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CHAPTER I  
INTRODUCTION 

 

1.1  General 

Pre-existing flaws and load-induced damages present within engineering and 
industrial designed components and parts have been found the major cause of 
failures and loss of their original functions. Initial small defects and damages can act 
as both a localized stress riser and a global strength reducer; in particular, high stress 
concentration can be observed near the location of defects and damages and this is 
also prone to the localized failure and damage accumulation. For components 
subjected to cyclic excitations such as machine parts and bridges, pre-existing cracks 
or load-induced cracks under a large number of load cycles can also lead to fatigue 
failure at a relatively low stress level. As a result, it necessitates the comprehensive 
damage/fracture evaluation and failure analysis in the design procedure of those 
involved components to ensure their safety and integrity during the entire designed 
lifespan. For various classes of materials found in practices (e.g., glass, composites, 
concrete, rock, cast iron, etc.), the fracture-induced failure mechanism assumes in a 
brittle fashion and any irrecoverable deformation is merely contained in a small, 
localized region surrounding the cracks. An existing, well-established, mathematical 
model based upon the theory of linear elasticity has been found well-suited and 
commonly used to perform a stress analysis of bodies containing defects to provide 
essential information in the damage/fatigue assessments.  

Conventional approaches in linear elastic fracture mechanics are based 
fundamentally on the dominant stress field in the vicinity of the crack front – a 
singular term in the Williams asymptotic expansion that involves the stress intensity 
factors (SIFs) and commonly termed the K-field. An obvious application of the stress 
intensity factors, besides the use in the prediction of crack initiation and propagation 
direction of crack advances, is the estimation of plastic-zone size and shape of a 
local region surrounding the crack front (e.g., Anderson, 2005). The plastic-zone size 
plays an important role in the classification of the fracture problems into either 
small-scale or large-scale yielding. However, there were pointed out by various 
investigators that the first non-singular term in the asymptotic expansion of the stress 
field (e.g., Williams, 1957), termed the T-stress, significantly influences both the size 
and shape of the plastic zone. This, therefore, necessitates the integration of the T-
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stress information in the calculation of the plastic-zone size. In addition, the T-stress 
has also been found influencing the fracture initiation angle, the tri-axiality of the 
near-tip stress field, and the stability of crack propagation. Studies by Rice (1974), Du 
and Hancock (1991), and Sedighiani et al. (2011) revealed that the positive T-stress 
decreases the plastic-zone size and rotates its shape forward while increasing the 
initiation angle of crack advances and strengthening the crack-tip tri-axiality. On the 
contrary, presence of the negative T-stress at the crack-front renders the reverse 
effects. As becomes evident, the T-stress is one of essential fracture data that must 
be determined to accurately describe the near-tip behavior. 

1.2  Background and Review 

Studies towards the development of techniques for calculating the T-stress and 
investigation of its influence on the fracture responses and behavior using both two- 
and three-dimensional crack models have received significant attention from various 
researchers in the past several decades. Some of existing relevant investigations are 
briefly summarized below to shed some light on the historical background and 
current advances in the area, and finally indicate the existing gap of knowledge and 
the novel aspect of the present study.  

 Within the context of two-dimensional boundary value problems, Rice (1974) 
originally investigated the influence of the T-stress on the estimation of the plastic 
zone size and shape using Barrenblatt-Dugdale yielding model and conformed in this 
study that the T-stress significantly affects both the size and shape of the plastic 
zone surrounding the crack tip. Du and Hancock (1991) investigated the influence of 
the T-stress on the plastic zone size and shape for a plane strain crack using Von-
Mises yielding criterion and they concluded that the plastic zone is enlarged and 
rotated forward for the negative T-stress and is reduced and rotated backward for 
the positive T-stress. Fett (1997) determined the T-stress in an edge cracked, 
rectangular, finite plate made of an isotropic, linear elastic material by first using a 
boundary collocation technique to construct Green’s functions for a pair of normal 
point forces and then applied them to obtain a solution for the prescribed arbitrary 
normal traction. Later, Fett (1998) employed the same technique to calculate 
numerical results of T-stress in isotropic, linear elastic rectangular plates and circular 
disks containing an edged crack and a center crack subjected to both tensile and 
bending loads. Wang (2002) used the weight-function technique and finite element 
method to determine the T-stress for various test specimens including a single edge 
cracked plate (SECP), a double edge cracked plate (DECP) and a center cracked plate 
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(CCP) under uniform, linear, parabolic and cubic normal traction acting to the crack 
surfaces. All specimens considered in his numerical study were assumed isotropic, 
linear elastic. Fett and Rizzi (2006) also applied the weight-function technique and 
finite element method to study the T-stress of a compact tension crack (CT), a 
double cantilever crack (DCC), and an edge cracked bar (ECB) loaded by near-tip, 
arbitrarily distributed, normal traction. Fett et al. (2006) studied the T-stress for 
kinked and forked cracks in a two-dimensional isotropic plate subjected to arbitrary 
normal and in-plane shear traction on the crack surface by using a technique of 
Green’s function. Zhou et al. (2013) employed a symplectric expansion method to 
determine the T-stress for an edged crack in an isotropic, linearly elastic plate 
bonded by two different materials. This symplectic expansion method was found to 
be capable of treating either mixed or complex boundary conditions. It should be 
remarked that while two-dimensional problems associated with cracks and bodies of 
various geometries and general loading conditions have been solved, the material 
anisotropy has not been taken into account in those previous studies.    

Due to the loss of various crucial three-dimensional aspects (e.g., variation of fracture 
data along the crack front, full mode-mixity, stress tri-axiality ahead of the crack 
front, non-planarity and distortion of the crack surface, etc.) resulting from the use of 
two-dimensional models in the simulations, solution packages capable of fully three-
dimensional stress analysis have been continuously proposed and widely employed 
in the fracture modeling. For T-stress calculations, several investigations have been 
well recognized and can be summarized below. Wang (2003) determined the T-stress 
for a semi-elliptical, surface-breaking crack in an isotropic, linear elastic finite thick 
plate subjected to tensile and bending loads at both ends. In this work, the finite 
element method was utilized to determine field quantities and the interaction 
integral formula was adopted to extract the T-stress along the crack front. In the 
following year, Wang and Bell (2004) extended the work of Wang (2003) to be 
capable of modeling more general end loading conditions such as uniform, linear, 
parabolic, and cubic loads. Later, Wang (2004) presented an analytical solution for 
the T-stress of a penny-shaped crack embedded in an isotropic linear elastic infinite 
body under the action of remote tension and bending loading conditions. To derive 
the complete elastic field, the potential-theory-based method and the Hankel 
integral transformation were employed. Qu and Wang (2006) investigated a corner 
quarter-elliptical crack in an isotropic, linear elastic thick plate under the tensile and 
bending loads at both ends. In their numerical study, the finite element method was 
utilized to perform the stress analysis whereas the interaction integral formula is 
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adopted to determine the T-stress along the crack front. Later, Kirilyuk and Levchuk 
(2007) generalized the work of Wang (2004) to obtain the elastic T-stress of a flat-
elliptical crack in an isotropic, linearly elastic, infinite body under remote tension and 
bending by using the method of potential theory and a special collection of 
harmonic functions. Schütte and Molla-Abbasi (2007) and Molla-Abbasi and Schütte 
(2008) applied the potential-theory-based method, technique of Green’s function, 
Hankel’s transformation and a finite element method to calculate the T-stress of 
both penny-shaped and flat-elliptical cracks embedded in a three-dimensional 
isotropic infinite domain under remote mixed-mode tractions. The influence of the T-
stress on estimation of the plastic zone size using the Von-Mises yielding criterion 
was also investigated and its significant contribution was confirmed. Lewis and Wang 
(2008) employed the finite element technique to compute the elastic T-stress for a 
circumferential crack in an isotropic finite cylinder subjected to either tensile and 
bending loads at its ends or uniform, linear, parabolic and cubic normal tractions on 
the crack surface. Recently, Meshii et al. (2010) also used the finite element method 
to determine the elastic T-stress of a semi-elliptical crack embedded in a three-
dimensional isotropic finite cylinder under uniform, linear, parabolic and cubic 
normal tractions on the crack surface. 

