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    Self-Organizing Mapping ( )SOM  neural network has been widely used in

pattern classification, vector quantization, and image compression.  We consider the

problem of strengthening the reliability of an SOM  neural network by applying a

fault immunization technique to each neuron synaptic links, which is similar to the

concept of biological immunization.  Instead of assuming the stuck-at- 0  and stuck-at-

1 as in the previous studies, we consider a general case of stuck-at-a , where a  is a

real value.  Our only assumption is that only one neuron can be faulty at any time.

There is no restriction on the number of faulty links of the neuron.  Let jiw ,  be the

weight of synaptic link j  of neuron i obtained after the winner-take-all classification.

Weight jiw ,  is immunized by adding a constant ji,ε , either positive or negative, to

jiw , .  A neuron reaches its maximum fault immunization if the value of jiw , + ji,ε  can

be either increased or decreased as much as possible without creating any

misclassification.  Thus, the fault immunization problem is formulated as an

optimization problem on finding the value of each ji,ε .  A technique to find the value

of jiw , + ji,ε  and its application to enhance the transmission reliability in image

compression area is proposed in this thesis.
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CHAPTER I

INTRODUCTION

Self-Organizing Mapping ( )SOM  neural network [ ]1  is important in

analyzing large quantities of data to classify patterns and characteristics [ ]14 .

With current Very-Large-Scale Integrated ( )VLSI  technology [ ]12 , it is feasible to

implement SOM  network on a chip.  However, when using the SOM chip, some

intrinsic faults may occur due to physical phenomena such as heat.  In this paper,

we study the problem of how to create fault immunization in SOM  network on

the computational level prior to its VLSI  implementation.  The fault immunization

problem is possibly transformed to an optimization problem.

1.1 Problem Identification

The reliability of the network depends upon how the network is

implemented or used.  If the network is directly implemented on a VLSI  circuit

the reliability strongly depends on the design of the network.  The problem of

designing such a network is categorized into three approaches based on the

solution and the constraints of the problems.  These are

1. design of self-detection of faulty network by applying the techniques

used in digital circuit design [ ]12 ,

2. design of a self-recovery network when there are faulty links and faulty

neurons [ ]7  , and
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2

3. design of a fault tolerant network by injecting noise into input vectors,

perturbing weight, and pruning some links during retraining [ ]6 .

Many fault models [ ]5,4,3,2  are introduced and the solutions are proposed

based on the assumption of the stuck-at-0 and stuck-at-1.  Unlike those studies, we

consider a general case of stuck-at-a , where a is a real value.  There is another

type of fault occurring at the weight vector.  The fault is intermittent and prevented

by a technique called fault immunization.  Although these proposed techniques

work well in most situations, there are still some possible improvements to

enhance the robustness and reliability of the network.

The problem of fault tolerance and immunization has been widely studied

as reported in [ ]11,10,9,8,6,5,4,3,2 .  Most studies concentrate on a feed-forward

supervised network performing pattern classification.  The only report closely

related to the unsupervised network is in [ ]7 .  They proposed a fault tolerant

technique of feed-forward networks called weight shifting to recover a self-

organized network when some faulty links and/or neurons occur.

In this thesis, we focus on an unsupervised self-organization type network.

A neuron with a self-organizing mechanism classifies its input data space into

groups such that there are no common elements among groups.  We consider the

problem of enhancing the reliability of an SOM  neural network by the technique

of the synaptic links of each neuron, which is similar to the concept of biological

immunization.
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1.2 Objective

The main goals of this study are:

1. To develop an algorithm to enhance fault tolerance in a self-organizing

artificial neural network.

2. To study the tolerance bound of a self-organizing artificial neural

network under a given training set.

1.3 Scope of Work and Constraints

The following conditions are considered in this study:

1. No limitation is made on the number of synaptic links of any output

neuron.

2. At any time, only one output neuron can be faulty.

3. No limitation is made on the input dimension and the value of each

input element.

4. The value of each faulty synaptic link can be any real value, either

positive or negative.

5. The synaptic weight adjustment is based on Kohonen self-organizing

competitive mapping.

This thesis is organized as follows.  Chapter II reviews the literature.

Chapter III describes the theoretical background.  In Chapter IV, a fault

immunization model and the algorithm for the estimation of fault-tolerant

capability are proposed.  The experimental results of our evaluation are given in

Chapter V.  The discussion of the robustness of the fault tolerance SOM  and

finally the conclusions are given in Chapter VI.



CHAPTER II

LITERATURE REVIEW

2.1 Review of Literatures Related to Fault Tolerance and

Immunization

   R. K. Chun and L. P. McNamee [ ]2  proposed the immunization of a neural

network against hardware faults.  A methodology and a set of computer-aided

design tools for measuring and improving the fault tolerance characteristics of

neural networks were presented.  Two analysis programs have been developed

using realistic fault models appropriate for emulating potential hardware failures.

