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CHAPTER 1
INTRODUCTION

In this chapter we first summarize and describe the motivations of the proposed research
and the background review to demonstrate the historical development and statements
of relevant works in this area. Then we address the objectives, the scope of work, the
methodology and the significance of the proposed research.

1.1 General

During World War | piezoelectric material was employed as an essential part in various
equipment and tools such as sonars, ultrasonic submarine detectors, transducers,
hydrophones to return echo and etc. Such applications largely received an attention
from many electromechanical material investigators to conduct further study.
Nevertheless, these various applications were not extensively revealed to the public
during that period. Presently, however, piezoelectric material has been significantly
widespread and played an important role in economic development. It has been one of
the major components for commercial, engineering and industrial works, all of which
involve automotive, electronic, consumer, medical and military product. Examples
include an actuator (e.g. ultrasonic equipment, ultrasonic cleaner, ultra precision
positioner, ink jet print head, controlling helicopter rotor blades, disc drives, cigarette
lighters and jewelry cleaners), a sensor (e.g. contact microphone, sonar, nondestructive
testing device, airbag sensor, air flow sensor, keyless door entry, seat belt buzzers,
knock sensors, depth finders, fish finders and musical instruments), a signal transmitter
(e.g. Remote car opener, cellular phone, audible alarms, fuel atomizer and humidifiers),
an audio frequency (e.g. microphones, earphones, beepers and buzzers in wireless
application) and a medical instrument (e.g. hearing aid, the scanning probe
microscopies, disposable patient monitors, foetal heart monitors, ultrasonic imaging,
MRI machines and liver arm application). Piezoelectric material has been regarded as
a smart material and commonly accepted among electromechanical material scientists
that it exhibits coupling effect avail between electric and mechanic field when subject
to some kind of mechanic stress. It also generates electric potential called the direct
piezoelectric effect (brother Pierre Curie and Curie (1880)) In other word, they will
produce electric field when subject to mechanic loading and vice versa. It also exhibits
the converse piezoelectric effect Lippmann (1881). In addition, it leads to deformation
when subject to electric field. The word “piezoelectric” means electricity resulting from
pressure. It is derived from the Greek word “Piezo” or “Piezein” which means to
squeeze or press and “electric” or “electron” which stands for amber or an ancient of
electric charge. Nevertheless, there are properties of piezoelectric material of which the
major drawbacks are breakability, responsive to collapse, low fracture viscosity, high
inclination to expand crack throughout the applications and usage abatement.
Piezoelectric material is a brittle body and utilized frequently in the part of
applications, aiming especially to reduce the size of various equipment in electronic
applications which directly withstand temperature change during the manufacture
process. These issues lead to the crack in the body of piezoelectric material. If a fracture
appears in such material, it will pander the stress concentration. Moreover, it also



induces stagnancy and breakage within material along the crack region, and eventually
this will generate the peak failure. Such problem currently gives rise to further research
essential to gain a deeper understanding about the crack behaviors in piezoelectric
material. This is particularly because of the complicated affinity of the electro-
mechanical aspect with enigmatic anisotropic inside piezoelectric materials and of a
variety of electric and mechanical loading conditions. Such problems become a rather
complicate issue and mainly unreachable as well. In addition, if dislocation and various
flaw problem are additionally diagnosed, the predicament will be more complicate.
Since this material is significantly exploited in a large number of various aspects, it is
therefore essential to investigate the stress and electric intensity factors of the embed
crack in piezoelectric materials.

To imitate the behavior of the crack, various expedient assumptions must be
incorporated. For the last three decades, facile mathematical simulations which have
been basic upon linear constitutive law, has received a great attention from scientists
who and increasingly interested and utilized by many investigators to several crack
behaviors in many cases involving crack problems in piezoelectric material.
Furthermore, such simulations are also the linear piezoelectric assumption which has
carried out as well-set and adequate to predict the response throughout practical
application. In linear piezoelectric context, to analyze a body embed no crack has been
well-created in comparison with a body containing crack in which is mainly
sophistication of electric and elastic field which give rise to complexity in the vicinity
of the crack, Particularly the singularity along the crack front. In a previous
investigation mostly have only studied and investigated simple crack geometries
constituting planar, such as the penny-shaped crack, elliptical crack and straight crack
and inclined straight crack under loading conditions (Park & Sun, 1993; Xu &
Rajapakse, 2001; Wang & Jiang, 2002; Chen & Lim, 2005; Chiang & Weng, 2007)).
This is not sufficient to gain insight into the behaviors of the cracks clearly. Moreover,
many modeling of crack behaviors was restricted with specious parametric prediction
in the geometries of the cracks, in particular curvilinear of the cracks in non-planar
cracks (i.e., spherical cap and cylindrical cracks) and consideration of a various crack
subtended angle of the surface in non-planar cracks such as spherical cap and
cylindrical cracks, the aspect ratio of tunnel crack, and the interaction of two penny-
shaped cracks in vertical and horizontal directions which have currently not been
widespread considered in infinite domain. Besides, there is less diagnosis of changed
permittivity for planar and non-planar cracks (e.g., spherical cap crack, cylindrical
crack, tunnel crack and a pair of penny-shaped cracks in vertical and horizontal
directions) on crack-face assumptions (i.e., impermeable, permeable, semi-permeable
and energetically consistent models) which implied that the remaining electric quantity
or electric induction current inside the crack gap including the crack surface that
affected to non-zero stress and electric intensity factors, along the crack front in those
geometries and less diagnosis of various loading conditions (i.e., remote tensile
mechanical and electrical loads) associated with various electric boundary conditions.
The main objective is to investigate the behavior of the piezoelectric material
containing various cracks in infinite medium with affected relevant parameters to non-
zero stress and electric intensity factors with various electric boundary conditions such
as permeable, impermeable, Simi-permeable and energetically consistent boundary
conditions. In the present, influence of geometry, crack-face condition and loading on



intensity factors of cracks in 3D linear piezoelectric media is becoming more interesting
and essential to conduct further research.

The approach to investigate the fracture behavior, especially the stress and an
electric intensity factor in piezoelectric materials is the simulation in arithmetic. Such
spacious approach utilized to simulate the crack is upon basic of the Boundary Element
Methods (BEMSs) which was admitted as a numerical technique that is efficiently
capable to compute the crack for fracture analysis in linear homogenous media. Later
this technique is developed as weakly singular, SGBEM (Rungamornrat & Mear,
2008).

1.2 Literature and review

In this part, a brief background and the present work related to the current investigation
is discussed. The major purpose is to exhibit the study of crack behaviors in
piezoelectric media to illustrate the gap of perception and the derivation of the present
work. For this part of literature exploration, the parametric influential study would be
discussed. This includes geometries, permittivity, loading conditions and electric
boundary conditions aspect and etc.

1.2.1 Influence of parameters on intensity factors

Many investigators attempt to study the crack behaviors in a large number of different
methods and various conditions to obtain required unknown quantities in the body
containing the various cracks in piezoelectric medium. (Kogan et al., 1996) In the
three-dimensional problem, they have applied spheroidal piezoelectric inclusion or
penny-shaped crack subject to axisymmetric, in-plane and out of plane shear (remote
loading) in transversely isotropic piezoelectric (PZT-4, PZT-5H) infinite medium under
electrical permeable boundary condition via the harmonic function (analytical solution)
to investigate the stress and induction intensity factor. (Gao & Fan, 1999) They have
examined and found that the uniform electric loads have no influence on the field
singularities and obtain the field intensity factor in two-dimensional problem under
transversely isotropic piezoelectric infinite medium with electric impermeable BC.
They have also employed the elliptical hole subjected to uniform remote loads using
the potential approach (analytical solution). (Chen & Shioya, 2000) By employing the
potential theory (analytical solution) beneath the electric impermeable BC in the three-
dimensional problem, the penny-shaped crack subjected to axisymmetric arbitrary
shear loading “ uniform shear and point loading” at the crack surface is employed in
transversely isotropic piezoelectric (PZT-4, PZT-5, PZT-7A, PZT-6B, BaTiO3) finite
medium to obtain the complex stress intensity factor. In addition, mode Il and mode I11
are also derived in an exact manner, for the case of the uniform loading in comparison
with Kogan et al. (1996). (Davi & Milazzo, 2001) They have obtained the generalized
stress intensity factors and the generalized relative crack displacement and compared
with exact solution by using the horizontal crack “inclined crack with angle in a
rectangular solid” applied to normal far-field stress and normal electric displacement
(remote loading) via the boundary element method (numerical solution) in two-
dimensional transversely isotropic piezoelectric (PZT-4) infinite medium with electric
impermeable BC. Again, the investigation of Jiang and Sun (2001) under electric
impermeable BC in the three-dimensional and transversely isotropic piezoelectric



(PZT-4) infinite medium is utilized in association with a half-penny-shaped crack.
This is for half space problem under arbitrarily axisymmetric loading conditions. In
addition, semicircular crack (applied at crack surface) is carried out by using the Henkel
integral transform and dual integral equation. (Yang & Lee, 2002) they have applied
the potential theory, Henkel transform and Fourier series to gain the Fredholm integral
equation under the electric impermeable BC in three-dimensional transversely isotropic
piezoelectric (PZT-6B) finite domain associated with a penny shaped crack under non-
axisymmetric in-plane and a pair of concentrated normal mechanical and electrical
loads (at the crack surface). (Gruebner et al., 2003) In three-dimensional, transversely
isotropic piezoelectric (PZT-4) finite domain, the mixed electric BC (limited permeable
or Semi-permeable, permeable, impermeable) is discussed. The finite element method
is employed in association with the Griffith crack in the piezoelectric block subject to
external electromechanical load at the surface of the block. (Landis, 2004) In three-
dimension transversely isotropic piezoelectric (PZT-5H) infinite medium under the
standard infinitesimal deformation theory with the electrical consistent BC, the Griffith
crack with electromechanical loading (at the crack faces) is employed to demonstrate
that the energy release rate computed near the crack tip is equivalent to the total energy
release rate in which this result is compared with the electric impermeable BC. (Denda
& Mansukh, 2005) They have applied the multiple straight crack (e.g., two inclined
cracks in an infinite body under uniaxial tension, two aligned parallel cracks in an
infinite body under uniaxial tension, and two collinear cracks in an infinite body under
uniaxial tension (all at remote loading)), on the mixed mode BCs (electric impermeable
and permeable BC) in two-dimensional orthogonal piezoelectric infinite medium by
employing much simpler linear solution procedure by Boundary element method
(BEM) in association with the Green’s function approach. Also (Groh & Kuna, 2005)
under the problem of two-dimensional transversely isotropic piezoelectric (PZT-4,
PZT-5H, BaTiO3), infinite medium is investigated in association with the electric
impermeable BC by using the kinked crack subject to electrical loading. In addition,
Crack perpendicular is employed to an interface under electromechanical loading.
Moreover, Griffith crack is applied under shear load and uniaxial load (all at remote
loading) via the universal boundary element method, sub-domain technique and
fundamental solution using Fourier series. For Ou and Chen (2007), based on Stroh’s
theorem (Stroh, 1958) and the compact formulations under the electric Simi-permeable
in two-dimensional transversely isotropic piezoelectric (PZT-4, PZT-5H, PZT-6B)
infinite medium, they have applied the conducting crack “a center crack” under
mechanical and electrical loading (remote loading). In the same year, (Qin et al., 2007)
the electric impermeable is diagnosed in three-dimensional transversely isotropic
piezoelectric (PZT-4, PZT-6B) infinite medium by employing a planar crack
(Rectangular crack) under mechanical and electrical loads, Elliptical crack under
mechanical and electrical loads (all at remote) via the Finite-part integral and boundary
element method associated with body force method. For (Nam & Watanabe, 2008) in
two-dimensional transversely isotropic piezoelectric (PZT-4) infinite medium under the
mixed BC (permeable and impermeable BC) via the finite element method, they have
utilized a notch-like crack filled with a dielectric inclusion under electromechanical
loading (remote loading). Moreover, (Solis et al., 2009) they have investigated the
stress and electric intensity factor by utilizing three types of crack. The first one is the
elliptical crack under electric and mechanical load. The second one is the prismatic



plate with central crack subject to uniform normal traction and electric displacement at
two opposite faces. The last is prismatic plate with two edge cracks. All these three
types of crack are subject to uniform normal traction and uniform electric displacement
at the two opposite faces parallel to the crack via the boundary element method in three-
dimensional transversely isotropic piezoelectric (PZT-4) finite and infinite medium
under the electric impermeable and permeable BC. The result of this investigation is
also compared with other results. (Kuna, 2010) has applied the theoretical fundamentals
of linear piezoelectric fracture mechanics under the mixed modes BC (impermeable,
permeable, conducting and limited permeable “Simi-permeable”) in two-dimensional
anisotropic piezoelectric (PZT-5H, PZT-4) switching domain by utilizing Griffith crack
under a constant remote stress with perpendicular poling and electric field (remote
loading). (Fang et al., 2011) in the electric impermeable BC via the complex variable
method (analytical solution) in two-dimensional transversely isotropic piezoelectric
(PZT-5H, PZT-4, BATIO3) infinite medium, the elliptical inclusion with an interfacial
crack subjected to arbitrary singularity loads (point charge and anti-plane concentrated
force) and remote anti-plane mechanical and in-plane electrical loads (remote loading)
is employed. (Zhou et al., 2012) in three-dimensional transversely isotropic
piezoelectric (BaTiO3-CoFe204) infinite medium via the generalized Almansi’s
theorem and the Schmidt method (analytical solution) under the electric limit-
permeable BC (Simi-permeable), they have utilized the rectangular limited-permeable
crack and two three-dimensional limited-permeable rectangular crack assumed a
distributed normal stress loading (applied the crack surface). At the same time, (Zhao
et al., 2012) The conventional displacement discontinuity method associated with
green’s function method is employed on the electric impermeable BC in three-
dimensional transversely isotropic piezoelectric (BaTiO3) infinite medium with the
vertical crack (the rectangular crack) subjected to the uniform mechanical and electric
loading (at crack surface), besides; (Sladek et al., 2012) They have investigated in
two-dimensional transversely isotropic piezoelectric (PZT-4) in an inhomogeneous
finite strip under the mixed boundary condition “permeable and impermeable”, the
central interface crack of two dissimilar piezoelectric materials under a pure mechanical
load at the crack surface is employed via a mesh less method based on the local Petro
Galerkin approach associated with Quasi-static governing equations. (Li et al., 2013)
under the electric impermeable BC in two-dimensional transversely isotropic
piezoelectric (PZT-4 and PZT-5) infinite domain via the scaled boundary finite element
method, the Infinite plate with central-inclined crack under remote tension and electric
displacement load, Infinite plate with a branched crack under a uniform tension or a
uniform electric displacement load and Finite plate with a central-inclined crack under
a uniform tension or a uniform electric displacement load is used. (Hu & Chen, 2013)
the cracked piezoelectric strip under in-plane mechanical and electric impact loadings
(remote loading) is discussed under the electric impermeable BC in two-dimensional
transversely isotropic piezoelectric infinite medium via the Fourier and Laplace
transform to a singular integral equation. (Nan & Wang, 2013) the electrical mixed
mode BC (permeable and impermeable) is employed associated with a through-
thickness crack of length “2a” under a remote uniform normal stress and an electric
displacement  (remote loading) beneath two-dimensional transversely isotropic
piezoelectric (PZT-5H) infinite medium via the singular integral equation technique
whereas the result is found that the effect of surface on the electric displacement



intensity factor depends on the crack face electric boundary condition and influenced
by the residual surface stress on the entire crack surface which compared with the
theoretical result. (Tran & Mear, 2014) in the two-dimensional multi-field (anisotropic,
elastic, isotropic, transversely isotropic “PZT-4" and magnetoelectroelastic) finite and
infinite medium under the electric impermeable via a weakly singular, SGBEM, the
Straight crack in infinite domain, subjected to either a uniaxial far-field stress or a far-
field electric induction, Rectangular plate with a central inclined crack subjected to
either uniform tension stress or electric induction (remote loading). The result has
indicated that the ‘generalized’ stress intensity factors are examined, highly accurate
results are obtained with relatively coarse meshes under comparing with the exact
solution and available result associated with different method. Also (Chen et al., 2014)
a Simi-infinite conducting crack under mechanical impact loading (at crack surface)
under two-dimensional transversely isotropic piezoelectric (PZT-4, PZT-6B, PZT-7A
and PZT-8) Simi-infinite medium under electric impermeable BC via the integral
transform method, the wiener-Hopf technique assembled with the universal function.
Fan et al. (2014), the extended displacement discontinuity integral equation method
(analytical solution) and developed an extended displacement discontinuity boundary
element method is employed with the electric impermeable BC in three-dimensional
transversely isotropic piezoelectric (PZT-6B) infinite medium under the penny-shaped
crack under a uniform electric and mechanical loading, non-uniform loading (at the
crack surface)