On the basis of an extensive literature survey, most of existing studies were restricted 
mainly to cracked bodies made of isotropic, linear elastic materials. Use of this 
idealized constitutive model in the fracture analysis can significantly simplify the 
solution methodology and computational effort but, at the same time, limits the 
capability to treat various modern construction materials such as smart materials and 
composites whose properties and behavior are generally anisotropic in nature. The 
influence of material anisotropy on both the values and distribution along the crack 
front has not been well-recognized and still requires further investigations. This 
existing gap of knowledge encourages the present investigation. 

1.3  Research Objectives 

The key objectives of the proposed research are (i) to construct an analytical 
solution of the T-stress for cracks in anisotropic elastic media and (ii) to investigate 
the influence of material properties and loading conditions on both values and 
distribution of the T-stress along the crack front. 
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1.4  Research Scope 

The proposed investigation is conducted within the following contexts: (i) the body is 
infinite, three-dimensional, free of body force and remote loading, and made of 
homogeneous, transversely isotropic, linearly elastic materials with fully prescribed 
material constants; (ii) the crack is penny-shaped and oriented perpendicular to the 
axis of material symmetry; and (iii) the crack is subjected only to self-equilibrated 
normal and shear traction. 

1.5  Research Methodology 

Methodology, procedures, and fundamental theories involved in this research can be 
briefly summarized as follows: 

1.5.1 basic field equations governing all field quantities follow a theory of 
linear elasticity; 

1.5.2 two special boundary value problems associated with a penny-shaped 
crack subjected to a pair of concentrated normal forces and a pair of 
concentrated tangential forces are formulated using selected basic 
field equations;  

1.5.3 the same potential-theory-based technique as employed by Fabrikant 
(1989) is adopted to obtain closed-form solutions for the stress field of 
two fundamental boundary value problems; 

1.5.4 appropriate derivative and limit process is applied along with the 
obtained stress field to derive the T-stress Green’s function; 

1.5.5 a method of superposition is utilized to form a general integral 
expression for calculating the T-stress of a penny-shaped crack 
subjected to arbitrary applied traction;  

1.5.6 a selected numerical quadrature is adopted to efficiently and 
accurately evaluate involved strongly singular integrals; and 

1.5.7 the influence of material properties and loading conditions on the 
values and distribution of the T-stress along the crack front is fully 
investigated. 

1.6  Research Significance 

The significant contribution of the proposed research is to provide an analytical 
solution of T-stress for a penny-shaped crack in transversely isotropic linearly elastic 
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infinite medium under arbitrary prescribed point-wise self-equilibrate normal and 
shear tractions. These results can be used not only to perform parametric study to 
understand the influence of material properties and loading conditions on values 
and distribution of the T-stress along the crack front but also to generate benchmark 
or reference solutions for comparison purposes in the development of numerical 
techniques for determining the T-stress for general cases. 

 



CHAPTER II  
THEORETICAL CONSIDERATIONS 

 

This chapter summarizes the clear description of the boundary value problems 
considered in the present investigation, basic governing field equations, and a closed 
form solution of the stress field for fundamental problems essential for the 
development of the T-stress Green’s function. 

2.1  Problem Description  

Consider a penny-shaped crack of a radius a  embedded in a three-dimensional 
infinite medium as shown schematically in Figure 2.1. The body is made of a 
homogeneous, transversely isotropic, linear elastic material with the elastic moduli 
fully prescribed. The axis of material symmetry is assumed perpendicular to the 
crack surface. The body is free of the body force and remote loading whereas the 
crack is subjected to arbitrarily distributed, self-equilibrated traction 0t  (i.e., the sum 
of the traction on the crack surface identically vanishes). 

 

        
 

 

 

 

 

 

 

Figure 2.1: Schematic of penny-shaped crack of radius a  embedded in a 
transversely isotropic medium and subjected to arbitrarily distributed traction 

For convenience in the development presented further below, a reference 
Cartesian coordinate system { ; , , }x y z0  and the corresponding cylindrical coordinate 
system { ; , , }z 0  are chosen such that the origin 0  is located at the center of the 
penny-shaped crack, the z -axis directs normal to the crack surface, and x - and y -
axes follow the right hand rule. 

z  

y  

z  

y  

x  

a  

0t  

0t
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2.2  Basic Field Equations  

The fundamental theory of linear elasticity is utilized to formulate the basic 
equations governing all involved field quantities. Equilibrium equations, in the 
absence of the body force, can be given explicitly in terms of components of the 
stress tensor   in the reference Cartesian coordinate system as 
 

0
xyxx xz

x y z

  
  

  
 (2.1a) 

0
xy yy yz

x y z

    
  

  
 (2.1b) 

0
yzxz zz

x y z

  
  

  
 (2.1c) 

 

The strain tensor   and the displacement vector u  are related by the following 
infinitesimal (or linearized) kinematics: 
 

x

xx

u

x






 (2.2a) 

y

yy

u

y






 (2.2b) 

z

zz

u

z






 (2.2c) 

1

2

yx

xy

uu

y x



 

 

 
 
 

 (2.2d) 

1

2

y z

yz

u u

z y


 
 

 

 
 
 

 (2.2e) 

1

2

x z

xz

u u

z x


 
 

 

 
 
 

 (2.2f) 

 

For a transversely isotropic linear elastic material, the relationship between the stress 
and strain are given by 
 

 11 11 66 13
2

xx xx yy zz
A A A A        (2.3a) 

 11 66 11 132yy xx yy zzA A A A        (2.3b) 

13 13 33zz xx yy zz
A A A       (2.3c) 



 9 

662xy xyA   (2.3d) 

442yz yzA   (2.3e) 

442xz xzA   (2.3f) 
 

where 11A , 13A , 33A , 44A  and 66A  are known non-zero elastic constants. By 
combining field equations (2.1)–(2.3), it leads to three equilibrium equations in terms 
of the displacement (i.e., Navier’s equations) 
 

   11 66 44 11 66

22 2 2 2

13 442 2 2
0

yx x x zA A A A A
uu u u u

A A
x y z x y x z

   
   

 
      

 (2.4a) 

   66 11 44 11 66

2 2 2 2 2

13 442 2 2
0

y y y x zA A A A A
u u u u u

A A
x y z x y y z

   
    

 
      

 (2.4b) 

 44

222 2 2

33 13 442 2 2
0

yxz z zA
uuu u u

A A A
x y z x z y z

     
       

          

 (2.4c) 

 

A system of partial differential equations (2.4) along with the prescribed information 
of the applied traction on the crack surfaces 0t  forms a complete boundary value 
problem associated with that described in section 2.1. 