A modified training strategy, which reduced the network’s sensitivity to faults,

was also introduced.  The process involved the injection of faults into the network

during its training phase.  The proposed scheme is said to be analogous to viral

immunization in the biological domain because it is the neural network’s own

adaptive capability which is utilized to improve its fault tolerance characteristics.

They proposed an original idea called fault immunization, which is based on trial-

and-error retraining the network to obtain the best value of each weight vector.

C. Lursinsap and T. Tanprasert [ ]9  applied the immunization concept in

biological cells to enhance the fault tolerance capability in a perceptron-like

neuron.  In this paper, they considered only the case where each neuron separated

its input vectors into two classes.  A mathematical model was applied to get the

cell immunization in terms of weight relocation and then a polynomial time
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weight-relocating algorithm was proposed.  This algorithm can be generalized for

the network in which each neuron separates its input vectors into more than two

classes.  They extended Chun and McNamee’s concept and proposed a

mathematical model with the analysis of the fault immunization in terms of weight

vector relocation for a perceptron unit.

K. Sunat and C. Lursinsap [ ]10  extended Lursinsap and Tanprasert’s

concept mentioned above to capture the characteristics of the fault immunization.

They investigated the capability of two random optimization techniques for the

fault immunization improvement and proposed a new cost function, two hybrid

training algorithms, which combined the target error function and the

immunization function.

   C. Lin and I. Wu [ ]6  discussed the design of a fault tolerance network by

injecting noise into input vectors, perturbing weight, and pruning some links

during retraining.  They examined a learning method that intended to maximize

the fault tolerance.  The method was based on the well-known back-propagation

learning algorithm.  During the training, each neuron was given a small probability

to have a simulated failure.  This modification ensures that the computation be

distributed among different computing elements in the network and thus

maximized the fault tolerance.

C. Neti, M. H. Schneider, and E. D. Young [ ]3  presented a feed-forward

neural network  model with a guaranteed level of fault tolerance.  The notion of

fault tolerance and uniform fault tolerance in a neural network were defined and a

method described to ensure that the estimated network exhibits fault tolerance.

The problem of estimating weights was formulated as a large-scale nonlinear

optimization problem. Numerical experiments indicated that the solutions with
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uniform fault tolerance exist for the pattern recognition problem.  Solutions

derived by introducing fault tolerance constraints have better generalization

properties than solution obtained via unconstrained back-propagation.

T. Tanprasert, C. Tanprasert, and C. Chidchanok [ ]11  presented a technique

for forcing the network to optimize its internal representation towards robustness

and fault tolerance.  The major idea was to force nonlinear classification on the

linear classification problem.  The technique introduced a concept of outpost

vectors for hiding the unwanted linearly separable characteristics of the problem.

The technique can be viewed as a variation of introducing noisy inputs.  However,

this technique was determined deterministically rather than randomly.

R. Singh, V. Cherkassky, and N. Perpanikolopoulos [ ]14  proposed a

method involving an iterative evolution of a piecewise-linear approximation of the

shape skeleton by using a minimum spanning tree-based self-organizing mapping

SOM .  They considered the problem of computing the shape skeleton for shapes

that lacked pixel level connectivity.  Due to sparse shape, conventional

skeletonization techniques performed poorly on such shapes.

Most studies are concerned with feed-forward supervised networks, and

these are where most of this study’s background information is from.  Very little,

however, has been written on unsupervised networks as below.
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2.2 Review of Literatures Related to Unsupervised

        Network

  C. Khunasaraphan, T. Tanprasert, and C. Lursinsap [ ]7  proposed a fault

tolerant technique for feed-forward neural networks called weight shifting and its

analytical model.  The technique was applied to recover a self-organized network

when some faulty links and/or neurons occured during the operation.  If some

input links of a specific neuron were detected faulty, their weights would be

shifted to the healthy links of the same neuron.  On the other hand, if a faulty

neuron was encountered, then the faulty neuron was treated as a special case of

faulty links by considering all the output links of that neuron to be faulty.  The aim

of this technique is to recover the network in a short time without any retraining

and hardware repair.

M. Yasunaga, I.Hachiya, K.Moki, and J.H. Kim [ ]12  introduced a defect

model of the SOM-WSI, and derive a critical-stuck-output of a defective neuron.

They assumed that the output of defective neuron was stuck at a certain value

(stuck output) and did not change through the SOM  processing.  In addition, they

assumed that the defective neurons were concentrated in one place in the linear

array, making a defective-neuron cluster.



 CHAPTER III

THEORETICAL BACKGROUND

3.1 An overview of Neural Computing

     Over the past four decades, the field of artificial intelligence (AI) has made a

great progress toward automating human reasoning.  Nevertheless, the tools of AI have

been mostly restricted to sequential processing and only certain representations of

knowledge and logic.  A different approach to intelligent systems involves constructing

computers with architectures and processing capabilities that mimic certain processing

capabilities of the brain.  The results are knowledge representations based on massive

parallel processing, fast retrieval of large amounts of information, and the ability to

recognize patterns based on experience.  The technology that attempts to achieve these

results is called neural computing or artificial neural networks, networks made up of

neurons in much the same way as a brain.  A biological neuron consists of four major

components, namely, soma, axon, dendrite, and synapse.  Figure 3.1 shows a portion of

such a network.  The input and output signals to the soma of a neuron are transmitted

along the axon and dendrite.  The synaptic resistance controls the strength of the signal.

