CHAPTER IV
THE RENORMALIZATION GROUP
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4.1 Introduction (Yeomans 1992, Ma 1967, Bellac 1991)

The mean field theory does not accurately predict critical exponents,
Attempts to improve mean field theory by perturbation also fails, because of the
divergence of correlation length, &, as system close to critical points.

‘The idea of the ' Renormalization . Group’-,' (abbreviated as RG) was
formulated by Stueckelberg and Pett;nnann (1953) and independently by Gell-Mann
and Low (1954) in the context of the divergences of quantum field theory.

L1 . . ” . + ]
Renommalization  is a procedure for making a theory finite. Such procedure is not
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unique and without originally. The “renormalization group” expressed the
invariance of the Physics under changes in the procedure. The other version was
introduced by K.G. Wilson who worked for his doctoral degree with Murray Gell-
Mann at CalTech. His work revolutionized the field of both critical phenomena in
classical statistical mechanics and quantum field theory, and was recognized by the
1982 Noble Prize in physics. The first RG version may be considered as the
special case of the later version.” The links between two version were cxamined in
chapter 7 in “Quantum and Statistical Field Theory” by M. L. Bellac.

The bé.sic concept of Wilson RG(Wilson 1974) originated from L.P.
Kadanoff that a divergent comelation length implied that there was a relation
between the coupling constants of effective Hamiltonian and the length scale over
which the order parameter was defined. But his idea did not make the critical
exponents calculatable, K.G. Wilson elaborated and completed Kadanoff's idea, by
showing how the relationship between coupling constants at different scales could
be explicitly computed. So the RG is thus capable to estimate the critical

exponents and also provides a natural way to understand un.versality,

4.2 Block spin or real-space renormalization (Wilson 1974)

Real space renormalization technique is closer to Kadanoff block spin idea.
This Fo;f_hnique is applicable to model based on a lattice having a “discrete scaling
symmetry . To clarify this means, consider taking a lattice and blocking it. This
means dividing the sites of the lattice into groups or blocks and then replacing each
block by just one single site which may be at the position occupied by one of the
sites that block or at some other position within the area covered by the block.

The lattice has a discrete scaling symmetry if we can ‘block it in a way that we
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produce a lattice exactly like the one we started with, except for an increase in the
lattice parameter a —> a’=la. The process of renormalizing the lattice by a
factor of [, gives us in the end exactly the same lattice as we started with,

If we group sites into blocks containing, p sites on average, then the
mnomaﬂzzd lattice will contain fewer sites than the original one by a factor p.
Since we have scaled our whole lattice by a factor [, its volume must shrink by a
factor I, where d is dimension. If sites in the renormalized lattice are arranged in
exactly the same way as those in the original one, their number must be reduced by
a factlor p=1.

The most common lattice displaying & discrete scaling symmetry is the
square lattice. Figure 4.1 illustrates the renormalization of the square lattice in two
dimensions. In this case [ = 2 and the lattice is left with a quarter of the number

of site it started with.
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Figure 4.1 Renormalization of square lattice, the linear dimensions of the lattice
on the right must be shrunk by a factor of / =2 to render it similar

to the original one
4.3 Basic Concept of the Renormalization Group(Wilson 1974, Bellac 1991)

The Renormalization Group consists of two principle steps. The first step is

coarse-graining transform which can be characterized in real space or in momentum
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space. In real space, the transform follows Kadanoff's concept of introducing
block spin variables. In momentum space, the aim is to eliminate high momentum
variables which correspond to short wavelength fluctuation, The second step is to

identif\y the origin of the singular behavior.
4.3.1 Properties of Renormalization Group Transform
, We consider a system described by the Hamiltonian
H = H(K K, .K,,...K,,.)
where K are the coupling constant;s. After we block spin or group together

the degree of freedom in a block of linear dimension ; , a = lattice spacing, the

new system can be described by a new Hamiltonian

H RH 4.D

|

We call such a transformation * renormalization group transformation , R, .
The R, decreases the number of degree of freedom from N to N’. The scale factor

of transform, I/, is defined by

; T
N
3 = ~ 4.2)

In general, R, is a very complicated non-linear transformation. Since !> 1,

there is no inverse transformation. The transformation R, for different /> 1 forms a
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- semi-group. The two successive transformation with =/ and /=1I, should be

equivalent to a combined scaled change of //,.

RIH'] = R (H]
[H] 2 RIH]
< R.R[H) 4.3)
and this '
R, [H] 7/ R, .R{H] 44)

The essential condition to be satisfied by any renormalization group

transformation is the partition function must not change.

