'CHAPTER II

BASIC PRINCIPLES

Equations of Motion in the Time Domain

In dynamic analyses, the equations of motion can be derived by means
of Hamilton’s variational principle. This principle has been widely used and
- referred to in most standard text books and related papers. Hamilton’s principle

can be written as (see, e.g. Clough and Penzien (1979)) :
t, t,
S o(T-V)dt + g oW, dt = 0 2.1

in which T and V are the kinetic energy and the potential energy of the system,'
respectively, and W, is the work done resulting from nonconservative forces acting
on the system, including damping and any other external forces. The symbol ()
:denotes the first variational operator. The time domain from t, to t, is any

" interval of time under consideration.

Let {qi, Q2 ..., Q) be a set of generalized coordinates that describes
the displacement field of the system. The kinetic energy, the potential energy -

and the work done by nonconservative forces can be expressed in the forms

T = T(ai Q2 «--5 Ans Gis G2y ooy Ans 1) (2.22)
vV = V(qh qQ2y -eey a~» t) (2.2b)
oW, = Qidq; + Q:0q; + ... + Qudaqn (2.2¢)

where q;, Q», ..., Qn are the time derivatives of the generalized coordinates and



Qi, Qi ..., Qy are the generalized nonconservative forces associated with the

generalized coordinates q,, q;, ..., Qn, respectively.

Substitution of Egs. (2.2) into Eg. (2.1) yields
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Integrating the velocity dependent terms by parts leads to

t;

aT [QI & §‘Zd<aT
] t, dt

—Jldt = 5 i] 3 —)5 idt 2.4
1, 0q; . aq; < 4 aq; . (4

According to the condition for the validity of the Hamilton principle dq,(t,) and
dq,(t,) are equal to zero. Consequently, the first bracket on the right-hand side

of Eq. (2.4) is always zero. Eq. (2.3), after introducing Eq. (2.4), becomes

% [‘d—(ﬂ) + 3 ?X + Qi]éq;}dt =. =0 2.5)

Due to the fact that dq; (i = 1, 2, ..., N) are arbitrary, the bracketed expression

of Eq.(2.5) must be equal to zero, viz.

d (dT aT | aV

a“t(a_q)‘a—m““&i - Q. i=12..N (2.6)

which are the well-known Lagrange’s equations of motion. In general, the Kinetic

energy of the linear systems with small displacement is velocity dependent only
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(ie. not depending on q;). Thus the terms g—t in the above equations vanish;,

and Eqgs. (2.6) are simplified to

d (aT) ¥l av

alae) g = U P=L2N 2.7)

dt

The kinetic energy and the potential energy of a system in a volume domain Q

bounded by a closed surface I' can be written in matrix forms,
—;-Lp{af{a}dﬂ ‘ 2.8)
and

|yl teen - | w'mien - [ wime e

N |

respectively, where {u} is the displacement vector of any point in the system; [u] is
the velocity vector (ie. time derivative of the displacement); {g] is the stress vector;
{€] is the strain vector; {X] is the body force vector; { T} is the surface traction vector;

p is the mass density. {*]" stands for the transpose of a vector.

Finite Element Formulation

" In the finite element formulation we can consider the nodal displacements

of the discretized system as a set of generalized coordinates, ie.

fu = [N]{d) 2.10)

where [N] is the global interpolation function matrix, and {q} is the global nodal

displacement vector.

It is of convenience af this step to recall the basic equations in the linear
theory of elasticity. The constitutive relations for an elastic body undergoing

small displacements can be written as



(o) = Dife] e

&) = (L @.12)
where [D] is the elasticity matrix and [L] is the strain operator matrix.
- Introducing Eq. (2.10) into Eq. (2.12) we have
e = [L][N]{a} = ([B]{d} ©(2.13)

where [B] represents the strain interpolation function. Substitution of {&} from

Eq. (2.13) into Eq. (2.11) yields
(e} = [D][B]{d} (2.14)

By virtue of Eq.(2.10), Eq.(2.13) and Eq.(2.14) we can express the kinetic

energy and the potential energy in terms of nodal quantities as

T = 2| o@NIN]@do
#24Q
= @Ml (2.15)
where
M = | oINTINje0 | @16

and
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= 2 'K} - (@) (5o}~ (a)(r) @17
in which

Kl = | [Biolsee @15
{fa) = L [N]"{X}dQ (2.19)
(fr} = LIN}’{TMF (2.20)

In the above equations, [M] and [K] are the mass matrix and the
stiffness matrix of the global system respectively, and {f,} and {f} are respectively

vectors of the body forces and surface tractions.

