-% 1-;%[(51-00)’1—1]}
. (3.72)

on

E i
Next we perforn §w=0 and readily find an equation for > as H



wi il (P—-1)+2P-—.3épz' =0.

2 z+4wp (3.73)

It happens that the equation (3.73) is catisfied when we put W = 3.
It follows from (%.71) that in this limit the minimized energy takes

the form

2 2 :
E & -6 =K = -€-123(%) (3.

And the appropriaté Y/ to be chosen in this case is

V= 3%+ 2.22 (%o)
after inserting € and @ in (3.66) .

It is an advantage to notice that the reéulting energy E is
not sensitive to the choice of e¥, This can be shown easily if Qe
take w=1 instead of w=3, the féctor 1.23 in (3.74) changes
only to 0.98 . For this reason we can fix w=1. for all &€ with
sufficient accuracy and our further numerical work reduces to a
"minimization with reséect to only a single parameter % .

Physically, w=1 implies that the trial action S, has the
same time exponential in the interaction term as does the actual S .

Once w is set to equal to 1 ) the situation for small ol is
slightly modified as :

O(—>o;w='1, v =li4e) or € =(vV-=1) ‘ =

Consider & small the integral is now expanded in powers of (V=-1) .

The resulting energy becomes (w;ﬂ

‘ o Vo &N '
PR 7 °-°\5(za). 880 (G [=- 5 - = (3.75)
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and the corresponding Vv ,
< o \?
Vo= avtag (3) + .85 (X ) +--emonn

III.? Evaluation of the Effective Mass

In principle, the determination of a particle effective mass
can be proceeded in the following way: As we have observed that
for a free particle of mass ™M whose initial coordinate is O

—

and final coordinate is Yg— , with the Lagrangian OC :“im?z, the

propagator of this system possesses the form
7| sz

e\ R
Hence, in anzlogy to this, we are able to estimate the effective
mass for our polaron system by.studying‘ the asymptotic form of the
path integral/esoﬁ?‘(t) , which is essentially similar to the previous
case of finding ground state energy, but now with T‘(J)#O « Jhis
means that an end point is-allowed to move as the limit J >0 is
taken. As a result the asymptotic decay rate of the propagator may
no longer by donminated by the grouﬁd state energy but it would rather

vary as -EgT- r%\?"(ﬁ')

e g
v ; for small ¥¢¥), (3.76)
the additional term depending on »(?¥’) determines the effective mass
% ;
™M . Consequently we have to solve (3.33) under the boundary condi-

tions ¥(t=0)=0 and X(t= 3’)'—35,. However there are some confusing

difficulties at the end points. Feynman removed these complications
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by assuming the final point :

ey = DT, | (3.77)

-

in which U is an imaginary average velocity. With ¥ given by (3.76)
the asymptotic decay rate (3.75) turns out to be, for small U ,

A 2

4 U
S -EyT F
eDrt)y ~ e .

or to be consistent with the preceding _ section

‘ %
- EplL) = S V)= ST —(eg+i m )0 sy
e = e = e

(3.78)

E'S y
To obtain m we are reguired to evaluate the total energy E<CU) and

*
equate it to Eg-ﬂir#zUL ; now the dependence on U yields Qo o
The mathematical detailed calculation of E (V) is analogous to that of

E except that there are extra terus arising from such new boundary
conditions. Sy -
TR (FLT)-F ()
Now we reconsider the key quantity { € >. replacing

XCL) yitn ¥ +uCHUYK (3.37a) gives

L S . Rl
{e ) = exp[—jz-fx%t)dt-cz:f/<x€xs)zewlt s}:‘tds

; f{étﬁctdt-(.jt%fctxdtj.

Again this can be simplified by the virtue of (3.38) to be

(3.79)
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Cdrony = ettt fegom ) Cos

For-ﬂt) given by (3.31), recalling (3.40) and (3.46) expression

(3.80) is completely

Ko -7 2 e '
le ® cr)> = ex?['§;1F(l“c—¢l)+\R-u('t'.-d')], ( 3.81)
where
o, I i
BLT) .= [o,;’"t+ 2%-9’-(1—6 )]- (.82)

Substitution of (3.81) into (3.30) and (3.29b) given for {SCVY) the

extended value

N

00
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Restrict to the case of a2 slow electron i.e., U L1 , expansion

of & (W) to order L* yields
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Concentrate on fhe term that contribute factor u?* toS(V))
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Integration over k is now readily performed and the o=

term comes out as
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Differentiating (3.80) with respect to k

E-—’ © , we obtain
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twice, then taking
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and the total energy expression reads
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where {S(L)Y is given in (3.84) and (3.85).
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the appropriate parameters ¥ and & to be employed are those which
were previously obtained in minimizing E(uwhen U =O:

PN - +
The two limiting case : weak and strong couplings, for Mo

are easily found under the same detailed approximations made ecarlier.

For large O, which iumplies large ¥, taking %cu and
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For small O , o/ = (1+€)w;ec 1, é‘i‘F in this case
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