Chapter 5
Effective Coefficients of Nonlinear Composites

In this chapter, we first confirm the general formulae of the effective non-
linear coefficients which have been derived in Chapter 4. We will apply these for-
mulae to a simple case of nonlinear dielectric conipoiqite consisting of dilute weakly
nonlinear cylindrical inclusions randomly dispersed in a linear host medium, and
compare the results with the effective nonlinear coefficients which will be obtained
by using the method of Gu and Yu [6]. After that, we will apply our formulae
to a more complicated nonlinear composite consisting of dilute linear cylindrical

inclusions randomly dispersed in nonlinear host medium.

5.1 The case of nonlinear inclusions in a linear
host medium

We consider a simple case of nonlinear composite consisting of dilute weakly
nonlinear cylindrical inclusions randomly dispersed in a linear host medium. A
single inclusion model is used to determined the two dimension electrostatic po-
tentials in the inclusion (¢*) and host medium (¢™). In this case xm = m = 0
and the electrit-:.potentials can also be solved exactly since both potentials ¢* and
¢™ satisfy Laplace equations. The potential in the inclusion can be written in

the same form as Eq. (3.31)
¢'(r,8) = Cr cos¥, (5.1)

where C is a constant coefficient. Eq. (5.1) implies that the electric field is
uniform inside the inclusion, V¢' = C%. The potential ¢™ for the host medium

is similar to Eq. (3.32)

¢™(r,0) = (—Eor + Br"l) cos @, (5.2)
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which automatically satisfies the boundary condition at remote distance and at
the inclusion center. The constants B and C can be determined from boundary

conditions Eqs. (3.10) and (3.11). We find that
Ba™! — Ca = Eya, (5.3)

and

T},’Cq + xl-Ca +&,C + E'mBaﬂ2 = —enkEy. (54)

Eliminating B, we obtain the equation for C:
nC® + % C* +'eC42E0Em = 0, (5.5)

where € = g; + £,,. We therefore conclude that the results for electric potential
are essentially the same as those of a linear composite. They differ only by the
integration constants. In order to solve for C, we write C as a power series of Ej.
We note that C = —%=B — _cF, when x; = 7; = 0 as shown in Egs. (3.31)
and (3.32). We find

0= -et b (2)0~ () - ()] s

[ @ Ees
o) - () (@) s ]erse o

We also find that B = (C + Eg)a® which reduces to —bEg when x; = n; = 0. We
find

B = s (e () - ()
(2 o(2) (2)] o

[ () () (2) o) e o

For n; = 0, Egs. (5.6) and (5.7) are the same as the results of Gu and Yu [6].

Substituting C and B into Egs. (5.1) and (5.2) respectively, we obtain the electric



potentials in the inclusion and host medium as follows:

) = { e+ (£) - (L) - (2)]es

() - (%) ()

» [55(%)4 » 55("?)2(3’8—) + 5(”;)2] CE +... hreosd, (58)

and

¢™(r,0) = —Eorcos€+{_~550+(l§)azcsE03_ [3(3_;-)2_ (%)]azcsEus

€
+ [12(8) -3(2) (D) - [55(3) -55(3) (2)
+ 5(%)2] a’PE’ + ... }f" cosf. (5.9)

We will use these results to compute the effective coefficients up to the ninth
order of this system. It should be noted that the terms with factors Eo, E3, Ej,
El and Ej in Eq. (5.9) are the zeroth, the first, the second, the third and the

fourth-order potentials, respectively.

5.1.1 Effective coefficients by using the perturbation ex-
pansion method

We first determine the first-order effective coefficient, &., from Eq. (4.9).
However, as pointed out by Bergman [18], if the host medium has a large but
finite volume V = 7wR2L, we therefore have to be careful when we calculate the
quantities which arise from the host medium because there will actually be some
corrections to these equations. These corrections are of two types: (1) small
corrections, of relative order R™2, that appear everywhere; (2) large corrections,
of relative order 1 or more, that appear only near the surface of the composite.