A neuron learns to generate a particular signal by adjusting the synaptic resistance.

In neural networks, we carry over this concept of synaptic resistance and refer to

it as the weight of a neuron.  There are three types of learning mechanisms dealing with

the adjustment of a neuron weight.  The first type is called supervised learning.  A

neuron is forced to generate a target signal associated with a specific input pattern and to

reproduce this target signal whenever the specific input pattern occurs.  The second type
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of learning is called unsupervised learning.  There is no target signal generated with a

particular input pattern.  A neuron competitively adjusts its weight value with the other

neurons to make the value of its weight equal to the value of the input pattern.    The last

type of learning is called reinforcement learning.  This type is a mixture of the first two

types under the environment that the target is specified.  In this research, we are concern

with only the second type of learning.

Figure 3.1 Portion of a network: Two Interconnected Biological Cells.

An artificial neural network is a mathematical model that emulates a biological

neural network.  The similarity between the biological neuron and the artificial neuron is

summarized as follow.

Biological Artificial

Soma Node

Dendrites Input

Axon Output

Synapse Weight
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3.2 A Self-Organizing Mapping Artificial Neural Network

The learning pattern of an SOM  neural network is to arrange itself as a function 

of its inputs.  This type of artificial neural network ( )ANN  can be used for the 

quantification of a vector space.  A number of input vectors are presented to the ANN , 

which has the characteristics of competitive learning as described by Kohonen [ ]1  based 

on iterative computation of three steps:

1. The output neurons of the network compete among themselves to be activated, 

with the result that only one output neuron or one neuron per group is to be on at any 

one time.

2. The output neurons that win the competition are called winner-take-all

neurons.

3. Updating weight by Kohonen learning rule.

In the most simple competitive learning networks, there is a single layer of

output units io , each fully connected to a set of input jξ  via excitatory connections

0≥ijw , as shown in Figure 3.2.

   1O           2O         3O

                                                                                                    Output

                                                    

                                                                                                  jiw ,

                            1ξ           2ξ           3ξ           4ξ            5ξ               Input

Figure 3.2 A simple competitive learning network.
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Only one of the output units *i , called the winner, can fire at a time.  The winner is

normally the unit with the largest net input

=ih ∑ ⋅
j

ijw jξ ξ⋅= iw             (3.1)

for the current input vector ξ .  Thus, the condition of a winner *i  is defined as follows

ξξ ⋅≥⋅ ii ww * for all i      (3.2)

with 1* =iO .  If the weights for each unit are normalized so that iw  for all i ,

then, (3.2) is equivalent to

ξξ −≤− ii ww * for all i .       (3.3)

This says that the winner, *i , is the unit with normalized weight vector *iw  closest to the

input vectorξ .  The winner-take-all network uses the criterion (3.2) or (3.3).  The

problem is how to find the clusters in the input data and adjust the weight vectors iw

accordingly. We start with small random values for the weights.  Then, a set of input

patterns ξ  is applied to the network in succession.  For each input, we find the winner
*i  among the outputs and then update the weight *iw  for the winning unit only to make

the *iw  vector closer to the current input vector ξ .  Each weight element jiw *  of winning

neuron *i  is updated by adding to it an amount proportional to the difference between

the input and the weight as calculated in equation (3.4)

( )jijji ww ** −⋅=∆ ξη            (3.4)

where η  is a learning rate.
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3.3 An Example of Self-Organizing Mapping Neural Network

Given the following set of vectors in a 5-dimensional space, a simple competitive 

learning network is used to classify the vectors into three classes, namely, 3,21 , www .

 101011 =ξ 110112 =ξ 010103 =ξ

000114 =ξ 100105 =ξ 011006 =ξ

010017 =ξ 110118 =ξ 100019 =ξ

The network consists of one input layer and one output layer.  An output neuron *i is the 

winner for the current input vector ξ  if it satisfies the following condition

ξξ ⋅≥⋅ ii ww * for all i

where *iw is the weight vector of the winner unit *i .  The classes are established by 

using the following steps.

1. Randomly choose initial weights.  Each row is a weight vector of an output neuron.

[ ] Tw 7.03.07.03.07.01 = ,

[ ] Tw 3.06.07.08.03.02 = ,

[ ] Tw 8.07.03.03.03.03 =

W  is the matrix formed from the transposed weight vectors.

W  =  
















T

T

T

w
w
w

3

2

1

  =  
















8.0
3.0
7.0

7.0
6.0
3.0

3.03.03.0
7.08.03.0
7.03.07.0
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2. Present vector 101011 =ξ  to the network.