Z,.(H)

it

Z,.(H) 4.5)

Therefore the total free energy remain the same and the reduced free energy

per spin, f transform as

f(H) = I“f(H) @6

free energy. The lengths, which are measured in term of the new lattice spacing

are reduced by factor /.

~
I

~
[

4.7
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Similarly the momenta, having the dimensions of the inverse of length are

renormalized according to

4.38.2 The Origin of Singular Behavior
Consider the following example of how singular behavior can arise. Let a |
particle move in one dimensional potential V(x), see Fig 4.2. The position x(t) is

determined by the equation

£ = -V{(x) (4.8)

(a)

Figure 4.2 (a) The i:)@tcntial V(x). The arrows on the x-axis indicate the direction
of motion of the particle as a function of x. (b) Position of the particle

after time ¢ as a function of initial position, for finite and infinite times.

If the particle is released from any point X < X, it will roll to X, and

stop. If the particle is released from any point from X > X, it will roll to X, and
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stop. Thus, the final position of the particle is a discontinuous function of the
initial position, X, Note thatX (t,Xo), the position at time ¢t after release at X,
is a continuous function of X, for finite values of ¢, but a discontinuous function of
X, when t=oco, The potential V(X) is perfectly analytic, so the singular behavior
is not due to pathologies of V(X).

In fact, the origin of the singular behavior is the amplification of the initial
condition due to the infinite time Limit.

The points X,, X, and X are the fixed po:l'nrs of equation (4.8), if the‘
particle is at fixed points a.t some time, ¢’, then remafns there for ¢t >t’. There are
two varieties of fixed point, repulsive and atiractive. If the particle starts off near .
the fixed point X, it will always end up either X, or X, , but never at X.. On
the other hand, if the particle starts off near either X, or X it will end up at that
fixed point.

The set of initial conditions {X,} which flows to a given point is called
“the basin of attractive of that fixed point”. In the example, the basi;a of the
attraction of X is X >X., while the basis of attraction of X, is X < X, the

 basin of attraction of X is X = X..

This can be analogous to a dynamical system of a infinite number of
renormalization group transformation. After n RG iteration, the system is described
by coupling constants, K;,K ..K] . |

As'n va(ics, the system may be 't[}ought to be represented by a point
moving in a space whose axes are coupling .c.:oﬁnstant, K.K..K .

On iterating renormalization group transformation, a given system
represented by its initial set of coupling constants, traces out a trajectory in its

coupling constant space.
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The set of all such trajectories, generated by different initial sets of
coupling constants, generates a “renormalization group ﬂow_” in coupling constant

»
space .

4.4 Fixed points(Ma 1967, Bellac 1991 Binney 1992, Yeomans 1992)

The crucial thing about renormalization group method is the recognition of
the importance and the physical significance of fixed point of renom_lalization‘ group

transformation. More detail we will discuss below.
4.4.1 Physical Significance of Fixed Point
When we know the renommalization group transformation R,[H] or R, [K]

then the fixed point of the renormalization group transformation is the point [K"]in

| coupling constants satisfying

(&) R.[K"] (4.9)
Under the Renormalization Group Transformation R, , length scales are
reduced by a scale factor /. For any particular values of the coupling constants,

we can compute the correlation length, g, which transforms under R, according to

&k ]

E[K}/! e e e (8.40)

This indicate that the system moves further from criticality after a renommalization

group has been performed. At a fixed point,
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N4 = Elk’1/1 | 4.11)

implies that E[K"] can only be zero or infinity. ' We call a fixed point with £ =<
as a  critical fixed point”, and a fixed point with & =0 as a “trivial ﬁxled point”.
In general, a renormalization group transformation have severai fixed
points. Each fixed point has its own basin of interaction. All points in coupling
constant space, which lie within the basin of attraction of a given fixed po?int flow
towards and ultimately reach the fixed point aftcf an infinite number of iterx;ﬁons of

R, .

, . The set of points, the basin of attraction of critical fixed points, is often

called “ critical manifold or critical surface .

The fact that all points on the critical manifold flow toward the same fixed
point, is a basic mechanism for universality, which involves a behavior exhibited
by a system close to, but not, at its critical point. So the knowledge of fixed
point of renormalization group transformation enables the phase diagram to be
determine.; while the behavior of Renommalization Group flow near a critical fixed

point determines the critical exponent.
4.4.2 Behavior near a Fixed Point, Critical Exponent
Let K = K, +8K, 4.12)

so that the starting Hamiltonian is close to the fixed point Hamiltonian i.e., the_

. Hamiltonian with the coupling constants equal to their fixed point values.