The various parameters (e.g., geometry, loading conditions, permittivity in the
crack gap, various geometries and four crack-face boundary conditions) have an
influence to fracture in the piezoelectric medium. Many investigators have conducted
researches on this topic. (Kogan et al., 1996) they have considered stress component in
x and y-axis subjected to anti-symmetric (out of plane shear and in-plane shear) by
varying the range of latitude (w = 0 to 80) to diagnose the quantities (load ratio) on the
boundary of a spherical hole inside the piezoelectric-ceramics PZT-4 at 9=0 and 9=0,
respectively. (Yang & Lee, 2002) The singular mechanical and electric fields and all
mode-I field intensity factors are examined. For the first case, the stress intensity factor
is considered in different ratio of the crack radius to layer thickness (a’/h = 0.0 to 1.0)
for PZT-6B ceramic under axisymmetric loads (casel to case4). The second case is to
investigate the change of normalized SIF (e=1.0x10°&a=10mm ) with the applied
electric field (Eo = -20 to 10x10° V/m) of the load case2. For the third case of non-
axisymmetric loads, the polar angle (=0 to 90 degree, a/h is constant and vary ro) on
the face is considered by varying the polar angle of the crack (6 = -200 to 200 degree)
to demonstrate the stress IF and the ratio of ro = b/a (a/h is constant and vary ) is
represented to diagnose the SIF of the load casel by varying 8. (Gruebner et al., 2003)
According to the distinct permittivity (0.5, 1.0 and 2.5) in various BC (e.g.,
impermeable, permeable and semi-permeable) are discussed by varying electrical load
(-0.01 to 0.01 C/m?) to demonstrate the stress intensity factor mode-I and mode-1V

ext

and the case of the energy release rate J and JM with the mechanical load (o,

=10MPa). In this research, the investigation is to demonstrate that the influence of the
permeability of the crack on electric and mechanical fields near the crack tip is
considered, and that the influence on the stress intensity factors and energy release rate
will be discussed and compared with the CT specimen. Furthermore, (Ou & Chen,
2007) they have found that the normal crack opening displacement jump (NCODJ) is



always extremely small, whereas the electric potential drop (EPD) across the crack is
very large and the energy release rate (ERR) influences the permittivity. In this
investigation, they considered the permittivity (ea =10, 1 2.5, 20000 &) by varying the
distinct valued electric field (-0.5 to 0.5 MV/m) to demonstrate the influence of
permittivity upon normalized crack opening displacement jump (NCODJ) and electric

potential drop (EPD) of PZT-5H and PZT-4 with a=lmm and O, =20MPa.
Moreover, the normalize crack tip ERR against the applied electric field (-0.5 to 0.5
MV/m) for a central crack in PZT-4 and PZT-5H is subject to different mechanical
loading levels (1, 5,10,20,50 Mpa) and the influence of the permittivity ((ea =10
81,2.5,200004) of medium inside crack gap on the crack tip ERR of PZT-5H, PZT-4
and PZT-6B is investigated. According to Qin et al. (2007), the different ratio (a/b =
1,2,3 and 4) with the position along the crack front (+ b ) of the rectangular crack (xi/a
= 0.0to 1) is carried out. Besides, the aspect ratio of the elliptical crack (a/b = 1, 4/3,
3/2 and 2) with varying the angle @ (position) of the elliptical crack also considered
to obtain the result of dimensionless intensity factor mode-1 and mode-1V in which this
result is compared with the exact and Chen’s result. As (Kuna, 2010) mentioned, the
relative permittivity is diagnosed by varying the remote electric field (-1 to 1 MV/m) to
demonstrate the total and mechanical EER (semi-permeable) of the Griffith’s crack in
PZT-5H subject to the mechanical load (20MPa). The result can be found that
experimental fracture investigations are relatively poor when compared the method
because of many influent factors. For (Fang et al., 2011) the result is that the energy
release rate (ERR) increases with an increment of the ellipse aspect ratio. It is positive
but can be negative when both mechanical and electric fields are applied. This effect
has been obtained from the shear modulus ratio(1=0.1t020) with different loading
(casel: £=0.5, 7, =7", 7, =¢"=0and case2: £¢=0.5,7,, =0, 7;, =¢~, distinct aspect

ratio (¢ = 0.1 to 0.9) with different loading (1 =0.5, 7,, =7, =7"), the permittivity of

PZT- 65/35, PZT-5H, PZT-4, BATIO3 with the constant 1=0.5, ¢=0.5 by varying the
angle of the elliptical crack (4 = 0 to 180 degree). To enhance their computational,

the different matric piezoelectric constants is varied el(? (5, 10, 20) with the load cases
(casel:E2=E* E’ =0, 2 = 0.5,d” =050 and case2: EZ =0, Ef =E* 1=0.5 d\) =
O.Sdfi)). The aspect ratio is varied in the range ¢ = 1,0.2,0.5,0.7,0.9 with the load (
Ex = E;/ =E”). The permittivity of PZT- 65/35, PZT-5H, PZT-4, BATIO3 with the
load (E; =E; =E",£=05) is varied with the angle of the elliptical crack (5= 0 to 180
degree). Besides, the loading coefficient el(? (0.06 to 0.10) matric piezoelectric
constant €2 (6 to 16) with the conditions S=7z/2, ¢ = 05 and E}=E=F°,

T, =1, =7, E*=0.11*, £ = 0.5, respectively, indicates the normalized ERR by varying

different angle. According to (Zhou et al., 2012), various BC (permeable and semi-
permeable) is considered to indicate the stress intensity factors Kx along the crack edge
with the conditions (Do/ &0 =1.0x108,Bo/ 10=1.0x10° with |1 = I2) versus position (y/l2 =
0.0 to 1.0). Moreover, the stress intensity factor Kx & Ky along the crack edge x=Il1 and
y = |2 with the condition (Do/eo =1.0x108, B,/ 14, Bo/o =1.0x10%) is investigated by



varying (y/l2 = 0.0 to 5.0) and (y/l2 = 0.0 to 1.0) of various lengths I respectively. In
this case, the result revealed that the effects on the rate of the rectangular crack edge
length on the stress intensity factors along the rectangular crack are large in comparison
with Zhu’s result and the electrical permeable BC. (Hu & Chen, 2013)) have found
that the geometry of the cracked strip and the electric loading significantly influence
the singular field distributions around the crack tip. For this investigation, they
considered different angle (6 = 0, 25 and 50 degree) by varying (TVs/c = 0 to 1), to
obtain not only the dynamic hoop stress intensity factors while (Le
=+0.5,h1/c=1,h2/c=3), but also the aspect ratio of the crack (hi/c and hz/c). The result
was discussed to determine the maximum value of the normalized hoop stress intensity
factors versus angles (-180 to 180 degree). Moreover, the different electrical loading
(Le=-1.0 to +1.0) is carried out to indicate the dynamic HSIF, whereas the angle and
the various lengths are constant (6 =25, h2=3h1=3c). Besides, the aspect ratios of the
crack (hi/c and h2/c) are varied to reveal the dynamic stress intensity factor Ki(t) versus
electric loading the normalized time.

Clearly described above, a large number of studies related to theoretical
modeling and analysis of cracks in piezoelectric media has been well recognized in the
literature. However, work related to the investigation of the influence of various factors
such as the crack geometry, crack-face conditions, loading conditions, properties of
piezoelectric media and properties of a medium inside the crack gap on the fracture data
along the crack front is still available only for certain scenarios and a limited range of
parameters. Further studies are still required to provide more complete information and
enhance fundamental understanding of the fracture behavior in piezoelectric materials.

1.3 Objective of research

The key objective of the proposed research is to fully investigate the influence of crack
geometry, crack-face boundary conditions, loading conditions and permittivity inside
the crack gap on the stress and electric intensity factors of cracks in piezoelectric media.

1.4 Scope of research

The proposed work is limited to (i) a three-dimensional, infinite medium made of a
homogenous, transversely isotropic, linearly piezoelectric material and obeying the
classical theory of linear piezoelectricity, (ii) a medium that is free of the body force
and electric body charge, and (iii) the poling direction is directed along the axis of
material symmetry. The influence of four parameters, (1) the geometry of cracks which
is characterized by four representative cracks including a spherical cap crack, a
cylindrical crack, a tunnel crack and a pair of two identical penny-shaped cracks, (2)
the crack-face boundary conditions including the impermeable, permeable, semi-
permeable, and energetically consistent conditions, (3) the electrical and mechanical
remote loading conditions, and (4) the dielectric permittivity of the medium inside the
crack gap, on the values and distribution of the intensity factors along the crack front
are investigated.



1.5 Methodology and procedures

The key task of the present study is the efficient and accurate determination of the stress
and electric intensity factors of cracks in piezoelectric media for various crack
configurations and under various crack-face and loading conditions. To achieve this
crucial task, following methodology and procedures are proposed.

(1)  The boundary value problem is formulated based on a classical theory of linear
piezoelectricity. A method of boundary integral equations is utilized to obtain the final
governing integral equations.

(2 An existing numerical technique, based on a weakly singular symmetric
Galerkin boundary element method (SGBEM) proposed by Rungamornrat and Mear
(2008) and Phongtinnaboot et al. (2011), is utilized to determine the unknown crack-
face data such as the relative crack-face generalized displacement.

3 The stress and electric intensity factors along the crack front are post-processed
from the relative crack-face generalized displacement using the existing formula
proposed by Rungamornrat and Mear (2008)

4) Results for certain cases are compared with available benchmark solutions to
validate the numerical technique employed.

(5) The convergence of numerical solutions is fully investigated via a series of
meshes with different levels of refinement. Sufficiently fine meshes are then chosen in
the numerical study for investigating various parameters.

In the parametric study, various scenarios covering the range of all parameters of
interest are considered to provide a set of data sufficient for concluding final findings.

1.6 Significance

Extensive results obtained from the present investigation should directly offer
fundamental and in depth understandings of the influence of various factors such as
models used to simulate the crack-face conditions, crack geometry and loading
conditions on the value and distribution of stress and electric intensity factors along the
crack front. For instance, the sensitivity of the adopted crack-face condition and the
corresponding parameters on predicted results should at least provide a useful guideline
in the selection of a mathematical model suitable for a given scenario.
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CHAPTER 2
THEORETICAL CONSIDERATIONS

This chapter briefly presents the clear problem statement, the basic field equations used
to formulate the boundary value problem of cracks in linear piezoelectric media, various
models for simulating the crack-face boundary conditions, and characteristics of the
near-tip generalized stress field. In addition, the standard definition of the stress and
electric intensity factors is also provided at the end of this chapter.

2.1 Problem Descriptions

In this section, we consider an infinite domain containing a planar and non-planar
cracks in three-dimensional problem in which this material is linear, homogenous
transversely anisotropic piezoelectric. In this particular case, the body force and electric
charge is assumed to disappear at the beginning. In this case, to investigate the stress
and electric intensity factors, along the crack front, we discuss only loading on crack
surface and remote loading associated with various electric boundary conditions such
as electrical impermeable, electric permeable, semi-permeable and energetically
consistent boundary conditions indicated in Figure 2.1.

O'OO, Doo

c”,D”
Figure 2.1 Schematic of a linear piezoelectric body containing a crack infinite medium.

In the current investigations, the various influence parameters are utilized to
examine the non-zero stress and electric intensity factor. The geometries such as planar
and non-planar cracks are first utilized to investigate various parameters including
influence of geometry on four crack-face models. The permittivity inside the crack gap
is varied in the wide range on four crack-face models. The loading conditions such as
applied remote tensile mechanical and electrical load are also varied in the wide range
and the various boundary conditions (viz. impermeable, permeable, semi-permeable
and energetically consistent models) are investigated in all cases.
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2.2 Basic equations

In this section, we firstly propose a set of basic field equations governing a body
constituting a linear piezoelectric material. In the piezoelectric problem, providing
that the body force field and the body electric charges do not appear in the beginning,
a set of field equations governing a piezoelectric body, including conservation of forces
and electric charges, strain-displacement and electric field-electric potential relations
and constitutive model for linear piezoelectricity can be presented below. The
conservation of forces and electric charges is governed by

ol B - %_
OX; oX; -

0 (2.1)

The strain-displacement and electric field-electric potential relations are given by

&j =%(Ui,j +“j,i) , Bi=-9, (2.2)

The constitutive model for linear piezoelectricity follows

0 = Ejnéim +emij¢,m ;D =eméim —Kinfn (2.3)

where aij,Di,&ij,Ei and ui are components of the stress tensor, electric induction vector,
strain tensor, electric field and displacement vector, respectively; besides, Kim IS
dielectric permittivity; ¢ is the electric field and emij is piezoelectric constants.

2.3 Boundary conditions Boundary conditions

In this section, the essential conditions must be diagnosed including the basic field
equation, the boundary conditions on the crack surfaces and outer boundary such as the
mechanical and the electric conditions. Such conditions are significant information that
must suitably be assigned in the analysis of piezoelectric media containing fracture.
This information, particularly the boundary conditions on the crack surfaces, has a
major influence on both the main data and behavior of the crack surface. For this
investigation the outer boundary is considered in association with the uncoupled
mechanical-electric boundary conditions, whereas the boundary conditions at the crack
surface are considered in two groups. The first one is associated with uncoupled
mechanical-electrical boundary conditions (i.e. Permeable and impermeable
assumptions) and the second one with the fully mechanical-electrical boundary
conditions (i.e. semi-permeable and energetically consistent assumptions). The four
types of cracks are summarized in this investigation as following:

For permeable crack, Parton (1967) was the first to propose the definition of the
boundary condition, that there is an electric current inside the crack gap. For this special
case, it means that both the electric induction and electric potential normal to the crack
surface are continuous on the both sides of the crack surface. This implies that both the
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jump of the electric potential across crack surface and the electric potential drop across
the crack surface vanish. Accordingly, the entire data for this case can be briefly
summarized that the jump in the mechanical displacement Aui and the surface electric

charge t, are unknown in the beginning whereas the jump in the electric potential and
the sum of the surface electric charges disappear (Aus =0 and (£t,=t, +t, =0) and

the mechanical tractions t; and t; are imposed.

For impermeable crack, this boundary condition was firstly proposed by Deeg
(1980) that there is no electric current inside the crack gaps. This means that on the both
sides of the crack surface (upper and lower surfaces), the electric induction normal to
the crack surface was supposed to disappear while the electric potential was unknown
in the beginning. The known data for this case can be summarized that the generalized

tractions t,” andt, , are completely imposed, whereas the jump in the generalized
displacement across the crack surfaces, represented byAu, =uj +u;, are unknown a
priori.

For semi-permeable crack, it is commonly known that the impermeable and
permeable cracks are extreme cases. In this boundary condition is the mixed modes
between impermeable and permeable boundary conditions, considering the permittivity
inside the crack gap. It means that the vacuum inside the crack gap can partially induce
electric induction. This derivation of this boundary is from Hao and Shen (1994)’s

boundary condition which can be concluded that the mechanical traction t; and t; are

prescribed and the sum of the surface electric charges disappear (=t, = O ) whereas

the jump of generalized displacement are unknown in the beginning and must be
satisfied the following extra condition:

t,Aun’ =k.Au, (2.4)

Where K¢ is the dielectric permittivity of the medium inside the crack gap

For the energetically consistent crack, this boundary condition is a more realistic
assumption from Landis (2004) in resolving the investigation of McMeeking (2004).
The result can be found that energetically consistent model is equivalent to each other
by increasing the traction on the crack surfaces in which Semi-permeable model is not
considered. In this particular case from the discussion of the energetically consistent

model, the non-zero-mechanical traction t."and t; which tend to pull the upper and
lower crack surfaces can be separated into two parts ¢; +7; and 0; +7; , where {af,ai'}

and {r.* T } represent the normal and shear tractions respectively. In this crack, {ﬁ ,ri'} are

117
completely imposed and the sum of the surface electric charges and the sum of the
normal mechanical tractions disappears (i.e., 2.t = 0 andZo; =0, +0; =0), whereas the

jump in the generalized displacement Au,, the mechanical normal traction Gf and the

. + . .
surface electric charge T, are unknown and satisfy the relation.
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o7 = U2k, (Au,)? [(Au,n; )’ (2.5)

2.4 Near-tip generalized stress field of linear piezoelectric material

Analogous to the work of Westergaard, Irwin, Sedona and Williams (1975) who were
among the first group to carry out the near-tip field investigation of the crack body in
infinite domain, it is possible to derive closed-form expressions for the stresses in the
body in linear piezoelectric material with respect to the coordinate system. We
determine a polar coordinate ( r,£) and standard coordinate system (xi,X,Xs) with the
origin at the crack front xc where the plane x; - x, normal to the crack front at xc. The
plane x; — Xs and Xx; — X3 Is the tangent plane at the point xc at the crack front (as shown
in the figure below) and the orthonormal base vector (e1,ez,es) is in the same direction
of (X1,X2,Xs) respectively. It can be illustrated that the stress field in any linear
piezoelectric cracked body is offered by:

oy (Xei1.0)= i{% o (0)+ 2 A, (%, fco)r%o-i;” (9)} (2.6)

Crack body

Figure 2.2 The coordinate system with notation utilized in near-tip generalized stress
field along the crack front

where oi; represents the generalized (Mechanic and electric stress) stress tensor

(i=1,2,3 and J=1,2,3,4) and Di=os, are components of the electric induction vector. Kn
and Am are constant in which depend primarily on position xc and the conditional
function feo where feo is the function with respect to loadings, boundary conditions,
geometries and material properties. ¢ is the stress function which depends only on &

(independent of radius r) in the first term and depends on the modes. For the higher-
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order terms, o, ™ denotes the stress function with respect to @ for the m-term and

depending on geometries. In this particular case, the solution for the above equation
(2.6) contains a first term that is proportional 1/~/r . If and only if the radius r >0
the first term approaches to infinity or called the singular at that point, but the other
higher term remains finite or approach to zero called non-singular. Inasmuch, the

generalized stress near the crack front varies witha/ +/r _The stress Gi(J“) and oy, ™ in

equation (2.6) can be simply gained by asymptotic analysis for each proper problems.
Unfortunately this is still not the perfect analysis for the analytical of boundary value
problems. When the perfect stress field can be assigned, the stress function aig“’ and

(oF ™ in equation (2.6) can be found by the procedure of standard series expansion.

