CHAPTER 1V
MATHEMATICAL MODEL

This chapter explains the development of the mathematical model to
generate the breakthrough curve of the adsorption process for removing sulfur
compounds from the simulated transportation fuels. The mathematical model
incorporates all resistances to mass transfer, including: diffusion in liquid film
around pellets in the bed, diffusion in the binder-phase of zeolite and within crystals,
and adsorption/desorption at the interface of binder-phase and crystals. In order to
obtain the theoretical breakthrough curves for adsorption of sulfur compounds from ‘
simulated transportation fuels in a single layer adsorbent bed, both mass balance on
pellet and on fixed bed were solved numerically by MATLAB"™ program and
FEMLAB"™ software which is a software package for solving partial differential
equations by finite element method (FEM) to validate the MATLAB™ algorithm. In
case of MATLAB™ program, the method of line (MOL) combined with finite
difference method (FDM) used to transform partial differential equation into a set of
ordinary differential equations (ODEs). Finally, the set of ordinary differential
equations (ODEs) was solved using ODE solver package available in MATLAB™

program.
4.1 Model Description

The adsorber geometry considered in the model development is
schematically depicted in Figure 4.1. Transportation fuel is fed to the fixed bed
adsorber packed with zeolites having a biporous structure. The void between the
crystals create macropores. These pores act as conduit for transportation of sulfur
compound molecules from bulk phase to the interior of the crystal. Once sulfur
compound molecules are inside the particle, they are adsorbed at the pore-mouth of
the micropores and hence, the adsorbed species diffuse into the interior of the crystal
through micropores of the crystal. The diffusion process in the macropores and

micropores follows the combination of the molecular and Knudsen diffusion
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mechanisms while that inside the crystal follows an intra crystalline diffusion
mechanism. Thus, in the case of former, adsorption is usually controlled by intra
crystalline diffusion.
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Figure 4.1 Adsorber geometry considered in the model development.

4.2 Model Assumptions

In order to simplify the complexity of model development, the mathematical
model developed to explain the breakthrough of sulfur compounds consisting of the

zeolite pellets is based on the following assumptions:

- The pressure drop throughout the bed is negligible under experimental conditions
studied.

- Temperature is uniform throughout the bed and pellet.

- Fluid velocity throughout the bed is constant. This assumption is valid due to the
fact that change in concentration of adsorbing species is occurred at trace level
which does not contribute to a significant change in local velocity inside the bed.

- There is no competitive adsorption by other componerits.



30

- The radial concentration profiles within the solid pores (macro and micro-pores)
are averaged assuming parabolic concentration profiles and the average mobile
phase concentration within the pores of the pellet and the average adsorbate
phase concentration within the crystals are determined

- Instantaneous equilibrium exists between the mobiie phase in the macro-pores of

pellet and the adsorbed phase within crystal at the binder-crystal interface.
4.3 Governing Equations

4.3.1 Mass Balance in Fixed Bed Adsorber

The derivation of differential mass balance or continuity equations for
the adsorbing species in the fixed bed adsorber is similar to that in the reactor.
According to Bird et al. (1960), the general form of the continuity equation for a

chemical species reacting in a flowing fluid is verbally expressed as,
Rate of mass Rate of Rate of 3 Rate of mass
accumulation mass inlet mass outlet change by reaction

When the above verbal expression is applied to adsorption process, the mathematical
formulation of differential mass balance for adsorbing species is indicated below,
(Gupta et al., 2004)
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It is important to note here that, on the right hand side of Eq. (4.1), the first and
second terms describe {the rate of adsorbing species inlet}-{the rate of adsorbing
species outlet} while the third term represents diffusion of sulfur compound
molecules from the bulk phase into the macropores of the zeolite pellets. f(z) is the
mass transfer rate of sulfur compound from bulk liquid to adsorbent particle and is

calculated using the following equation.
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f@=K, (e, =¢,|, ) (4.2)

where ¢, is the adsorbate concentration in the bulk phase, ¢, the adsorbate
concentration in macropores of the pellet (mole m>), D; the axial dispersion
coefficient (m®> s™), v, the interstitial fluid velocity (m s'), &, the voidage of
adsorbent bed. Another variable used to describe mass balance through the
adsorbent bed is ¢, which can be determined by performing mass balance of sulfur
compound molecules inside biporous structure of adsorbent pellet as explained
below. (Gupta et al., 2004)

4.3.2 Mass Balance at Any Radial Direction of Pellet
It is considered that crystals are uniformly distributed in the binder-

phase and the adsorption of adsorbate by the binder-phase is negligible in
comparison with that at interface between the binder-phase and crystal. In this case,
incorporating radial diffusion within the macro-pore volume of the binder-phase and

adsorption at the pore-mouth of the crystals results in obtaining the following

equation.
dc, 1 8(R’N,) aq.
g, —Lo= Lo L b a2 43
"o R R =) (%3)

Where Ny is molecular diffusion flux in the radial direction of the pellet (mol m? s

g. concentration of the adsorbate inside the crystal (mol m?), ¢ average

c

concentration of the adsorbate inside the crystal (mol m™), &p the voidage of pellet

and R radial co-ordinate in the particle (m).

4.3.3 Mass Balance at Any Radial Direction of Crystal

Mass balance in the crystal is given by the following solid diffusion

equation:



32

dq, D, &(r*dq,/or)

4.4
ot r or ¢4

Where D, is the diffusivity of the adsorbate within the crystal and  radial co-ordinate
in the crystal (m).