First define a competitive transfer function, ( )1ξ⋅Wcompet , which assigns an output of 

1 to the neuron whose weight vector points in the direction closest to the input vector.

( )1ξ⋅= Wcompeta

competa =

































































1
0
1
0
1

8.0
3.0
7.0

7.0
6.0
3.0

3.03.03.0
7.08.03.0
7.03.07.0

 competa =
































4.1
3.1
1.2

  = 
















0
0
1

The weight vector of the first neuron is closest to 1ξ .  So, it wins the competition 

( )1*1
=O .

3. We now apply the Kohonen learning rule to the winning neuron with a learning rate 

of 2.0=η .

( )oldoldnew www *** 1111 −⋅+= ξη

=neww *1   























7.0
3.0
7.0
3.0
7.0

 + 2.0

















































−























7.0
3.0
7.0
3.0
7.0

1
0
1
0
1

= 























76.0
24.0
76.0
24.0
76.0
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The Kohonen rule moves *1
w  closer to 1ξ .  If we continue choosing input vectors at 

random and presenting them to the network, then at each iteration the weight vector 

closest to the input vector will move toward that vector.  Similarly, we find that the 

weight vectors 1ξ  and 9ξ  belong to 1w .  The weight vectors 63 , ξξ  and 7ξ  belong to 

2w .  The weight vectors 2ξ , 4ξ , 5ξ  and 8ξ  belong to 3w .  Eventually, each weight 

vector will point at a different cluster of input vectors. Each weight vector becomes a 

prototype for a different cluster.

3.4 Simulated Annealing Search

Simulated Annealing ( )SA  is a technique for solving combinatorial optimization

problems such as minimizing functions of many variables.  Typically, this involves

finding a configuration of parameters ( )nxxxx ,......,,, 321  that minimizes an objective

function.

The algorithm is a modified version of the iterative improvement algorithm,

which involves starting with an existing non-optimal configuration and perturbing it in

some small way.  If this new configuration (solution) is better than the old one then

accept it and start again as shown in Figure 3.3.

A new configuration is accepted if it is an improvement on the old one.

However, this can cause problems, as shown in Figure 3.3.  Suppose that we have an

initial configuration startE .  We perturb startE  and accept the better solutions by moving

downhill only.  We eventually arrive at point A and cannot go anywhere because uphill

moves are not allowed. We get stuck in a local minimum even though the global

minimum is at point B.
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Figure 3.3 Concept of Hill climbing to achieve the global optimal.

We do not want to perform large perturbations because we would be jumping

around in the solution space and “missing” the minimum.  So we need some controlled

way to avoid becoming stuck in a local minimum. This can be achieved by occasionally

accepting uphill moves.  This would allow us to jump out of A and downhill to B.  This

is achieved by accepting the configuration if 0<∆E  or accepting with probability

T
E

ep
∆−

= for some constant T .
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As the algorithm proceeds we hopefully progress nearer the optimal solution, i.e.,

E∆  decreases.  However, since T  is fixed, T
E

ep
∆−

= will increase (toward 1).  As we get

nearer the optimal value we are more likely to accept an uphill move and possibly miss

the optimal solution.  So we vary the temperature T  from a high to a low temperature.

3.5 Boundary Integrals

To maximize the area of the fault free space, we must first find an expression for 

this area.  Since fault-free space is not a geometrical form, the area to be measured can 

be evaluated by the method of integration.  For two-dimensional cases, the calculation of 

the fault-free space using boundary integrals is much faster than that using basic 

integrals.  The concept of boundary integral is described below.

Domain integrals can be transformed into boundary integrals by using Green’s 

theorem.  By discretising the boundary into small segments, and each segment is 

approximated by an element, a straight line joining two end points of the segment, the 

transformed boundary integrals can be evaluated on each element.

The next steps showing how to derive boundary integrals for two-dimensional 

problem are illustrated.
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Area Ω  = ∫∫
Ω

Ωd1

Figure 3.4 A domain Ω  of which the area will be measured.

  Suppose there is a domain Ω  of which the area will be measured.

Select two points: ( )aa yxa ,=  and ( )bb yxb ,= .

Connecting the two points a  and b , jyixjyyixxba abab

vvvvv ∆+∆=−+−= )()(

where )1,0(),0,1( == ji
vv

.

Taking infinitesimal limits of jyix
vv
⋅∆+⋅∆ , then ba

v
 becomes jdyidxd

vvv
+=Γ

where Γd represents an infinitesimal segment of the boundary  and the vector Γ
v

d  is

tangential to Γ at point  a .

Therefore, 22 )()( dydxdd +=Γ≡Γ
v

.

Ω

a

b
dΓ

∆X

∆Y

n̂
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A unit vector in the tangential direction to boundary can be defined at a given

boundary point as

j
d
dyi

d
dx

d
d vv
v









Γ

+







Γ

=
Γ
Γ

=Γ̂

Thus, a unit vector normal to the boundary and pointing outside the domain

),(ˆ yx nnn = may be defined in term of its directional cosines as follows;

0ˆˆ =⋅Γ n

0),(, =⋅







ΓΓ yx nn

d
dy

d
dx

0=
Γ

+
Γ yx n

d
dyn

d
dx

Choose
Γ

=
d
dyn x and

Γ
−=

d
dxny

It is noted that 1ˆ =n .

