CHAPTER 1
WAVELET THEORY

Contents

1.1  What are wavelets ?.

" 1.2 History of wavelet

i.3 From Fourier Transform to wavelet Transform

i.4 Continuous wavelet transform

1.5 Discrete wavelet transform

1.6 Multiresolution analysis

1.7 Simple solution of dilation equation and examples

1.8 Daubechies wavelet (compactly supported wayelet)
1.8.1 Collected Filter Coefficient Condition
1.8.2 How to Generate Scaling and Wavelet function

1.9. Two Dimensional Wavelets
1.1  What Are Wavelets ?
Wavelets @d;delettcs in French) are functions that satisfy certain

requirements. The name “wavelet”(oscillatoxy + little) comes fmm the

requirements that they must be oscillatory above and below the X-axis and the

amplitudes quickly decay to zero'in the both positive and ‘negativé-directions. :‘See = =

Figure 1.1 for an example Q_f_a__wavelct (this is a classical wavelet, often called

Morlet mother wavelet).




The required oscillatory condition leads to sinusoidals as building blocks
(see Figure 1.2). The fast decay condition is & windowing operation (see Figure
1.3). These two conditions must be simultaneously satisfied for a function to be

wavelet,

g (X) z o

Figure 1.1 Morlet mother wavelet (Sattayatham, 1995)
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Figure 1.2 Oscillatory or wave requirement (Sattayatham, 1995)



"Little", but not a wave
does not oscillated

decays quickly to zero

Figure 1.3 Decay requirement (Sattayatham, 1995)

Wavelets are used as basis functions in representing other functions (The
original wavelet is denoted mother wavelet, W (x)). Each element of a wavelet set

is a scaled (dilated or compressed) and translated (shifted) mother wavelet which is
indexed by parameter a and b respectively.

y,,(x) =00 ) Y((x—b)/a)
when ae R*',be R

Figure 14 and 1.5 display several elements of such a wavelet set
corresponding to Morlet’s wavelet in Figure 1.1, Note that the scaled wavelets
include an energy normalization: term,-1/ Ja , that keep the energy of the scaled

wavelets the same as the energy in the original mother wavelet. Morlet's wavelet is

~ continuous but not orthogonal. so it is not powerful for application.

Wavelet theory can be employed in many field and applications, such as
image analysis, communication system, rudar, air acoustics, theoretical mathematics,

etc.
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Figure 1.4 Scaled and Translated Mother wavelet (Sattayatham, 1995)
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Figure 1.5 Negative Scaled Mother wavelet (Sattayatham, 1995)
1.2 History of wavelets
Wavelets were introduced in the early eighties by J. Morlet (Morlet 1983), a

French geophysicist at Elf-Aquitance, as a tool for signal analysis, especially for

seismic data. The numerical success of Morlet incited A. Grossmann to study the



wavelet transform, whose tittle showed the name wavelets of constant shape that
becomes a part of mathematic foundation (see Grossmann & Morlet, 1984), In
1985, a harmonic analyst Y. Meyer became aware of this theory and recognized
many classical results in it. Meyer pointed out to Grossmann and Morlet that there
were connection between their signal analysis method and existing powerful
techniques in mathematical studies of singular integral operators. Then, Ingrid
Daubechies became involved. All this resulted i;1 the first construction of a special
type of mee(thq;_ concept of frame generalized the concept of basis in Hilbert
space)‘ (see Daubti,chics, Grossmann & Meyer, 1986) It was also the start of cross-
fertilization between the signal analysis application and the purely mathematical
aspect of techniques based on dilation and translation.

In 1988 Daubechies provided a major breakthrough by constructing families
of orthonormal wavelets with compact support (see Daubechies, 1988). She was
inspired by the work of Mallat and Meyer about multiresolution analysis, and by
Mallat's algorithms for image processing (see Mallat 1988,1989).

All these activities created quite a stir among mathematicians. Apart from
the application to signal analysis, the orthonormal wavelets could be useful in
Physics also. The first application, to quantum field theory, can be found in Battle
& Federbush, 1987. From the numerical analysis point of view interest arose in
fast techniques (by analogy to fast Fourier transform) that certain integral operators
can be transformed into other operafc;fi with dominant diagonals (see Beylkin,

Coifman & Rokhlin, 1991).