2.3  Stress Field of Two Fundamental Problems  

Instead of directly determining the complete elastic field and the corresponding T-
stress along the crack front of the penny-shaped crack under arbitrarily distributed 
applied traction, it is appealing to invoke the linearity of the problem and also 
employ the method of superposition. Following this strategy, two fundamental 
problems associated with the penny-shaped crack subjected to a pair of self-
equilibrated, unit concentrated forces normal and tangent to the crack surfaces must 
be solved analytically. The T-stresses for these two special cases, termed the T-stress 
Green’s function, are then extracted in a closed form from the known stress field. 
The final expression of the T-stresses for the original problem with the general 
applied traction can subsequently be established in terms of a single surface integral 
(see details in Chapter III). 

2.3.1 A pair of self-equilibrated unit point forces normal to crack surface 

Consider a penny-shaped crack subjected to a pair of self-equilibrated unit normal 
point forces at a point on the upper crack surface, denoted by cylindrical 



 10 

coordinates  0 0, ,0   , and a point on the lower crack surface, denoted by 

cylindrical coordinates  0 0, ,0   , as shown in Figure 2.2. 

 

 

 

 

 

 

 

Figure 2.2: Penny-shaped crack subjected to a pair of self-equilibrated unit 
concentrated forces normal to the crack surface 

To determine the complete elastic field of this fundamental boundary value 
problem, several analytical techniques can be employed. A special potential-theory-
based technique proposed by Fabrikant (1989) has been found efficient and can 
yield the closed form solution of this particular problem involving only elementary 
functions. The final explicit solution for the stress at any point  , , , 0z z    derived 
by Fabrikant (1989) is given by 
 

   
 

 
 

1
1 3 12 2

1 2 1 3 1

2
3 22

2 3 2

( )
2 1

, ,
1

1

1

n
r z f z

m

f z
m





    



 

 
     

  
       

 (2.5a) 

 
 

 
 66

1 2
2 4 1 4 2

1 2

( )
4

, ,
1 1

n
r z HA f z f z

m m




 


 
    

 (2.5b) 

 
    

2

1 2

1 3 1 2 3 2( )
1

, ,n

z r z f z f z
  

 


  (2.5c) 

 
    

2

1 2

5 1 5 2( )
1

, ,n

z r z f z f z
  




  (2.5d) 

 

where /i iz z   for 1,2i  ; the superscript “n” is used to emphasize that the given 
functions are associated with a pair of unit normal concentrate forces; material-
dependent parameters are defined by 

00

x 

y 

z 

1 

1 

a 
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2

3 44 66/A A   (2.6a) 

1 2 11

2

11 33 13

( )

2 ( )

A
H

A A A

 







 (2.6b) 

2

11 44 13 44( )  for  1,2k kA A m A A k      (2.6c) 

1 2 1m m  ; (2.6d) 
 

and 
1

n
 , 

2

n
  and n

z  are given by 
 

1

n n n n n

xx yy           (2.7a) 
2

2 2 ( 2 )n n n n n n i

xx yy xyi i e 

               (2.7b) 
n n n

z xz yzi     (2.7c) 
 

Explicit expressions of functions
3f , 

4f  and 
5f  appearing in (2.5) in terms of 

elementary functions are given by 
 

 
 

2 2 2
1 1

3 3 2 2 22 2
0 0 2 1 00

tan
lz h h z

f z
R R l l Rz R h


     

       
     

 (2.8a) 

 
 

 

     
 

  

0

0

0

1
2 2 2

0 10
4 12

2 2 2

2

1 1
2 2 2 2 2 22 2

0 0 2 01

2 3 2 2
0 0 2 0

2 2

2 2 2 2 2 2 2
0 0 2 1 2

2
tan

3
tan

i

i

i

i

a e s
f z

q s s q l a

z R z a l a eh

q R R q s l e

zh q e

R h qR l l l





 



 

 











 

 
        

   
 

   
  

    

 
  

    

 (2.8b) 

 
0 0

10 0
5 3 2 2 2 2 2

0 0 0 2 1 0

tan
i ii iie e e eh h e

f z
R R R h l l R

     
      

       
      

 (2.8c) 

 

where f  denotes the complex conjugate of f  and 
 

    2 22 2

1

1

2
l a z a z        (2.9a) 

    2 22 2

2

1

2
l a z a z        (2.9b) 
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2 2 2 2

1 0a l a
h

a

 
  (2.9c) 

0

0

iiq e e
    (2.9d) 

0

0

iiq e e
     (2.9e) 
 02

0

i
s a e

 


 
   (2.9f) 

 2 2 2

0 0 0 02 cosR z          (2.9g) 
 

2.3.2 A pair of self-equilibrated unit point forces tangent to crack surface 

 

 

 

 

 

 
 

Figure 2.3: Penny-shaped crack subjected to a pair of self-equilibrated unit 
point forces tangential to the crack surface 

Consider, next, a penny-shaped crack subjected to a pair of self-equilibrated unit 
tangential point forces at a point on the upper crack surface, denoted by cylindrical 
coordinates  0 0, ,0   , and a point on the lower crack-surface, denoted by 

cylindrical coordinates  0 0, ,0   , as shown in Figure 2.3. Components of the unit 

point force in the x - and y -directions are denoted by 
xT  and 

yT , respectively. 
Similar to the previous case, the complete elastic field within the medium for this 
particular case can be obtained by applying the potential-theory-based technique to 
solve the governing equations (2.4) analytically. The explicit results for the stress field 
obtained by Fabrikant (1989) are given, here, by  
 

 
 

 

   

2
11 2

1 2 2 2
11 2 3

2
5 10

1

( ) Re
2 1 1

, , 1
1

                     

kt

k k k

k k

r z
m

G
f z f z T

G


 


    





  
   

    

  
   

  


 (2.10a) 
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y 

z 

1 

1 
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 
   
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1

( )
2 1

1

1

, ,
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t
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r z A H
m
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G

G G
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G

  


 



 




 
 

 

     
       

     

  
   

  



 (2.10b) 

 
     

2
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5 102
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




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  (2.10c) 
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

 
 

 

     
        
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  
   

  



 (2.10d) 

 

where the superscript “t” is used to emphasize that the quantities are associated 
with a pair of unit tangential concentrated forces;  Re f  denotes the real part of 
the function f ;

 x yT T iT  ,
 x yT T iT  ,

 1 1 2G H    ,
 2 1 2G H    , 

3 44/2 A   ; and the functions 
10f , 

11f , 
12f , 

13f , 
14f , and 

15f  are defined by  
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with  0 2

0 /
i

t e a
 




  and  0

0/
i

e
 

  


 . 