Theorem (Green ‘s theorem)

Let f  be a function from 2R⊆Ω  (which is closed and has an enclosed

boundary Γ ) to R  and 2

2

2

2

,
y

f
x

f
∂
∂

∂
∂ are continuous on Ω ,

then ∫∫ ∫
Ω Γ

Γ=Ω∇ d
dn
dfdf2 , ∫

Γ

Γd  is the line integral around Γ ,

where yxyx n
y
fn

x
fnn

y
f

x
f

dn
df

∂
∂

+
∂
∂

=⋅







∂
∂

∂
∂

= ),(, .
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If NΓ∪∪Γ∪Γ=Γ K21  where iΓ is a line segment joining points

),( iii yxx =v  and ),( 111 +++ = iii yxxv ,

then  ))(),(()( ξξξ yxi =Γ  where [ ]1,0∈ξ

and ξξξ 1)1()( ++−= ii xxx

ξξξ 1)1()( ++−= ii yyy .

If 
i

i
i

ii
x J

y
d
dyn 1

∆=
Γ

=

i
i

i

ii
y J

x
d
dxn 1

∆=
Γ

=

where iiii Jyxd =∆+∆=Γ 22 )()(

thus,

Γ







+=Γ ∫∫

ΓΓ

dn
dy
dfn

dx
dfd

dn
df

ii

i
y

i
xi .

Since ξξ
ξξ

dJd
d
dy

d
dxd i=























+








=Γ

22

,

    =







∆

∂
∂

−∆
∂
∂

=Γ ∫∫
Γ

ξdJ
J

x
y
f

J
y

x
fd

dn
df

i
i

i
i

ii
i

1

0

11

( ) ( )( ) ( ) ( )( ) ξξξξξ dxyx
x
fyyx

x
f

ii∫ 





 ∆

∂
∂

−∆
∂
∂1

0

,, .
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Therefore,

( ) ( )∫∫ ∑∫
Ω =









∆

∂
∂

−∆
∂
∂

=Ω∇
N

i
ii dxyx

y
fyyx

x
ffd

1

1

0

2 )(),()(),( ξξξξξ .

As we are looking for the area of Ω , and we have

Area Ω  = ∫∫
Ω

Ωd1 ,

We can set the function ( )yxf ,  to be equal to 
2

2x .  Then we have

1),(2 =∇ yxf , and

xyx
x
f

=
∂
∂ ),( , 0),( =

∂
∂ yx
y
f .

As a result,

ξξξξξ )()1())(),(( 11 iiiii xxxxxyx
x
f

−+=+−=
∂
∂

++

Consequently,

( )( )( ) ξξ dyxxxfd
N

i
iiii∫∫ ∑∫

Ω =
+ ∆−+=Ω∇

1

1

0
1

2

( )∫∫ ∑
Ω =

+ 





 ∆+−=Ω

N

i
iiii xxyyd

1
1 2

11

                         Area ( )∑
=

++ +−=Ω
N

i
iiii xxyy

1
11 )(

2
1

The final equation obtained here will be used to measure the area and volume of

fault-free space for two and three-dimensional vectors.
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3.6 Multidimensional Integrals

Here, the measurement of fault-free space is generalized to n-dimensional space. 

Therefore, multidimensional integrals are applied here.  International standard four-

dimensional input vectors were used as well as the five dimensional input vectors of a 

color image.  The concept is expressed as below.

Numerical integration, which is also called quadrature, is based on adding up the

value of the integrand at a sequence of abscissas within the range of integration.  As an

example, we will consider the case of a four-dimensional integral in vzyx ,,,  space.

Two, three dimensional, or more than four-dimensional integration, are entirely

analogous.

The first step is to specify the region of integration by

 1. Its lower and upper limits in x , which we will denote 1x  and 2x ,

2. Its lower and upper limits in y  at a specified value of x , denoted ( )xy1

and ( )xy2 ,

3. Its lower and upper limits in z  at specified x and y , denoted ( )yxz ,1  and

( )yxz ,2 ,

4. Its lower and upper limits in v  at specified yx,  and z , denoted ( )zyxv ,,1

and ( )zyxv ,,2 .