1.3 From Fourier Transform to wavelet Transform (Kaiser 1994, Daubechies

1988)

In this section I explain about time-frequency localization and the
dev_clopmcnt from Fourier analysis to wavelet analysis, Let f(¢) be a function ‘
depending on time. If we are ifterested m its “frequcncy content or spectmm”,
our first work is to compute its Fourier transform.,

£

]
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Since the integral in Fourier transform equation extends over all time, from
—0Q to 40, f (€) ‘arises from an average over the whole domain of f(t). If some
points in the lifetime of f(r), there is a local oscillation representing a particular
feature, this will contribute to the calculated Fourier transform F(C), but its
location on the time axis will be lost. There is no way to know whether the value
of f (€) at a particular { derives from frequencies representing throughout the
life of f(t) or during just one or a few selected periods.

This problem can be solved by the windowed Fourier transform (short time
Fourier transform). Here the function f is the first windowed by muitiplying it
by a fixed g(t) usually with compact support, this effectivelyi__ restricts f to an
interval (See Figure 1.6).

Then the Fourier coefficients of this product are computed. This process is
repeated with shifted versions-of gie., g(t—nt ), ne Z, leading to*afamily of =~ -+

windowed Fourier coefficients, , L o
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Figure 1.6 The inner product of window function with given function
S, = Jf(s)g(s~nt,)exp(~imC s)ds (1.2)

with mneZ. Similar coefficients also occur in a transform first proposed by
Gabor for data transmission (Gabor, 1946). These coefficients can also be viewed
as the inner products of the f(z) with the discrete coherent Siates,which are well
known in quamtum physics. ( see Klauder-Skagerstam 1985, Ballentine 1990).

, g..(1) = exp(—im{ Os) g(t—nt 0) (1.3)

We assume g is real. Each g, consists of an envelope function, shifted by nf,

and then ' filled in~ with oscillations (see Figure 1.7); the index n gives us the

time localization of g ,, the index m gives us its frequency.
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g(x) , "

Figure 1.7 The window function

Another powerful method is the wavelet transform. The wavelet transform
is similar to the windowed Fourier transform in that it also computes inner products
of f with a sequence of function ¥, & with m indicating frequency localization,

and n indicating time localization,
W) = ¥ o (14)

but the ¥ are generated in different way. The bar symbol means Hemmitian
conjugation,
The basic wavelet ¥ is typicaily well concentrated in time and in frequency,

and has integral zero.

il
(=)

JW(e)de
This means that the basic wavelet ¥ has at least some oscillations. The ¥ are

then generated by dilation and translation (from the first section, let a=a; ;

b=nbal).

(L5) .
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¥ (1) = a"(a;"t-nb,) (16)

where a,>1 and b, >0 are fixed parameters (similar to the { ,z, in (1.2)) and m,n
range over all of Z). Changing m in (1.6) can compress or expand the oscillations
of ¥ into a smaller (m > 0) or larger (m < 0) width i.e., to wavelets with higher or
lower frequency ranges. For fixed m, the ¥ are then ‘¥, ,translated by nagb,,

i.e., the wavelets are translated by the amount proportional to their width.

.

VTN T

Figure 1.8 scaled and tmnslafed wavelets

A few typical wavelets are illustrated in Figure 1.8. It is clear that high
frequency wavelets are namrow, - and vice versa. — This is the main difference

between the wavelet transform and the short time Fourier transform:-- g = of

windowed Fourier transform all have the same width. This is the defect of :

windowed Fourier transform because when we choose a wide window, we will miss

high frequency (spike) or if we choose a narrow one, we will miss the periodic

component of our signal. Therefore it can be expected that the wavelet transform
is | well adapted to functions, signals or operators with highly concentrated, high

frequency components and superposed on longer lived low frequency components.

\p"bwith a<l

0

W) b>
Ywith a>1
b<0
X
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1.4 The Continuous Wavelet Transform (Daubechies 1988)

Here the dilation and translation parameter a,b vary continuously over R.