There are four types of loading that a crack can be experienced. Mode-I denoted
as K1 or Ki where the principal loads are applied normally to the crack plane and tend
to open the crack. Mode-1I denoted as Kz or K represents in-plane shear loading and
tends to slide one crack surface with respect to the other plane. Mode-111 denoted as Ks
or K represents out-of-plane shear and Mode-IV denoted as Ks or Kiv represents
electrical intensity factor on a crack body, or a combination of two or three modes. Each
mode of loading offers the 1/ +/r singularity at the crack front. The stress and electric

intensity factors (or generalized stress) at a point X, are determined by taking The limit

r >0" ,after the stress function of the left hand side of the equation (2.6) are known as
shown:

K, oy
K
2 = lim 2| 7 (2.7)
K % —0" O3
K, O 4

Where the stress field [o] in the right hand side of equation (2.7) depends on the local
coordinate system (X1,X,Xs) and can be obtained from each proper problems.
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CHAPTER 3
SOLUTION TECHNIQUE

This section discusses the technique and procedure used to obtain the solution of the
boundary value problem stated in Chapter II. A brief introduction to the weakly singular
SGBEM adopted in the present study is presented first and then the post-process for the
stress and electric intensity factors along the crack front is addressed. In addition, the
generation of meshes used in the numerical study, convergence check and verification
of the numerical technique are also included.

3.1 Introduction of SGBEM

From the mechanic computational aspect (fracture problem), to analyze fracture
problems in infinite domain can be analyzed from two main groups, such as analytical
and numerical technical groups. We can derive closed form for the fracture problem
only for the case that the problem is not very sophisticated, for example two-
dimensional problems and simple geometries and etc. In such case the analysis is
required. Solving the crack problems via the numerical technic is particularly
reasonable for a complex or more complex problem such a three-dimensional problem
or that of which geometries are complicated. In the numerical technique, there are many
approaches such as finite difference method (FDM), finite element method (FEM) and
boundary element method (BEM) and so on. These are considered as common methods
to investigate the data along the crack front in the fracture problems.

The difference between the finite element method (FEM) or finite different
method (FDM), and the boundary element method (BEM) is that the finite element
method is efficient for large scale and complex problem of fracture and is in the
symmetric of sparse coefficient matric form. However, this method demands
discretization in the whole domain, which means that the final governing integral
equation involves the entire variables of the domain that is no need for crack problem.
Moreover, the generation of mesh also requires in whole domain (involved crack
surfaces) which needs to be considered as three-dimensional problem; hence, this
method is not popular in use in infinite domain problem. The finite element method
(FEM) can also be more difficult in practice.

In the group of boundary element method (BEM), on the other hand, the data
appears only as unknown variable on the crack surface into the governing integral
equation. This means that the dimension of the problem can be reduced. The BEM
group is more effective in the area in which the FEM has difficulties. They can be
classified in many techniques for instance boundary element method (BEM) which
based upon collocation technic (e.g. to satisfy integral equation at each point). The form
of metrics is also the dense non-symmetric form. However, the BEM (based on
collocation technique) is not suitable when the domain becomes larger and non-linear
or non-homogeneous. It is then difficult to develop the governing equation as it is
related to kernel which appears in governing integral equation, or we must implement
the strong form of the governing integral equation.
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Another feature of the BEM group is the symmetric Galerkin boundary element
method (SGBEM) which is based on symmetric Galerkin approximation or in weak
form integral equation, which is to satisfy integral equation as average point. Notably,
this technique have separated singular kernel in the final governing formulation as
many forms, such as Hyper singular SGBEM (which needs C* element which is a high
smoothness required for the shape function), strongly singular SGBEM (which needs
C! element) and weakly singular SGBEM (which needs C° element in which the slope
can be discontinuous and require only the continuous of function values essential for
the shape function). According to the weakly singular, SGBEM have many advantages,
inasmuch this method will be employed here.

To obtain an integral equation applied for constituting fundamental of weakly
singular, SGBEM must impose the stress and electric intensity factors along the crack
front. We need a boundary integral equation (BIE) in term of complete boundary value
problem including the whole data at the crack. The stress field along the crack front and
the relative crack face can be employed to separate the stress and electric intensity
factors in the equation (2.7). In this section, we can briefly summarize a series of
boundary integral equation significant for weakly singular, SGBEM. We consider a
crack body in the infinite domain in which the material is linear homogenous,
transversely anisotropic piezoelectric media. The upper and lower crack surfaces

denoted by S: and S, respectively, and the outward unit normal vector n* and n-

normal to the upper and the lower crack surface is determined in figure 3.1 below. The
traction on the crack surface is supposed known a priori.

Figure 3.1 Schematic of an isolated crack in three-dimensional, generally anisotropic
infinite domain

Eventually, The complete weakly singular, weak-form boundary integral
equation for the generalized surface traction is assigned which was developed and
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offered by Rungamornrat and Mear (2008). It should be noted that each term contains
weakly singular of O (1/r). The final equation of weak form is shown below:

——IuK(y)t (y)dS(y) = j D, (y Ic E-y)D,v, (E)ds(E)ds(y)

C

+ [Daly [ Gic(& -y}, (€S (E)s(y) (3.1)

s¢

+] W) Hi -y 0, (£)as(e)as(y)

s¢

where b, representatest function O, (y)= AD, (y), yeSZ , ti(y) represent

the generalized traction by ty (y)=2t;(y) ,yeS; ; w3 denote the generalized jump

of displacement; Dm is a surface differential operator assigned by Dm = nigismd &
Where & represent alternating symbol.

A specific solution of the unknown singular functions Gnﬁj and Cr'n'j can be

established by solving a system of partial differential equations. A method of Radon
transforms which is analogous to the method utilized in work of Rungamornrat and
Mear (2008) is applied. Finally, the implemented solution is expressly displayed in term
of a linear integral as below:

1

G (E-x)= 8T

(8ameaJDc) § Zb Zc (Z’Z)_DIP dS(Z) (32)

z.r=0

O (6-30)= - (AS) f.2, (2200 6(2) (33)

z.r=0

. . . . tKsM .
where z.r = 0 denote the line integral evaluated over a unit circle in the plane; JZN IS

the material-dependent constants can be presented by:

1
Z EaJKbEdNMs) (3-4)

tKsM
JAN 8pam8pbt(EbKNd EaJMs -

And HE (& - X) is given which is independent of the generalized elastic moduli defined
by:
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Hiﬁ(ﬁ—x)z—é‘w@i _Xi) (3.5)

4ar®
where S is represented as a generalized Kronecker delta symbol; dr(& — xi)is a Dirac-
delta functional distribution centered at point X. The outstanding product of an equation

(3.1) is the weakly singular kernels contain only {CtK Gy, Ho ni} of O(1/r)

mJ?

3.2 Determination of stress and electric intensity factors

According to the definition, the mode-1, mode-11 and mode-I1I stress intensity factors
[K1, K2 and Ks] and mode-1V electric intensity factor K4 are determined in equation
(2.7). To implement the perfect analysis in contact with boundary value problems and
estimate the stress and electric intensity factors, the complete integral equation for
instance equation (3.1) can obtain the nodal values of the jump in the generalized
displacements on the crack surfaces. This can be employed to evaluate the stress along
crack front (since the crack-face nodal is recognized). Nevertheless, it might be
complicate to carry out such an approach in a fashion which would permit the stress
and electric intensity factors to be exactly assigned.

For this difficulty, we look for an alternative to the definition of equation (2.7)
to permit the stress and electric intensity factors appeared in term of the crack-face
displacement information straightforwardly.

Crack-tip element

L
C;ack fro? Ve X3 ) e3

Figure 3.2 Schematic of an isolated crack in a three-dimensional, generally anisotropic,
piezoelectric unbounded domain

Here we indicate only the final alternative expression (Barnett and Asaro (1972)
and Xu (2000)) which provides the stress and electric intensity factors in term of the
jump of the displacement on the crack surface as shown:
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k; (xc)= % B (xc)xgm{Ajj—Z)} (3.6)
1% o
By (%) = 5 | (@) —(@.0) (0.0)siy (0.2), Jig (3.7)

Where ki=Ku, k2=Ki, ks=Kin and ka=Klv, ¢ denote the angle between a and e,
as shown in figure 3.2 and the latter association, a and b are orthonormal vectors
contained in the plane x3 = 0. Noted that equation (3.6) & (3.7) is carried out related to
the local coordinate system (X1,X2,X3).

The equation (3.6) still has a disadvantage (i.e., the equation includes taking
limit). Later, to avoid this drawback, the other approach is offered inasmuch the stress
and electric intensity factors can be obtained directly in term of the crack front nodal
information (also see Rungamornrat and Mear 2008) as shown:

T *
K, (Xc) = WB”’ (Xc)up (Xc) (3.8)
9
u;(xc):Zu;(i)(//i(fc,—l) (3.9)
1| %o (e ,—1)” (3.10)
on
e, =1%(§c ~1) (3.11)
n on

£ is an angle satisfying sing=-e,.e:, (&,-1) are the natural coordinates of Xc
(determined with respect to the computational element illustrated in figure 3.2), uﬁ,(i)

are the component of ufi) related to the local coordinate system (Xi,X2,Xs) and

re(&,7)=x(& n)-Xc. Emphasize that the quantities U; represented in equation (3.8), in
reality only involve the nodal information along the crack front (where the “special”
degrees of freedom are utilized) once yi(&c,-1) = 0; this for the nodes is not on the crack
front.

3.3 Mesh generations

To imitate the crack behaviors on the boundary of the various geometries and the crack
surfaces, the stress and electric intensity factors is imposed by weakly singular,
SGBEM. This technique requires sufficient and fine mesh generation for



20

implementation. The aspect ratio of distorted elements has suitably reduced the size to
avoid exceeded distortion. Also a finer implementation is employed in the area where
fields are estimated at sophisticated vicinity for instance the area near the crack front,
the mesh with smooth transition is utilized to relate the meshes. Furthermore, in the
discretization, to obtain the unknown variable data along the crack surface appeared in
the governing integral equation, the crack-tip element is utilized as shown in figure
3.3(d) as the 9-nodes quadrilateral crack-tip elements illustrated in figure3.3 (a) which
is more flexible and utilized along the crack front; Moreover, the crack-tip element have
two advantage features; the first one is the corresponding shape functions can capture
the first three term of asymptotic fields and the other is extra degree of freedom
introduced along the crack front to directly capture to the strength of singularity or in
other word, the first feature enables relatively large crack-tip elements be used along
the crack front and the second feature provides a direct mean to assign the mixed-modes
intensity factors without carrying extrapolations. Another crack elements is the
quadrature element such as standard 8-nodes quadrilateral elements shown in figure
3.3(b) and standard 6-nodes triangle elements illustrated in figure 3.3(c) which is
utilized to connect the inner meshes.

Since the domain becomes very large and the sector of the mesh is increased,
i.e. the angle between each sector is reduced with respect to coordinate system, the
transition will be employed to ensure the exact computation, the mesh transition must
be implemented to other fashion indicated in figure 3.3(e).

(@) (b) (©)
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(d) (e)

Figure 3.3 The elements employed in the discretization of various geometries (a) 9-
nodes quadrilateral crack tip elements, (b) standard 8-nodes quadrilateral elements and
(c) standard 6-nodes triangle elements (e) an example of mesh transition

3.4 Convergence check

The major purpose is to ensure and verify the mesh generation that we have created in
the previous section to be the finest meshes, and the mesh should be converged to the
acceptable unchanged values. We will investigate the stress and electric intensity factor
along the crack front on four distinct type of boundary conditions (i.e., permeable,
impermeable, semi-permeable and energetically consistent models) under various
geometry cracks. Examples include penny-shaped crack folded in circular ball or
Spherical cap crack and penny-shaped crack folded in cylindrical or cylindrical crack,
tunnel crack, two penny-shaped crack in vertical direction and two penny-shaped cracks
in horizontal direction subjected to any kind of loading conditions (i.e., electrical and
Mechanical loads) in a three-dimensional linear transversely anisotropic piezoelectric
material by using weakly singular symmetric Galerkin boundary element method
(SGBEM). The series of mesh generations will be utilized at least three meshes
refinement with explicit distinct levels in each problem which depends primarily on the
difficulty of the geometries and the considered domain size. The result of this
converged implementation is very gainful for each mesh of the problem and this will
become the exact benchmark in the next step.

To implement the convergence of analysis, a collection of meshes is employed.
The mesh refinement is used depending on the crucial level of region on the crack
surface. Particularly, in vicinity of the crack front, the nine-node crack-tip elements are
adopted to approximate, and the remaining regions on the crack surfaces are utilized
eight-nodes and six-nodes-elements. The direction of symmetric axis is defined as xs-
axis. The piezoelectric material utilized in this study is transversely isotropic and the
generalized moduli are analogous to PZT-4 illustrated in table 4.1.below:
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Table 3.1 Property of transversely isotropic piezoelectric materials, PZT-4 gained from
Li et al., (2011). The axis of material symmetry is directed along the xs-axis direction.

Elastic constants SRR 139
(x10°Pa) E1122 77.8

Ei1133 74.3

Es333 113

Ei1s13 25.6
Piezoelectric constants Ei1143 -6.98
(C /m? ) E3343 13.8

E13a1 13.4

Dielectric Permittivity -Eua 6.0
(<107 C /vm)) -E3443 5.47

3.4.1 Convergence of spherical cap crack in infinite medium under tensile remote

loadings

Here we consider a non-planar cracks containing in a transversely isotropic
piezoelectric infinite medium which is made of PZT-4 as shown in figure 3.3 (a) and
(b). The geometries are determined as the penny-shaped crack folded in a half of
circular ball or spherical cap crack with the radius of penny-shaped crack a, the radius
of the spherical cap cracks R and the half-subtended angle & . These geometries will
be employed to investigate intensity factors along the crack front in several cases, e.g.,
the half subtended angle, curvilinear of crack surface, remote tensile mechanical load,
remote electrical load and the permittivity inside the crack gap.

Where a = 1 is determined as a radius of the penny-shaped crack, the & present
the half subtended angle of the crack surface (¢ = 90) and R is imposed the radius of
the crack (R=1). The material symmetric axis and the poling direction are the same of
the xs-axis. In this case, we employ three meshes which are explicitly different levels.
The finest meshes contain 144 elements, whereas the medium meshes contains 64
elements and the coarsest mesh contain 8 elements, respectively, as shown in the
figure.3.3 (b). The piezoelectric medium of the crack is beneath the remote uniaxial

tension oo = 50 MPa, uniform electric field Eo = 2.5 MV/m in the Xs - direction. In this
exploration, the permittivity is supposed as 5x8.85x10712 C/Vm.
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Figure 3.4 (a) schematic of a spherical cap crack in infinite domain and (b) three

meshes utilized in computation.

From the numerical results for stress and electric intensity factors [Ki,Kn,Kiv]
normalized by the results gained from the finest mesh (144 elements) as listed in the
table 3.2 and 3.3, it can be found that the non-zero intensity factors computed from
three meshes are in good agreement. More specifically, the disparity of the obtained
results from the coarsest and the medium meshes compared with the fine mesh is less
than 6.7640% and 0.5232% respectively for all crack face models (i.e., impermeable,
permeable, semi-permeable and energetically consistent models). It should be remarked
that the coarsest mesh comprises only 8 elements along the crack front, and the rest
elements is for the region of crack surface.
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Table 3.2 The convergence of normalized stress and electric intensity factors

[Ki,Ku,Kiv] for a spherical cap crack under remote uniform tensile stress o = 50 MPa
and uniform electric field Eo = 2.5 MV/m for impermeable and permeable models

Impermeable crack Permeable crack
Mesh KI /Kref K” /Kref KIV /Kref K| /Kref K" /Kref KIV /Kref

Coarse(1) 0.9600 0.9989 0.9868 0.9512 0.9938 0.9863

Medium(2) | 0.9979 1.0009 0.9999 0.9972 1.0005 0.9999

Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

% (1)&(3) | 4.0004% | 0.1143% | 1.3246% | 4.8842% | 0.6188% | 1.3723%

%(2)&(3) | 0.2144% | 0.0850% | 0.0081% | 0.2762% | 0.0476% | 0.0071%

Table 3.3 The convergence of normalized stress and electric intensity factors

[Ki,Kn,Kiv] for a spherical cap crack under remote uniform tensile stress o = 50 MPa
and uniform electric field Eo = 2.5 MV/m for Semi-permeable and energetically
consistent models

Semi-permeable crack Energetically consistent crack

Mesh | K, 1K™ | K, /K™ K, [K™| K, /K™ K, /KT K, /K

Coarse(1) 0.9495 0.9937 0.9324 0.9517 0.9969 0.9400
Medium(2) 0.9970 1.0005 0.9948 0.9966 1.0007 0.9961
Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

% (1)&(3) 5.0485% | 0.6332% | 6.7640% | 4.8272% | 0.3138% | 6.0011%
%(2)&(3) 0.3027% | 0.0469% | 0.5232% | 0.3405% | 0.0732% | 0.3922%

3.4.2 Convergence of cylindrical cracks in infinite medium under tensile remote

loadings

Similarly, in this case we consider a cylindrical crack with the radius of penny-shaped
crack a, radius of cylindrical cracks R and the half-subtended angle & embed in a
transversely isotropic piezoelectric infinite medium which is made of PZT-4 as shown
in figure 3.4 (a) and (b). These geometries will be utilized to explore the intensity
factors in the three points (i.e., top, middle and bottom points) along the crack front in
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several cases, e.g., the half subtended angle, curvilinear of crack surface, remote tensile
mechanical load, remote electrical load and the permittivity inside the crack gap.
Where the radius of the penny-shaped crack is defined as a = 1, the @ isimposed
as the half subtended angle of the crack surface (6 = 90) and R indicates the radius of
cylindrical crack (R=1). The material symmetric axis and the poling direction are
identical to the X3-axis. In this special case, we similarly employ three meshes which
are explicit different level similar to the spherical cap crack. The finest meshes contains
144 elements, whereas the medium meshes contains 64 elements and the coarsest mesh
contain 8 elements, respectively, as identically shown in figure.3.3 (b). The

piezoelectric medium of the cylindrical crack is upon the remote uniaxial tension oo =
50 MPa, uniform electric field Eo = 2.5 MV/m in the X;-direction. In this exploration,
the permittivity is assumed as 5x8.85x107*2 C/Vm

Top view

Cylindrical pipe |

(@)
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Mesh-1 Mesh-2 Mesh-3
8 elements 64 elements

(b)
Figure 3.5 (a) schematic of a cylindrical crack in infinite domain and (b) three meshes
utilized in computation and coordinate of each meshes.