By using the zeroth-order electric potential, Eq. (4.9) becomes

1 L 2% a . L 2w R
Ee = ——“2[_/ / [ Es|V¢6|2rdrd9dz+f / / sm|V¢g‘|2rdrd9dz]
VEsL)y Jo Jo o Jo Ja

% zem(;bﬂ)va‘ (510)
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where the last term is the surface contribution term [19] and V; = wa’l is the

volume of the inclusion. One finds, in the dilute limit (V; < V),

Ei —Em

_— A

Ee = Em + 2EmD;

where p; = % is the inclusion volume fraction. Similarly, we can calculate the
third-order effective coefficient, Xe, from Eq. (4.11) by using the zeroth-order
electric potential. In this simple case, there is no surface term in Eq. (4.11)

because x,, = 0. Then Eq. (4.11) becomes

1 L 27 a -
e = —— i : d % -]-
X VES[_[O fn ./0 x| Vi|trdrdo z] (5.12)

We obtain x, in dilute limit (V; < V;,) as

Xe =Apic’. (5.13)

We continue to calculate the high-order effective coefficients, 7., d. and
e from Egs. (4.13), (4.15) and (4.17), respectively. Again there are no surface
terms in these equations because y,, = 7n = 0. Then Eqs. (4.13), (4.15) and

(4.17) become, respectively,
1 ol ¥ P2 §12 i i i 16
" = vgs| (s Vi + IV Vb - Vi + i V5[ rdrdodz
VEgL)o Jo Jo
L 2m R
4 / / ./ Enalvﬁb?l?TdeedZ], (514)
0 0 a

1 L 2m a i i i i i
0e = VEE L/; .£ ./0. (255V¢1 -V, + 4X£|V¢ol2 Vo, -V,

+ 26| VLIV + (V6 - V1) +6m[V65|* V- Vi )rdrdddz

L 2n R
3 / / f 2,V - Vi rdrdﬂdz] : (5.15)
0 0 a
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and

1 L 27 pa ) : ; ” ,: ;
e = —m[f f f (Vo1 +26:V4h - V5 + 4l Vi Vi - Vs
VEO 0 0 0

+ 46l Vl* Yy Vs + x| Veif* Vg - Ve,

+ 8xi(V6h - Vi) (Ve - Vi) +6mi| Voyl* V- Vi,

+ 120 VG (Y} Vi) + 30 Vai|'| Vi ) rdrdddz

L p27 pR
4 f f f (emIVtﬁ’z"I" + 26, Vor - Vq&;"‘) rdrdedz]. (5.16)
0 0 a

By using the zeroth, the first, the second and the third-order electric potentials
from Eqs. (5.8) and (5.9), 7., d. and . can be calculated easily by using the

mathematica program. Then we obtain the fifth, the seventh and the ninth-order

effective nonlinear coefficients in dilute limit (V; < V,,,) as

Xi 2€m 6 25m 6
7 ol /) | 1=y (L1 ey (5.17)
Xi 2/ 26, \B Xi 2em \8
é X\ F el | Ve B ot VIEE | P L

and

= 552 (2 ) 2 (o)

Ei TNEm Ei=FEm Ei+Em EiteEm
i 2511'1 10
—5m; ( ) ( ) . 5.19
TR €+ Em? \&itEm (3:29)

Our results for 7., 0, and g, in Eqs. (5.17)-(5.19) for n; = 0 agree with those of

Liu and Li [9] using decoupling approximation method.

5.1.2 Effective coefficients by using the method of Gu and
Yu

In order to confirm our formulae for the seventh and the ninth-order ef-
fective nonlinear coefficients, Eqs. (4.15) and (4.17), we also follow and slightly

extend the method of Gu and Yu [6] for effective coefficients to deal with nonlinear

composite media

2 L [D - D"]av = (D) - (D™), (5.20)
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where V is the volume of the composite, (D) and (D™) denote, respectively,
the average electric displacement and average electric displacement in the host

medium region with
(D) = €.Eg + XeED2E0 + ncE04E0 T 53E06E0 i o ”eEOSEO— (521)

Since the integrand on the left-hand side of Eq. (5.20) is zero in domain of the
host medium (V;,), on applying electric displacement D from Eq. (2.2) and by
using the average electric displacement (D) definition of effective coefficients from

Eq. (5.21), hence Eq. (5.20) becomes

'[_/' /‘; [(Ei = Em)E‘ -4 (Xi — Xm)lE?-]? E 4+ (7}!' = .qm)lEzl‘l Es] dv
= (Ee — Em)ED + (Xe 5 Xm)E02E0 -+ (ne = nm)EontEn

+(8e — 6m) Eo"Eq + (ke — pim) Eo*Eo. (5.22)

Because the electric field in the inclusion is uniform, the average electric field is
the same as the electric field in the inclusion. We also use (E) = & [, E(x)d®z is
equal to the external applied electric field (Eg) for the boundary condition that
E is uniform on the composite surface as shown in Appendix B. So Eq. (5.22) is
valid for low inclusion concentration which the single inclusion model has been
assumed.