That is, we define (in one dimension, for higher dimensions see later)
1 _ x-b
¥ = G 1.7
" [ ( g ) (1.7)

with a € R*.be R, then ' ‘

R 5 N VR T

[ F(C)a" W (at, ) (1.8)

and

s, >, 552 2] 1F QDN at g 2

25C, < f,g> a9

provided that

n
n

. H a 2
Jg | a Jle T bece f G <o (1.10)
Since we require that C, is finite, the integrand defining G, should be integrable at

€ = 0. This implies that §(0) = 0, which says that the mean value of the

wavelet y shouid be zero: J‘P(.r)dx = 0as in (1.5). So y must change its signs
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on R; w(x) will also decay to 0 as x tends to +es, In Figure 1.8 we take the

wavelet

-~

1
y(x) = (1=x")exp(-7x)

the Mexican hat. The graph of Wy looks like a traverse section of a Mexican hat.
. 1 .
~Up to a constant, | is the second derivative of the Gaussian exp(—-ix’). We -

know that
. 1.,
V() = JEC’exp(-“z"C )
and that C' = 2%

Formula (1.9) can also be written as

db

F(x) =i ]< FE, S (x)da-— (L.11)

fl

2rnC, ~

with weak convergence in Lz-sense. Note that (1.11) is called the resolution of
the identity and can be read in two different ways: it can tell us how to reconstruct
f from these wavelet cc{efﬁcwnts once we know the the < f,\¥,, > and it also
gives a recipe for writing any arbitrary f as a superposition of ¥,

The continuous wavelet transform is useful when one wants to recognize or
extract fcatu;'es. Scali‘ﬁg or t@nslating of f leads to a shift of the (wf)(a,b) in a
and b, so that the whole analysis can be made to be scale and translation invariant,

a desirable property in some applications. Of course, it can be cumbersome 10 deal

with very redundant (wf )(a,b).
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1.5 The Discrete but Redundant Wavelet Transform. Frame

The wavelet family (1.6) and the wavelet transform (1.4) can be viewed as
discretized version of the continuous wavelet transform, with a, b restricted to
a=a; ; b=-nboa;'

Generally the discrete case, there does not exist, in general, a “resolution
of the identity’ formula anelogous to- (1.11) as in the continuous case, These:
discrete wavelet transforms often provide a very redundant description of the
original function. These redundancy can be exploited (for instance, it is possible to
compute the wavelet transform only approximately, while still obtaining
reconstruction of f with good precision) .

The choice of the wavelet ¥ used in the continuous wavelet transform or in
frame (generalized basis see more in Daubechies (1992)) of discretely labeled
families of wavelets is essentially only restricted by the requirement that -Cy» 85
defined by (1.10), is finite. For practical reasons, one usuaily chooses ¥ so that it
is well concentrated in both time and frequency domain. For any such ¥, one can
then find threshold values such that if a,, b, are chosen below these thresholds, the
redundancy is eliminated (Daubechies 1988,1990). For example, if we choose
G,=2, b =1 then

v, = 2y (2" x~n) (1.12)

constitute an orthonormal basis for .L"(R).-. .So any. function-.f- can: be- expended in

wavelet. basis as

f(x) = X¥c, 2™y@2"x~n), mneZ (1.13)



1.8 Multiresolution Analysis (Chui 1992, Daubechies 1988, Young 1992)

b s A maultiresolution  analysis  consists  of . a...sequence of successive

approximation space V,. More precisely, the closed subspaces V, satisfy

Vev.cvev, av,.. ., (1.14)

with

;U;f/j = Ry (1.15)
and

av, 2 (0} (1.16)

if we denote P, by the orthogonal projection operator onto V,, then (1.15) ensure
that lim,, P f=f for all fe L'(R). There exist many ladders of spaces
satisfying (1.14)-(1.16) which have nothing to do with “multiresolution”. The
multiresolution aspect js a consequence of the addition requirement.

fevef@yey, (1.17)

That is, all the spaces are scaled versions of the central space V,
We require from a multiresolution analysis (invanance of V, under integer

translation).

f(x)eV, = f(x-n)eV,, forallne Z (1.18)



16

From (1.17) it implies that if f(x)eV,, then f(x-2'n)e V, forallneZ.