 



CHAPTER III  
DETERMINATION OF T-STRESS 

 

In this chapter, the asymptotic expansion of the stress field in the vicinity of the 
crack front, the derivation of the T-stress Green’s function for two fundamental 
problems indicated in Chapter II, the integral formula of the T-stress for a penny-
shaped crack under self-equilibrated, arbitrarily distributed traction, and the 
numerical treatment of involved strongly singular integrals are presented. 

3.1  Asymptotic Expansion of Near-tip Field  

By performing the near-tip asymptotic analysis similar to the original work of Williams 
(1957), the stress field in the vicinity of a point cx  on the crack front admits the 
following representation (with respect to the local reference coordinate system 

1 2 3{ ; , , }c x x xx  with the origin at cx  and orthonormal base vectors 1 2 3{ , , }e e e  being 
defined such that the 1 2x x  plane is normal to the crack front at point cx  and the 

1 3x x  plane is tangent to the crack surface at point cx ; also see Figure 3.1): 
 

/2

1

1
( ; , ) ( ; ) ( ; ) ( ; )K T m m

ij c ij c ij c ij c

m

r r
r

       




  x x x x  (3.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic of crack front and local coordinate system 1 2 3{ ; , , }c x x xx    
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where ( , )r   denotes standard polar coordinates of a point on the 1 2x x  plane; 
( ; , )ij c r x  denotes the stress at the point ( , )r   referring to the local coordinate 

system 1 2 3{ ; , , }c x x xx ; and K

ij , T

ij  and m

ij  are functions independent of the radial 
distance from the crack front r . It should be apparent from the expansion (3.1) that 
the first term indicates that the stress predicted by linear elasticity theory is singular 
at the crack front of order 1/ r ; the second term is independent of the coordinate 
r ; and the remaining higher order terms vanish at the crack front. It is worth noting 
that while the angular variation of the functions K

ij , T

ij  and m

ij   can be obtained 
from the asymptotic analysis, their dependence on material properties, geometries of 
cracks and bodies, and boundary and loading conditions still requires the full analysis 
of the associated boundary value problem. Once the complete stress field is 
determined, the unknown information of the functions K

ij , T

ij  and m

ij  can readily 
be obtained via a standard series expansion procedure.      

3.2  Definition of T-stress  

Let ( )ij cT x  be a symmetric, second order tensor defined, with respect to the local 
coordinate system 1 2 3{ ; , , }c x x xx , by  
 

( ) ( ; 0)T

ij c ij cT   x x  (3.2) 
 

It is evident from (3.1) that the tensor ( )ij cT x  represents the finite part of the stress 
( ; 0, 0)ij c r  x  at the point cx  on the crack front. Due to the continuity 

condition of the finite part of the stress ( ; , )ij c r x  at point along the crack front, it 
can be verified that the components 12 ( )cT x , 22 ( )cT x  and 23( )cT x  are known a priori 
and equal to the prescribed traction on the crack surface at the point cx . The 
remaining components, 11( )cT x , 33( )cT x  and 13( )cT x , are unknown a priori and 
defined as the T-stress components. Once the T-stress components, 11( )cT x , 33( )cT x  
and 13( )cT x , are solved, the first non-singular term ( ; )T

ij c x  in the representation 
(3.1) is completely known.  

 From the definition (3.2) and the expansion (3.1), the T-stress components 
11( )cT x , 33( )cT x  and 13( )cT x  can be obtained from the stress field ( ; , )ij c r x  in 

the vicinity of the crack front through the following relations:        
 

11 11
0

( )( ) 2lim ; , 0c c
r

T r r r
r

 



 


x x  (3.3) 
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33 33
0

( )( ) 2lim ; , 0c c
r

T r r r
r

 



 


x x  (3.4) 

13 13
0

( )( ) 2lim ; , 0c c
r

T r r r
r

 



 


x x  (3.5) 

 

The formula (3.3)-(3.5) allow the T-stress to be computed from the known or solved 
stress field of a cracked body. 

3.3  T-stress Green’s function for a pair of unit normal point forces  

Since the complete stress field for an infinite medium containing a penny-shaped 
crack subjected to a pair of self-equilibrated, normal concentrated forces is available 
as indicated in section 2.3.1, the T-stress Green’s function can then be obtained 
using the formula (3.3)-(3.5). In the derivation, following intermediate results have 
been derived and employed:      
 

1

2 20

1
lim

2z

a l a

z a






 (3.6) 

2 2 2 2

0

0
2

2
lim
z

a azh

l

 

 

 



 (3.7) 

 

The functions
3f , 

4f  and 
5f  evaluated at 0z   are then given by 

 

 
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0
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 (3.8) 
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
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  



 

   
         

  
 

 

 (3.9) 

5 ( 0) 0f z    (3.10) 
 

where the function 0

0R  is defined by 
 

0 2 2

0 0 0 0 0( 0) 2 cos( )R R z            (3.11) 
 

By applying the results (3.8)-(3.10) to (2.5), it yields the stress at any point along the 
plane 0z    
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a R



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 (3.14) 

( 0) 0n

z z    (3.15) 
 

where   and   are material-dependent parameters defined by 
 

1 2

2 2 2

1 2 1 3 2 3 1 2

2 1 1

( ) ( 1) ( 1)m m

 

      

     
        
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 (3.16) 
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

 
   

  

 (3.17) 

 

By defining r̂ a  , it can readily be verified for 0 a   that  
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 

 (3.20) 

 

Finally, the following information for computing the T-stress components can be 
obtained: 
 

1
0

lim ( 0) 0
r

r r z
r





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
 (3.21) 
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By employing the formula (3.3)-(3.5), the T-stress components at any point  , ,0a   
along the crack front of a penny-shaped crack subjected to a pair of unit normal 
concentrated forces acting at  0 0, ,0    can be related to the stress components in 

the cylindrical coordinate system { ; , , }z 0  defined in section 2.1 by  
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From the relations (2.7a) and (2.7b) and the results (3.21) and (3.22), the T-stress 
Green’s function becomes 
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where  Im f  denotes the imaginary part of the complex function f . It is obvious 
that the derived Green’s function for the T-stress components is singular when 

0   and 0 a  . To investigate the order of the present singularity, following 
variable transformation are introduced: 
 

0 0sin( ) sinr      (3.29) 

0 0cos( ) cosr a       (3.30) 
 

where the new variables r  and   have the physical interpretation as illustrated in 
Figure 3.2. Upon the transformations (3.29) and (3.30), the Green’s function for the T-
stress becomes 
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Figure 3.2: Schematic indicating the physical interpretation of variables r  and 
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It is evident from (3.31)-(3.33) that the T-stress Green’s functions are dependent on 
material properties only through the constant   and singular only at 0r   of order 

2(1/ )rO . For the special case of isotropic materials, it can be shown using the 
appropriate limit process via L’Hôpital rule that  
 

2

1 2




    (3.34) 

3.4  T-stress Green’s function for a pair of unit tangential point 
forces  

By applying the same procedure as that utilized in section 3.3, the T-stress Green’s 
function for a penny-shaped crack subjected to a pair of self-equilibrated, unit 
tangential concentrated forces applied anti-symmetrically to the crack surface can be 
obtained from the formula (3.3)-(3.5) and the available stress field (2.10). The final 
results indicate that all components of the T-stress Green’s function vanishes, i.e.       
 