For the case of linear medium (x;m = m = 6m = um = 0), then Eq.
(5.22) becomes

1 , ! . ) ;
“17_/‘/ [(5i — em)E' + X:|E? Ef 45 E[* E‘] dv

= (€c — €m)Eo + XeEo’Eq + 1 Eo"Eo + 0. Ee®Eq + pFo®Eo.  (5.23)

By using the expansion for ¢ from Eq. (5.8), the electric field in the inclusion,

-V ¢, is
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o - {orm (2)om s ) - ()ens
) e
+ [55(%)'1 —55(?) (%) +5(%) ]c9E09+... o 629)

Substituting E* from Eq. (5.24) into Eq. (5.23), we obtain

7 [ Le—em{emo— (¥)em + [3(5) - (3)]em - [12(%)
-s(2) ()]s + s (%) =) (2) + ( )]s+ )
e s()emee () ()

- s (%) -0 (¥) (2)]em+ .} + {CﬁEn -5(%) B
+[25( ) -5(%)|eBt+. - Hav
= (€c = €m)Eo+ XeEo® + 1 Eo’ + 0. Ey" + peEy’. (5.25)
Comparing the quantities both sides of Eq. (5.25) with the same power of Ej,

the effective coefficients are determined.

To first order (of Ey), we have

T / Lo BTV (5.26)
Vi
and
—Em

=€tm + 26n, ) 5.27
Ee =Em + 2€ p . + o> (5.27)

where p; = ‘{} is the inclusion volume fraction.

To third order (of EJ), we have

- —f sm) e+ xie ]dV, (5.28)

and

Xe = XePiC'. (5.29)
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To fifth order (of Ej), we have

e b [l B - (@) 962 nla

e Xi 2e 6 2em \O
Ne = —3X:'pi(£i +‘Em)(6‘_ +n;m) +Th'10i(t_£ +€m) : (5.31)
To seventh order (of EJ), we have
b e o) ()
+ )412(?) 3(2)](: —5n,( ) ]dV (5.32)
and
5, = lQXs‘Pi(E‘_ fgm)z(;i";m)s —Smpi(& fsm)(:j";m)s. (5.33)
To ninth order (of Ej), we have
b vl (- () 52T - (2
o 30( )(”)]c i, [25( ) " 5(%)].:9](11/, (5.34)
and

He=—55xa'Pi( _Xi )3(6125""“)10_#55%%( Xi )2( 2Em )10

Ei+ Em ;i + € Eit+Em Ei+Em
7 2, \10
—57; i( )( ) 2 D35
P Ei+Em/ \E +Em ( )

We see that the results of d, and p, following the method of Gu and Yu [6] using
the average electric displacement definition of effective coefficient, Eqs. (5.33)
and (5.35), are the same as our results, Eqs. (5.18) and (5.19). These confirm
our general formulae, Eqs. (4.15) and (4.17).

For the calculation of effective coefficients up to the ninth order by using
the method of Gu and Yu [6], we can see that the ninth-order effective nonlinear

coefficient (the last term of the right hand side of Eq. (5.23)), p., is the coefficient
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of Ej. Therefore the electric potentials up to the fourth order are required in Eq.
(5.25). It is more concise and less complicated to use our formulae, Eqs. (4.15)
and (4.17), because it requires only the electric potentials up to the third order
as also seen from Egs. (5.15) and (5.16). We conclude that base on the electric
potentials up to the same order, our formulae Eqgs. (4.15) and (4.17), give more
accurate results of high-order effective nonlinear coefficients than those obtained

by using the method of Gu and Yu [6].

5.1.3 Application

We now apply our results, Egs. (5.17), (5.18) and (5.19), to predict the re-
sponse of the composite consisting of dilute weakly nonlinear cylindrical inclusions
randomly dispersed in a linear host medium to an external uniform field. We con-
sider a case of the inclusion which the D and E relation obey D* = &;E*+n;|E|*E’
with x; = 0 and the host medium has the linear coefficient €,,. In this case §, from
Eq. (5.18) becomes zero and the relative fifth-order and the relative ninth-order
coefficients, 7./m; and p.Eg/n; are determined.