As it is wgll-known in the finite element analysis method, the global
interpolating functions |N] are défined to be piecewise continuous functions
which are non-zero within the individual element only. Thergfore, any integration
taken over the whole domain of the system can be evaluated by the total summation
of the integrations over each element. Thus, the global matrices [M] and [K]

can be synthesized from the element matrices as follows:

IM] = éIlLM"_I . \ FINe) dQe (2.21)

e=1'Q

and
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n

Kl = k] - %[ (Bioseer e
e=1 1'Q

e=
where n is the total number of elements in the structure.

In fact, [N°] and [B®] are of the same size as their global counterparts
but they are equal to zeroes except in the element domain considered, thus integration
outside the domain is always zero. However, in practice in which the well-known
method called ‘the direct stiffness method’ is used, we can reduce the size of [N]
and [B°] to the minimum (size) and after performing the element integration,

we can assemble them into the proper places of the global matrices.

The element mass matrix computed from the integral in Eq.(2.21) is
calléd the ‘consistent mass matrix’ and contains non-zero off diagonal terms.
Rather than using the consistent mass matrix, the lumped mass procedure as widely
used in dynamic analysis is followed in this study. The lumped mass matrix,
which is diagonal, is easily obtained, and yet yields acceptable results for dynamic

analyses of structures.
The substitution of Eq. (2.15) and Eq. (2.17) into Eq. (2.7) yields
MI@) + [Kla) = (Q) + (fg) + {f) e

The generalized nonconservative force vector, {Q}, may be conveniently
separated into two components, viz. the system internal damping forces, {QJ

’

and the external nonconservative forces, {Q¢]. Thus,
Q = [QJ + (Q/] ' (2.24)

One of the most difficult job in dynamic analyses is the evaluation of

the internal damping effect. For viscous’damping which is widely assumed in
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dynamic analyses of structures, the damping force is proportional to the velocity.

Thus,

QJ = -[clig : (2.25)

The minus sign appearing in Eq. (2.25) denotes the fact that the damping
force acts in the opposite direction of {q]. Substitution of Eq. (2.24) into Eq. (2.23)

incorporating Eq. (2.25) leads to

M@} + {Clfa) + [K){a} = [Q4 + (f,) + () (2.26)

The three force vectors on the right hand side of Eq. (2.26) represent any generalized
force acting on the system. These forces can be conservative or nonconservative
forces and will collectively be denoted by a single force vector {F]. Eq.(2.26) can

then be written as

MI@) + [Clf@) + [Klla) = (F) @.27)

Solution of Equations of Motion in Frequency Domain

The equations of motion can be solved either in the time domain or in
the frequency domain. In contrast with the solution in the time domain, the
characteristics of the system can be readily viewed by means of solution in the
'frequency domain, for example, the system predominant frequency, and the

relative contribution of various frequency contents to the total response.
Consider the load vector, {F}, in the form :
F} "= [Pl (2.28)

The steady state response, after the initial transient motion, can be assumed to be
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@ = f{ue 2.29)

at each excitation circular frequency w, where (P} and {u] are the complex
amplitudes of load and displacement respectively; i = V=1 and t is the time in
seconds. One obtains, upon substitution of Eq. (2.28) and Eq. (2.29) and the

corresponding time derivatives into Eq. (2.27),
[S] fu} = (P} _ (2.30)
in which [S] is the dynamic-stiffness or impedance matrix defined as
[S] = [K] + iw[C] = w?[M] (2.31)

At each forcing frequency, Eq. (2.30) can be directly solved by means

of Gauss elimination method in complex form :
S)
fu] = [s] [P]
= {F, +iF,} (2.32)

in which F, and F, are respectively the real and imaginary parts of the response.

