CHAPTER 11
DECOMPOSITION AND RECONSTRUCTION BY USING WAVELET
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This section we will review how wavelet decomposition work. There are
* two ways to decompose by wavelets. One is by using wavelet basis directly and
.-one by usingfilter coefficients. Before doing this, we will review the concept of

periodic extension first.
2.1 Periodic Extension (Newland 1994)

The purpose of the wavelet transform is to decompose any arbitrary signal
f(x) into an infinite summation of wavelets at different scales according to the

expansion
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The interpretation of this expansion can be seen from Figure 2.1. Here the

Haar wavelet is used and all wavelet amplitudes C,, are taken to be unity. The
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diagram shows level -3, -2, -1, 0, 1, 2 comesponding to j = -3, -2,

i, 2.

Figure 2.1 Haar wavelets with unit amplitude plotted for levels -3, -2, -1, 0, 1, 2.
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At level O there is 2 =1 Haar wavelet in each unit interval, at level 1 there

- . are two wavelets per unit interval; ‘at level 2 there are four wavelets per unit

intervals and so on. At level -1 there is one wavelet every two intervals; at level

-2 there is one wavelet every four intervals and so on. We can see that for j<—1

the contribution of each wavelet is constant over unit intervals. It follows that the

sum of the contributions from all these levels is also constant.

function of the Haar wavelet is

Since the scaling
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¢ (x) = 1, 0<x<l1
In this example, it means that
PRIRTOERS = Zc.0G-k @2)

From (2.2) the expansion can be written in an alternative form:

4

f(x)
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In order to use discrete wavelet transform algorithm, it is convenient to
limit the variable x to one unit interval so that f(x) is assumed to be defined only
for 0<x<1. Now we shall consider a wavelet series expansion that holds for the
interval 0S x<1. A complication arises at the edge of this interval because some
of the wavelets y(2'x—k) overlap the edges. To avoid this problem, it is
convenient to assume that f(x), 0<x<1, is onc period of a periodic signal so
that the signal f(x) is exactly repeated in the adjacent unit intervals to give

F(x) = X f (x=k) 2.4)
where f(x) is zcro:l_.l.tside the interval 0<x <1, .

Suppose that we use D4 wavelet, y(x), which occupies three unit intervals,
0<x<3, f (x)--will receive- contributions from. the. first.third. of y(x), the middle
third of y(x+1) and the last‘thi.lfd—of Y(x+2). This is the same as y(x) is
“wrapped around” the unit interval, From (2.3) the wavelet expansion of f(x) in

0< x <1 can be written as |
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The coefficients a,,...,a, give the amplitudes of each of the wavelet.

2.2 Basic Method (Newland 1994)
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First we consider discrete wavelet analysis where the signal, to be analyzed

is assumed to have been sampled at equally spaced intervals. If the input signal

covers the range of r from 1 to N when N = 2", we have to use n +1 wavelet

. 7
levels for the decomposition. So when N = 128 = 2, there are eight wavelet

levels as shown in Figure. 2.2.
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Figure 2.2 Analysis of a square wave with 128 data points, into D4 wavelet

component {a) square wave, {b) and (c) wavelet in each levels
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Figure 2.2 Analysis of a square wave 128 with data points, into D4 wavelet

component (a) square wave, (b) and (¢) wavelet in each levels
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Figure 2.2 Analysis of a square wave 128 with data points, into D4 wavelet

component (a) square wave, (b) and (¢) wavelet in each levels
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Figure 2.3  Reconstruction of the square wave from D4 wavelet components
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Figure 2.3 Reconstruction of the square wave from D4 wavelet components
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In Fig. 2.2 and Fig. 2.3, the D4 wavelet is used and the shape of this
wavelet appears in the top of Fig. 2.4. It is drawn in the scale of level 3 in Fig.
2.2. Notice that in this level our wavelet basis have 3%2° < 48 points which
occupies only some part of the length of the signal being analyzed. To cover the
whole length, additional wavelets have to be added. At level 3, there are 23 =8
wavelets along the horizontal axis. Each is placed 128/8 = 16 places with respect
to its neighbor. Three adjacent wavelets are shown superimposed in the second
view in Fig. 2.4, and added together in the third view. The bottom view in Fig. 2.4
shows all eight wavcle'té at this scale added together.

In the next higher level, at level 4, in Fig. 2.2, our wavelet basis becomes
3*23 = 24 points and there are 16 wavelets placed 8 spaces apart. For level 5; the
wavelet basis becomes 3*22 points and there are 32 wavelets spaced 4 apart. At the
highest level, with 3%2' points basis, there are 64 wavelets spaced 2 apart. Level
0, has a single wavelet and level -1, has a single scaling function.

The important thing for &ecomposing by using D4 or DN when N24
wavelet is the periodic extension, which does not ocour i D2 or Haar wavelet.
For the above example, in the level 0, our basis have 3"‘27 = 3*128 points which
are three times of the input signal So we have to extend the input signal three

times and finally we wrapped around.
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Figure 2.4 D4 wavelets at the scale of level 3 in Figure 2.2




2.8 Filter Coefficients Method

From section 1.8.1 it has been shown that the characteristic features of the
scaling function and wavelet depend on the set of filter coefficients, 50 we can use
the set of filter coefficients as a tool to decompose function likc the basis function.
This method was discovered by Daubechies (Daubechies, 1988) and the source code
has been shown in Numerical Recipes in C by Press, W.H, et al., 1992.