Similarly, from the numerical results for stress and electric intensity factors [Ki,Ki,Kiv]
normalized by the harvests obtained from the finest mesh as reported in the table 3.4
and 3.5, it is found that the stress and electric intensity factors provided from three
meshes (i.e., coarse, medium and fine meshes) are well accepted. In particular, the
discrepancy of the given results from the medium meshes correlated with the fine mesh
is less than 0.2381% respectively for all crack face models (i.e., impermeable,
permeable, semi-permeable and energetically consistent models). It should be noted
again that the coarsest mesh comprises only 8 elements along the crack front.
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Table 3.4 The convergence of normalized stress and electric intensity factors
[Ki,Ki,Kiv] for a cylindrical crack under remote uniform tensile stress oo = 50 MPa
and uniform electric field Eo = 2.5 MV/m for impermeable and permeable models

Impermeable crack Permeable crack
Mesh K /Kl’ef K /Kref K /Kref K /Kref K /Kref K /Kref
| I v [ [ v

Coarse(1) 0.7301 0.9859 0.9688 0.7882 0.9852 1.0085

Medium(2) | 1.0024 1.0001 1.0006 0.9997 1.0002 0.9998

Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
% (1)&(3) | 26.9892% | 1.4128% | 3.1240% | 21.1765% | 1.4797% | 0.8523%
%(2)&(3) | 0.2381% | 0.0106% | 0.0587% | 0.0315% | 0.0172% | 0.0179%

Table 3.5 The convergence of normalized stress and electric intensity factors
[Ki,Ku,Kiv]  for a cylindrical crack under remote uniform tensile stress op = 50 MPa
and uniform electric field Eo = 2.5 MV/m for Semi-permeable and energetically
consistent models

Mesh Semi-permeable crack Energetically consistent crack

K, /K™ K, /K™ K, /K" K [K*® K, [K®"| K, /K

Coarse(1) 0.7874 0.9799 0.9222 0.7369 0.9874 0.9465
Medium(2) | 0.9998 1.0001 0.9993 0.9993 1.0002 1.0002
Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
% (1)&(3) | 21.2552% | 2.0061% | 7.7769% | 26.3120% | 1.2648% 5.3509%
%(2)&(3) 0.0184% | 0.0149% | 0.0712% | 0.0705% | 0.0185% 0.0244%

3.4.3 A pair of penny-shaped cracks

Next, we consider a pair of penny-shaped cracks, i.e., two penny-shaped crack in
vertical direction and two penny-shaped crack in horizontal direction with radius a, and
the distance of the two cracks L embed in a transversely isotropic piezoelectric infinite
medium made of PZT-4 as indicated in figure 3.5 (a) and (b). These geometries will be
utilized to explore other cases for instance interacting of both cracks, remote tensile
mechanical load, remote electrical load and the permittivity inside the crack gap.
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Where a is a radius of the penny-shaped crack (a = 1) and the L represent the
distance of two cracks (L=0.5 and L=2.25 for two penny-shaped crack in both vertical
and horizontal direction, respectively). The material symmetric axis and the poling
direction are the same, which is the Xs-direction. In this crack, we employ three meshes
from explicitly different levels. The finest meshes contain 144 elements per a crack,
whereas the medium meshes contains 64 elements and the coarsest mesh contain 8
elements, respectively, as shown in the figure 3.5. The piezoelectric medium of the

spherical crack is under remote uniaxial tension oo = 50 MPa, uniform electric field Eo

= 2.5 MV/m in the Xs-direction. In this exploration, the permittivity is 5x8.85x1012
C/Vm
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Figure 3.6 (a) schematic of a pair of penny-shaped cracks in vertical direction in infinite
domain and (b) a pair of penny-shaped cracks in horizontal direction and (c) three
meshes utilized in computation.

For the two penny-shaped crack in vertical direction, results from the numerical
results for stress and electric intensity factors [Ki, Ku, Kiv] given from the finest mesh
(144 elements) recorded in the table 3.6 and 3.7 indicate that the stress and electric
intensity factors of one penny-shaped cracks obtained from three meshes are good
convergence. To be precise, the disparity of the gained results from the coarsest and the
medium meshes compared with the fine mesh are less than 2.8575% and 0.2892%,
respectively, for all crack-face models.

Another cracks are two penny-shaped crack in horizontal direction. In this case,
the numerical results for stress and electric intensity factors [Ki,Kiv] given from the
finest mesh (144 elements) recorded in the table 3.8 and 3.9 show that the stress and
electric intensity factors offer from three meshes are good acceptable. The disparity of
the gained results from the coarsest and the medium meshes compared with the fine

mesh are less than 1.2875% and 0.0561%, respectively, for all crack-face models.
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Table 3.6 The convergence of normalized stress and electric intensity factors
[Ki,Ku,Kiv] for a pair of penny-shaped crack in vertical direction under remote uniform
tensile stress oo = 50 MPa and uniform electric field Eo = 2.5 MV/m for impermeable

and permeable models

Mesh Semi-permeable crack Energetically consistent crack

K, TK™| K, TK™| Ky TK™| K, K™ K, [K™] K, K™

Coarse(1) | 0.9937 1.0286 0.9940 0.9938 1.0258 0.9938
Medium(2) | 1.0005 1.0029 1.0005 1.0005 1.0027 1.0005
Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
% (1)&(3) | 0.6329% | 2.8575% | 0.6016% | 0.6201% | 2.5820% | 0.6201%
%(2)&(3) | 0.0518% | 0.2892% | 0.0479% | 0.0521% | 0.2653% | 0.0521%

Table 3.7 The convergence of normalized stress and electric intensity factors
[Ki,Ku,Kiv] for a pair of penny-shaped cracks in vertical direction under remote uniform
tensile stress oo = 50 MPa and uniform electric field Eo = 2.5 MV/m for Semi-

permeable and energetically consistent models

Mesh Semi-permeable crack Energetically consistent crack

K, 1K™ K, TK™| Ky IK™| K, /K™ K, /K™ K, [K*®

Coarse(1) | 0.9938 1.0264 0.9940 0.9937 1.0266 0.9939
Medium(2) | 1.0005 1.0027 1.0005 1.0005 1.0027 1.0005
Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
% (1)&(3) | 0.6238% | 2.6441% | 0.6042% | 0.6290% | 2.6616% | 0.6065%
%(2)&(3) | 0.0520% | 0.2708% | 0.0512% | 0.0519% | 0.2728% | 0.0511%
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Table 3.8 The convergence of normalized stress and electric intensity factors [Ki,Kiv]
for two penny-shaped cracks in horizontal direction under remote uniform tensile stress
o = 50 MPa and uniform electric field Eo = 2.5 MV/m for impermeable and permeable
models

Impermeable crack Permeable crack
Mesh

K, JK™ | K, /K™ K, /K™ K, /K™

Coarse(1) 0.9871 0.9875 0.9872 0.9872

Medium(2) 1.0006 1.0007 1.0006 1.0006

Fine(3) 1.0000 1.0000 1.0000 1.0000
% (1)&(3) 1.2875% 1.2520% 1.2758% 1.2758%
%(2)&(3) 0.0561% 0.0654% 0.0594% 0.0594%

Table 3.9 (3.9) The convergence of normalized stress and electric intensity factors
[Ki,Kiv] for two penny-shaped cracks in horizontal direction under remote uniform
tensile stress oo = 50 MPa and uniform electric field Eo = 2.5 MV/m for Semi-permeable
crack and Energetically consistent crack

Semi-permeable crack Energetically consistent crack
Mesh f f f f
I'€l re
K, /K™ K, /K K, /K™ K, /K
Coarse(1) 0.9872 0.9873 0.9872 0.9873
Medium(2) 1.0006 1.0006 1.0006 1.0006
Fine(3) 1.0000 1.0000 1.0000 1.0000
% (1)&(3) 1.2788% 1.2673% 1.2831% 1.2705%
%(2)&(3) 0.0585% 0.0623% 0.0577% 0.0617%

3.4.4 Tunnel crack

Finally, we consider a tunnel crack with the half-length L and end-radius a containing
in a transversely isotropic piezoelectric infinite medium as shown in figure 3.6. The
material properties such as PZT-4 is utilized. In this case, the poling direction is similar
to that of the symmetry axis of material as xs-axis. The geometry will be utilized to
investigate other cases, for instance the aspect ratio (L/a), remote tensile mechanical
load, remote electrical load and the permittivity inside the crack gap

Where a is the end-radius of tunnel crack (a is defined as 1), the L represent
the half-length of tunnel cracks (L is determined as 5). In this crack, we employ three
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meshes with explicitly different levels. As shown in the figure.3.5, the finest meshes
contain 144 elements, whereas the medium meshes contains 72 elements and the
coarsest mesh contain 24 elements respectively. The piezoelectric medium of the

spherical crack is under remote uniaxial tension oo = 50 MPa, uniform electric field Eo

= 2.5 MV/m in the xs-direction. In this exploration, the permittivity is 5x8.85x10*2
C/Vm

(b) Course mesh (24 elements)

(b) Medium mesh (72 elements)

(c) Fine mesh (144 elements)

Figure 3.7 (a) schematic of a tunnel crack in infinite domain, (b),(c) and (d) are three
meshes utilized in computation such as 24, 72 and 144 elements.

Finally, from the numerical results for stress and electric intensity factors [Ki,Kiv]
normalized by the results obtained from the finest mesh as shown in the table 3.8 and



33

3.9, it can be found that the non-zero intensity factors [Ki,Kiv] given from three meshes
are acceptable. In particular, the discrepancy of the provided results from the coarsest
and the medium meshes compared with the fine mesh is 1.8861% and 0.2364%,
respectively, for all crack face models (i.e., impermeable, permeable, semi-permeable
and energetically consistent models). It should be remarked again, that the coarsest
mesh includes only 24 elements in the region along the crack front, whereas the rest are
in the remaining crack surface.

Table 3.10 The convergence of normalized stress and electric intensity factors [Ki,Kiv]
for a tunnel crack under remote uniform tensile stress o, = 50 MPa and uniform electric
field Eo = 2.5 MV/m for impermeable and permeable models

Impermeable crack Permeable crack
Mesh

K /K™ | K, /K™ K, /K™ K, /K™

Coarse(1) 1.0185 1.0189 1.0186 1.0186

Medium(2) 1.0022 1.0024 1.0022 1.0022

Fine(3) 1.0000 1.0000 1.0000 1.0000
% (1)&(3) 1.8529% 1.8861% 1.8633% 1.8633%
%(2)&(3) 0.2181% 0.2364% 0.2241% 0.2241%

Table 3.11 The convergence of normalized stress and electric intensity factors [Ki,Kiv]

for a tunnel crack under remote uniform tensile stress oo = 50 MPa and uniform electric
field Eo = 2.5 MV/m for Semi-permeable crack and Energetically consistent crack

Semi-permeable crack Energetically consistent crack
Mesh f f f f
re re
K, /K™ K, /K K, /K™ K, /K
Coarse(1) 1.0186 1.0187 1.0186 1.0187
Medium(2) 1.0022 1.0023 1.0022 1.0023
Fine(3) 1.0000 1.0000 1.0000 1.0000
% (1)&(3) 1.8607% 1.8719% 1.8568% 1.8691%
%(2)&(3) 0.2226% 0.2297% 0.2208% 0.2285%
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3.5 Verification

The stress and electric intensity factors, along the crack front, in the infinite domain of
three-dimensional, transversely anisotropic piezoelectric material resulting from the
weakly singular, SGBEM under various boundary condition (i.e., impermeable,
permeable, semi-permeable and energetically consistent models) will be verified and
compared with the existing benchmark solutions in the literatures in order to guarantee
the accuracy of the current approach.

In this work, we consider the penny-shaped crack with radius a containing in
transversely isotropic piezoelectric unbound domain. The poling axis are directed along
with xs-direction (the axis of material symmetry which is perpendicular on the crack
surface) as indicated in figure 3.8 (a). The body is subjected to remote tensile
mechanical and electrical loading oo = 5 MPa and Eo = 0.5 MV/m as shown in figure
3.8 (b). the material properties that used for this verification is PZT-4 and the three
different meshes such as the coarse mesh (8 elements), the medium mesh (24 elements)
and the fine mesh (64 elements) are utilized as illustrated in figure 3.9 (a),(b) and (c),
respectively.

Oy

Figure 3.8 (a) schematic of a penny-shaped crack in infinite domain, (b) the body
subjected to remote tensile mechanical and electrical load

ik
NI

(a) Course mesh (b) Medium mesh (c) Fine mesh

(8 elements) (24 elements) (64 elements)
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Figure 3.9 three mesh utilized in analysis, (a) Coarse mesh, (b) Medium mesh and (c)
Fine mesh

The result [Ki,Kiv] obtained from penny-shaped crack under four models are good
agreement with exact solution such as Ki,Kiv (exact) are proposed by Chen et al (2000)
for permeable and Li and Lee (2004) for permeable and semi-permeable models
whereas Ki,Kiv (exact) for energetically consistent models are offered by Li et al (2011).
The numerical result as indicated in table 3.10 and 3.11 show that the error for
impermeable is less than 0.561%, for permeable 0.549%, for semi-permeable 0.551%
and for energetically consistent models is less than 0.550%. Moreover, it manifest that
even the coarse mesh can obtain the excellent results under various boundary
conditions.

Table 3.12 The verification of normalized stress and electric intensity factors [Ki,Kiv]
for a penny-shaped crack under remote uniform tensile stress oo = 5 MPa and uniform
electric field Eo = 0.5 MV/m for impermeable and permeable models

Impermeable crack Permeable crack
MESh Exact Exact Exact Exact
Xac Xac Xac Xacl
K, /K Ky /K K, /K Ky /K

Coarse(1) 5.6102 8.1242 5.6109 1.4177

Medium(2) 5.6428 8.1707 5.6432 1.4259

Fine(3) 5.6335 8.1568 5.6338 1.4235

Exact 5.6419 8.1680 5.6419 1.4256
Exact & (1) 0.5610% 0.5363% 0.5493% 0.5493%
Exact & (2) -0.0158% -0.0331% -0.0240% -0.0240%
Exact & (3) 0.1494% 0.1375% 0.1439% 0.1438%
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Table 3.13 The verification of normalized stress and electric intensity factors [Ki,Kiv]
for a penny-shaped crack under remote uniform tensile stress oo = 5 MPa and uniform
electric field Eo = 0.5 MV/m for semi-permeable and energetically consistent models

Semi-permeable crack Energetically consistent crack
MESh Exact Exact Exact Exact
Xac Xac Xac Xacl
K, /K Ky /K K, /K Ky /K
Coarse(1) 5.6108 2.4130 3.4658 1.5960
Medium(2) 5.6432 2.4269 3.4859 1.6052
Fine(3) 5.6451 24277 3.4871 1.6058
Exact 5.6419 2.4263 3.4852 1.6049
Exact & (1) 0.5511% 0.5465% 0.5553% 0.5509%
Exact & (2) -0.0228% -0.0264% -0.0201% -0.0236%
Exact & (3) -0.0567% -0.0595% -0.0549% -0.0577%
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CHAPTER 4
NUMMERICAL RESULT AND DISCUSSIONS

Extensive results on intensity factors are obtained to exhibit preciseness and efficacy of
the weakly singular SGBEM. Spacious numerical simulations are implemented on
crack in a three-dimensional, linear transversely anisotropic piezoelectric infinite
medium under four distinct types of electrical boundary conditions on the crack surface
(viz. impermeable, permeable, semi-permeable and energetically consistent boundary
conditions). The five different cracks are computed here, i.e., the penny-shaped crack
folded in a half circular ball (spherical cap crack), the penny-shaped crack folded in a
cylinder (cylindrical crack), tunnel crack, two penny-shaped cracks in vertical direction
and two penny-shaped cracks in the horizontal direction containing in a piezoelectric
infinite medium subject to tensile remote electrical and mechanical loading conditions.

