CHAPTER II

FEYNMAN PATH INTEGRAL FORMULATION OF QUANTUM MECHANICS

Before applying Feynman path integral to the polaron problem,
in order to offer a clearer picture of his approach to those who are
not familiar with thie new formalism, we provide'in this chapter the
mathematical formulation of the quahtum~mechanical transformation
function or the propagator, in a form of the path integration. Then
as an illustration and as it will be frequéntly reférred to, we apply
this method to the forced harmonic oscillator.. In the last section,

we relate the Feynman propagator to the density matrix.

(13)

I1.1 Feynman Propvagator -

Consider a quantum-mechanical system initially at time t' at a
position T', the development of the system to a position T" at time t"

is described by the so-called transformation function.
K(Frem;rrter) = {pmgn/ £ ) for t">t', (2.1)

where /?'t') represents the eigenstate of the Heisenberg. operator
T(t') with eigenvalue T'. In other words K is the probability
amplitude, the absolute square of K specifies the probability of
finding the system initially in (¥',t') to be im (¥",t") sub-

sequently. Recalling some interesting properties of K(T"t";Tr't') :

13T.D. Schultz, "Feynman's Path Integral Method Applied to the

Equilibrium Properties of Polarons and Excitons.",in Polarons and

Lxcitons, Eds. C.G. Kuper, and G.D. Whitfield, Edinburgh and London
Oliver and Boyd (1972) 71. :
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For a system with the Hamiltonian H not dependent on time

explicitly, the time development of the eigenstates of H is

B Z -
pre) = dFEN, (2.)
n
and those 45" form a complete set, viz.,
- * - -, & - =y (2 2)
(v v = (Fr=v). .
2:95” ) (v |

Consequently, K can be'expanded. in these states as

g SRR ) o
K(?'{l’;?ltl) Z V”/eﬁ /0‘ >

w

= cRFEEEl, [, &,
E & S ¢<v”)¢ (¥ (2.3)
n n AL

1]

assuming the energy spectrum of H is discrete.

The ground state energy ’EQ of the system can be obtained

directly from (2.3), if we set ©=ilt~t' )= 00 , since then
-9,

~~ | At 4 i 7]
vt Y~ e
K( / )’b'->oo

( 2.4)

Considering K as a matrix; it possesses the composition

property which is

2] V) 2 ia - (2.5d
P[RS = RGP G [P, ot
for any t, .

The transformation function on the right hand ‘side can be
further decomposed into subsequent states. Repeating the process

indefinitely, we arrive at the general relation:

- o =74/
e —_-[.....jd?,..-..d’Fn(?”{"/Pnt“) foeub BV
| (2.50)
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For the system with one degree of freedom, (2.5b) reduc-es_ to:

(x’{:’/x’t'> =[:..../d)c1 .....

If the time difference in any transition j to j.n ’tJ-i-“ J = QJ.,

is infinitesimal, the transformation can be obtained explicitly.

g > (2.5¢)

For a single particle moving in a potential V(X), it has been found
that

--¢(5 +vex)
<x5+1’t’5+elx.jt.5> " <xd+1/e‘h 4 /x.5>' S

Neglecting the noncommutativity of ®* and VLX) o, eci. (2.6) becomes

.
—5HeVix;)

/x> e : (2.7)

-Lel
2m

(X ar b+ 8 X5ty 2l /"

The transformation function on the right is simply that of a free

particle, in fact, it is the Schrddinger equation withH_—F\z T

2max*
It is well known to be
. - X ;
gl i
{x P x> = (o f n e (SN (2.8)
Jﬁ/ /~i zning ) © " : .

Recalling that ( J+1 ) is just ‘S(.J. » the average velocity of

a particle going from X \ to Xjﬂ , eq. (2.7) is generally,
Led(x;,%:ts)
4 Jirh. | 2T (2.8
(Xj,005%8 [x585) = S ! )
where ;
4
2TiheE 32
& e .10
A= (55— (2.10)