H = H[K'] (4.13)
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Let H=H"+3H, now perform a renormalization group transformation
(X’ = R,[K]
then [k]) = KIK]l =  K,+8K 4.14)

with 8K’ given by Taylors theories

. oK’
KK, +8K, K, +8K,,..} = K + ZaK" SK_+0((6K)*) @.15)
'\ miK, <K,
So that
5K’, = Y M 5K @.16)
oK’
where M. = 4.17)
oK,| .

is the linearized renormalization group transformation in the vicinity of the fixed
point, K..- The t-natrix M is real, butit is not symmetric, in general.
Consequently, M is not diagonalized and its eigenvalues are not necessarily
real. O J
Let M' be the linearized renormalization group transformation where the
superscript ! denotesthe “scale" factor involved- in' the “Renormalization "Group
“Transformation R, For simplicity, we assume that M is symmetric. We denote

the eigenvalues and eigenvector by X®and /) respectively, where G labels the
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eigenvalue and [ subscript n labels the component of the vector [. Using the

Einstein summation convention, we have

M@ = l(” l: (4.18)

From the semi-group properl:iés we have

L ’

MM = M . (419)
and thus

A}U)),(.u) = Af:) (4.20)
This constrains the eigenvalues to be in the form
A = I (4.21)

where y, are independent of the scale factor /. The y are critical exponents
which can be related to L, B R -
For a Hamiltonian near fixed point XK', the deviation from the fixed point

may be expanded in term of the eigenvectors of M, &

K = K+ 2g®e 4.22)

The coefficient g are termed the linear scaling fields. Under renormalization

K’ = K+ Xleg@e® 4.23)
a
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or, more shortly

P g® 4.24)

gl(d)

'From (4.24) the flow of a Hamiltonian within its parameter space depends on the

set of scaling fields g, describing the original position of the Hamiltonian, and
on. the form of y,. For a positive y, the scaling fields g@ inc:?easc under
repeated iterations of the renormalization transformation and drive the s;(stem away
system from the fixed point. This is called a relevant field.

If y, is negative the corresponding scaling fields decrease under repeated
iterations of the renormalization transfomation, with the system moving closer to
the fixed point. These scaling fields are called irrelevant field.

If any y, is zero, the corresponding scaling fields are called marginal field.
This case, which allows a continuous variation of exponents with an interaction
parame.cr in the Hamiltonian, will not be reviewed further here. Thus the stability
of a fixed point depends on the number of relevant and irrelevant fields or their

eigenvalues, .
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4.5 The RG on Landau-Ginzburg Model (Bellac 1991)

In this section, we review the Gaussian fixed point and _the linearized RG
in its neighborhood. The Gaussian fixed point provides a description of critical
behavior for d > 4, and the case d = 4-€ with small € > 0 is discussed. In
addition to the Gaussian fixed point, there is a another fixed point which often

called Wilson-Fisher fixed point (Goldenfeld 1992).
4.6.1 Transformation in Fourier Space

We begin with the Landau Ginzburg model for n component spins in D

dimensional space. We shall write the Hamiltonian as

b r 2 [ o -‘
H = |d 11_%(VS(x)) +%S(x)’+%.$‘(x)‘ ] @. 25)

The process of RGT can be done in real space by block spin transformation
or in momentum space. In this case it is convenient to use the momentum

representation. The RGT in Fourier space can be done by integrating over wave

1 Al .
numbers between A=-Z and A'=;—=E when a is lattice spacing, ! is scaled

factor. We introduce the Fourier Transform §(k) of S(x) by

Sy = HZes o= [EEees @.26)
N X * L?. :
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where L is the size of the system, when ¥, is zero, (4.25) corresponding to the
Gaussian model and in the momentum space, they become a simple form, By

Parseval’s tﬁeomm, we find

H = %%(ro+ck’)§(k)§(—k) {@. 27)

Instead of writing the integration measure for the partition function in the space
spanned by S(x), one can write it in the space spanned by the. S(k). Because

the transformation §(x) — S(k) is unitary to a multiplicative factor

I1ds¢) - “HAdS’ (3]

J Hd&' (k)ex;{%l ;(ro +ck?)§ (k)T (—k)] 4.28)

N
i

- We have summarized the RGT, R,, in Fourer space which is subdivided into
three steps.