In other words, find the numbers 1x  and 2x , the functions ( )xy1 , ( )xy2 , 

( )yxz ,1 , ( )yxz ,2 , ( )zyxv ,,1 and ( )zyxv ,,2  so that

( )∫∫∫∫= vzyxfdvdzdydxI ,,,

   ∫=
2

1

x

x

dx
( )

( )

∫
xy

xy

dy
2

1 ( )

( )

∫
yxz

yxz

dz
,

,

2

1

( )
( )

( )

∫
zyxv

zyxv

vzyxfdv
,,

,,

2

1

,,,
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Now we can define a function ( )zyxF ,,  that does the innermost integral,

( )zyxF ,,  ( )
( )

( )

dvvzyxf
zyxv

zyxv
∫≡

,,

,,

2

1

,,,

and a function ( )yxG ,  that does the integral of ( )zyxF ,, ,

( )yxG ,  ( )
( )

( )

∫≡
yxz

yxz

dzzyxF
,

,

2

1

,,

and a function ( )xH  that does the integral of ( )yxG , ,

( )xH  ( )
( )

( )

∫≡
xy

xy

dyyxG
2

1

,

and finally our answer as an integral over ( )xH

( ) dxxHI
x

x
∫=

2

1



 CHAPTER IV

SOM FAULT IMMUNIZATION MODEL

AND ALGORITHM

4.1 Mathematical Model of SOM Fault Immunization

        As we have seen in Chapter III, the mathematical model of SOM fault

immunization is based on the unsupervised learning of an SOM network.  Before

going into any further discussion, we should briefly summarize the learning

process of an SOM network.  In the unsupervised learning of an SOM network,

there is a single layer of output units, each fully connected to a set of input via

excitatory connections.  Only one of the output units, called the winner, can fire at

a time.  Let ( )miiii wwwW ,2,1, ,,, KK=  be the weight vector of neuron i , *jW  the

weight vector of winning neuron j , and I  the input vector set.  The winner is

normally the unit with the largest net input.

=ih k
k

iW ξ∑ ⋅ for the current input vector kξ  .

Thus,

kikj WW ξξ ⋅≥⋅* for all i .

If the weights for each unit are normalized so that 1=iW  for all i , then, the

above relation is equivalent to

        kikj WW ξξ −≤−* for all i .



24

This says that the winner is the unit with normalized weight vector *jW  closest to

the input vector kξ .  Therefore, each weight vector iW  is a class representative.

The network stops learning if each weight vector iW  is a winner with respect to

input vectors in its class and the intersection of all classes is an empty set class.

Suppose that weight vector iW  is the representative of a subset of input vectors, iI ,

when the network is implemented on a VLSI chip, the value of each weight vector

can be gradually altered by various causes as heat, electromagnetic field, or

radiation.  The problem is how to immunize the chip to make it tolerant to the fault

caused by the disturbance of the weight vector.  The relevant definitions are given

as follows.

Definition 4.1 Let iI be a subset of input vectors whose representative is iW  and

′
iI  be a subset of input vectors whose representative is iiW ε+ .  The vector iε  is

in between the lower bound iL−  and upper bound iiii ULU ≤≤− ε, .  Weight

vector iW  has fault immunization if ′= ii II .  iW  is called a fault immunized

weight vector.

Definition 4.2 A fault free space, )( iWF , with respect to the fault immunized

weight vector iW  is the cardinality of a set of all weight vectors obtained from

iiW ε+  for all possible values of iε  and the members in the class of iW  and the

members in the class of iiW ε+  are the same.
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Based on the mentioned definitions, we formulate the problem of fault

immunization of SOM network as an optimization problem as follows.

Problem formulation: Given a set of input vector and the number of classes, find

iW , for all i , such that

1. )( iWF  is maximum.

2. Each element of iL is maximum.

3. Each member of iU is maximum.

Consider an example of fault free space and fault immunization as shown in

Figure 4.1 and 4.2.  There are five classes in this case.  In Figure 4.1, the shapes

shown are the fault free spaces when the weight vector of each class is not at the

best location to achieve the maximum fault free space.  The best location of each

weight vector is illustrated in Figure 4.2. It can be noted that the fault free space of

each class is apparently increased and the members of each class remain the same.

Figure 4.1 An example of the fault free space when iW  is not at the

                  location of maximum  )( iWF .
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26

Figure 4.2 New weight location of the example in Figure 4.1 when

                  maximum )( iWF  is achieved.

4.2 Error Function and Random search

       In order to achieve the maximum fault immunization of any SOM network,

there are two problems to be considered.  The first problem is the unsupervised

classification of input vectors and maintaining the correct classes as all

corresponding weight vectors are relocated to the locations of maximum fault free

space.  The second one concerns how to relocate all weight vectors to achieve

maximum fault free spaces for all weight vectors.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
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Let jW  be the weight vectors of ( )tI j , a subset of input vectors at time t .

( )tI j  will be classify according to jW , into C  classes.  The two problems are

combined and solved with the following error functions.