Finally, we require also that there exits ¢ € V, such that
{¢,.:n€ Z) is orthonormal basis in V, (1.19)

where, for all j,ne Z,¢J,,,(x)=2-%¢(2"x—-n). Together, (1.17) and (1.19)
imply that {¢,,;n€ Z} is an orthonormal basis for V, for al je Z. We shall
often call ¢ the “scaling function  of the multiresolution analysis. . ,

The basic principle of multiresolution analysis is that if the collwéon of
closed subspaces satisfies equations (1.14)-(1.19), then there exists an orthonormal
wavelet basis (¥,;j,k€ Z} of L(®), ¥, (x) = 2 W@ x-k), such that, for
all f in all L*(R)

P.f = Bf+2<fY¥,>¥, (1.20)

(Pj is the ‘orthogonal projection onto V,.). The wavelet ¥ can be constructed
explicitly as below.

For every je Z, define W, to be the orthogonal complement of V, in
V.

=

We have

Vi = Vew (1.21)

and

WLW if j=j (1 symbol means orthogonal complement) (1.22)

Gf j>j\ eg.then W cV LW,). It follows that, for j<J
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J=j-l

v, .= V,® % V., (1.23)
where all these subspaces are orthogonal. Equation (1.15) and (1.16) imply that

2% W, (1.24)

jz

a decomposition of L'(R) into mutually orthogonal subspaces. .Furthennorc, “the

W, spaces inherit the scaling property (1.17) from the V, ,
feW & f2/x)e W, (1.25)

Formula (1.20) is equivalent to saying that, for fixed j, {*¥,,:J.k e Z} constitutes
an orthononnal basis for Wj Because of (1.24) and (1.15), (1.16) this automaticalty
imply that the whole collection {\¥,,;j,k € Z} is an orthonormal basis for L'(R).
On the other hand, (1.25) ensures that if {¥ ;k € Z} is an orthonormal basis for
W, . then {¥),;j.k € Z} will be an orthonormal basis for W, , for anyje Z. Next
we have to find We W, that the ¥(x—k) constitute an orthonormal basis for W.

To construct ¥, we write out some interesting properties of ¢ and W,.

1. Since ¢ €V, V., and the ¢,  arc an orthonormal basis in V_,, we
have

%

¢ = ko, (1.26)

-with

H
[

h, =  <¢.4.,> ad [ (1.27)

neZ

We can rewrite (1.26) as
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o (x) = 2 Lo @x-n) (1..23)
Making Fourier Transform, we get
9 S 715>;h.e""" $¢ /2) 29
Formula (1.29) Cim be rewritten as
| 13 = mEIDE D) (1.30)
where
m(§) = vlagh,e""‘ (1.31)

Equation (1.31) shows, m, is a 2r -periodic function in I*([0,2r ]).

2. The orthogonelity of the ¢ (x—k) leads to special properties of m,. We

have

{dx§ ()0 (x=F0)

- Jaelo &) e | (1.32)

8&.0

i

2

1! dE*,,.Z,'q’A(F +2ml)

- implying that



.
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A 2 1
;lqa (4 +2nl)| = P (1.32)
Equation (1.30) leads to (¢ =& /2)
Zlm( +n1)l’|¢3( +nz)[z WA,
2., ( ‘ S e

- splitting the sum into even and odd !, using the periodicity of m, and 2pplying

(1.32) gives

It
—

Iy (o +pm (g +m)f (133)

3. Now we characterize W,: f € W, is equivalenttof € V, and f LV,

Since feV,, wechave

/ - Zfe.,
with f, =  <f,b.,>. From equation (1.29) it becomes
= TLieee 2 =m& 266 /2) (134)
where
| m, = %Z [ | (1.35)

is a 21 -periodic function in  L7([0,2r]).

The construint [ LV, implies f L¢,, tor all k. ie.
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i 70 @) - 0
or
Taten 3.7 vonp € +2n) - 0
_ thercfore
| ;}@+mw35155 = 0 (L.36)

Substituting (1.30) and (1.34), regrouping the sums for odd and even ! and using
(1.32) lead to

m (GIm,(¢)+m, (¢ +7)m (¢ +7) = 0 (L.37)

Since m,(¢) and m,(c+m) cannot vanish together on a set of nonzero
measure (because of (1.33)), this implies the existence of a 2x -periodic function

A(¢) such that

m,(G) MG Iy (G +T) O (L38)

and

"
<

MG+ A5 +m) (1.39)