4.1 Influence of geometry on four crack-face boundary conditions

It still remains uncertain which of the four-type electric boundaries (i.e., impermeable,
permeable, semi-permeable and energetically consistent models), is physical
methodical and more naturalistic. Accordingly, this uncertainty becomes the motivation
for current investigations to predicate the four-types of the crack-face electric boundary
conditions on non-zero intensity factors of piezoelectric medium embed isolated crack
in infinite domain. The numerical approximated results of planar and non-planar cracks
are then diagnosed.

In this investigation, we utilize the planar and non-planar geometries such as a
spherical cap crack, a cylindrical crack, a tunnel crack, two penny-shaped cracks in a
vertical direction and two penny-shaped crack in the horizontal direction to investigate
the influence of various parameters on stress and electric intensity factors. The
parameters utilized in entire explorations are based on the table below:

Table 4.1 the entire parameters, typical value and range that used to investigate stress
and electric intensity factors on four crack-face boundary conditions

Parameters Typical value Range
1.Spherical and cylindrical crack
- Permittivity & & =5x8.85x1012C/Vm | 2,2.5,3,..., 10&
- Electric field Eo Eo=2.5MV/m -45.-4..., 4.5MV/m
- Mechanical load oo oo = 50 MPa 10,20,...,100 MPa
- Half-subtended angle @ 0 =45 -5 to 90 degree
- Boundary conditions 4 BCs (No)
- Curvature u (No) pu=1tou=18
2.Tunnel crack
Permittivity & & =5x8.85x1012C/Vm | 2,2.5,3,..., 10&
Electric field Eo Eo=2.5MV/m -45.-4..., 4.5MV/m
Mechanical load oy oo = 50 MPa 10,20, ...,100 MPa
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4.two penny-shaped crack in

horizontal direction
Permittivity &

Aspect ratio L/a 5 0.5,1,1.5,...,10
Boundary conditions 4 BCs (No)

3.two penny-shaped crack in

vertical direction

Permittivity & & =5x8.85x102C/Vm | 2,2.5,3,..., 10&

Electric field Eo Eo=2.5MV/m -45.-4..., 4.5MV/m
Mechanical load oy oo = 50 MPa 10,20,...,100 MPa
Aspect ratio L/a 0.5 0.25,0.5,0.75,1...,10
Boundary conditions 4 BCs (No)

& =5%8.85x10"2C/Vm

Electric field Eo Eo = 2.5 MV/m -45.-4..., 4.5MV/m
Mechanical load oo o = 50 MPa 10,20, ...,100 MPa
Aspect ratio L/a 225 2.25,2.5,2.75,3...,10
Boundary conditions 4 BCs (No)

2,2.5,3,..., 10&

4.1.1 Influence of crack-subtended angle for non-planar cracks.

In this section, the non-planar crack such as spherical cap and cylindrical cracks is
utilized to investigate the influence of the crack subtended angle on stress intensity
factor along the crack front, which can be indicated in the following subsection.

4.1.1.1 Influence of half subtended angle for penny-shaped crack folded in a half

circular ball (spherical cap crack)

At the outset, we consider a penny-shaped crack, folded in a half of circular ball or a
spherical cap crack containing in a transversely isotropic piezoelectric infinite medium
which is made of PZT-4. In this case, the finest mesh (144 elements) chosen in the
convergence sections (3.4.1) is employed. The symmetric axis of material and the
poling direction are similarly directed by the X3-axis. The crack is adopted to investigate
the intensity factors along the crack front which can be concluded in the following (i)
the crack- subtended angle & can be varied from [5,10,15,...90 degree], (ii) the remote

uniaxial tension is fixed oo = 50 MPa, (iii) the uniform electric field is defined as Eo =
2.5 MV/m in the Xs-direction and (iv) and the permittivity containing the crack gap is

determined as & = 5& where & = 5x8.85x1012 C/Vm is the permittivity of the air.
The geometry is illustrated in the figure 4.1.
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Top view

Figure 4.1 Schematic of a penny-shaped crack folded in circular ball (a spherical cap
crack) in a piezoelectric infinite medium

where a is a radius of the penny-shaped crack and is varied from a =
0.087266462599717 (6 = 5) to a = 1.570796326794900 (¢ = 90), & represents the
half-subtended angle of the crack surface whereas the radius R indicates the radius of
spherical cap crack after folding (R is defined as 1).

The influence of the half-subtended angle on intensity factors along the crack
front obtained from the spherical cap crack by employing the finest mesh (144
elements) are considered as reported in the figure 4.2 (a), (b) and (c) respectively.
Results indicate that when the half-subtended angle increases, the stress intensity factor
Kin expressly vanishes. The magnitude of the stress and electric intensity factors [Ki,
Kn, Kiv] of four crack-face models (i.e., permeable, impermeable, semi-permeable and
energetically consistent models) are different values at the entire range. It can be
discussed the detail as follow:

The numerical results of stress intensity factors K; are reported in figure. 4.2
(@). It is found that when the half-subtended angle of the crack surface increases, the
value of the stress intensity factor K of four models (i.e., impermeable, permeable,
semi-permeable and energetically consistent models) increases at the range ¢ =51to &
= 25 degree (the peak magnitude) and decreases when the crack subtended angle
increase. It can be observed further that the three models (i.e., impermeable, permeable
and semi-permeable models) are nearly identical when half-subtended angle is
relatively small at the range =5 to 8= 15 degree and that those three models become
clearly distinct when crack subtended angle is sufficiently large. Besides, Results also
indicate that the energetically consistent model is lower than other three models in the
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beginning and that one approach to the permeable model at the end. Moreover, it is
found that the permeable and semi-permeable models show the same behaviors of
distributions at the entire range. Furthermore, results reveal that the upper bound is
permeable model whereas the lower bound is switched of energetically consistent and
impermeable models at & = 45 degree. This can be concluded that when the half
subtended angle becomes large (€= 25 to 90), it has influence not only to the values of
the stress intensity factor K of four models but also to the bounds of four crack-face
models.

Influence of half subtended angle of spherical cap crack on stress intensity
factor Ky can achieve results illustrated in figure. 4.2 (b). It is found that when the half-
subtended angle & increases, the magnitude of Ky on four crack-face models increase
to the peak magnitude at & = 65 degree and decreases to the end of distributions (6 =
65 to 90). It is obvious that four crack-face models are expressly not identical. However,
results reveal that the bounds of four crack-face models are not switched, which means
that the impermeable model is upper bound and the energetically consistent model is
lower bound. Moreover, the effects also found that when half-subtended angle is small
at @ = 5 degree (starting point), the four models are nearly identical whereas the
energetically consistent model is different from other three models at the end point.
This can be summarized that as the half subtended angle is larger, it has a significant
influence on the values of stress intensity factor K.

Eventually, Influence of half subtended angle of non-planar crack on electric
intensity factors Kiv on four crack-face models are obtained as illustrated in figure. 4.2
(c). Itis seen that when half subtended angle increases, the four crack-face models (i.e.,
impermeable, semi-permeable, energetically consistent and permeable models)
differently increase the magnitude. It can be observed further from figure that the
maximum values of the impermeable and permeable models are different from the
semi-permeable and energetically consistent models, e.g. the impermeable and
permeable models have the maximum values at the point &= 60 degree whereas the
semi-permeable and energetically consistent models have the peak values at € = 35
degree. Moreover, results also reveal that when the crack subtended angle increase, the
lower bound is switched of permeable and energetically consistent models at & = 60
degree whereas the impermeable model retains the upper bound at the entire range of
distributions. Moreover, it is also found that when the crack subtended angle is
sufficiently large at = 90 degree, the semi-permeable and energetically models are
nearly identical to permeable model. This can be summarized that when half-subtended
angle is large, it has influence to value of electric intensity factor Kiv and the lower
bound of four crack models, respectively.
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Figure 4.2 (a), (b) and (c) are dependent of normalized stress and electric [Ki, Kii, Kiv]
intensity factors on the crack subtended angle for spherical cap crack in infinite
medium.

4.1.1.2 Influence of half subtended angle for penny-shaped crack folded in

cylindrical under remote tensile loading

In this case, we implement analogously to the case of spherical cap crack by considering
a penny-shaped crack folded in a half of cylindrical or a cylindrical crack embed in a
transversely isotropic piezoelectric infinite medium which made of PZT-4 illustrated in
the figure 4.3(a). In this special case, we apply the finest mesh (144 elements) similar
to the convergence section 3.4.2. The poling directions are analogous to the symmetric
axis of material of xs-axis. The parameters of this investigations can be concluded in
the following (i) the half subtended angle & vary from [5,10,15...90], (ii) the remote
uniaxial tension is fixed oy = 50 MPa, (iii) the uniform electric field is defined Eo=2.5
MV/m directed in xs-direction, (iv) and the dielectric permittivity inside the crack gap
is fixed & = 5 where & = 8.85x101? C/Vm is the permittivity of the air.
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Top view

Cylindrical pipe

e 0 Bottom

(b)
Figure 4.3 (a) Schematic of a penny-shaped crack folded in cylindrical pipe (a
cylindrical crack) in a piezoelectric infinite medium (b) three different points on the
mesh coordinate of cylindrical crack

The stress and electric intensity factors [Ki,Ki,Kiv] are obtained from the three
different points such as top, middle and bottom points of four crack-face models (i.e.,
impermeable, permeable, semi-permeable and energetically consistent models) as
shown in figure 4.3 (b) whereas the stress intensity factor Kii only appears at the middle
point (a point at the middle zone). When the half-subtended angle & increases, the
results show that the normalized stress and electric [Ki,Kn,Kiv] are different the
magnitude and are different trends depending on the positions (i.e., top, middle and
bottom points) which can be discussed as follow:

Results indicated in figure 4.4(a), 4.4(b) and 4.4(c) are completely obtained.
The normalized stress Ki of four models at the three different points (e.g., top, middle
and bottom points) reveals that when the crack subtended angle increases, the
magnitude K of the top point increase and are greater than the middle and bottom points
respectively. It can be observed further that the peak magnitude of middle and bottom
points are respectively occurred at = 35 and 8 = 25 degree whereas the top point is
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strongly increase at the entire range without the peak magnitude. Moreover, the upper
bounds of three different points are strongly changed depending on the positions along
the crack front. For example, it is impermeable model for the top point and permeable
model for both middle and bottom points throughout the range of distribution, whereas
the lower bound is energetically consistent model for the top point, and that again are
switched between energetically consistent and impermeable models at the middle and
bottom points. More specifically, those switching points are completely different such
as the switching point of middle and bottom points are occurred at =85 and at =70
degree, respectively. Furthermore, it is obvious that the impermeable model depends
strongly on the increase of crack-subtended angle; this means that at the top point Ki is
greater than both permeable and semi-permeable models whereas the impermeable
model is lower than those two models at the middle and bottom points. Besides, results
indicate that not only the three crack-face models (i.e., impermeable, permeable and
semi-permeable models) of three different points are nearly identical when half-
subtended angle is relative small(@ = 5 to & = 20 degree) but also the energetically
consistent model expressly approaches to the permeable model only at the bottom point
at #=90 degree. It can then be concluded that when the half-subtended angle increases,
not only the three crack models are identical when half-subtended angle is small but
also the switching point of the lower bounds at middle and bottom points become also
different. Results also reveal that the upper bounds are also changed depending on the
positions along the crack front. Besides, the energetically consistent models are
significantly approached to permeable model only at bottom point.
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Figure 4.4 Dependent of normalized stress intensity factors K on the crack subtended
angle for cylindrical crack in infinite medium. Results are reported on (a) all points, the
(b) top, (c) middle and (d) bottom points

The harvest reported in the figure 4.5(a),(b),(c) and (d) of a penny-shaped crack
folded in a cylindrical pipe (a cylindrical crack) on four crack-face models indicate that
when the half-subtended angle increases, the stress intensity factors Ky at various
positions (i.e., top, middle and bottom points) are unequivocally different. It is also
found that the magnitude of Ky at the top point is less than both middle and bottom
point as indicated in the figure 4.5(a) which can be discussed in detail as follows. As
half-subtended angle increase, figure 4.5(b), (c) and (d) show that the distributions of
Kn on four crack-face models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models) in three distinct points (i.e., top, middle and bottom
points) variously increase. It can be observed further that the maximum values of Ky
differently occur, for example, at &= 70 degree it occurs at the bottom point, at = 65
degree is occurred only for the impermeable model on the top point (for the permeable,
semi-permeable and energetically consistent models of Ki completely decrease) and
Kn of four models at the middle point strongly increase. Results also show that the
bounds of each position (i.e., top, middle and bottom points) is not changed. For
example, at both middle and bottom points, the upper bound and the lower bounds are
impermeable and energetically consistent models respectively. Nevertheless, at the top
point, the lower bound is permeable model. This can be concluded that when crack-
subtended angle increases, it influences not only the value of intensity factors Kn but
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also the bounds of four crack-face models; more specifically, the difference of both
upper and lower bounds at the top and the two points (i.e., middle and bottom points).
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Figure 4.5 Dependent of normalized stress intensity factors Ki on the crack subtended
angle for cylindrical crack in infinite medium. Results are reported on (a) all points, the
(b) top, (c) middle and (d) bottom points

The stress intensity factors Kiu obtained only at a middle point (at middle zone
between top and bottom points) of a quarter (1/4) along the crack front are investigated
as mentioned in figure 4.6. It indicates that when the crack-subtended angle increases,
the four crack-face models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models) strongly decrease to different minimum values, for
example, at &= 80 degree for impermeable and &= 85 for permeable, semi-permeable
and energetically consistent models; however, the distributions are in negative values.
Moreover, results manifest that the bounds including upper and lower bound are
respectively impermeable and permeable models at the entire range. Besides, the
numerical results Ky appear only at the middle zone between the top and bottom points
whereas the top and bottom points completely disappear. This can be concluded that
when half-subtended angle of cylindrical crack increases, it has influence the value of
stress intensity factors Kin with different minimum values and also give rise to the
negative value of four crack-face models.
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Figure 4.6 Dependent of normalized stress intensity factors Kii on the crack subtended
angle for cylindrical crack in infinite medium. Results are reported on the middle point

The numerical results of electric intensity factors Kiv of a penny-shaped crack
folded in a cylindrical pipe (a cylindrical crack) are eventually obtained from various
points such as top, middle and bottom points as displayed in the figure 4.7(a). Results
indicate that as the half-subtended angle increase, the electric intensity factors Kiv are
completely different and increase to the differential peak magnitude depending on the
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positions (i.e., top, middle and bottom points) and the four crack-face models, for
example, the peak magnitude of impermeable models, the two models (i.e., semi-
permeable and energetically consistent models) and permeable model of middle points
are occurred at ¢ = 65, at # = 50 and at 8 = 75 degree, respectively. Results reveal
further from figure 4.7 (b),(c) and (d) that the impermeable model of three different
points are upper bound at the entire range whereas the lower bounds is switched of
permeable and energetically consistent models which is different from the lower bound
at the top point (lower bound is completely permeable). It can be observed further that
the switching points of lower bound at both middle and bottom points are completely
different, for instance, the bottom point is at = 60 degree whereas at the middle point
is shifted to & = 85 degree. Besides, results also report that when the half-subtended
angle is large, the semi-permeable model at both middle and bottom points are
converged to permeable models at the end distribution at =90 degree which is distinct
from the beginning 6 = 5 degree. Throughout above discussions of electric intensity
factors Kiv illustrated in the figure 4.7(a) to 4.7(d), it can be summarized that as the
half-subtended angle increases, it significantly influences both the value electric
intensity factors Kiv and the bounds of four crack-face models at three different points,
i.e., the lower bounds at the middle and bottom point.
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Figure 4.7 Dependent of normalized electric intensity factors Kiv on the crack
subtended angle for cylindrical crack in infinite medium. Results are reported on (a) all
points, the (b) top, (c) middle and (d) bottom points

4.1.1.3 Comparison between spherical cap crack and cylinder crack

From the above discussion, the difference and similarity of the numerical results
obtained from both spherical cap and cylindrical cracks can be concluded in the
following:

For the spherical cap crack, It can be found that as the crack subtended angle
increase from [5, 10, 15,..., 90] with the constant loading, K of four models are
completely different and are dependent on the crack subtended angle. For example, the
magnitude of four models increases to the peak points when the crack subtended angle
is relative small and the magnitude of those four models decreases when the crack
subtended angle is sufficiently large. Results also indicate further that the three models
(i.e., impermeable, permeable and semi-permeable models) are identical and
independent on the boundary conditions. For example, when the crack subtended angle
is small in the beginning and those three models are completely different when the crack
subtended angle is large. In addition, the energetically consistent model is lower than
those three models (i.e., impermeable, permeable and semi-permeable modes) at the
beginning range and it approaches to permeable model at the end range. Besides, it is
seen again that the increasing crack subtended angle has an influence only to the lower
bound by switching of energetically consistent and impermeable model corresponding
to turning point. On the contrary, the stress intensity factors K obtained from other non-
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planar cracks (i.e., cylindrical crack) at three different points (i.e., top, middle and
bottom points) are provided when the crack subtended angle increases. It can be found
again that all the behaviors and trends are very identical and analogous to the spherical
cap crack only at the bottom points. However, the other remaining points (i.e., middle
and top points) exhibit less identical behaviors respectively. In addition to the similarity
of both cracks (i.e., spherical cap and cylindrical cracks on the bottom point), the upper
bound at the top point is impermeable model which is different form upper bound at
both middle and bottom points. Again, the lower bound at the top point is energetically
model which is completely distinct from lower bound of both middle and bottom points
by switching of lower bounds). Moreover, the behavior of impermeable model the top
point is different from the remaining points (i.e., middle and bottom points)

The numerical results obtained from the stress intensity factors Kii of spherical
cap crack can be concluded as follows. It can be found that when the crack subtended
angle increases, the magnitude of four models (i.e., impermeable, permeable, semi-
permeable and energetically consistent models) strongly depends on the crack
subtended angle, for example, they simultaneously increase to the maximum point at
the beginning range and those four models will be decreased when the crack subtended
angle is sufficiently large. Moreover, the increasing crack subtended angle has no
influence to the bounds of four crack models. Identically, the stress intensity factors Ki
obtained from the cylindrical crack at three different points (i.e., top, middle and bottom
points) are proposed to compare the Ku of spherical cap crack. It is found again that
when the crack subtended angle increases, the magnitude K of three different points
are completely different values depending on different points. It exhibits only the
behavior of the bottom point which is very identical with the behavior of spherical cap
crack. Apart from, the similarity of the spherical cap crack, it has no the maximum
points both Ky at the middle point and also three models at the top points i.e.,
permeable, semi-permeable and energetically consistent models (accept impermeable).
Moreover, it is also found that the lower bound at the top point is permeable model
which is different from the lower bound of both middle and bottom points. Overall, it
can be concluded that the increasing crack subtended angle has an influence not only
to magnitude Ku of both cracks but also to the bounds of four models of cylindrical
crack, especially the bounds at the top point.