1) Integration over k;

«’% € k€A
2) Dilation of unit length ; L
x 5> X = %
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3) Renormalization of field;

S(x) - $(x') 1“5 (x)

S k) — S(k")

H

Id,-n'zg(k)

when d¢ is called canonical dimension of field and equals to D/2-1 in Gaussian
model. 1.?‘Je can wrte down the relation for the transformation Hamiltonian

H'=RH,

g
e =4 [I AHd§ (k)e ™ 4.29)

T JS(&)-J‘""*"S'(M
Thus, for. Gaussian model, the set of coupling constants or parameter space is two
dimensional; [K]= {c,r,}. We integrate over dS (k) yields a constant. Since we
are dealing with a product of decoupled Gaussian integrals, the new Hamiltonian

is

Hf

3o RS )

e (%} @30) -

kSA

Note that S(—k)=5"(k), we $0 write S(k) instead of §(k). The new Hamiltonian

H’ has the same form as its original, with the substitution the parameter space by

C’ = ) lD-z-Zd,.c; ’: = lD-—:d,ro (4.3 l)



These two equations allow two fixed points

1) D-2d, =0, r, arbitrary, ¢ =0
(i1) D-2-2d_ =0, ¢ arbitrary, 1, =0

The case (ii) is more interesting, the fixed point is defined by [K]} ={c,r, =0}

* where ¢ is arbitrary, on the other hand 7 =[’r, . This shows that r, is a relevant
' 1
field with y=2, where v =3

4.6.2 The Gaussian Fixed Point and Wilson-Fisher Fixed Point

Now we investigate the Landau-Ginzburg Hamiltonian. The term with

S(x)* is complicated in Fourier space, like

Ja?xs ()t = L® ZS0IS(k)SKIS (k= k,~ k,) 4.32)

(Bt Rat

It is impossible to find a space where all these terms are simultaneously
simple.' So we must use are approximation method. The standard method is the
perturbation expansion in the power of u,. Therefore the Hamiltonian H is

subdivided into a Gaussian term, H,, and an interaction term, V.
o [ 4o 4 .
H = H+V, Vo= zfd x8(%) 4.33)

When we apply equation (4.29) in order to evaluate the integral over the dS(k),

we write

St

)

S,( \') + §(\)
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A T
where §(x) has Fourier component in the range OSkST and S(x) in the

range %SkSA. From equation (4.29) the integration measure is DS(x).

Disregarding dilation for a moment, We find

s JDS (X)exp(=Hy(5) -V (5,,5)
¢ I DS exp(~H,(5))

-”,'

4.34)

If we neglect the second order and higher order in u,, the new Hamiltonian H, is

o | DS exp(=H,(3)V(S,.5)
Bo= H(S0+ ) DS exp(—H,(5))

+0(u?) 4.35)

Our work in equation (4.35) is to evaluate the average of a polynomial over a
Gaussian probability distribution. In fact, we have to find < §(x)5(y)>, where
the subscript 0 means average calculated with Gaussian Hamiltonian H,. The term

<S(0)F (y)>, is already known. It is the correlation function of the Gaussian

. model.
- = d’k "¢
<§(x)S(y)> =
(x)S(y) >, “JA @r) ke 4.36)
, A :
In our case, where the ;ntegral k runs between T Sk <A, the result is
- — L .. dbk e--.lk.(x‘y)
<S(x)S(y)> =  G(x- = K
>, A(x-) _J ey ear | @D

Reverting to the calculation of the <V(S,,5)>,, we have

<(5,x+5 () > = SHE+68Hx)<T0F () >, +< 5 (1) >,




The final term is a constant and can be dropped. The second term equals to

65?(x)G,(0). Therefore the Hamiltonian H; become

1 1 Uy o0 M — .
H = fd";{—z-(VSx)’+-2-roSl’+4—‘;Sl +-fsf(x)cro(0)]

In order to obtain H’, it remains only to implement the dilations.

i . _!_ rond l 1 ﬁ_ #2
. H' = Jdnxrln-zd,- 2(VS) +zl (';)+ 5 Go(O))S (x) }

-2d; U, ] 4
+17 ZQIS(x) ] (4.38)

If we keep the kinetic term equal to 1/2, since the Gaussian model

d;=(D/2-1) and n =0, the transformation of r, and u, become
{ oz
“ = HurGo

u Pu, =1lu, - (4.39)

Now we evaluaté"“‘(-}‘;(O). Since when taking r, >0,  we can take
I . K )

r,<<A/l. Then we obtain

. -
C ?dk_ﬂ-o(ro)

. A

G,(0)

)]

D-2

D=2

C

(1-1"7}+0(x)
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= 2B(1-P)y+0(;)

Equation (4.39) have a fixed point at u,,7, =0. When linearizing in the vicinity of

fixed point, we get the matrix of transformation

i 2 B([Z § | t: )
! =
M = [ SA\\H J (4.40)

The eigenvalues of tl"’gis matrix are A ={° and A-=0". Thus fore <0 or D
> 4, we have two eigepvalues which one equal to 2 and € <0, which show the
stable fixed point called Gaussian fixed point, with one relevant field and one
irrelevant field.

In case £ >0 or D < 4 the cigenvalues are both positive. This corresponds
to the unstable fixed point called non-Gaussian fixed point or Wilson-Fisher fixed

point,
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