The last equation can be written in the form
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¥ = €*V(2) (1.40)

where Vv is 27 -periodic function. Substituting (1.40) and (1:38) into (1.34) gives

FE) = SMmEIZmIVENE /) (L4D)

4. The gencral form (1.41) for the Fourier Transform of f € W, suggests

that we take :
WE) = fmET2Em)9E /2) (1.42)
as a candidate for our wavelet. Equation (1.41) can be written as

(‘}kae“‘* }i’(& )

F&)

or

f(x)

2Vy(x=k)

so that the W(x—k) are a basis of W,. We have to verify that the y,, are an
orthonormal basis for W;. First, the properties of m, and ¢ ‘ensure that (1.42)
defines an L'(R)function €V, and LV, so that e W, Orthogonality of the

Y, is easy to check :

z

Jdey (g (x=k)

[agcfy e

2! dte™ ;r\y €+ 27:!)’1

e et
} soadalia VT L R I ILY Y 1Y
. < - -
L TN NI NI A Y
- ¢ T et et
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Now

»

| ;'\ﬁ & +2rcl)|2 "):]m,,(g 12+7l+n )|’|q; & /2+1tl),2

= |mE/2+n ){’;‘q:(g 12+ ZM)'Z

Hmy € 12+7) 26 12+n +2mn)]
= @)@ 72 +|m & 12+m)f ] by 132)
= @) by (1.33)

Hence Idxw(x)w(x-—k) =8, ,. In order to check that the V,, are a basis for all

of W,, we have to check that any f € W, can be written as

f = ;YnWOm

with Zfy[ <o, or 0 fE) = vEWE) (1.43)

with v 2m-periodic andZ'([0,2r]). - But this is nothing but (1.41), where it is
easy to check that v is square integrﬁi)ie. We have therefore proved the assertation
at the start of this section. There is an orthonormal wavelet basis (¥, ).ke Z}

associated with any multiresolution analysis, the way to construct Y is below

W (x) = (-1 k8.,
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= V2Z(-1'h, 0 (2x—n) (1.44)

where ¢ is the scaling function of multiresolution analysis. We often call
equations (1.28), (1.44) as the two-scale difference equation or dilation equation of
scaling function and wavelet function, respectively. A set of the h coefficient is
called as filter coefficients. The consequence of the multiresolution is that any
function in L*(X) can be expanded in wavelet basis or combination of wavelet and

scaling function

f(x) 22, 2™ y(2 " x—-n), mneZ or

>d, 2702 x-n)+ );cmz""‘”q;(z"“x- n), mmneZ

1.7 Simple Solution of Dilation Equation and Examples
The dilation equation for scaling function, @, of the previous section
becomes very interesting when only a finite number of filter coefficients A are

non-zero. This has important consequences for the construction of compactly

supported orthogonal wavelet. 'From equation (1.28)

Y = 2Zho@x-n), xeR:

- when “normalized, say I;q; (x)dx =1 then‘we get "

1 = ttb (x)dx = 'Jizh, .T¢ (2x—n)dx
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- —j?ghulq:(zx-n)d(zx-n)

yielding
P = N2 (1.45)

if we take

so the dilation equation becomes

¢ (x) Yc,0(2x~n) (1.46)

and Ye, = 2 (1.47)

"

The dilation equation for wavelet in terms of ¢, becomes

¥ (x) T(=1c,.6(2x~n) | - (1.48)
We can see the solution of the dilation equation for some set {c,}j. It appears that,
when a solution of the dilation equation exisis, it is unique.  The following

examples and pictures are taken from Strang (Strang, 1989).




Example 1

Take ¢,=2 and all remaining ¢, equal to zero. The Dirac delta function
satisfies & (x) =20 (2x), and therefore is a solution. The Dirac function is not a
regular function; the idea that we have a function with compact support (of length

zero): a needle at the origin.

: .
Take ¢, =c¢, =1, and all remainin:g ¢, equal to zero. A solution of the

dilation equation is a box function.

{1 if 0<x<l
0 orherwise

¢ (%)
with a support of unit length. The comresponding wavelet is

Y (x) = ¢(2x)-¢(2x-1)
this is the Haar wavelet and is given by

I, if 0sx<1/2
-1, if 1/2<x<1
0, otherwise e

)

y(x)

The box function and the Haar wavelet are orthogonal with respect to their

own translation.