The difference between spherical cap crack and cylindrical crack is the stress
intensity factor Kin in which the cylindrical crack appears only the middle point (a point
of the middle zone is located between the top and bottom points). It can be concluded
that when the crack subtended angle increases, the magnitude of four models becomes
completely different and tend to decrease the magnitude to the different minimum
values when the crack subtended angle is sufficiently large; however, it is negative
intensity factors. This meant that the crack surface has influence to the magnitude but
not to the bound of four models.

Different to the stress intensity factors [Ki,Ku] is the electric intensity factor
Kiv of non-planar cracks. The results of the spherical cap crack can be summarized as
follow. It can be found that increasing the crack subtended angle, the magnitude of four
crack-face models are complete different and are dependent on the crack subtended
angle. Results also show that the maximum points of the magnitude of the two models
(i.e., semi-permeable and energetically consistent models) are not identical to that of
impermeable and permeable models. Moreover, the lower bound of four models are
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switching of permeable and energetically consistent models. In addition, energetically
consistent model approaches the permeable model. Identically, the electric intensity
factor Kiv obtained from the cylindrical crack is offered to correlate the spherical cap
crack. When the increasing crack subtended angle, the magnitude of four models
become completely different and dependent on the crack subtended angle at the three
different points (i.e., top, middle and bottom points). Moreover, behaviors and the
trends of the normalized Kiv at the bottom points of cylindrical crack are very identical
to that of spherical cap crack. In addition to the parity of both cracks, it is seen that
when the crack subtended angle increases, the lower bound of the top point is permeable
model which is different from the middle and bottom points. Furthermore, the turning
point of lower bound of both spherical cap and cylindrical cracks at the bottom point is
clearly identical.

4.1.2 Influence of curvature for non-planar cracks.

This section, we investigate the influence on the curvature of the crack surface. The
stress and electric intensity factors will be obtained by using the non-planar crack i.e.,
spherical cap crack and cylindrical crack, which can be seen as follow.

4.1.2.1 Influence of curvature on penny-shaped crack folded in circular ball

(spherical cap crack)

To demonstrate the influence of curvature on four crack-face boundary conditions, the
investigation is similar to the previous section 3.4.1 in which we consider a penny-
shaped crack folded in a half of circular ball or spherical cap crack. The geometry is
illustrated in the figure 4.1 which is embed in a transversely isotropic piezoelectric
infinite medium. The material properties is assumed as PZT-4. The symmetric axis of
material and the poling direction are analogous to the xs-axis. To investigate influence
of the intensity factors along the crack front, the data can be concluded as follow: (i)
the 1= 7R/2a is varied from [1,1.0588,1.250,...,18] (ii) radius of a penny-shaped crack
for creating the spherical cap crack is defined as 1, (iii) the radius of spherical cap crack
varies from R = 0.636619772367581 (the half-subtended angle is now equal to 90
degree) till R = 11.459155902616500 (the half-subtended angle is now at 5 degree),
and (iv) the remote uniaxial tension is fixed oo = 50 MPa, (V) the uniform electric field
is fixed Eo = 2.5 MV/m and (vi) the permittivity inside the crack gap is fixed & = 5&
where & = 8.85x101? C/Vm is the permittivity of the air.

The non-zero stress and electric intensity factors [Ki,Ki,Kiv] obtained on four
crack-face models (i.e., impermeable, permeable, semi-permeable and energetically
consistent models) come from as average value of the point along the crack front as
shown in the figure 4.8(a),(b) and (c). Results reveal that as the curvature becomes flat
crack, the stress and electric intensity factors [Ki,Kiv] are strongly increased when the
curvature is sufficiently large. On the contrary, the stress Kn is increased at large
curvature and decreased when the curvature becomes small or nearly the flat crack. This
can be discussed as follows.

According to the numerical results of stress intensity factors Ki on four crack-
face models (i.e., impermeable, permeable, semi-permeable and energetically
consistent models), it can be seen that the stress intensity factors Ki are strongly
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increased when the curvature is sufficiently large and that one are converged to the flat
crack when the curvature is reduced. This means that the crack opening is strongly
inhibited by curvature of the surface at the range x =1 to 1 =6 as indicated in the figure
4.8(a). Moreover, results show that the lower bounds are switched between the
impermeable and energetically consistent model at x =2, whereas the upper bound is
dominated by permeable models. In addition, the three models (i.e., permeable, semi-
permeable and energetically consistent models) are nearly identical in the beginning
and the energetically consistent model gradually develops lower than the permeable
and semi-permeable models when the curvature is small. It can be observed further that
the impermeable model are converged to the permeable and semi-permeable models at
the end point. It should be noted that at =1 to 1.5, Ki of four models are negative
values. From their distribution, it can be summarized that when the curvature is
sufficiently large, it influences not only the values of intensity factors but also the lower
bound of four crack models.

The numerical results of the stress intensity factor Ki obtained in the figure
4.8(b) are investigated on four crack-face model. It shows that when the crack-face
model is reduced to the flat crack, the value of stress intensity factors Ki is increased
to the maximum value at 4 =1.6364. Provided that, the curvature is sufficiently large
and the magnitude gradually decreased when the curvature begins to reduce at the range
u =1.6364 to u =18. Besides, it can be demonstrated that the upper bound is
impermeable model whereas the lower bound is energetically consistent model. This
can be implied that when the curvature is reduced, it has influence upon the magnitude
of stress intensity factor Ki corresponding to the maximum value.

Finally, the electric intensity factors Kiv are discussed in association with four
crack-face boundary conditions (BCs) shown in the figure 4.8(c). Results manifest that
when the curvature becomes flat crack, the distribution of stress intensity factors Kiv on
four crack-face models become completely different. This means that when the
curvature is sufficiently large, the value of Ky significantly tend to increase
corresponding to the flat of curvature at the range x« =1 tou =6. Moreover, the upper
bound is impermeable crack whereas the lower bounds are switched of energetically
consistent and permeable models. More specifically, this means that when # =0 to u«
=1.5, the lower bound is energetically consistent model whereas the permeable models
become the lower bound at the range « =1.5 to ¢ =18 as observed in the figure 4.8c.
This can be conclude that as the curvature of crack-face model are reduced to the flat
crack, the magnitudes of four crack-face BCs and the bounds play a significant role and
that affects the lower bound of four crack-face models.
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Figure 4.8 (a), (b) and (c) are dependent of normalized stress and electric [Ki, Kii, Kiv]
intensity factors on the curvature for spherical cap crack in infinite medium. Results are
reported as average values

4.1.2.2 Influence of curvature on penny-shaped crack folded in a cylindrical

(cylindrical crack)

Consider a penny-shaped crack folded in a cylindrical (a cylindrical crack), the
geometry is illustrated in the figure 4.3 which is embed in a transversely isotropic
piezoelectric infinite medium. The material properties constitutes as PZT-4. The finest
mesh from the convergence section 3.4.2 is utilized for the cylindrical crack. The
symmetric axis of material and the poling direction analogous to the xs-axis., the data
for obtaining the intensity factors can be concluded as follow (i) the «= #R/2a is varied
from [1 to18] (ii) radius of a penny-shaped crack for creating the cylindrical crack is
fixed as 1, (iii) the radius of cylindrical crack is varied from R = 0.636619772367581
(the half-subtended angle is equal to 90 degree) till R = 11.459155902616500 (the half-
subtended angle is now at 5 degree). (iv) the remote uniaxial tension is fixed oy =
50MPa, (V) the uniform electric field is fixed Eo=2.5 MV/m similar to the xs-direction,
(vi) and the permittivity inside the crack gap is fixed & = 5g where & = 8.85x1012
C/Vm is the permittivity of the air.

The numerical results of stress and electric intensity factors [Ki,Ki,Kiv] and Kin
(only at middle point) of cylindrical crack offered from three different points (top,
middle and bottom points) of a quarter (1/4) along the crack front are reported in figure
4.9(a), 4.10(a) and 4.11(a). It can be seen that when the curvature is reduced to planar
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crack, the value of Ki, Ki and Kiv are explicitly different depending on the positions
which can be discussed in detail in the following:

Results of stress intensity factors K reported in figure 4.9(b), (c) and (d)
indicate that the magnitude of three different points strongly increase; nevertheless, the
value of magnitude which is near the planar crack are different, for example, for the
middle and bottom points are approximately occurred at « =9 whereas for the top point
is approximately occurred at x =4.5. Apart from, the three models (i.e., impermeable,
permeable and semi-permeable models) at three points (i.e., top, middle and bottom
points) are nearly identical when the curvature is sufficiently large. On the contrary, the
energetically consistent model is obviously less than other three models. Furthermore,
results manifest that the bound of four crack-face models at three distinct points along
the crack front are clearly different, for example, the upper bound at both middle and
bottom point are identically permeable whereas at the top point is impermeable. Again,
the lower bound at both top and middle point is obviously energetically consistent
model, whereas the lower bound at bottom points are obviously switched between
impermeable and energetically consistent model when half-subtended angle is
sufficiently large corresponding to the turning point at x# =1.2857. This can be
concluded that when the curvature converged to planar crack, it influences not only
value of mode-I stress IF but also the bounds of four crack-face boundary condition
possess both upper and lower bound.
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Figure 4.9 Dependent of normalized stress intensity factors [Ki] on the curvature for
cylindrical crack in infinite medium. Results are reported on (a) all points, the (b) top,
(c) middle and (d) bottom points

For the results of stress intensity factors Ki on four crack-face models (i.e.,
impermeable, permeable, semi-permeable and energetically consistent models) are
again similar to the spherical cap crack only some point. The value of stress Ki at three
different points (i.e., top, middle and bottom points) will be mentioned in figure 4.10
(). According to the result, provided that the curvature is reduced to flat crack, the
values of stress Ky at three different points obviously increase when the curvature is
large corresponding to the maximum point. For example, it occurs in the bottom point
at 1 =1.3846 and in the middle point at © =1.2, whereas only the impermeable of the
top point occurs 1 =1.6364 as reported in figure 4.10(b),(c) and (d) respectively. It can
be observed further that the distribution of stress Ki at the top point are explicitly
different from both the middle and bottom points. More specifically, the three crack
models (i.e., permeable, semi-permeable and energetically consistent model) at the top
point have no maximum value. Moreover, results also indicate that the upper bounds
of four models at three distinct points are identically impermeable, whereas the lower
bounds change depending on the point along the crack front. For example, the lower
bound of both middle and bottom point are energetically consistent, at the same time it
is dominated by permeable at the top point. It can be concluded that as the curvature
converged to flat crack, it has influence to the maximum points of stress intensity factor
and to the lower bounds of four models.
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Figure 4.10 Dependent of normalized stress intensity factors [Ki] on the curvature for
cylindrical crack in infinite medium. Results are reported on (a) all points, the (b) top,
(c) middle and (d) bottom points

It is obvious that the stress intensity factors Kin obtained from four crack-face
models (i.e., impermeable, permeable, semi-permeable and energetically consistent
models) at both the top and the bottom points vanished, whereas at a middle (a point at
middle zone) of a quarter (1/4) along the crack front as reported in figure 4.11 the
magnitude indicates that when the curvature converged to planar crack, the three
models (viz. permeable, semi-permeable and energetically consistent models)
extremely increase with high slop at the range « =1 to ¢ =3.6 approximately and then
the slop will lower to the end point, whereas the impermeable model strongly decrease
to the minimum point at x =1.2857 and then start increasing to the end distribution
which means that the impermeable model can be increased and decreased. It can be
observed further that the three models started at the same point and gradually exhibited
the difference when the curvature becomes flat. Besides, the upper and lower bounds
are impermeable and permeable models respectively. This can be concluded that as the
curvature becomes flat, it affects the magnitude of four crack-face models or, more
specifically, the impermeable model.
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Figure 4.11 Dependent of normalized stress intensity factors [Kii] on the curvature for
cylindrical crack in infinite medium. Results are reported on the middle point
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Finally, the influence of the electric intensity factors Kiv of cylindrical crack
obtained from three different point (i.e., top, middle and bottom points) reported in
figure 4.12(a) indicates that as the curvature converged to planar crack, the value of
electric IFs of four crack face boundary conditions (BCs) again become different and
strongly increases with different range of high slop for example, the magnitude value
of middle and bottom points are occurred at x =9 whereas for the top point is occurred
at 1 =9 approximately. This would be discussed in details as follows; figure 4.12(b),
(c) and (d) show that the values of electric IFs of four models (i.e., impermeable,
permeable, semi-permeable and energetically consistent models) are nearly similar to
planar crack at the top point and gradually show the distinct value at the middle and
bottom points. It can be observed further that the bounds of four models change, for
instance at the top point, the upper and lower bound form as impermeable and
permeable models respectively. Moreover, the middle and bottom points illustrated that
the upper bounds clearly form identically as impermeable (analogous to the upper
bound of the top point), whereas the lower bound significantly switches between
energetically consistent and permeable model corresponding to turning point, for
example the turning point of lower bound at middle point occurs at 2 =1.1250 and atu
=1.3846 for the bottom point. It can be concluded that the turning points at a quarter
(1/4) along the crack front change depending on the curvature, and that when the
curvature of surface change, it affects not only to the magnitude of electric IFs but to
lower bound at three different points.
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Figure 4.12 Dependent of normalized electric intensity factors [Kiv] on the curvature
for cylindrical crack in infinite medium. Results are reported on (a) all points, the (b)
top, (¢) middle and (d) bottom points

4.1.2.3 Comparison between spherical cap crack and cylinder crack

Considering the result mentioned above, the difference and similarity of the numerical
results obtained from both spherical cap and cylindrical crack of four crack-face models
can be summarized as follows.

Results of spherical cap crack is proposed. It implies that with the reducing
curvature of the crack, the magnitude K of four models are strongly dependent of the
large curvature but the four models are independent on the boundaries. Moreover, when
the curvature is reduced to flat crack, only the energetically consistent model is
dependent on the curvature whereas other three models are not. In addition the reducing
curvature of the crack also affects the lower bond of four models (the lower bound is
switched of impermeable and energetically consistent models). Similarly, the stress
intensity factors Ki on four models at three different points (i.e., top, middle and bottom
points) of cylindrical crack are obtained to compare the influence of curvature of
spherical cap crack. Here we find that with the reducing curvature of the crack, the
magnitude K, of three different points become clearly different among four models.
Moreover, the behaviors and the trends at the top point are very identical to the spherical
cap crack. Apart from the similarity of the spherical cap crack, the results show that the
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upper bounds at the top point of cylindrical crack are impermeable, whereas the lower
bounds at both top and middle points are similarly energetically consistent models.