The algorithm for; numerically calculating th? discrete wavelet t.ransfoqn
(DWT) is similar to that oi‘ the Fast Fourer Transform (FFT) algorithm. It can be
represented as a permutation of data elements followed by matrix operation. When
this process is carried out iteratively, we get a corresponding transform. Similarly
to Fast Fourier Transform, the data must be of length 2", ne N, and the length

of wavelet tran.sform must also be 2°.
2.3.1 Forward Discrete Wavelet Transform

The DWT differs from the FFT in its matrix operation. We can
draw a diagram which should make the operation of the DWT clearer. The
algorithm acting on a data of length 8 is represented in Figure. 2.5. The filter
operation can be represented as a matrix operation and consists of the application of
objects know as quardrature mirror filter (QMF). * The elements of column vector

(VI) correspond to a,,a, ,a,,...which are the coefficient of the wavelet expansion.

The form of the QMEF depends on the basis for the decomposition. In D4 .

case, the high pass QMF will be of form [Cy—Cpcp—C@] that corresponds to
coefficients of the wavelet which represents the data’s “detail” information, and

the Jow pass QMF wili be of from [co,c,,cz,c,] that corresponds to coefficients of
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. . k] 113 ”. . .
the scaling function which represents the datas smooth information. These are

mutually orthogonal. The filter matrix for a length 8 data is

-co G & &G ]
&G 6 G =G
G 6 6 G
&G =6 ¢ =G (2.6)
€ ¢ &6 6
€ —¢ ¢ —¢ ‘
&G 6 . . ¢, ¢ .

cI _CO C! _cz ~

The vcrj important point is that the matrix wraps around in the last
two rows, This is mathematically how we extend the wavelet basis elements
periodically. Operation of this matrix on column (I) retum column (I) in Fig 2.5.
The permutation rearranges the new data elements info “low” and “high”
frequency components. This results in column ().  Operation on the lower ﬁalf
of column (I) is now complete. The same operation is now carried out on the top
half of column(IV). In this case, the data are of length 4, and the filter operation

is given by the matrix.

6 ¢ ooc | @

Operation with this matrix on column(IIl} gives column(IV); A permutation - ¢

carried out on column(IV) gives column(V). We then perform a filter oparation on”

the top two elements of column(V). The filter matrix for this I also wrapped
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around, and using the values for the filter coefficients in the D4 case yields [see

Appendix C].

c,+c, ¢ +c, } 1 [1 1]
| = —=] (2.8)
l:c,+c, -c,—¢, V201 -1

This is the final operation, and column(V]) is the DWT of the original data.
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Figure 2.5 Pictorial representation of algorithm the DWT. The operation consists

of the recursive application of a filter followed by permutation.

2.3;2 Inverse Discrete Wavelet Transform

We can define the inverse discrete wavelet transform in a similar fashion to
way in which*we defined the forward discret wavelet transform. In this case, the
matrix or filter operation is given by the inverse of filter operation used in the
forward transform. It is easy to show that the filter operation is unitary by using
the properties of the filter coefficients. Then the inverse of filter operation is the

transpose of forward of filter operation. Using D4 the discrete wavelet transform



53

and the inverse wavelet transform when input data are two cycles square wave as

section 2.2, has been shown in the Appendix C,

_2.4 Two: Dimensional Discrete Wavelet Transform (Meyer 1993)

The discrete wavelet transform can be extended to ‘two dimensions in the
same way as the one dimensional discrete. Fourier Transform was extended to two
dimensions. The two dimensional expansion has basis as ¢(x)0(y), G (XY (y),

V()¢ (), v, ¢xW(2y), ¢(x)y(2y—1) and so on. Therefore a two

dimensional function can be written -as

f(x) = W(x)AW'(y) (2.9)
where
W) = [000) wix) y2x) ﬁ:(zx-n V(42).. Y(2'X—k).... | (2.10)
W(y) = [¢.(y) V() V29 ¥Ry~ Dy Ey) w2 y=k)... | | (2.10)

and B

S 2.11)

If the one dimensional data lengths are 2 and 2™, then the order of matrix

A are 2 * 2",
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If the function | f(x,y) can be represented by a two dimensional matrix
F(2" *2"), its two dimensional wavelet transform A(2**2") is calculated by
repeated the one dimensional discrete wavelet transform, like the way the two
dimensional discrete Fourier transform is calculated by repeated the one
dimensional discrete Fourier transform. The inverse two dimensional discrete
wavelet transform is calculated in the same way, beginning with the A-matrix in
(2.11) and making repeated use of the one dimensional inverse discrete wavelet
transform. ; _

There is an interesting thing when; we compare A matrix tn.Figl.m: 2.5 in
two dimensions. The matrix A can ‘be divided into submatrices or subbands in
signal analysis. Figure 2.6 shows the original image with 128*128 points and its
discrete wavelet transform 128*128 matrices, A., by using D4 wavelet. Figure 2.7
shows successively higher levels of reconstruction of the image. In case that each
all the elements of matrix A is set equal to zero except for a submatrix in the top

left-hand comer in (2.11). The order of non zero submatrix of the element of A is

progressively increased to cover the range 4%4, 8*8, 16*16, 32*32 and 64*64.

Figure 2.6  Two dimensional image with 128*128 points and its discrete wavelet

transform.
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Figure 2.7 Progressive level of reconstruction of image calcuiated by D4 waveler

with non zero submatnx 4%4, ¥*8, 16% 16, 32%32, 64*%64, |268¥%]28,
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