T0 (x)6 (x—~nydx

H
<o
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]W(x)\p(x-—n)dx = 0 n€ Z\{0}
The resulting v, = are given by
V.. = 2"y (2™x-n), mneZ

They have the desired property that they constitute an orthogonal basis for L'(R).

The Haar function is the original wavelet (but with poor approximation),

Example 3
Teke ¢,=1/2,c =1,¢, =1/2 and all remaining ¢, equal to zero. A solution

of the dilation equation is the hat function.

|% i 0=xs1
¢ (x) = 2-x,if 1<x52
0, otherwise

which has support of two unit length. The corresponding wavelet is given by

1 1
y{(x) = ¢(2X)—5¢(2x—1)-'2“¢(2x+1)
The suifport intervel is [-1, 2). From a picture of the hat function, it is ecasily seen
that¢ (x) and ¢(x%1) are not orthogonal on R. Hence the translation of o (x)

cannot constitute an orthogonal set.




x)

$(2x)
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${2x-1)

€1
¢,

Figure 1.9

The box function and hat function

Figure 1.10  The wavelets for the box function and hat function

The interesting result grom observing the ‘above examples is that when n

successive coefficients are given with the remaining equal to zero, the solution ¢

is compactly supported on an interval [0,n—1] of length n—1.
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1.8 Daubechies Wavelet (Compactly Supported Wavelet) (Newland 1994 )

From the dilation equation in the previous section, we assume that N (even
number) of filter coefficients are non-zero. So our set (c,} are [cn,c,,cz,..,g,,_,] .

This wavelet has been introduced by Ingrid Daubechies {see Daubechies,
1988]. The prominent property is that they have compactly supported and powerful
nuierical procedure[Press.,W.H. et al.,1992 and Beylkin.,G et al., 1991]. Now the
scaling function and the corresponding wavelet can be written in' terms of N as

below

6 (x) = Sce@s-nm (149)
e = S(Wey.,.025-n) (1.50)

The symbol N also represents the Daubechies basis of order N, denoted DN or
DAUBN. The Daubechies wavelets are localized in the position space and

approximately localized in the Fourier space.
1.8.1 Collected Filter Coefficient Condition

The filter coefficients that appear in scaling function and corresponding

wavelet must satisfy the following conditions.

(1) 2c = 2 (1.51)
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so that the scaling function is unique and retains a unit area during iteration. This

become better when we generate.

[}
o

@ Sk

n=(

(1.52)

for integer k = 0,1,2,..,p-1, where p=N/2. "This determines the approximate
condition of the degree to which a polynomial 1,x,x*,x°,..,x*™" can be reproduced
exactly in the wavelet basis. This condition is equivalent to the moment condition

which requires that the mother wavelet y(x) has k vanishiﬁg moments;
Jxy(x)dx = 0, - k=0l12,.p-1 (1.53)

A basis built from these coefficients will be able to represent exactly any

polynomial of order p-i.

-t
@) zc"cmk 0, k=0 (1.54)

for k=0,1,2,..,p~1, in order to generate an orthogonal wavelet system, with the

additional condition that

1
[

2

2
C
n-Oﬂ

(1.55)

which arises as the scaling function being orthogonal.



For N coefficients, the number of equations to be satisfied are as follows:

from (1) 1
2) N/2
3 N/2
Total N+l

so that there is one more equation than the number of the coefficients,

The reason that there are N'+1 equations for' N coefficients is. because the
first of the accuracy condition (k = 0 in (1.53)) is redundant. It reproduces a
condition derivable from the constant area and orthogonality conditions. This may

be seen as follows. Putting k=0 in (1.54 ) gives

2e,-2¢ = 0 (1.56)
combining this with (1.51) gives .
e = P = 1 (1.57)

so that

[ECJ+[E&J = A& (1-.58)

o )

After multiplying out ( k20 )

ijchzf"f' X = 2 | (1.59)

