CHAPTER V
METHOD OF WAVELET IN FIELD THEORY
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5.1 Definition

Following Best. C. and Schafer. A., hep-1at/9311031, hep-1at/9402012, a
wavelet We L*(R) -is a function whose binary dilations and dyadic translations
generate & Riesz basis of I*(R). That means any function in F(R) can be

expanded into a wavelet series,

3 TE° ()W (x)(x) 5.1)

nx—ee z'c [

¥

f(x)

where W™ (x')(x)e L'(R) . Denotes that the dilated and ‘translated wavelet

defined by

YO xNx)y o= 272 (x - X)) (5.2)

where n € Z' gives the scale of the wavelet, corresponding to a dilation by 2%, and

x' € " gives the position translation on the sublattice ™€ 2°Z of scale n. The
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coefficients S (x’) characterize a feature of the wavelet at scale n and position X’.
In this sense, the wavelet transform offers a mixed position-frequency
representation of the signal.

Wavelet in more than one dimension can be constructed by direct product.
We use an additional label ¢ = 1,.., 2°-1. That specifies their composition, It is
advantageous to put both wavelet and scaling function on the same footing using an

index t=0, 1
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Then the N dimensional scaling function (t=0) and wavelet (I=1,...,2D-1) are

given by
vowe = Tveee) (5.4

r=35,2" (55)

k=1

where ¢, are the digits O or 1 of the binary representation of ¢

6.2 Method.

. ‘g.'
65.2.1 Wavelet Representation ( Best and Schafer hep-lat/9402012)
Best and Schafer studied statistical field theories on the lattice in wavelet

representations. The lattice field S(x), xe I', is expanded over a wavelet basis.

Since our lattice systems are finite, N,7 are also finite, We get
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on a D-dimensional lattice I'=T" with 2DN sites, N giving the number of scales.

The sublattices T™ have accordingly ZD(N-n)‘sites; t=0 and 1,...,n = 20-1, denotes the
Cartesian compositio;n of multidimensional wavelets; = 0 is included only at the
topmost level n = N,; where ¥;* is the constant function. And, S thus gives the

average of S(x) over all sites.
5.2.2 Variational Principle

We employ the principle of minimal free energy to obtain an approximate
description of the probability distribution on the partition sum. In a trial ensemble
with probability distribution P(;{S(x)}) characterized by a set of variational
parameters O, we calculate the entropy S

S = JdS@)IPE SN In PO, 5(x) (5.6)

and internal energy

U = ldsmiPeLsopEGS®) . . G7) -

where H is Hamiltonian of the system and U =< # >,

By minimizing the free energy
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1
= U—-—38 (5'8)
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with respect to the parameters O, the best fit probability distribution is obtained.
We choose a Gaussian tria} probability distribution characterized by the expectation

values

G(m) §(n) ()
<SPS = 8, 8,47 59)
i.e., fluctuations of wavelet coefficients are assumed to be uncorrelated between
scales and between different wavelet positions. This ensemble make calculations

sufficiently simple and is, at the same time, able to describe nonlocal correlations

in position space. It can be considered an extension of purely local ansatz
<S> = 5§ A (5.10)

The introduction of different fluctuation scales in the wavelet transform hence
enables us to improve the description of nonlocal fluctuations. .
The entropy associated with the Gaussian ensemble is the logarithm of the

determinant of the correlation matrix which can be written as

{r}

S = Ef{tN lnA + const or

o 1 : _
S = -z-):,N,Tr In A + const (5.11)
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where N, = 27°N, is the number of sites on the sublattice I and the trace is

“~

taken over Cartesian composition indices f .
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