11 0 0( ; , ) 0tT      (3.35) 

33 0 0( ; , ) 0tT      (3.36) 

13 0 0( ; , ) 0tT      (3.37) 
 

It is important to remark that the final trivial results for the T-stress Green’s function 
(3.35)-(3.37) for this particular fundamental loading condition stem directly from the 
anti-symmetrical feature of the problem. Clearly, the displacement xu  and yu  and 
the normal stress component zz  identically vanishes on the plane 0z   and this, 
as a consequence, implies that the normal and shear stresses  ,   and   also 
vanish on the plane 0z  . 

3.5  Integral formula for T-stress for arbitrarily applied traction 

Finally, let us now consider a penny-shaped crack subjected to arbitrarily distributed, 
self-equilibrated traction 0 0

0 0( , ) t t  as described in Section 2.1. Components of 
0t  in the x -, y -, and z -directions are denoted by 0 0

0 0( , )x xt t   , 0 0

0 0( , )y yt t   , 
and 0 0

0 0( , )z zt t   , respectively. By using the linearity of the boundary value 
problem, the T-stresses for this general loading condition can readily be obtained 
from the method of superposition along with the results of T-stress Green’s functions 
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(3.31)-(3.33) and (3.35)-(3.37). Final results are expressed in terms of integrals over the 
crack surface by 
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By using the transformations (3.29) and (3.30), the integral relations (3.38)-(3.40) 
becomes 
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It should be remarked that the integral formula (3.41)-(3.43) involve only the normal 
component of the applied traction and the integrand is singular at 0r   of order 

(1/ )rO . The strong singularity of the integrand requires the integrals to be 
interpreted in the Cauchy principal sense. It is also important to emphasize that the 
integral formula (3.41)-(3.43) are applicable only to the traction with its normal 
component to the crack surface vanish identically along the crack front. This 
limitation results directly from the development of the T-stress Green’s function.     

3.6  Numerical evaluation of strongly singular integral 

To compute the T-stress of a penny-shaped crack under arbitrarily distributed, self-
equilibrated normal traction, it still requires the numerical evaluation of the singular 
integrals (3.41)-(3.43). It is evident from the T-stress Green’s function (3.31)-(3.33) that 
all involved integrals is of the form 
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where ( ) 2 cosR a   and ( , )f r   is a regular function depending on the applied 
normal traction and information of the T-stress Green’s function. By invoking the 
condition 

0 0( ( 0, ), ( 0, )) 0zt r r      , it is apparent that the function f  satisfies 
the condition  
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 From extensive numerical experiments, the numerical integration of the 
strongly singular integral of the type (3.44) using standard Gaussian quadrature always 
yields diverged results. To overcome this difficulty, the technique proposed by 
Cimoroni (1997) is adopted and briefly summarized below. First, the integral (3.44) is 
decomposed into two parts given by   
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The second integral can be integrated analytically using the Cauchy principal sense 
along with the condition (3.45) as follows: 
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Now, the integral I  becomes 
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Since the function ( , )f r   is regular, it can be concluded from the Taylor series 
expansion that ( , ) (0, ) ( )f r f r   O . In addition, the function ln ( )R   is only 
weakly singular when ( ) 0R   . As a result, the integral (3.48) can be interpreted in 
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the sense of Riemann and accurately and efficiently integrated by the standard 
Gaussian quadrature. 

 



CHAPTER IV  
NUMERICAL RESULTS 

 

An extensive numerical study has been conducted for various scenarios and a 
selected set of results is reported in this chapter to demonstrate both the 
convergence of the implemented numerical quadrature and the validity of the 
derived T-stress Green’s function and the T-stress integral formula for a penny-
shaped crack under general applied tractions by comparing with available benchmark 
solutions. After the proposed solution and technique are fully tested, the influence 
of loading regions, load distribution, and material properties on the value and 
distribution of the T-stress along the crack front is fully investigated. 

 In the analysis, both isotropic and transversely isotropic material models are 
considered. For the isotropic case, the Young’s modulus E  and Poisson’s ratio   are 
chosen to completely describe its behavior whereas, for the transversely isotropic 
case, five standard independent material constants utilized are associated with the 
following constitutive relations (e.g., Staab, 1999 and Singh, 2007) 
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1
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where 
pE  and 

p  represents the Young’s modulus and Poisson’s ratio in the 
isotropic plane, respectively; zE , zpG , and zp  denote the out-of-plane Young’s 
modulus, shear modulus and Poisson’s ratio, respectively; and pz  is dependent on  
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zp  via the relation / /zp z pz pE E  . While the key results obtained in the present 
study are derived in terms of different material constants 11A , 13A , 33A , 44A  and 66A , 
these two different sets of material parameters are equivalent and can be related by 
using the constitutive relations (2.3) and (4.1)-(4.6).   

4.1  Verification 

As an example for testing the numerical quadrature and verifying the derived results, 
let us consider a penny-shaped crack subjected to two load cases: (i) a uniformly 
distributed normal traction 0  acting to the crack over a circular region of radius 

0 0,  a a a  and centered at the origin as shown in Figure 4.1(a) and (ii) a linearly 
distributed normal traction 0 0(1 / ) / 2x a   acting to the crack over a circular region 
of radius 0 0,  a a a  and centered at the origin as shown in Figure 4.1(b). These two 
scenarios are chosen as a representative of axisymmetric and non-axisymmetric 
loads, respectively. In the analysis, the loading region 0 0.5a a , the Poisson’s ratio 

0.3   and Young’s modulus 1E MPa  for the isotropic case, and 11 126A GPa , 

13 53A GPa , 33 117A GPa , 44 35.3A GPa  and 66 35.5A GPa  for the transversely 
isotropic case are utilized. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (a) Penny-shaped crack subjected to uniformly distributed normal 
traction 0  over a circular region of radius 0 0,  a a a  and centered at the origin 
and (b) Penny-shaped crack subjected to linearly distributed normal traction 