In Fig. 5.1, we report the relation between 7./7; and €,,/¢; for inclusion
packing fractions p; = 0.05 and 0.1. It shows that as £,,/e; < 0.6 the fifth-order
effective nonlinear coefficient is negligible. The relative ninth-order effective non-
linear coefficient (u.Eg/n:) is plotted against €, /e; for n;Eg/e; = 0.1, satisfying
the weakly nonlinear property, as shown in Fig. 5.2. This indicates that the
less important of the ninth-order effective nonlinear coefficient occurs as &,,/€;
decreasing and it approaches zero for €,,/e; < 0.7. From these results, we can
conclude that the effective higher-order nonlinear coefficients cannot be ignored,

especially for £,,/e; > 1 and p; approaches 0.1.
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In Fig. 5.3, we shows the difference of the ninth-order effective nonlinear
coefficient () calculated by the method of Gu and Yu [6] and our method (Eq.
(4.17)) by using the electric potential (Eqgs. (5.8) and (5.9)) up to only the third
order. We can see that the value of y, calculated by our method (Eq. (4.17)) and
the method of Gu and Yu [6] is equal to each other at €,/¢; = 1. In the range
0.1 < eq/€; < 1.4, the value of . calculated by the method of Gu and Yu [6] and
our method (Eq. (4.17)) are very close to each other. The value of y, obtained
from the method of Gu and Yu [6] and our method (Eq. (4.17)) highly different

to each other, especially for ¢,,/e; > 1.4 and p; approaches 0.1.
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Figure 5.1: The relative fifth-order nonlinear coefficient for packing fraction p; =
0.05 and 0.1.
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Figure 5.2: The relative ninth-order nonlinear coefficient for packing fraction
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Figure 5.3: Comparison of the relative ninth-order nonlinear coefficient by using
our method and the method of Gu and Yu.
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5.2 The case of linear inclusions in a nonlinear
host medium

In this case, we will use the solutions of electric potential up to the third
order which has been obtained in chapter 3 to calculate the effective nonlinear
coefficients up to the ninth order. For the first-order effective coefficient e, the
result is the same as Eq. (5.11). We ﬁrstl calculate the third-order effective

coefficient from Eq. (4.11). For x; =0, Eq. (4.11) becomes

LR o Axn ()
Xe = VES [‘/0 /ﬂ /; xm| Vg | rd-rdﬂdz] + == (5.36)
where the last term is the surface term [19] and by = ba™? = £2=Ei s a factor

related to the induced dipole moment due to the applied far electric field. Substi-
tuting ¢ from Eq. (3.32), we obtain the third-order effective coefficient in dilute
limit as

Xe = Xm+ Xmbi [ — 1~ dby+ 482 + %bg]. (5.37)
Our result for x. in Eq. (5.37) agrees with that of Bergman, Eq. (3.2) of Ref.
(18] for d = 2.

We continue to calculate the high-order effective nonlinear coefficients, 7.
and d, from Eqs. (4.13) and (4.15), respectively. We consider a case of the non-
linear medium has only the third-order nonlinearity which the D and E relation
obey D™ = £,E™ + xm|E™|?E™ and the inclusion has the linear coefficient ;.

For x; =0 and 7; = 0, Eqs. (4.13) and (4.15) become, respectively,

1 L p2rx R \ ,
= vgg[ /{, fo fa (el VT + x| V7 V47 - Vo7 ) rdrdddz

L 2m a
4 f f / .s,-|V¢§|2rdrdedz], (5.38)
0 0 0
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and