. and OC is the classical Lagrangian. If the time interval ('h',‘t-”)
(-%)

is evenly divided into (n+1) subintervals of width € ,& = )



then (2.5¢) attains

A X 2T

L&L&( ox;,"')
w7 4% 1. 1 RpL dX......d_E_Cn
(x't[xt> = Llim gz}
N-> 00
where now X, = x' and - ‘x = x" . Thus we are now dealing with

n+1

the set of space-time coordinates (x't',x Xt ,x"t") which

‘ 1t1'.... n

specify an approximation to a path or ' history ' of the particle.
Setting n—» o or €2 O jeans that the ability of choosing the points
Xqgemnonmg X to represent any path from x' to x" is ultimately
improved (see Fig II). The integration over all space for each x:j
then becomes ;n integral over all paths . For the system with éne

degree of freedow, the transformation function (2.11) is now re-

formulated as

LA LS TR & kj......Jol/;_c‘......é%ne‘%%Lﬁ*,-is’s)
I —» 0
J o@xct)e“sdtLogx’{)
fi))c(t)e sncd.)]
' (2.98)

which has been written in Fbynman s path-integral notation, where

j‘dti,cx ,X.5t)

is the classical aét;on, a functional of the path x(t), and Dx(t)
stands for‘Lhe product of differentials in the space of all paths
together with A factors and the limits. Alternately, the probability
amplitude written in path-integral formalism as in (2.12) is

‘recognized as the " Feynuan propagator."
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Physically, the probability amplitude for the system to go

from " 7 state " to " “state” is the sum of contribution QBLXKkJ]

from each path, viz.,

—

0wyt £/ e X(t
< X t,l’Ct > - 0vaz’;II paths¢£ )] ’ (2.13)
from / to “

and the contribution of a path has a phase proportional to the action

8

of the corresponding classical system,

L8cx(t)]
SZS[X_(U] Const.e ™

1

. g (2.14) i

'é“ b”

—~—

"

Fig.I1 Construction of the path integral.
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II.2 Forced Harmonic Oscillator Propagator

Consider a one-dimensional forced harmonic oscillator with

Lagrangian generally in the form:

LI e 2.2 {2.48):
O[, s z(xz—wx)+{(t)xo :

where %LU is any function of t .

Set

X(k) = X(E)+yck), (2.16)

that is, we now represent the path xX(t) by the classical path Xtk)
going from (¥¥)  to (x%") y and the deviation Mtt) from the
classical path. Consequently, we have to integrate over the paths

Y(t) constrained by the conditions
yet') = Yy =o 2.17)

From (2.15) and (2.16) the resulting action shows
t’

S(Xw®)] = {[Jimszz_qim“}gz_,{(eh’c]+[§mgz_gz_mwzaz.
¢ b
+ muy +{(u)3]}d£ (248)
¢
= S + Img-wiy® Jat (2.19)
where ”{.'
£

S

corresponding to the classical action of the system and the terms

Lo (X2 R f(0)E ]dt

linear in YQ) vanish since & is stat‘ionary for small variation
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from () . Our problem thus turns to the evaluation of the

propagator K(x“t”; 't,) ’ o
L3 ;,J (g™ aiyljat
Kt5xt) = e® |e ¢? ytt)
A :
.§

:; ?({ 9t ) (2.20)

where

32 153 d't
9.¢) /pmme C : (2.21)

is simply a Gaussian integral. The condltlon (2.17) implies that
it is independent of end-point position, in other words, it depends

only on the times at end points. This path integral can be performed

(14)

either directly using Fourier series method as shown by Feynman

—

or indirectly through the knowledge of & .

—

We now determine & explicitly, recalling

‘t”
§ = | Brgufedfwx]dt, (2.22)
_ v v
where the classical path (k) must satisfy the principle of least
action, viz., u ,, '
0S8 =0 = X Sx} [I % ~ v 8% f{(t)_]bxdt (2.23)

The first term of (2.23) vanishes in virtue of the fixed end-point

condition. Consequently X(t) is the solution of the resulting

classical equation of motion:

;E. & ou"f = ﬁ.{—'_) (7"7'4)
m, :

14 See Reference (1) P. 71
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Solving for X(k) , the Green function method can be employed.

The Green function equation corresponding to (2.29) is

z .
(j-sﬁw‘) G(S,t) = Ds-t) (2.254)

with the boundary conditions
Gty = Gulht) -o. ( 2.28b)

To relate G(S%) to £(&) , we consider

7] U4

R t

2 ; A = -
/[ics)(gsz* @' )Gs;t) -G(S,‘t)(%zi' w?)X(s) Jds =/£xcs)6cs-t)—%}\)G‘%“]‘“‘
¢ o

¢
Integration by parts with the conditions (2.30b) yields

‘tll {” ‘
itS)j‘—f‘s’“( = Xl - 1;“ fLs)Gest) ds. (é.ze)
. ¢ x
Thus, we obtain a solution for X(x) for arbitrary {—(E)
t’
X&) = g-n{fcs.)scs,tnls+=c”é(’c”,t)-x'é(+.’,t), (2.27)
il Xa