This solution is normally called ‘the displacement function’ or equivalently ‘the

compliance’.

Linear Hysteretic Damping

The material damping in the soil is usually assumed to be caused by
friction in the grains, resulting in linear hysteretic damping which is frequency
independent. According to the cofrespondance principle (see, e.g. Wolf (1985))
which states that the damped solution can be obtained from the elastic result by

replacing the elastic constants by the corresponding complex values. Thus the

static-stiffness matrix can be written as



13

[K*] = [K]a+28) (2.33)
where £ is the damping ratio.

In this study, only the linear hysteretic damping is considered, i.e. the
viscous damping mechanism is neglected as is normally assumed. Thus, the dynamic-

stiffness, [ S], in Eq. (2.30) can be expressed as

[S] = [K](+2&)-w?M] (2.34)

Substructure Formulation of Equations of Motion for Soil-structure Interaction

When the super-structure is considered together with its foundation and

support soil medium, it is convenient to solve the whole system by substructuring.

Fig.2.1a depicts a general model of soil-structure interaction problem.
For -simplicity it is assumed that end boundaries are sufficiently far away from
the existing structure so that no special boundary treatment is required. The
equations of motion, in terms of absolute displacements of the complete structure,

are given by Eq. (2.30) i.e. :

[1sa) W] [0 [01] [tu)] ((0}]
[Sbs] [sbb] [Sba] [0 ] {u} {0}
{ o= < . (2.35)
[ 0 ] [Sab] [Sna] [Sac} [ua} { 0 I
__[ 0 ] [ 0 ] [Sca] lscc]_ tiuc] 4 \ {Pf] J

In Eq.(2.35), partitioning are performed corresponding to the various parts of
the model illustrated in Fig.2.1. The subscript notations denote different nodal
positions: s for super-structure nodes, b for boundary connection nodes of structures

at the ground surface, a for soil interior nodes, and ¢ for outer boundary nodes.

'
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In linear elastic analyses, the total displacements at any point, {u}, can
be expressed as the superpdsition of independent displacements. In this problem,

the displacement vector, {u}, is decomposed into
fu} = {uf] + [u) (2.36)

where {u?} denotes the free field displacement vector which is the site response
for the soil medium alone in the absence of super-structure (Fig. 2.1b), and {u'}
represents the interaction displaﬁement vector affected by the presence of the super-
structure as shown in Fig.2.1c. Models in Fig.2.1a and 2.1b are prescribed by
the free-body reaction force, {Pj]. As far as the soil medium is concerned the
interaction displacements can be interpreted as the change in the response from
the free field solution as influenced by the interaction of the super-structure

with the soil mass.

The equations of motion for the free-field problem corresponding to

Fig.2.1b can be written as

(0] [0] [0] [o]][wg) (0})
[0] [s%] [s&] [o] ] ) (0)

r o= ’ (2.37)
[0] [Sh] ISt IS5 | | tul) (0} ,
[[o] (o] (st [st]] [y ] (P

where superscript g stands solely for the ground model. Now observing that the
contribution to the impedance terms [Sy.), [Su), [Saals [Sacls [Seal and [S,]

are derived from the soil mass only, we have

lsaa] = lsia] ’ lsab] = lsib} ’ [Sac] [Sgc] ’

[Sba] = [Sﬁa] ’ lSca]
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Substituting Eq. (2.36) and (2.37) into Eq. (2.35), incorporating the above equalities

yields

(Sl [swl [0] [0]|[] [ -(sa] -Isel [0][0]][fu8)
[Sos] [Svol [Seal [ 0] || (u) ~[Ses) [Ste] —[Swu] [0] [O] [ ]| {uf} _
< . P = > (2.38)
[0] [Sab] [Saa) [Sac] || {u) [o] [o] [o][o]]]{uf]
[o] (o) [sa) (8] (@3) | [0 o1 fo]fo]]|ny
Performing condensation on Eq. (2.38), we obtain
[Sss] [Ssb] {uls} N [Sss] i [Ssb] {uf}
27 (2.39)
[Sbs)  [Sen]+[Sge] || {uy) —[Ses]  [Sto]—[Sou] || {ug)
where the submatrix |Si,] results from the condensation manipulations that
(0] To1]fis.) (s.l] [l tswl]  [(o0] 0]
- | | - (2.40)
[Sba] [ 0 ] [Sca] [Scc] l 0 ] [ 0 ] [ 0 ] [Slc)b]