( )tE = ( ) ( ) ( )tEatEa faultclass −+ 1 (4.1)

       ( )tEclass = ( ) ( )∑
=

−∩
C

j
jj tItI

1
1 (4.2)

       ( )tEfault    = ( )∑
=

C

j jWF1

1 (4.3)

where classE  is the class error,  faultE   is the fault free space error, and a  is a

constant such that [ ]1,0∈a .  The value of each weight vector is adjusted to

minimize ( )tE .  The adjustment is performed until ( ) ktE ≤  or Tt ≤ , where k and

T  are constants.  Fault immunization consists of the steps to minimize classE

followed by the steps to find the new location of each weight vector such that

0=classE  and kE fault < .  The value of k  may be zero.  The condition 0=classE

implies that each class reaches its stable state.  Set iI  will be used to find an

optimal location of iW .  Since the shape of each iF  is unknown, a random search

must be employed to find the new location of iW  and boundary of ( )iWF .  Here,

the technique of simulated annealing is applied for this purpose.  The detail of the

fault immunization is given as follows.
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4.2.1 SOM Fault Immunization Algorithm

    The algorithm, first, finds the location of each iW  to achieve 0=classE .

Then the algorithm applies simulated annealing search to relocation each iW  to

achieve minimum faultE .  The details are as follows.

1. Initialize all weight vectors to small values and a  =1.

2. Set iteration number as m  = 1.

3. Present the vector kξ  to the network.

4. For each input pattern,

5.    Compute the Euclidean distance ( )D  between each input vector

( )kξ  and weight vector ( )iW

ik WD −= ξ

6.   Compare the winning neuron with weight vector *w ,  which has

the closest weight to the input vector, is chosen as:

*jk W−ξ   = 
i

min ik W−ξ

7.     Apply the Kohonen learning rule to the winning neuron with

leaning rate, η  <<1.  The winner *j
W updates their weights as:

( )*** jk
old
j

new
j

WWW −⋅+= ξη

End for (each input pattern)

8. Set the new iteration number as 1+= mm .  Iteratively calculate of the 

steps 5, 6 and 7 until 0=classE .

9. Let *j
I  be the subset of input vectors designated by the winner weight 

vector *j
W .
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10. Use simulated annealing search to generate a new location of each weight 

vector *j
W  such that *j

I  remains the same.

11. Compute ( ) ( )∑
=

=
C

j j
fault WF
tE

1

1 .

12. If kE fault >  then repeat step 10 to 12.

4.2.2 Optimal Weight Relocation Algorithm by Simulated
Annealing Search

Let P  be a random number where 10 ≤≤ p , i∆  be the change of fault free 

space for class i and α  be a constant where 10 ≤≤α .

1. Set T to a fixed value or a temperature and old
faultE to a high value.

2. While minTT > do

3.   For all classes 1=i to C

4.  Generate a new location '
iW .

5.     Compute a new error new
faultE  using equation ( )3.4 .

6.     Compute the change of the error, old
fault

new
faultfault EEE −=∆ .

7.   If 0<∆ faultE or TE faulteP /∆−≤  then

8.    Set '
ii WW =

9.    Set old
faultE  = new

faultE

End if

End for

      10.    Set TT α=

End while
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4.2.3 Algorithm for finding Fault Free Space ( )iWF

Let ( )miiii wwwW ,2,1, ,......,,=  be the weight vector of class ,i  iI  be the 

subset of input vectors in class ,i  jL  be the lower bound of dimension j , and jU

be the upper bound of dimension j .  The fault free space with respect to iW  can 

be found by gradually moving iW  to a new location and verify whether iI  changes 

its members.  The location that iI  remains unchanged is called a .locationvalid

The value of jiw ,  must be constrained by the value of jL  and jU  in all 

dimensions.  All the valid locations will be ( )iWF .

Fault-free space algorithm for two-dimensional vectors

This algorithm finds the boundary of fault-free space for two-dimensional

vectors and then applies boundary integrals to compute fault-free area.

1. Start with a weight vector, iW , a step size length δ , and an azimuth angle,

azimuth .

2. Set an initial step size length, r , and an initial azimuth angle as 0=α .

3. Set  N = total of elements; azimuthN /360o= .

4. For 1=l to N

5.   Repeat

6.     Find a new location by setting ( )αcos⋅= rX l + iW  and
             ( )αsin⋅= rYl + iW .
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7.  Checks if there is no misclassification and [ ]jjj ULw ,∈  then

  set δ+= rr .

      Until any constraint is violated.

8.        Store the location obtained from the above step and initialize step size

      length, r .  And set azimuth+=αα .

     End for

9.  Compute fault-free area ( )FA  as:

( ) ( )1
1

12
1

+
=

+ +⋅−= ∑ ll

N

l
lliclass xxyyFA

This algorithm can be extended into three dimensions by adding an angle

of elevation and summing over it.

Multidimensional Integrals Algorithm

This algorithm finds the boundary of fault-free space for n-dimensional

vectors, then calculates fault-free space.

1. Set step length jδ  = ( nδδδ ,,, 21 K ).

2. Set an initial number of weight vectors that satisfied the constraint, incount .

3. Set each weight element 
2,
j

jji Lw
δ

+= .

4.   For all dimensions nj ≤≤1

5. Fixed the value of each kiw , , nk ≤≤1  and jk ≠ .
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6.         Set jjiji ww δ+= ,, .