0 0(1 / ) / 2x a   over a circular region of radius 0 0,  a a a  and centered at the 
origin 
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To evaluate the integral of the type (3.48) numerically, the ranges of the 
integration in the r - and  -directions are subdivided into rN  and N  intervals and, 
for each interval, the number of integration points employed is denoted by iN . The 
accuracy of the numerical integration can be controlled by rN , N , and iN . 
Numerical results obtained for various values of rN , N , and iN  are compared with 
the benchmark solution (obtained by setting 20rN N   and 50iN  ) and 
reported in Table 4.1 for the first loading case and in Tables 4.2 and 4.3 for the 
second loading case. It is remarked that the benchmark solution used in the 
comparison is generated by using sufficiently large rN , N , and iN  to ensure that it 
represents the converged value of the integral. Note in addition that for the non-
axisymmetric case, results shown in the table are associated with the maximum T-
stress. It is obviously seen that convergence of the calculated T-stress depends 
significantly on the number of integration points, number of sub-intervals, and 
loading conditions but clearly independent of the material properties. The latter 
observation results directly from the fact that the material properties affect only the 
constant  . As anticipated, as rN , N , and iN  increase, the computed results 
converge nicely to the reference solution.  

Table 4.1: Percent error of T-stress compared with reference solution for penny-
shaped crack subjected uniformly distributed normal traction with 0 0.5a a  
 

11 11 11| ( ) / | 100ref refT T T   or 
33 33 33| ( ) / | 100ref refT T T   

iN  
rN , N  Isotropic case Transversely isotropic case 

5 

1 0.2098 0.2098 
3 0.0418 0.0418 
5 0.0196 0.0196 
10 0.0069 0.0069 
20 0.0025 0.0025 
50 0.0006 0.0006 

10 

1 0.0309 0.0309 
3 0.0060 0.0060 
5 0.0028 0.0028 
10 0.0010 0.0010 
20 0.0003 0.0003 
50 0.0001 0.0001 
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Table 4.2: Percent error of maximum T-stress 11T or 33T  compared with reference 
solution for penny-shaped crack under linear normal traction with 0 0.5a a  
 

11,max 11,max 11,max| ( ) / | 100ref refT T T   or
33,max 33,max 33,max| ( ) / | 100ref refT T T   

iN  
rN , N  Isotropic case Transversely isotropic case 

5 

1 0.2575 0.2575 
3 0.0506 0.0506 
5 0.0236 0.0236 
10 0.0083 0.0083 
20 0.0029 0.0029 
50 0.0007 0.0007 

10 

1 0.0374 0.0374 
3 0.0072 0.0072 
5 0.0033 0.0033 
10 0.0012 0.0012 
20 0.0004 0.0004 
50 0.0001 0.0001 

 

Table 4.3: Percent error of maximum T-stress 13T  compared with reference 
solution for penny-shaped crack under linear normal traction with 0 0.5a a  
 

13,max 13,max 13,max| ( ) / | 100ref refT T T   

iN  
rN , N  Isotropic case Transversely isotropic case 

5 

1 1.2436 1.2436 
3 0.2252 0.2252 
5 0.1033 0.1033 
10 0.0361 0.0361 
20 0.0127 0.0127 
50 0.0032 0.0032 

10 

1 0.1648 0.1648 
3 0.0311 0.0311 
5 0.0144 0.0144 
10 0.0050 0.0050 
20 0.0017 0.0017 
50 0.0004 0.0004 
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For all results presented further below, 5rN N   and 5iN   are chosen in the 
analysis. The discrepancy between the computed T-stresses and the converged 
solution is expected to be less than 0.10%. 

 To verify the derived T-stress Green function and the implementation to treat 
arbitrarily applied normal traction, the proposed solutions for both loading cases 
shown in Figure 4.1 are compared with the benchmark results generated by a 
numerical technique introduced by Subsathaphol et al. (2014). For a penny-shaped 
crack subjected to a uniformly distributed normal traction, the normalized non-zero 
T-stress components for both isotropic and transversely isotropic cases are reported 
in Table 4.3. It can be seen from this set of results that the T-stress components 
generated by the proposed integral formula show excellent agreement with the 
benchmark solution with the discrepancy less than 1% for both material models. For 
the second loading case, all T-stress components exist and they vary along the crack 
front. The computed T-stresses normalized by 0  are reported, as a function of the 
angular position   measured from the x -axis, in Figure 4.2 for the isotropic case and 
in Figure 4.3 for the transversely isotropic case. Again, it can be concluded for this 
particular loading condition that the analytical solution obtained in the present study 
is nearly identical to that obtained from the numerical technique for isotropic and 
transversely isotropic cases. Unlike the axisymmetric load considered in the previous 
case, the T-stress component 13T  does not vanish along the crack front but its 
magnitude is less than that of 11T  and 33T . In addition, the values of the T-stress 
shown are nearly identical for both material models.  

Table 4.4: Normalized non-zero T-stress of penny-shaped crack subjected to 
uniformly distributed normal traction with 0 0.5a a . Results are compared with 
benchmark solution generated by technique proposed by Subsathaphol et al. 
(2014). 
 

Isotropic case Transversely isotropic case 

T-stress Current 
sol. 

Ref. sol. % diff Current 
sol. 

Ref. sol. % diff 

11 0/T   0.0500 0.0505 0.99% 0.0509 0.0513 0.79 

33 0/T   -0.0500 -0.0499 0.20% -0.0509 -0.0507 0.39 
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Figure 4.2 Normalized T-stress components for penny-shaped crack subjected 
to linearly distributed normal traction with 0 0.5a a . Results are reported for 
isotropic case. 
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Figure 4.3 Normalized T-stress components for penny-shaped crack subjected 
to linearly distributed normal traction with 0 0.5a a . Results are reported for 
transversely isotropic case 
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4.2  Behavior of T-stress Green’s function 

In this particular section, the behavior of the derived T-stress Green’s function 
including the dependence on material properties, dependence on the applied load 
location, and the variation along the crack front are briefly explored. 