Substituting {u'} = {u]—{u?] into Eq.(2.39), after some manipulations, Eq. (2.39)

becomes

s 1sal (@3] [tol ro) ]{wy
(Sl [Sunl +1S5] || () (0] IS]+IS] || )
[ [o]

= i (2.41)
k([Sgbb}-F[S;b]){uﬁ}

The matrix [Sy,] can be separately written as

[Seo] = [Sie) + Sty (2.42)

017187
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where [S;,] is the stiffness contributed from the super-structure and [S?,] is the
stiffness contributed from all of the underlying soil medium including ‘embedded
piles, if present. It is obvious that [S; ], by definition, is exactly the same as

Sts)- In view of Eq. (2.42), one can rewrite Eq. (2.41) in the form
bb

[Sss] [Ssb] {us] { 0 }
= (2.43)
[Ses]  [Seol+[Soo) | {us) [Sob){ug) ‘
where
[See] = ([S§el+[S5s) (2.44)

The physical meaning of [S,,] is that it represents the condensed dynamic stiffness
or impedance of the soil foundation associated with the boundary connection
nodes b. One may note that the reduced system governed by Eq.(2.43) can be
graphically represented by the simple model shown in Fig.2.2a. Moreover, the
system can be further simplified as exemplified by the model in Fig.2.2b provided

that the following conditions are satisfied

a) the type of seismic wave that affects the motion is the vertically

propagating shear wave.

b) the vertical response of structure is negligibly small by virtue of -

sufficiently designed vertical members to take vertical loadings due to gravity.

¢) at the ground level, a rigid mat foundation exists.

Impedance and Transfer Functions

To solve Eq.(2.43) the force vector on the right hand side must be
pre-evaluated. Determination of [S,,] is known as ‘impedance problem’, which

is equivalent to the determination of dynamic-stiffness of the foundation. For
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some special foundations, for example, strip foundation and circular foundation
resting on elastic half space, impedance functions can be found in somé well-known
publications, for instance, Karasudhi et al. (1968), Luco and Westmann (1971)
and (1972), and Veletsos and Wei (1974). However, in more complicated conditions
such as an embedded foundation or a foundation on piles, resort to numerical

methods like the finite element or boundary integral methods are inevitable.

The‘displacements of the foundation without super-structure, {uf}, can
be determined directly from Eq.(2.37) under the conditions that {P{ = {0} and
4

{ug} is specified, noting that the displacements solution {u,] and {u,] are the

absolute displacement vectors.

Interpretation of {uy] is useful since one can conceive that how much
the soil layer amplify the seismic wave. Furthermore, signal of the predominant

frequency of the soil layer can be seen in the presentations of {ug].

Alternatively, one may solve for f{uf} by using relative displacement
formulation. The equations of motion in the time domain, Eq. (2.27), can be applied
to solve the problem shown in Fig.2.1b where the fixed base ground acceleration

is specified (see, e.g. Clough and Penzien (1975)). The resulting equations of motion

can be written in the form

MI{G] + [Cllad + [K]{a) = -[m}iif‘ _ (2.45)

where {q,] is the displacement véctor relative to the base; q; is the specified base
acceleration and {m} is the mass vector pertaining to the corresponding degree-
of-freedom. Eq.(2.45) can be simply transformed to be the equations of motion
in the frequency domain by the similar procedure of deriving Eq. (2.30). Substituting

q = e and [q) = [ule incorporating with their derivatives into Eq. (2.45)

yields
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[S]{u] = @’ (mju (2.46)

where u; is the displacement amplitude of the base motion at each forcing
frequency, w. Complex displacement amplitude, {u}, can be obtained by solving
Eq.(2.46). Ratio of the absolute value of complex displacement amplitude to
the displacement amplitude of the base motion is defined to be ‘the transfer

function’.
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