The stress intensity factor Ki obtained from spherical cap crack on four crack
models (i.e., impermeable, permeable, semi-permeable and energetically consistent
models). It is found that with the reducing curvature of the crack surface, the
magnitudes of four crack models are strongly dependent of large curvature. For
example, they increase to the maximum value when the curvature is large but decrease
when the curvature reduces to flat crack. Moreover, the reducing curvature of the crack
surface does not affect the bounds of four crack models. Identically, comparison
between spherical cap and cylindrical cracks becomes more interesting when the stress
intensity factors Ki are obtained of four models at the three different points (i.e., top,
middle and bottom points). It is found that as the curvature of the crack surface reduces,
the magnitude of normalized stress K at three different points becomes clearly distinct.
Similarly, the similarity of spherical cap crack to cylindrical crack is focused only on
the top point of cylindrical crack. Apart from the similarity of both cracks, from the
numerical results offered from cylindrical crack, it can be observed further that when
the curvature of the crack reduces, the dependent of Ki for the rest points (i.e., middle
and top points) are nearly identical to spherical cap crack (or similar to the bottom point
of cylindrical crack) at the large curvature of crack surface. Moreover, the reducing
curvature of the crack surface influences only the lower bound of the stress intensity
factors Ki obtained from the three different points. For example, the lower bound of
both middle and bottom points are energetically consistent whereas it is permeable
models for the top point.

The difference between spherical cap crack and cylindrical crack is the
appearance of stress intensity factors Kii only at the middle points of cylindrical crack.
It can be found that with the reducing curvature of the crack surface, the magnitude of
four models are strongly depend on the curvature of crack surface, i.e., the impermeable
model has the minimum points at the large curvature of crack surface.

The electric intensity factors Kiv obtained from the two non-planar cracks (i.e.,
spherical cap and cylindrical cracks) on four models. The results of spherical cap cracks
indicate that with the reducing curvature of the crack, the magnitudes of four models
are strongly dependent when the curvature of crack surface is large. Moreover, when
the curvature of crack surface is sufficiently large, the three models (i.e., permeable,
semi-permeable and energetically consistent models) are independent of boundaries
different from the impermeable model. On the contrary, the four models are dependent
of boundaries when the curvature is largely reduced. In addition, the reducing curvature
of the crack also affects the lower bound of four models by switching of permeable and
energetically consistent models. Again, providing that the load condition remains the
same, in which the electric intensity factors Kiv obtained from cylindrical crack at three
different points (i.e., top, middle and bottom points) on four crack-face models, the
magnitude Kv of three different points are dependent of crack subtended angle. Apart
from the same behavior of both cracks (i.e., spherical cap crack and cylindrical crack
only at the top point), the bound of the top points are different from both middle and
bottom point. For example, the upper bound and lower bound are impermeable and
permeable respectively.
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4.1.3 Influence of geometry by varying aspect ratio of tunnel crack

In this case, we consider a tunnel crack with the half-length L and end-radius a
containing in a transversely isotropic piezoelectric infinite medium. The material
properties such as PZT-4 is utilized. In this case, we utilize the mesh from 72 to 300
elements. The poling direction is similar to the symmetry axis of material of xs-axis.
The geometry and the meshes are displayed in the figure 4.13 (a),(b),(c) and (d). To
investigate intensity factors along the crack front, the parameters of this study can be
concluded as follow (i) the aspect ratio of half-length L and end-radius a (L/a) are varied
from [0.5,1,1.5...10], (ii) the end-radius is fixed by 1 whereas the half-length are varied
from 0.5 to 10, (iii) the remote uniaxial tension is fixed o, = 50 MPa, (iv) the uniform
electric field is fixed Eo = 2.5 MV/m in the xs-direction, (v) and the dielectric
permittivity inside the crack gap is fixed & = 5g where & = 8.85x10™? C/Vm is the
permittivity of the air in the crack gap.

ius

Half-length Endrad

(b) Course mesh (72 elements)

(c) Medium mesh (180 elements)

(d) Fine mesh (300 elements)

Figure 4.13 (a) Schematic of tunnel crack in a piezoelectric infinite medium and (b),(c)
and (d) are the example of the meshes that utilized for the investigation
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The influence of the crack aspect ratio L/a of a tunnel crack on the intensity
factors along the crack front under four types of crack-face conditions is investigated.
The normalized maximum stress and electric intensity factors [Ki ,Kiv] at two different
points (i.e., end-radius and middle of half-length point) on the crack front are shown in
figure 4.14 (a) and (b). It can be found that as the half-length point increases, the
magnitude of stress and electric intensity factors [Ki ,Kiv] strongly increases which can
be discussed as follows.

Numerical results reported in figure 4.14 (a) indicate that the stress intensity
factors Ki of three crack-face models (i.e., impermeable, permeable and semi-
permeable models) at any points are completely identical throughout the range of
distributions along the crack front (L/a = 0.5 to L/a = 10), whereas the energetically
consistent models are clearly lower than those three models. It can be observed further
that the magnitudes of two different points (end-radius and middle of half-length points)
are clearly distinct. The result shows that the magnitude of K, at end-radius point is
lower than the magnitude of middle of half-length points, which can be concluded that
as the aspect ratio increases, it has an influence only to the magnitude of stress intensity
factor K.

The electric intensity factor Kiv of four crack-face models at two distinct points
such as at the end-radius and middle of half-length points along the crack front are
shown in figure 4.14 (b). One is found that as the aspect ratio (L/a) increases, the
magnitude of four models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models) are obviously different throughout the range of
distribution, and also that the bounds of electric intensity factor Kiv at any points along
the crack front and the impermeable and permeable conditions serve as the upper and
lower bounds respectively.
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Figure 4.14 (a) and (b) are dependent of normalized stress and electric intensity factors
[Ki, Kiv] on the aspect ratio for tunnel crack in infinite medium. Results are reported on
both the end-radius and half-length points

4.1.4 Interacting of two penny-shaped crack in vertical directions

In this investigation, we consider two penny-shaped cracks with radius a and the
distance between the two cracks L, referred to as crack-A and crack-B which are
embedded in a transversely isotropic and piezoelectric infinite medium. The material
properties such as PZT-4 is employed. In this special case, we utilize the mesh as 144
elements. The poling direction is identical to the symmetric axis of material of xs-axis.
The geometry and the mesh are displayed as indicated schematically in Figure 4.15 (a)
and (b). The parameters used in this exploration can be summarized as follow: (i) the
distance between the two cracks L is varied [0.25,0.5,0.75,1,2,3,....,10], (ii) the radius
of the cracks is defined as 1, (iii) the remote uniaxial tension is fixed as oo = 50 MPa,
(iv) the uniform electric field is fixed Eo = 2.5 MV/m in the xs-direction, (v) and the
dielectric permittivity inside the crack gap is fixed & = 5& where & = 8.85x10? C/Vm
is the permittivity of the air in the crack gap.
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(b)

Figure 4.15 (a) Schematic of two penny-shaped cracks in vertical direction in a
piezoelectric infinite medium and (b) are the meshes for one penny-shaped crack that
utilized for the investigation

The influence of interacting of two penny-shaped cracks corresponding with L/a
on the intensity factors along the crack front under four types of crack-face conditions
are investigated. The normalized stress and electric intensity factors [Ki, Ku, Kiv] at the
point on the crack front are reported in figure 4.16 (a), (b) and (c). It can be found that
when the distance of two penny-shaped crack increase, the magnitude of the stress and
electric intensity factors [Ki, Ki, Kiv] strongly dependent of the distance of the two
cracks in the beginning range of distribution whereas the stress intensity factors Kin
vanished. It can be discussed as follows:

The numerical results of stress intensity factors Ki reported in figure 4.16 (a)
are obtained. It can be found that as the distance (L/a) increases, the four crack-face
models strongly increase in the beginning. For example, the stress intensity K
increasingly and identically drives the values at the range from L/a=0.25 to 4 at the
three crack models (i.e., impermeable, permeable and semi-permeable models). This
means that those three models are independent of boundary conditions and are
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significantly distinct from the energetically consistent model by forming as higher
magnitude throughout the range of distribution. It can be further explored that the pure
penny-shaped crack is formed as the stress intensity factor with constant value which
is significantly different from the two penny-shaped cracks of four crack-face boundary
conditions. This implies that as the distance of the two cracks in vertical direction (xs-
direction) increases, it has influence on the magnitude of four crack-face models

The stress intensity factor Ki reported in figure 4.16 (b) are investigated on
four crack models (i.e., impermeable, permeable, semi-permeable and energetically
consistent models). It can be found that as the distance of the two cracks increases, the
magnitude of Ky strongly increases and are nearly identical at the range of
distributions. Moreover, the convergence of four models is converged to penny-shaped
crack. Besides, It can be investigated further that the energetically consistent model are
greater than other three crack models (i.e., impermeable, permeable and semi-
permeable models) at the range L/a=0.25 to 4, whereas the magnitude of pure penny-
shaped crack is constant and is greater than two penny-shaped crack model.
Accordingly, it can be summarized that as the interacting of the two crack is large, it
has an influence to the stress intensity factors Kii at the beginning of the range and the
effect of the boundary conditions is small throughout distribution.

Finally, the electric intensity factor Kiv on four models reported in figure 4.16
(c) are obtained. It can be found that as the distance of the two crack increase, the four
crack-face models (i.e., impermeable, permeable, semi-permeable and energetically
consistent models) are completely different, and significantly increase in the beginning
of the range. For example, the Kiv strongly drives the magnitude at the range L/a=0.25
to 4 and it is eventually converged to the pure penny-shaped cracks. Moreover, the
impermeable model is formed as upper bound whereas the lower bound is formed as
permeable model. In addition, it is assured that the results is correct by indicating that
the four crack-face models are converged to pure penny-shaped crack. Overall, it can
be summarized that as the distance of the two crack increases, it influences the values
of electric intensity factors Kiv on four models in the beginning of distribution.
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Figure 4.16 (a),(b) and (c) are dependent of normalized stress and electric intensity
factors [Ki,Kii,Kiv] on the interaction for two penny-shaped crack in infinite medium.
Results are reported on a penny-shaped cracks

4.1.5 Interacting of two penny-shaped crack in horizontal directions

As for the last investigation we consider two identical penny-shaped cracks with radius
a and the distance between the two cracks L, referred to as crack-A and crack-B, which
are embedded in a transversely isotropic, piezoelectric infinite medium as indicated in
figure 4.17. The material properties such as PZT-4 is utilized. In this final case, we
utilize the mesh as 144 elements similar to previous case. The poling direction is
identical to the symmetry axis of material of xs-axis. The parameters used in this
investigation can be summarized as follow: (i) the distance between the two cracks L/a
in horizontal direction is varied [2.25,2.5,2.75,3,4,5,....,10], (ii) the radius of the cracks
is utilized as 1, (iii) the remote uniaxial tension is fixed oo = 50 MPa, (iv) the uniform
electric field is fixed Eo = 2.5 MV/m in the xs-direction, (v) and the dielectric
permittivity inside the crack gap is fixed & = 5& where & = 8.85x101? C/Vm is the
permittivity of the air in the crack gap.
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Figure 4.17 (a) Schematic of two penny-shaped cracks in horizontal direction in a
piezoelectric infinite medium and (b) are the meshes for one penny-shaped crack that
utilized for the investigation

To explore the influence of the interaction between the two penny-shaped cracks
corresponding with L/a , the intensity factors along the crack front under four crack-
face models are investigated at two different points (i.e., maximum and minimum
values) as reported in the figure 4.18 (a) and (b) respectively. Results indicate that as
the distance of the two cracks in horizontal direction increases, the values of stress and
electric intensity factors [Ki,Kiv] tend to decrease. This can be discussed as follows:

The numerical results reported in figure 4.18 (a) are obtained from four crack-
face models (i.e., impermeable, permeable, semi-permeable and energetically
consistent models). It can be found that as the distance of the two crack increases, the
stress intensity factor K, are strongly decreased at the two points (i.e., maximum and
minimum values) providing that the distance L/a is relative small at the range L/a =
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0.25 to L/a = 5. On the other hand, the value of K, are constant when the distance of
the two cracks remains sufficiently large. Moreover, the three models (i.e.,
impermeable, permeable and semi-permeable models) at two positions are completely
identical whereas the energetically consistent models at the two positions are clearly
less than those three models. This can be concluded that as the distance increases, it has
an influence to the values of K at the two positions (i.e., maximum and minimum
values).

Eventually, results of electric intensity factors Kiv obtained from two different
points (e.g., maximum and minimum points) on four crack-face models are shown in
figure 4.18 (b). It can be found that as the distance of the two crack increases, the
electric intensity factors Kiv of four crack-face models (i.e., impermeable, permeable,
semi-permeable and energetically consistent models) are completely different. On the
other hand, they are strongly decreased when the distance of the two cracks remains
small at the range L/a = 0.25 to L/a = 2. Moreover, the bounds of four crack-face
models are not changed which means that the impermeable model serves as upper
bound whereas the permeable model serves as lower bound. This implies that it
influences the four boundary conditions when the distance L/a increases.
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Figure 4.18 (a) and (b) are dependent of normalized stress and electric intensity factors
[Ki, Kiv] on the interaction for two penny-shaped crack in infinite medium. Results are
reported on the maximum and minimum values and planar crack along the crack front

4.2 Influence of remote tensile mechanical load on four crack-face boundary
conditions

In this section, the influence of mechanical load is investigated to obtain the stress and
electric intensity factors along the crack front. Both planar and non-planar cracks are

utilized by using the fine mesh that have verified in the convergence section. The results
from those cracks will be carried out in the following sections

4.2.1 Influence of remote tensile mechanical load on spherical cap and cylindrical
crack
The two non-planar crack such as spherical cap cracks are employed to study the

influence of mechanical load on intensity factors along the crack front. Each crack will
be implemented in the following.

4.2.1.1 Influence of remote tensile mechanical load on spherical cap crack

We consider a spherical cap crack embedded in a transversely isotropic piezoelectric
infinite medium. The crack geometry and the material properties of piezoelectric
medium are similar to those diagnosed in the section 4.1.1.1; However, the key
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differences from the previous case are that (i) the half subtended angle of the surface
(0) 1is fixed as 45 degree, (ii) the applied uniaxial remote stress is varied from
[10,20,30,..., 100] MPa, (iii) The applied electric field Eo is fixed at 2.5 MV/m
which is identical as that of the previous example, and (iv) the dielectric permittivity
inside the crack gap is fixed & = 55 where & = 8.85x10*2 C/Vm is the permittivity of
the air in the crack gap. Numerical results of intensity factors computed from the fine
mesh 144 elements (see Figure. 4.1) are reported in figures. 4.19 (a), (b) and (c)
respectively. It is found that the increasing mechanical load oy tends to increase the
magnitude of the stress and electric intensity factors [Ki,Kn,Ki], for all crack-face
models. In addition, the rate of increase of Kii is more rapid than that two models and
this can be discussed as follows.

Figure 4.19(a) shows that, as the mechanical load increases, K of the permeable
models is the upper bound whereas the energetically consistent models are the lower
bound and nearly identical to impermeable models. Moreover, it can be found that the
stress intensity factor K of the semi-permeable crack varies from the same point of the
permeable models when the mechanical load is relatively small and it gradually shows
the difference as the applied remote stress increases. However, it should be noted
again that, when the applied mechanical stress is small, the stress intensity factor K of
the energetically consistent models is nearly identical to the impermeable model.
Besides, it can be observed further that when the applied mechanical load increases, the
three models (i.e., impermeable, permeable, semi-permeable models) of planar crack
are completely identical which is significantly different from spherical cap crack and
those three models serve as upper bound, whereas the energetically consistent model
are obviously less than those three models and serves as lower bound. This can be
concluded that when the mechanical load increases, the K, of both planar and non-
planar cracks become clearly different as discussed above.

The results of a non-planar crack upon the stress intensity factor K can be
described in figures 4.19 (b). We found that the increasing applied mechanical load
tends to increase the magnitude of the stress intensity factor Ki whereas the planar
crack is obviously vanished. Furthermore, the stress intensity factor Ki under four
models of electrical boundary conditions (i.e., impermeable, permeable, semi-
permeable and energetically consistent models) is not identical. It is can be observed
further that the upper bound serves as impermeable models while the energetically
consistent as lower bound. In addition, when the mechanical load is small, the semi-
permeable and permeable models are nearly identical but the permeable model is
converged to the energetically consistent models when the mechanical load is
sufficiently large. It can be conclude that the increasing applied mechanical load has an
influence only to permeable model.

Finally, the result of non-planar crack on the intensity factor Kiv on four models
can be reported in figures 4.19 (c). It is found that when the applied mechanical load
increases, the electrical intensity factors Kiv tend to increase as well. Moreover, the
impermeable model is the upper bound of the entire range, whereas the lower bound is
switched of energetically consistent and permeable models corresponding to turning
point at oo = 30 MPa (as the turning point of planar crack occurred at op = 20 MPa ).
However, when the applied mechanical is sufficiently large, it can be observed further
that Kiv of both the semi-permeable and energetically consistent models share identical
trends and approach to the impermeable model. It can be summarized that the turning
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points of both planar and non-planar cracks (the penny-shaped and the spherical cap
cracks) of lower bounds are completely different whereas the trends of both cracks are
nearly identical.
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Figure 4.19 (a), (b) and (c) are dependent of normalized stress and electric intensity
factors [Ki, Ki, Kiv] on the mechanical load for spherical cap crack in infinite medium.
Results are reported as average values
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4.2.1.2 Influence of remote tensile mechanical load on cylindrical crack

As an example of non-planar cracks, we consider a cylindrical crack containing in
a transversely isotropic piezoelectric infinite medium. The crack geometry and the
material properties of piezoelectric medium are similar as those diagnosed in the
previous sections 4.1.1.2 However, the key differences from the previous case are
similar to those of spherical cap crack and this would be explained as follows, (i) the
half subtended angle of the surface @ is fixed as 45 degree, (ii) the applied uniaxial
remote stress is varied from [10,20,30,..., 100] MPa, (iii) the applied electric field Eo
is fixed at 2.5 MV/m which is identical as that of the previous example, and (iv)
and the dielectric permittivity inside the crack gap is fixed & = 5& where & = 8.85x10°
12 C/Vm is the permittivity of the air in the crack gap. Numerical results of intensity
factors computed from the fine mesh 144 elements (see Figure. 4.1) are obtained from
three different points (i.e., top, middle and bottom points) reported in figures. 4.20 (a),
4.21 (a), 4.22 and 4.3(a) respectively. It can be found that the increasing mechanical

load 0, leads to the increase of the magnitude of the stress and electric intensity factors

[Ki,Ki,Kiv] for all three points except the K, Kin of middle points and the top point
respectively, and this can be discussed below.