 It should be evident from the explicit formula (3.31)-(3.33) and (3.17) that the 
T-stress Green’s function 

11

nT , 
33

nT  and 
13

nT  are dependent on the material properties 
only through the constant parameter  . Since all T-stress components are linear 
with respect to  , the influence of the material properties on their values and 
distribution along the crack front can be completely described by the material-
dependent characteristic of  . For the special case of isotropy, the constant   
depends linearly on the Poisson’s ratio but independent of the Young’s modulus via 
the relation (3.34). The plot of   for the whole applicable range of   is shown in 
Figure 4.4. It can be seen that as the Poisson’s ratio increases, the magnitude of   
decreases and, as a result, the T-stress Green’s function also decreases in magnitude. 
In addition,   and the T-stress Green’s function vanish for the incompressible 
material with 0.5  . For transversely isotropic case,   is found to depend only on 
the ratio of the material constants and, in the present study, the dependence on 

p , 

pz , /p zE E , and /zp zG E  are investigated. To obtain the variation of   with respect 
to each parameter, a following strategy is employed: (i) the elastic constants of a 
particular material (chosen to be the same as those used in section 4.1) are 
converted to 

p , 
pz , 

pE , zE  and 
zpG , (ii) one of the ratios 

p , 
pz , /p zE E , and 

/zp zG E  is selected and varied while other parameters remains fixed, (iii) a new set of 

p , 
pz , 

pE , zE  and 
zpG  is converted to 11A , 13A , 33A , 44A  and 66A , and (iv) the 

value of   is computed. The variation of   with respect to p , pz , /p zE E , and 
/zp zG E  are reported in Figures 4.5, 4.6, 4.7, and 4.8, respectively. It should be evident 

that   depends almost linearly on both p  and pz , depends nonlinearly on the 
ratio /p zE E , and is independent of the ratio /zp zG E . In particular, as both the 
Poisson ratios p  and pz  increase, the magnitude of the parameter   decreases. 
The material-dependence characteristics of   should provide the sufficient 
information of the influence of material properties on the T-stress Green’s function 
and also the T-stress for a penny-shaped crack subjected to arbitrarily applied 
traction. For a parametric study carried out further, two representative material 
models shown in Section 4.1 are used throughout. 
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Figure 4.4 Dependence of material parameter   on Poisson’s ratio   for 
isotropic case 

0.0 .1 .2 .3 .4 .5
-.10

-.08

-.06

-.04

-.02

0.00

p



 

Figure 4.5 Dependence of material parameter   on p  for transversely isotropic 
case 
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Figure 4.6 Dependence of material parameter   on 
pz  for transversely 

isotropic case 
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Figure 4.7 Dependence of material parameter   on /p zE E  for transversely 
isotropic case 
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Figure 4.8 Dependence of material parameter   on /zp zG E  for transversely 
isotropic case 

 The T-stress Green’s functions along the crack front for different applied load 
locations are reported in Figures 4.9 and 4.10 for the isotropic case and Figures 4.11 
and 4.12 for the transversely isotropic case. It can be seen that the variation of the T-
stress Green’s function depend strongly on the location of the applied unit 
concentrated force; in particular, as the location of the applied force approaches the 
crack front 0 a  , the value of 

11 33

n nT T   and 
13

nT  become infinite at 0 0   . In 
addition, the distribution of 

11 33

n nT T   and 
13

nT   possesses a symmetric and anti-
symmetric feature with respect to the axis 0 0   , respectively. Results for both 
representative material models considered are nearly identical since the value of   
for the isotropic case with 0.3   and the transversely isotropic case with elastic 
constants and 11 126A GPa , 13 53A GPa , 33 117A GPa , 44 35.3A GPa  and 

66 35.5A GPa  are very close (i.e., 0.04053    and 0.04125   , respectively).    

4.3  Influence of Loading Condition 

In this section, the influence of the loading region and the distribution of the applied 
normal traction on the crack surface for both axisymmetric and non-axisymmetric 
cases on the value and variation of the T-stress along the crack front is investigated. 
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Figure 4.9 Normalized T-stress Green’s function 
11 33

n nT T   along the crack front 
for isotropic case 
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Figure 4.10 Normalized T-stress Green’s function 
13

nT  along the crack front for 
isotropic case 
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Figure 4.11 Normalized T-stress Green’s function 
11 33

n nT T   along the crack front 
for transversely isotropic case 
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Figure 4.12 Normalized T-stress Green’s function 
13

nT  along the crack front for 
transversely isotropic case 
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 To represent a variety of loading conditions, following six cases of applied 
normal tractions are investigated: (i) a uniformly distributed normal traction 0  over 
a circular region of radius 0a  with 0a a  as shown in Figure 4.1(a), (ii) a linearly 
distributed normal traction 0 0(1 / )a   over a circular region of radius 0a  as shown 
in Figure 4.13(a), (iii) a parabolic normal traction 2

0 0(1 ( / ) )a   over a circular 
region of radius 0a  as shown in Figure 4.13(b); (iv) a linearly distributed normal 
traction 0 0(1 / ) / 2x a   over a circular region of radius 0a  with 0a a  as shown in 
Figure 4.1(b), (v) a parabolic normal traction 2

0 0(1 ( / ) ) / 2x a   over a circular region 
of radius 0a  with 0a a  as shown in Figure 4.14(a), and (vi) a cubic normal traction 

3

0 0(1 ( / ) ) / 2x a   over a circular region of radius 0a  with 0a a  as shown in Figure 
4.14(b). The first three cases are chosen to represent the axisymmetric loading 
condition whereas the last three correspond to the non-axisymmetric loading 
condition.      
 First, the size of the loading region 0a  is investigated. Since the influence of 
material properties on the T-stress is lumped to the parameter  , it is sufficient to 
perform the parametric study for one selected material model and, here, the 
transversely isotropic material with elastic constants given in section 4.1 is employed.  

 

 

 

 

 

 

 

 

 

 

Figure 4.13 (a) Penny-shaped crack subjected to linearly distributed normal 
traction 0 0(1 / )a   over a circular region of radius 0a  and (b) Penny-shaped 
crack subjected to parabolic normal traction 2

0 0(1 ( / ) )a   over a circular 
region of radius 0a   
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Figure 4.14 (a) Penny-shaped crack subjected to parabolic normal traction 
2

0 0(1 ( / ) ) / 2x a   over a circular region of radius 0a  with 0a a  and (b) penny-
shaped crack subjected to cubic normal traction 2

0 0(1 ( / ) ) / 2x a   over a 
circular region of radius 0a  with 0a a  

To allow the comparison for all loading cases, the resultants of all applied tractions 
are controlled to be the same and denoted by P . For the axisymmetric loading 
conditions, only 11T  and 33T  are non-zero and they are constant along the crack 
front. The computed non-zero T-stresses for the load case (i), (ii) and (iii) are 
normalized by 2/P a  and then reported in Table 4.4 for various values of the 
normalized loading region 0 /a a . It is can be concluded from this set of results that, 
for the axisymmetric case, once the T-stresses are properly normalized by the 
resultant force P , they are independent of both the normalized loading region 

0 /a a  and the load distribution.   
For the non-axisymmetric loading conditions, 11T , 33T  and 13T  are non-zero 

and they vary along the crack front. The computed T-stresses normalized by 2/P a  
are reported in Figures 4.15 and 4.16 for the load case (iv), Figures 4.17 and 4.18 for 
the load case (v), and Figures 4.19 and 4.20 for the load case (vi). Results are shown 
for various values of the normalized loading region 0 /a a  ranging from 0.1 to 0.9. It 
can be seen that the T-stress components 11T  and 33T  exhibit only slight variation 
along the crack front for a small loading region 0 /a a  and, as 0 /a a , the variation is 
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more evident with significant discrepancy between its maximum and minimum 
values. In addition, the value of 11T  and 33T  remains positive for the entire crack 
front but the shape of the variation curve depends strongly on the distribution of the 
applied normal traction. For the T-stress component 13T , its value nearly vanishes 
along the crack front when the size of the loading region 0 /a a  is relatively small. 
This is due to the fact that the applied normal traction is close to the concentrated 
force P  applied to the center of the crack ( 0 / 0a a  ) and, as a result, the detail of 
the load variation on that small region is insignificant. As the size of the loading 
region 0 /a a  increases, the value of 13T  becomes significant and is the same order of 
that of 11T  and 33T . Similar to 11T  and 33T , the variation of 13T  along the crack 
front are more apparent for a larger 0 /a a  and the shape of such variation curve 
depends primarily on the load distribution. In contrast to the case of 11T  and 33T , 
the T-stress component 13T  can take either positive or negative value along the crack 
front.  