1 L p27 pR 2
be = V—Eg[fg /u / (26 V6T - V5 + Al VAR VF - V45

+ 2xXm| VORIV + dxm(V G - V¢’;")2) rdrdfdz
L 2 a

+ f / f 26:;V i - Vi rdrdﬂdz]. (5.39)
0 0 0

By using the zeroth, the ﬁfst and the second-order electric potentials in the
inclusion and host medium from Egs. (3.31), (3.32), (3.52), (3.55), (3.74) and
(3.75), me and &, can be calculated by using the mathematica program. Then
we obtain the analytic form solution of the fifth and the seventh-order effective

nonlinear coefficients in dilute limit as

8 209pie X0 9Bpieixm  271piedemxi,
¢ 5(€i+em)8  10em(e;i +em)®  5(ei +&m)d
ITpielem X  108pieietxm | 184Tpicien X
15(¢; 4 )8 (i +em)® 15(¢; + €m)®
55Tpicreints  L9piict Xl 529pien (5.40)
15(e; +€m)®  S(eit+em)®  30(ei +€m)?’ 3
and
i = 20621piedx3,  55pielxd, 12643p;e%x3,
© 7 45(ei +Em)  EZ(6i +Em)! T 45€nm(gi + Em)!]
A14TTpielemxt, | 32654pielen Xt 1274picied. X
(e +em)! | B5(etem) | O(e +Em)
_9758pietemxm _ 11102piefen xon  26281piciel xin
0 ten)! | O tem)! | 45(e + em)l
3407p;ie2el X3, 10321peied x3,  1451pied 23, (5.41)

45(g; + em)!! 45(gi + em)! 15(e; + €)1’

which are the new results of this work.
We now apply our results of x. (Eq. (5.37)), 7. (Eq. (5.40)) and 4. (Eq.
(5.41)) to predict the response of weakly nonlinear composite consisting of dilute

linear cylindrical inclusion randomly dispersed in a nonlinear host medium. .,
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ne and 4, from Egs. (5.37), (5.40) and (5.41) can be rewritten in the form as

Xe Pi Pi 2
= 1-p;+——|4e, — 4| + —— |4¢;, — 8, +4
X 1ope gl il s
4 3
Pi e, de; g 4de, 1
— = __|r 27 - =1, 5.42
+(s,+1)4[3 -2 ] (G40
nEy  pixl [_ 93ef 2097  271e7 " 97e5
Em (e +1)B 10 5 5 15
1847¢3  557¢2  119¢, 529
4 r L i
+108e! + —=" + - 30], (5.43)
and
6.ES pixe _ 1y 12643 296216 41477ed
em  (Er+ DN [555' S T T T
32654e]  1274el 975827 111027
45 g4 g 9
262812 34072 10321g, = 1451
5/ JNERA T 15 J (349

where €, = f': and x, = x_::g“&

In Fig. 5.4, we report the relation between x./xm and €;/en, for inclusion
packing fractions p; = 0, 0.05 and 0.1. It shows that the relative third-order
effective nonlinear coefficient is decreasing as €;/&, increasing from 0 to ~ 0.4
and increasing as €;/e,, > 0.4. We can see that all three curves pass a common
point at & /e, =~ 1.6 and Xe/Xm is minimum at €;/e,, =~ 0.4 for p; = 0.05 and
0.1. For p; = 0, Xe/Xm = 1 (or Xe = Xm), as expected. The relative fifth-
order effective nonlinear coefficient (n.E§/en) is plotted against €;/e,, as shown
in Fig. 5.5 for xmE:/em = 0.1, satisfying the weakly nonlinear property. This
indicates that 7, is maximize for p; = 0.05 and 0.1, at ¢;/¢,, =~ 0.8. All three
curves have two common points at ¢;/e, ~ 0.5 and 1.3 with . = 0. In Fig.
5.6, the relative seventh-order effective nonlinear coefficient is plotted against
€i/em for xmEZ/em = 0.1, satisfying the weakly nonlinear property. It shows

that d, is minimum at g;/e, ~ 0.7. All three curves have two common points
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at €;/em ~ 0.6 and 1 with . = 0. From these results, we can conclude that
the effective higher-order nbnlinear coefficients cannot. be ignored, especially for
p; approaches 0.1. These results show that the high-order effective nonlinear
coefficients are important as pointed out by many authors for experimental works
[3,4,13,14]. For example, high order optical nonlinearities of Cgo— and C7o-toluene
* solutions were observed by Koudoumas et al. [13]. In their work, high order
nonlinear coefficients depend on the laser intensity, corresponding to EZ, and the
concentration of the sample. The value of the effective nonlinear coefficients of

the sample up to the ninth-order have been reported.
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Figure 5.4: The relative third-order nonlinear coefficient for packing fraction
pi = 0.05, 0.1 and 0.
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