4.3.4 Adsorption Isotherm

The adsorption isotherm is normally described by Langmuir or
Freundlich isotherm. However, in this particular model formulation, a linear isotherm
is assumed in order to reduce the complexity of nwmnerical computation. This
isotherm correlates the adsorbate concentration in the crystal with the mobile phase
concentration in macro-pore volume of the binder phase at the crystal-binder-phase

interface.

q.=Kce, (4.5)

Where KX is the equilibrium or partition coefficient between macro and micro-pores
volume. The isotherm can also be seen as an equilibrium condition obtained by

equating first order adsorption and desorption rates.

d
% = k,c, —k,q. (4.6)
K=k, /k,=q.lc, 4.7)

Where k, and k, are adsorption and desorption rate constant (s'). Egs. (4.1), (4.3) and
(4.4) coupling with Eq. (4.5) are solved simultaneously to predict the adsorbent
performance, especially breakthrough characteristics in the bed. As these equations
are coupling partial differential equations, independent variables being time (r), axial
(z) and radial (both in r and R). Essentially, in this approach radial concentration

profiles within the solid pores (macropores and micropores) are averaged assuming
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parabolic concentration profiles and the average bulk phase concentration within the
pores of the pellet and the average adsorbate phase concentration within the crystals
are determined. This mathematical approximation is the reduction of second order
PDEs to first order PDE with variation only in z direction. Moreover, the number of
the governing equations to be solved is also reduced to two. As a consequence of this
approximation, the simplified governing equations which are the bulk phase in the

bed and the adsorbate in the pellet are obtained as follows (Gupta et al., 2004):

oc, D, 3%, v, dc, 151-¢,)K,D,(c,~¢,)

2 ) (4.8)
o g 02 ¢ 0z gRAK,+5D,/R))
&,  (6-¢)K, |21DK(-¢,) 15D, 49
o  (K,+5D,/R)e, R} R}

Where D, is effective diffusivity inside the pores (m® s™), Dc diffusivity of the
adsorbate within the crystal (m? s™), X equilibrium or partition coefficient between
macro and micro-pores volume, R, pellet radius (m) and R, crystal radius (m). The
calculation of these parameters can be found in Appendix D.

In order to determine concentration profile along the fixed bed
adsorber, Egs. (4.8) and (4.9) are solved simultaneously subject to the following

initial and boundary conditions:
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Table 4.1 Initial and Boundary Conditions for solving

Equation Initial Conditions Boundary Conditions

C = Cinl at z=0, t>0
=0 atz>0,1=0 =N

Eq. (4.1) ac

Ch=Cmiey at z=0, t>0 =0 at z=L, t>0

Eq. (4.2) c,=0 atR>0, r=0 —L2=0 atR=0,t>0

4.4 Numerical Implementation

4.4.1 Discretization Technique
Method of line (MOL) combined with Finite Difference Method
(FDM) is used to discretize the governing equations (Eqs. (4.8) and (4.9)) and

transform a partial differential equations (PDEs) into a set of ordinary differential
equations (ODEs) for solying in MATLAB™ program. The mass balance equation is
discretized by:

(1) replacing the continuous domain of fixed bed adsorber by a finite

number of regular-spaced mesh- or grid-points.

Figure 4.2 Discretization of fixed bed adsorber.

(2) approximating the derivatives of the PDE for each of these points

using central finite differences method with the error of O(AZ’) as indicated below:;
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For the 1* order derivative term,

dc, 1 2
—=—c.,, —c._, )+ O(Az 4.10
E 2 \ (c:+] C:-l) ( ) ( )

For the 2™ order derivative term,

d'e, 1
dz? Az

(€ —2¢, +¢,,)+ O(AZ%) (4.11)

where i is step size number of axial direction (z).

Therefore, Eqs. (4.8) and (4.9) in the discretized forms are written as:

d 15(1-¢,)K,D,(c,, — ¢
ﬁéL:ﬂlrL(cbnl _‘2ch +be-| ):I_v_z[ 1 (cb.ul _cbi—l )]_ ( b p( ] p’)

dt g, | A &, L 20z &,R2(K, +5D,/R,)

(4.12)
o, (en-FK, [21D.K(-s,) 15D, o
o  (K,+5D,/R))e, R} R,

Finally, the system of ordinary differential equations based on
Egs. (4.12) to (4.13) is solved simultaneously to determine the concentration profile

of adsorbing species along the bed.

4.4.2 Programming Algorithm for MATLAB™
A programming algorithm used to develop the breakthrough curve is
illustrated in Figure 4.3. Initially, the input parameters are specified including
operating conditions, physical properties of adsorbent and the fitting parameter in the

calculation. Mass balance in the fixed bed and in pellet as previously indicated in
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Eqgs. (4.12) and (4.13) are solved simultaneously using the ODE solver provided by
the MATLAB"™ program to determine the concentration profiles along the bed length
for various times. Thereafter, the exit concentration of the adsorbing species is
plotted against time to develop the mathematical breakthrough curve and it is
compared to experimental data. Finall y, the “fitting parameter”, a, is iteratively
adjusted until the breakthrough curves obtained from the program and experiment

agree well each other.

>

Specify input parameters

Adjust a

Mass balance on pellet and fixed
bed are solved together

ODE Solver

Mathematical
breakthrough curve

Fit Experimental
No breakthrough curve
Yes

STOP

Figure 4.3 Programming algorithm for the model development.
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