Table 4.5: Normalized T-stress 11 33T T   of penny-shaped crack subjected to 
load cases (i), (ii) and (iii). Results are reported for transversely isotropic 
material used in Section 4.1 
 

2 2

11 33/    or  /T a P T a P  

0 /a a  Load case (i) Load case (ii) Load case (iii) 

0.1 0.0648 0.0648 0.0648 
0.2 0.0648 0.0648 0.0648 
0.3 0.0648 0.0648 0.0648 
0.4 0.0648 0.0648 0.0648 
0.5 0.0648 0.0648 0.0648 
0.6 0.0648 0.0648 0.0648 
0.7 0.0648 0.0648 0.0648 
0.8 0.0648 0.0648 0.0648 
0.9 0.0648 0.0648 0.0648 
1 - 0.0648 0.0648 
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Figure 4.15 Normalized T-stress 11T  (or 33T ) along the crack front of penny-
shaped crack subjected to load case (iv). Results are reported for transversely 
isotropic material indicated in Section 4.1. 

0.0 .5 1.0 1.5 2.0
-.03

-.02

-.01

0.00

.01

.02

.03
a0/a=0.1

a0/a=0.2

a0/a=0.3

a0/a=0.4

a0/a=0.5

a0/a=0.6

a0/a=0.7

a0/a=0.8

a0/a=0.9
2

13T a

P



  

Figure 4.16 Normalized T-stress 13T  along the crack front of penny-shaped crack 
subjected to load case (iv). Results are reported for transversely isotropic 
material indicated in Section 4.1. 
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Figure 4.17 Normalized T-stress 11T  (or 33T ) along the crack front of penny-
shaped crack subjected to load case (v). Results are reported for transversely 
isotropic material indicated in Section 4.1. 
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Figure 4.18 Normalized T-stress 13T  along the crack front of penny-shaped crack 
subjected to load case (v). Results are reported for transversely isotropic 
material indicated in Section 4.1. 
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Figure 4.19 Normalized T-stress 11T  (or 33T ) along the crack front of penny-
shaped crack subjected to load case (vi). Results are reported for transversely 
isotropic material indicated in Section 4.1. 
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Figure 4.20 Normalized T-stress 13T  along the crack front of penny-shaped crack 
subjected to load case (vi). Results are reported for transversely isotropic 
material indicated in Section 4.1. 
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CHAPTER V  
CONCLUSIONS AND REMARKS 

 

A closed form solution for the T-stress Green function of a penny-shaped crack 
embedded in a homogeneous, three-dimensional, transversely isotropic, linearly 
elastic medium subjected to a pair of self-equilibrated unit normal and unit 
tangential concentrated forces acting to any location on the crack surface has been 
established. The existing complete stress fields for both fundamental loading 
conditions derived by a potential-theory-based technique have been used along with 
the asymptotic representation of the near-tip stress and the proper limiting process 
to construct the T-stress Green’s function. It has been found from the anti-symmetric 
condition that the T-stress Green’s function for the case of applied unit tangential 
concentrated forces identically vanishes along the crack front and this implies that 
the component of the applied traction tangent to the plane of the crack plays no 
role on the value of the T-stress along the crack front. 

 The method of superposition has been utilized along with the derived T-
stress Green’s function to establish the integral formula for computing the T-stress of 
a penny-shaped crack subjected to self-equilibrated, arbitrarily distributed traction. 
The resulting formula involves strongly singular integral that must be properly 
interpreted in the Cauchy principal sense. A selected numerical quadrature has been 
implemented to accurately and efficiently evaluate the Cauchy singular integral. An 
extensive numerical study has been conducted and confirmed the performance of 
the implemented numerical integration scheme. A series of numerical results has 
been generated and compared with available benchmark solutions. It has been 
found from such numerical experiments that the derived solutions show good 
agreement with the reference solutions and this should confirm both the derivation 
of the T-stress Green’s function and the implementation of the proposed integral 
formula.  

It has been pointed out that the dependence on the material properties of 
the derived T-stress Green’s function is completely described by a linearly 
dependent constant parameter  . For the special case of an isotropic medium, such 
parameter has been found independent of the Young’s modulus and linear 
dependent on the Poisson’s ratio. As a result, the T-stress Green’s function and also 
the T-stress for any applied traction depend linearly on the Poisson’s ratio. In 
addition, as the value of Poisson’s ratio increases to 0.5, the magnitude of the T-
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stress decreases to zero. For the transversely isotropic case, an extensive 
investigation of the material-dependent behavior of the parameter   has indicated 
that it is strongly dependent on the parameters 

p , 
pz  and /p zE E  but independent 

of the modulus ratio /zp zG E . Similar to the isotropic case, the dependence on the 
two Poisson ratios  

p  and 
pz  has been found almost linear and the magnitude of 

  (or T-stress) reduces as  
p  and 

pz  increases. 

From the in-depth investigation of the influence of loading region and loading 
distribution, it has been found that only the T-stress components 11T  and 33T  are 
constant along the crack front and independent of the size of the loading region and 
the loading distribution for the axisymmetric normal traction applied over a 
concentric circular region provided that the resultants of the applied traction are the 
same. For non-axisymmetric loads applied over a concentric circular region, the value 
of the T-stress and its variation along the crack front has been found strongly 
dependent on both the size of the loading region and the loading distribution. For a 
small loading region, the T-stresses 11T  and 33T  are nearly constant and 13T  is nearly 
zero and almost independent of the load distribution since the applied normal 
traction is approximately close to the normal concentrated force applied at the 
center of the crack which is asymmetric. For a large loading region, the variation of 

11T , 33T  and 13T  is evident and the shape of the variation curve depends strongly on 
the load distribution. 

As a final remark, the T-stress Green’s function developed in the present 
study has been limited to that the location of the applied concentrated force must 
not be along the crack front. As a result, the developed integral formula can be 
applied only to the traction that vanishes identically along the crack front. In 
addition, the T-stress Green’s function has been developed only for a pair of self-
equilibrated unit normal and tangential concentrated forces. This also limits the 
application of the integral formula to treat a penny-shaped crack under non-self-
equilibrated tractions. Alleviation of the current limitations is potentially useful and 
can broaden the capability of the integral formula to treat more practical cases.
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