- where the boundary conditions on (%):

m

/
’
(") x" and Xty = X
have been imposed.
Following the standard method of solving Green function

equation, the solution of (2.25a,b) is readily found to be

Sine (8-t sinw (K-t) sin o (£-1) Svwlt’=s)
G(sst) =~ @i wt'—t) - H(k-s) - S e e T >
: (2.28)
where
Vg8
H(k-5) =

o . £ <S8 .
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Inserting é(t”,t) and G({_,’t) into (2.27), the full expression

of ¥(t) reads ¥

%% wit-t)x X wit -t )

(2.29)
Sin wit’-t)

Xee) = 4 [s)Ges,t)ds 4

4

3]

We are now able to evaluate the action along the classical

path, € , given in (2.22). Integration by parts simplifies S to
{'I
& Mo ¢ =
8 = Q[kxA)], + ’;_Jdti&t)mt), (2.20)
¢ ' :
where we have used the identity (2.24):
™X + ot fk) = o.

It follows from (2.29) that
[

t
= 4 5 w Ir "yt ’ i S (g)g\‘“w ﬁs‘t:) (2—31
X 2 e Tt et [d ’C )
4
and ,En
-1 X "
- bt Y XY . 1d8Lcs) Dt =S ) ;
ncc'b') - ginwtel’t,)[x %des cuck t)-] +m$\‘nw(.\’,"-’t-,)j 5- (2 32)
y

t
Substitution of (2.31), (2.32) and (2.28) into (2.30) gives the

desired classical action as
u”

t
= W
e t’)[(x‘ L% )eosewet ') - 2¥%" +2X_ dt f Sin ot Ay &
t” t,‘, . t
i J B Sjatfle) swlt-4) / asfs) 3t wcﬂ.}
) W'i
: ¢ ¢ (2.33)

Our remaining work is to obtain the multiplicative factor

!y
: VZLLU which is defined by (2.26) as :
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i

2 g% Wiy jdt

, 0 %
yztt',t") z /J{)gct)e”L’z

To accomplish this indirectly, recall (2.20)

=S
4 ’ 4z t.7 -ﬁ 1y,
Xt jf{) = Kixtixt) = e Q)

with S given by (2.33).

set tik)=o , thus

% 2 / L4 ¥ u_/
” ”] 2y !ﬁ 1.:?::»(.{’-{'7 [(X‘ z+x2)cos W e o Vz(t’ t”)
(X. J(. X{ Y = e ; ? .
' (2.34)
Since (x'{l'lx't') is unitary, then
dx’¢xt] st x> = ® (x x) (2.3B)

Insertion of (2.34) in (2.35) gives

mw
2 T hsmwc-t)

mw

l vz(t',t" ) lz= — YI (t's‘l'”] = % avrbiteary phase factor

2T RSt wCK’-X")

For infinitesimal time interval the problem reduces to that of a

free particle whose propagator is readilb’r known as
Lom o extx)?
o] Nt » AU m (2.36)
A e x 2.
<'3C‘l’./x{>(£”-€)_§° zniﬁ(t"—t'} .

The phase factor is thus determined and we have explicitly,

7({’,{’) = nt’-t) = Bidee (2-57)
? 2T iAsimcolt“t)

In conclusion, the one-dimensional forced harmonic oscillator

propagator is found to be



28

{48 e
2o mw z 7S :
K(x 1 X1} = ( q.mvssc»wct"—t’)) e > (2.38)

where the classical action & is given by (2.33).

II.3 Density Matrix

A stationary system in statistical mechanics is one which
is in equilibrium with a heat bath, or alternately, when it is in

the canonical ensemble. In such a system the density matrix at

any temperature is defined by
-xl/ s L /4 —?H }"
ﬁ( _\ 99) = \ o l
where P = FL:‘-' and kB is the Boltzmann constant. Copparing

with the transformation function for the same system as given in (2.3):

” E (t "I * > 3 :
Kty wd) = 25 <}5< ), (2.40)

We note that it is closely related together by
S0 K ¢ L= ~"'t') ( 2.41)
PCY r;?) = A e '
Thus knowledge of either f? or K for a time-independent system

leads at once to the svaluation of the other by analytic continuation.

The partition function Z of the system can be found providing
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/D is already known, since

Z = dr!ocrv';%) B le (8o 00)
Recalling (2.4)
o Lege
IR AR
9 e SN0 R e

'C':i(‘t"-t')-——)oo
or
60?1. N~ é-PEQ
(v F5B) g2 A .
kgl
Thus it is now clear that for large imaginary time difference
in the transformation, the only lowest energy state or the ground

state energy will survive, this is just equivalent to the statement

that a system will be in its ground state at © K.
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