CHAPTER I11

THE REPRESENTLTION OF HYPERCOMPLEX NUMBER SYSTEMS

1. MATRIX REFRESENTATION

I. The complex numbers can be represented by 2 X 2 matrices

whose elements are resl numbers.

Let z = x + iy be a complex number and conslder the
representation:
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These representations {1), (2} and (3} preserve the properties
of equatity, eddition, and multiplication defined for complex numbers

in Chapter II.
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All the properties fw of complex numbers in Zhapter I
which follow from the definitions can therefore equally well be
obtalned by manipulating the above matrices,

WNote:
The modulus of z iz related determinant ¢f the copresponding

matrix as follows:
x Y
\le = xE-{-}"E = l \

A guaternion may be represented by a b X 4 matrix of resl
numbers or a 2 X 2 matrix of complex numbers as follows:
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whete z and w are complex numbers, a, b, o, & are real numbers.
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Ta show that the shove representations preserve the properties

of guaternions;

Let 2y = 8y + ibl ' Wy o= oy 4 idl
zE = a2 + ibé ’ L QE + 1&2

and consider the correspondconce
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1. The matrices representing Ql and QE apc equal iff a, = A5
hl = bE, cl = Cg’ ﬂl = dE
= The sum of the matrless representing Ql ard QE is the matirix
: +
1 % "1t s Bt % Wyt
W - z. +2. |  %- + Z. o+ 2
17 Ve 1t % (o) + o) (2 + )

This represents the quaternion (a2, + Eg) + 1 {bl + bEj +

1
3 {cl + cE} + X {dl + dE], which is the sum of @, and QE .
3. The product of the matrices representing Ql and QE is the
mabrix
242, wlﬁg 2w, + wlﬁg
Sy - 2y Wy 22

This represents the guaternicon
£+ 1B + JC + WD where

A = a8 - bk, -c.e0 ~d.d

18 12 12 12
B = albE + aEbl + CldE - cEdl
c o= alcE - bldE + G2, * dlb2
b o= blcE + aldg + r:‘.laE - clb‘E s

whnich is the product of Ql and QE'

A1l properties proved for quaternions from the definitichs
in @nhapter IT can therefore equally well be obtainesd by manipulating
the matriges above.

Motes
The medulus of § is related to the determinant of the matrices

for quaternion §, as follows.
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3. Cayley numbcrs can not be represented by metrices because
the assaciative law Ggr.: multiplication does not held in the Cayley

hamber system, but matrices must obey sssceiative law,

1T QEOMETRIC INTERPRETATICN

The complex numbers system iff 8 two - demengional veector

space, so that complex numbers may be represented by the points of
s certesion plane. {2, p. 104). The point in the cartesian plane

can be specified by rectangular or polar co-ordinstes as follows.
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Here, r = x + iy = Jiz‘;'“jz’
and, 9 = arg lx+i}rl= are tani,
& _F (g 1 'x

wherpe 5 g % 5 when x > 0
I (g4 28 when ¥ €0
2 ¢
& = g when x =0 and y > 0
8 = -g when x =0 end y £ 0

The producet of the complex numbers Xy + i:.rl and Xy + fL:,.rE

ecan be written in polar form,

(xl + iyl}{xE + iyE} = rr, [ 005 (61 + 92} +1 sin {8 + GE?J
where r,o= jxl + iy"11 3ory = IxE + i:.rg| 5
ang &) = erg If:-cl + iyl} ; 6, = arg (xE + iygl-
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This product ¢sn be construc}ed geometrically as follows.
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On the sepment DPE in the dlagram construct a triangie

{ A M A
DPEP similar to the triangle OIPI, where ﬁEPE = P01, OF,F = ﬂmPl

!
then P 1s the poing [rlrg, 61 + 92}

Froof.

f
since 53 DIPl and iﬁ GPEP are similar,

[
. OF CFn
we have - = = - :
OF4 o1 00756340
I
therefore oF = GPl 2 GPE = rlr2
Also since 1I0P. = @, sand P'aEr = B
2 P 2 1¢
A F
we have I0F = 91 + BE
. 4
Hence the point P is {rlrg . el * 62].

It iz clear from the above discussion that the maltiplication
of a complex number z by enother complex number A has the effect
of rotation the vector z through an anpgle arg A and multiplying lts
i
length by i A \ to produce 8 new veetor z § where 2 = fa
! ! .
This can be written x + iy = (2 + ib) {x + iy)
=(Ex-—by:}+i(bx+ay:] a =4 ra p okl o= {l]
) * +
Mse (x + 3y¥{x - iy) = {2 + 16){x + iy)(a - ib){x - 1¥)

= {a + ib}{a ~ tB){x + iy)(x - 4¥){
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Mherefore (X + ¥ 2} = la® 4 b} (x° + ¥°)

w

0T fsz = -$ ﬂ{ I z ! eevanavans (2}

"he above equations (1) and (2) show that the linear trans-
formation zJf = Az 13 orthogonal when \A i % 0. (3, D 57)
This linear transformation represents a rotation abouf the
origin ant a magnification of the wector representing a. |
Ir IA l = 1, the linear transformation ;j = Az

represents a pure rotation sbout the origin,

The multiplication of a guaternion Q@ by another quaternion A

has the effect of rotation and exvansion.

- L

£
et 0 = AQ pnd O = @QA, this can be writfen

¢ 0 ! ! . .
X+ iy + jz+kt = {2+ ib +jc + W)z + iy + jz + Kt}

(ax = by = cz -dt) + i {ay + bx - 4z + et)

+ 3 {cx + dy + az - bt) + k {ﬁx -y + bz + at} ...{1)

Mso @ T = (4 Q) (@A)
= A {Q Q) &, by the associative 1aw,
= (%) (QQ), since R is real and commentes with
any quaternion.
Therefors &‘ L {A!z (QIE , or f J 1 = { i [‘ q ‘ Tssananns {Ej

The ahove equations (1} and {2) show that the linear Lrongs-
i
Pormation & = Al 1is orthogonal when l A I i 0. This linear
. !
transformation represents a reotation about the origin with an

expansion by the factor A  about origin. {3, P 67)

1f k| = 1, +4he linear transformation

P
I

AQ, Tepresents a pure rotation about the origin,
Hote : liodern mathematicians differ from FKlein {re?. 3} in

using " orthogonal " te a pure rotation without magnifigation.
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The multiplication of a Cayley number C with other Cayley

numper A will nove nn effect of rotntion the vector Co
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the +ransforcation above is orthogoml, matrix B will rotate

1t - ,
the veotor fxﬂ, Kog svnvnenrnes X3 . If ]B{ - 1, +this trons-

1'!

formntion is o pure rotation.
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