7. Checks if there is no misclassification and [ ]jji ULw ,∈  then

Set 1+= ii ncountncount

      End for

8.   Compute fault-free space ( )FS  as:

iiiclass ncountFS δ⋅=



CHAPTER V

EXPERIMENTAL RESULTS

The algorithm is tested with four examples.  The data in the first example

are in a two dimensional space.  There are five classes.  Figure 4.1 shows the fault

free space when each weight vector is at a non-optimal location and Figure 4.2

shows the fault free area when the weight vectors are at optimal locations.  Table

5.1 indicates value of each weight vector at the location obtained from SOM

learning, called first weight, and the best location, called optimal weight, and the

fault free spaces in both situations.  The following abbreviations are used in the

Table: 1st Wt first weight

1st FS fault free space of the first weight

Opt Wt Optimal weight

Opt FS fault free space of the optimal weight

Table 5.1 Locations of the first weight vectors and optimal weight vectors

     as well as their fault free spaces for five classes.

Class           1st Wt         Opt Wt 1st  FS Opt  FS

1 2.734 2.771 2.874 3.189 2.803E+00 4.905E+00
2 5.332 2.262 5.814 1.582 1.688E+00 1.732E+00
3 5.369 5.402 5.822 5.061 1.148E+00 1.255E+00
4 2.771 6.738 2.546 7.628 3.108E+00 3.108E+00
5 6.107 7.598 6.182 7.573 9.838E-01 2.312E+00

The total fault free space before the immunization is 9.730483E+00 and after

the immunization is 1.331144E+01.
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The second example is the classical Iris data [ ]13  in a four dimensional

space.  This consists of details of petal and sepal dimensions of three different

species of Iris flower, namely, Iris sestosa, Iris versicolor and Iris virginica.  They

are classified into three classes.  Table 5.2 shows the value of each weight vector

at the location obtained from SOM  learning, called first weight, and the best

location, called optimal weight, and the fault free spaces in both situations.

Table 5.2 Locations of the first weight vectors and optimal weight vectors

     as well as their fault free spaces for classical Iris data.

Class      1st Wt    Opt Wt 1st  FS Opt  FS

1 5.006 3.450 1.452 0.244 5.042 3.372 1.468 0.247 2.048E-02 2.048E-02
2 5.991 2.600 4.001 1.330 5.996 2.600 3.975 1.337 4.096E-05 1.228E-04
3 6.698 2.999 5.555 2.199 6.670 2.940 5.618 2.241 4.096E-05 8.192E-05

The total fault free space before the immunization is 2.056192E-02 and after the

immunization is 2.068565E-02.

        Figure 5.1 Bird image.               Figure 5.2 Bird image with 100 classes.
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The third example is the image of a bird shown in Figure 5.1.  Each pixel

ip  of the image is considered as a vector, ( )iiii gyxp ,,= , in a three

dimensional space.  The location of ip  is represented by coordinates ix  and iy .

The gray-scaled color of the pixel is the value of ig .  The pixel is classified into

100 classes.  The total fault-free space before immunization is 1008.876883 and

after immunization is 1274.772590.

  Figure 5.3 Beach cloud image.             Figure 5.4 Beach cloud image with

      100 classes.

The last example is the image of beach cloud shown in Figure 5.3.  Each

pixel ip  of the image is considered as a vector, ip = ( )iiiii bqryx ,,,, , in a

five dimensional space.  The location of ip  is represented by coordinates ix  and

iy . The 256 level color of the pixel is the value of iii bqr ,, .  The pixel is

classified into 100 classes.  The total fault-free space before immunization is

4.483630 and after immunization is 4.548831.  From the experiments, the
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immunization improves the fault free space but the percentage of improvement

depending upon the density of the input vectors.  In the case of Iris data and beach

cloud image, the density of the data is high while the density of the bird image is

low.

For the last two examples, we applied the fault immunization to enhance

the reliability of the compressed image.  The compression is of a lossy type, that

is, some information is lost during compression, and is based on the vector

quantization concept.  The first image is a bird image and the second image is a

cloud image.  Without loss of the general fault immunization concept, we limit our

experiment to 100 classes due to the computational time.



CHAPTER VI

CONCLUSION

The problem of fault immunization in an SOM  neural network and an

immunization technique are introduced.  The efficiency is measured in terms of

the amount fault free spaces, which depends upon the density of the input vectors.

One direct application of these studies is to enhancing the reliability of the lossy

image compression by a technique of vector quantization.  Each weight vector acts

as a center of the cluster of the image pixels.  If there are some faults occurring in

the weight vectors these vectors still correctly represent the same clusters.

The problems studied as well as the results proposed in this thesis are still

in the infancy state.  Yet, there are other interesting further studies, that are listed

as follows:

1. In practical application, the situation of multiple faulty neurons should be

considered.

2. Since Simulated Annealing is a statistical approach, an important approach

would be to develop techniques for control parameter T  used in the

algorithm.

3. Other optimization techniques besides Simulated Annealing such as

Genetic Algorithm can also be used.

4. For conventional neural networks it takes up a lot of the computational

time so that the parallel computing should be developed.
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