=0 kw(

which means that



31

gc,,c,,mt = 0, mz0 the same as equation (1.54)
Example 1
The Haar wavelet has only two filter coefficients, N=2 and we have the
following; |
from (1) Gt =4 42
from (2)  ¢-¢ = 0
from (3) 6oC | =owd

whose solution is

Example 2 |
For four filter coefficients, N=4, D4 or DAUB4, we have following;
from (1) G te te,+¢, = 2
from (2) G—cte ¢ = 0
-6+2¢,-3, —~ = 0
from  (3) GGt €C, = .0
G +c +a+e = 2

.

whose solution is
Co=(1+V3)14  =(3++3)/4..
. 6=(3-43)/4 ¢, =(1-+3)/4
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1.8.2 How to Generate Scaling and Wavelet Function

- Consider the dilation equation for scaling function. Substituting the filter
coefficient into equation, yields a scaling function that will be non zero over the
range [O,N-1]. chce the D4 scaling function is non zero over the range [0,3]. The
boundary conditions of the dilation equation are that ¢ (x) should be zero outside
this domain so that¢ (0)=¢(3)=0. The additional requ:red boundary conditions
can.be found from the following eigenvalue equation dt;:,tived from the scaling

relation:

6 € ¢(1)} |'¢(1)}
JELS CJ[MZ) i |_¢ (2) (1.60)

When this eigensystem is solved, we find that, after applying the normalization

condition,  the components of the eigenvector corresponding to eigenvalue 1 are
1 |
o) = SU+E, 9@ = S(-4B3)

This provides all the required boundary conditions on the scaling relation, and ¢ (x)
in the D4 case can be found recursively (see detail in Appendix' B). Use of
equation (1.50) yields the corresponding mother wavelet, —

There is the other to ‘solve the dilation equation of the scaling function.

One may iterate
o,(x) = 2c0,.,2x—n), j=12,.,n (1.61) ~

with the box function as the staring function ¢,(x). Then ¢,(x) = ¢(x) as j — oo,
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Figure 1.11 (a) The scaling function (solid curve) and wavelet (dashed curve)
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Figure 1.11 (b) The scaling function (solid curve) and wavelet (dashed curve)
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Figure 1.11 (c) The scaling function (solid curve) and wfwelet (dashed curve)
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Figure 1.11 (d) The scaling function (solid curve) and Wavclet (dashed curve)
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Figure 1.11 (e) The scaling function (solid curve) and wavelet (dashed curve)
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Figure 1.11 (f) The scaling function (solici cuﬁe) and wavelet (dashcd curve)
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Figure 1.11 (g) The scaling function (solid curve) and wavelet (dashed curve)
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Figure 1.11 (h) The scaling function (solid curve) and wavelet (da;hednéun"/e)

of Daubechies 18



37

Daubechies 20

Figure 1.11 (i) The scaling function (solid curve) and wavelet (dashed curve)

of Daubechies 20
1.9. Two Dimensional Wavelets

Up to now we have restricted ourselves to one dimension. It is very easy
to extend the multiresolution analysis to more dimensions. Lét us consider two
dimensions. The case of n dimensions is completely similar. Assume that we
dispose of a one dimensional multiresolution analysis, -i.e,, - we have a successive
spaces ¥V, and function ¢,y satisfying equation (1.14-1.25).

Define : L
V = V. ev
when 17," is a successive subspace of L'(R’) satisfying (1.14). and the equivalent,

for R?, of (1.15-1.16). Moreover (1.17 ) holds. We define
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N

¢ (x,,x,) ¢ (x)0(x,)
Then this two-dimensional function can be analogous to (1.19) by

{$,.ine Z%) is orthonormal basis in V

277G (2" x,—n, 2" x, —n,)

where .. (x,,x)

0., ()0 (%)

because of the properties of W, we find that

i

V(v @w ) w,ev.)w,ew,)

This implies that an orthonormal basis for the orthogonal complement W of V in

V_, is given by the function D Woen, o Wonn @ o 2 Wi, Voo, With 72,1, € Z or equivalently,

by the two dimensional wavelets v}

W:m (x:%) o = 27yt (27 x,=m 27" x, =n,),
where k =1,2,3, n'€ Z* ‘and | %
WEE) = V) L
WRE) =y
ws(xpxz) = \I’(xl)w(xz)




Y

It follow that the y,, where k=1,23, me Z, n € Z* constitute an orthonormal

basis of wavelets for I? (R?)

ol
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