Figure 4.20 (b), (c) and (d) shows that, as the mechanical load increase, Ki of
all points are clearly less than the penny-shaped crack. The upper bounds of top point
serve as three models (i.e., impermeable, permeable and semi-permeable models)
similar to the penny-shaped crack, at both middle and bottom point they serve as
permeable. It can be found that the lower bounds of three distinct points and planar
crack are completely and identically formed as the energetically consistent. Moreover,
the stress intensity factor K, of the three models (i.e., impermeable, permeable and semi-
permeable models) is completely identical and analogous to those models of planar
crack, whereas only K, of the semi-permeable and permeable are nearly identical at both
top and bottom points. However, it should be noted again that, when the applied
mechanical stress is small, the stress intensity factor Ki at the bottom point of the
permeable and semi-permeable models is nearly identical and shows the difference
as the mechanical load increases. This can be concluded that when the mechanical load
increases, the K of both planar cracks are the same as the top point and are strongly
different at both middle and bottom points as discussed above.



K, =

K, =

70 " /%
[ *  Impermeable .
[ A Permeable /%i/
60 | O Semi-permeable @///
[ <& Energetically consistent e <>//
sk — Bqttom po_int )g/// &
[ : Middle point 27w .
[ . ; 0 &
[ Top point )g/, vl
KiEBsags 40 s @ .. :
E1111'£1441EO\/a -~
30 |-
20 |
10
Eg=25MV /m
0.00 & b =5x8.85x10712C /Vm
- I - I - I - I Ll I - I Ll I - I -

|  —— Top point
50 [
K, Esz43 40 -
Ellll El441 EO \/a [
30 f
20 | a=1
i Eg=2.5MV /m
10 & =5x8.85x10712C /Vm
0.00 4

82

10 20 30 40 50 60 70 80 90 100

0y

(@)

.80

Impermeable
A Permeable
O Semi-permeable
<& Energetically consistent

.70

60 Penny-shaped crack

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

0y

(b)



80 [

.70

.60

50 |

K | E3343

K, =— "aFsses -
Ellll E144l EO \/530

10 |

0.00 &

40 |

20 |

83

Impermeable
& Permeable
O Semi-permeable
<& Energetically consistent
Penny-shaped crack
—— Middle point

OB

Eo=25MV /m
& =5x8.85x10712C /vm

iy

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

80 [

70 |

.60
.50

KI E3343 40

K, =— KiFss
Ellll E144l EO \E 30

10 |

20 |

0y

(©)

Impermeable
A Permeable
0 Semi-permeable
<& Energetically consistent
Penny-shaped crack
—— Bottom point

O ®

<o B

Ep =25MV /m
&c =5x8.85x10722C /Vm

§:

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

0y

(d)

Figure 4.20 Dependent of normalized stress intensity factors [Ki] on the mechanical
load for cylindrical crack in infinite medium. Results are reported on values
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The results of a non-planar crack on the stress intensity factor Ki on four models (i.e.,
impermeable, permeable, semi-permeable and energetically consistent models) can be
explained in figures 4.21 (b), (c) and (d). It can be found that when the applied
mechanical load increases, the Ki have a tendency to increase the magnitude only at
both middle and bottom points while the Ky at the top point decrease as the planar crack
is clearly vanished. Furthermore, the stress intensity factor Ki of three different points
under four models of electrical boundary conditions (i.e., impermeable, permeable,
semi-permeable and energetically consistent models) are completely different. It can be
observed further that the upper bounds of Kii at any points are formed as impermeable
and, again, only the lower bound of the top bottom point are energetically consistent
models. In contrast, the lower bounds of both the top and bottom points is switched of
energetically consistent and permeable model corresponding to the turning point at oo
=30 MPa and o, = 70 MPa respectively. In addition, when the mechanical load is
small, the permeable models strongly approach the energetically at the top and middle
points, which is clearly distinct from the bottom point. It can be conclude that when the
mechanical load increases, it has influence to the lower bounds of the top and bottom
points and to the magnitude of Ky at three points.
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Figure 4.21 Dependent of normalized stress intensity factors [Ku] on the mechanical

load for cylindrical crack in infinite medium. Results are reported on (a) all points, (b)
top, (¢) middle and (d) bottom points

Next, the numerical results of a non-planar crack upon the maximum of the stress
intensity factor Kin only at a middle point (a point along middle zone between the top
and bottom point) under four models are obtained as reported in figure 4.22. It can be
found that the increasing applied mechanical load leads to the decrease of the magnitude
of the stress intensity factor Kin whereas the planar crack is vanished. Moreover, the
stress intensity factor Kin under four models of electrical boundary conditions (i.e.,
impermeable, permeable, semi-permeable and energetically consistent models) is
completely different. It can be investigated further that the upper bound is impermeable
models while the permeable model serves as lower bound. Besides, as the mechanical
load increase, the semi-permeable and energetically models share nearly identical trend.
To be more precise, the semi-permeable model varies from the point near the permeable
model at the beginning and approaches the energetically consistent model when the
mechanical load is sufficiently large. It can be conclude that the increasing applied
mechanical load has only the values of the stress intensity factors
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Figure 4.22 Dependent of normalized stress intensity factors [Kiu] on the mechanical
load for cylindrical crack in infinite medium. Results are reported on the middle point

Finally, the effect of a non-planar crack on the electric intensity factor Kiv of
three different points (i.e., top, middle and bottom points) under four models can be
reported in figures 4.23 (c). It is found that when the applied mechanical load increases,
the electrical intensity factors Kiv of three different points tends to increase but still
significantly less than the magnitude of planar crack. Moreover, the impermeable
models are upper bounds for the all points whereas the lower bound is switched of
energetically consistent and permeable models corresponding to turning points such as
at oo = 20 MPa , oo = 30 MPa for the top and middle point respectively (as the turning
point of planar crack occurs atop = 20 MPa ). In addition, when the applied mechanical
is sufficiently large, Kiv at all points (i.e., top, middle and bottom points) of the semi-
permeable and energetically consistent models share nearly identical trends and
approach the impermeable model. It can be summarized that as the mechanical load
increases, the turning points of lower bound of both planar and non-planar cracks are
once again different at the middle and bottom points, except at the top point where the
values remain the same.
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Figure 4.23 Dependent of normalized electric intensity factors [Kiv] on the mechanical
load for cylindrical crack in infinite medium. Results are reported on (a) all points, (b)
top, (¢) middle and (d) bottom points
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4.2.1.3 Comparison between spherical cap crack and cylinder crack

From the above discussion, when the mechanical load increases from
[10,20,30,....,100] MPa, the difference and the similarity of the numerical results of
intensity factor [Ki,Ki, Kii,Kiv] obtained from both spherical cap and cylindrical cracks
can be concluded as follows:

The numerical results of the spherical cap crack utilized for investigations the
influence of applied tensile mechanical load can be summarized as follow. It is seen
that when the mechanical load increases, the magnitude of K on four crack models for
spherical cap crack and the penny-shaped crack become different. While K, of three
models (i.e., impermeable, permeable and semi-permeable models) are identical for
penny-shaped crack, the stress intensity factors Ki of three models are different for
spherical cap crack. Accordingly, the curvature of non-planar crack indicates the
dependent of electric field on stress intensity factor K. In contrast, the electric field has
no influence to K for the penny-shaped crack in three models but has influence to the
energetically consistent model. Given the stress intensity factors K obtained from other
non-planar cracks (i.e., cylindrical crack) at three different points (i.e., top, middle and
bottom points), it can be found that when the mechanical load increases, all the
behaviors and trends are very identical analogous to the spherical cap crack only at the
bottom points. In addition to this similarity of the both cracks (i.e., spherical cap and
cylindrical cracks on the bottom point), the magnitude of K; on four models at the top
point are greater than the magnitude of K at the rest points. Moreover, the three models
(i.e., impermeable, permeable and semi-permeable models) of cylindrical crack only at
the top points are completely identical similar to those three models of penny-shaped
crack. Nevertheless, the three models are still different at both middle and bottom point.
It can be concluded that the three models become outstanding when the stress intensity
factors are considered at bottom point, whereas the behavior of K is the same as penny-
shaped crack at the bottom point.

The stress intensity factors Ki of spherical cap crack firstly illustrate results. It
can be found that when the applied mechanical load increases, the magnitude of four
models (i.e., impermeable, permeable, semi-permeable and energetically consistent
models) also increases and depends on the mechanical load, whereas the planar crack
is vanished. Furthermore, the stress intensity factor Ki under those four models is
completely different. It can be further observed that the upper bound is impermeable
model while the energetically consistent serves as lower bound. In addition, when the
mechanical load is small, the semi-permeable and permeable models are nearly
identical whereas they are converged to the energetically consistent models when the
mechanical load is sufficiently large. Identically, the stress intensity factors Ki obtained
from the cylindrical crack at three different points (i.e., top, middle and bottom points)
are proposed to compare the Ku of spherical cap crack. When the mechanical load
increases, the magnitude of Kii are completely different for all points. Furthermore, the
stress intensity factor Ki of the bottom point under four models exhibits a strongly
identical behavior to that of the spherical cap crack. Apart from the identical behavior
of both cracks, the upper bounds of Ky at any points are formed as impermeable and,
once again, only the lower bounds of the top bottom point are energetically consistent
models. On the contrary, the lower bounds of both the top and bottom points are
switched of energetically consistent and permeable model. In addition, it can be found
that when the mechanical load is small, the permeable models strongly approach the
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energetically at the top and middle points which is nevertheless clearly distinct from
the bottom point.

The different point between spherical cap crack and cylindrical crack is the
stress intensity factor Kii in which the cylindrical crack appears only the middle point
(a point of the middle zone is located between the top and bottom points). It can be
concluded that when the crack mechanical load increases, the magnitude of four models
are completely different as they decrease the magnitude. Moreover, the semi-permeable
model varies from permeable to energetically consistent model and their bounds, such
as upper and lower bound serve as impermeable and permeable respectively.

Finally, the results of the spherical cap crack can be summarized as follows.
When the applied mechanical load increases, the electrical intensity factors Kiv tends
to increase, and the magnitude with higher slope of penny-shaped crack are greater than
that of spherical cap crack. Moreover, the impermeable models of both cracks (i.e.,
planar and non-planar cracks) are always the upper bound whereas the lower bounds
similarly are always switched of energetically consistent and permeable models for the
entire range. Furthermore, when the applied mechanical increases, Kiv of the semi-
permeable and energetically consistent models of both cracks, i.e., spherical cap and
penny-shaped cracks, shares nearly identical trends. However, those two models
approach to the impermeable model for penny-shaped crack whereas they are parallel
to impermeable model. Identically, the electric intensity factor Kiv obtained from the
cylindrical crack is offered to correlate the spherical cap crack and to be versus with
planar crack. With the increasing mechanical load, the trend of electrical intensity
factors Kiv of three different points are different by increasing the magnitude and are
also less than the magnitude of penny-shaped crack. Moreover, the behaviors of
spherical cap crack are identical to that of cylindrical crack at the top point. In addition
to the parity of both cracks, the impermeable models are always upper bounds for the
all points and analogous to both spherical cap and penny-shaped crack, whereas the
lower bounds are the same for both cracks (i.e., spherical cap and penny-shaped cracks)
by switching of energetically consistent and permeable models. In addition, as the crack
subtended angle increases, the lower bound of the top point is permeable model which
is different from the rest of the points. Besides, the convergence of both semi-permeable
and energetically consistent of three different points is the strongest at the top point,
which is similar to planar crack.

4.2.2 Influence of remote tensile mechanical load on tunnel crack

In this case, we consider a tunnel crack embedded in a transversely isotropic
piezoelectric infinite medium. The crack geometry and the material properties of
piezoelectric medium are analogous to the section 4.1.3. Nevertheless, the major
differences from the previous case are that (i) the radius of end-radius and the half-
length are fixed as 1 and 5, respectively (ii) the applied uniaxial remote stress is varied
from [10,20,30,..., 100] MPa, (iii) the applied electric field Eo is fixed at 2.5 MV/m
which is similar to that of the previous section, and (iv) the dielectric permittivity
inside the crack gap is fixed & = 5& where & = 8.85x102 C/Vm is the permittivity of
the air in the crack gap. Numerical results of non-zero intensity factors at two different
points, i.e., at the end-radius and the half-length points (see figure 4.24 (a)), treated
from the fine mesh 180 elements are reported in figures 4.24 (b) and (c) respectively. It
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is found that the increasing mechanical load 0, has a tendency to increase the

magnitude of the stress and electric intensity factors [Ki,Kiv], for all crack models. In
addition, the rate of increase of [Ki,Kiv] at half-length point is more rapid than at the
radius point and this can be discussed as follows:

Figure 4.24(b) indicates that, when the mechanical load increases, the stress
intensity factor K of end-radius point are significantly less than the values of half-
length point. Moreover, the Ki of three models (i.e., impermeable, permeable and semi-
permeable models) are nearly identical for the all points and form as upper bound,
whereas the lower bound is energetically consistent model. Moreover, the stress
intensity factor K of the energetically consistent model approaches those three models.
This can be concluded that as the mechanical load increases, it has influence only to the
magnitude of stress intensity factors.

Finally, the numerical result of planar crack on the intensity factor Kiv on four
models can be reported in figures 4.24 (c). It can be found that when the applied
mechanical load increases, the electrical intensity factors Kiv of two different points
(i.e., end-radius and half-length points) lead to the increase of the magnitude. For both
points, the impermeable model is upper bound whereas the lower bound is switched of
energetically consistent and permeable models corresponding to turning point at op =
30 MPa . Once again, it can be found that when the applied mechanical is sufficiently
large, Kiv of the semi-permeable and energetically consistent models share nearly
identical trends for every point and approach the impermeable model. It can be
summarized that the increasing mechanical loads has an influence to the magnitude and
the lower bound of stress intensity factors Kiv.

Half-length point
[

(a) End-radius point
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Figure 4.24 (a) the positions at end-radius and half-length points, (b) and (c) are
dependent of normalized stress and electric intensity factors [Ki, Kiv] on the mechanical
load for a tunnel crack in infinite medium. Results are reported on the end-radius and
half-length points
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4.2.3 Influence of remote tensile mechanical load on a pair of penny-shaped
crack

The two penny-shaped crack in vertical and horizontal directions are provided to
conduct the influence of remote mechanical load which can be implement in the next
sections.

4.2.3.1 Influence of remote tensile mechanical load on two penny-shaped crack in

vertical direction

For the next investigation, we consider a two penny-shaped crack in vertical direction
containing in a transversely isotropic piezoelectric infinite medium. The crack
geometry and the material properties of piezoelectric medium are analogous to the
section 4.1.4. The major differences of the parameter compared to that from the
previous case are that (i) the radius and the vertical distance of two penny-shaped crack
are fixed as 1 and 0.5 respectively (ii) the applied uniaxial remote stress is varied from
[10,20,30,..., 100] MPa, (iii) the applied electric field Eo is fixed at 2.5 MV/m which
is similar to that of the previous section, and (iv) the dielectric permittivity inside the
crack gap is fixed & = 5& where & = 8.85x1012 C/Vm is the permittivity of the air in
the crack gap. The results of non-zero intensity factors along the crack front treated
from the fine mesh 144 elements per crack are reported in figures. 4.25 (a) and (b)
respectively. It can be found that as the mechanical load increases, oo again tends to
increase the magnitude of the stress and electric intensity factors [Ki, Kiv]. The rate of
increase of [Ki, Kiv] can be discussed as follows:

Figure 4.25(a) shows that when the mechanical load increases, the stress
intensity factor Ki under four crack models (i.e., impermeable, permeable, semi-
permeable and energetically consistent models) also increases. Again, it is found that
the trend of two penny-shaped cracks are nearly identical to that of the single penny-
shaped crack but the slop of magnitude are less than one. Moreover, the K of three
models (i.e., impermeable, permeable and semi-permeable models) are also nearly
identical throughout the range of distribution and those three model serve as upper
bound whereas the lower bound is expressly energetically consistent model. In addition,
the stress intensity factor K of the energetically consistent model again approaches to
those three models. This can be concluded that when the mechanical load increases, it
has influence only to the magnitude of stress intensity factors.

Results from figure 4.25 (b) indicate that when the distance of the two cracks is
small, the stress intensity factor Ki are appeared. It is manifested that when the
mechanical load increase, the four models tend to decrease. Moreover, Ku of
impermeable, permeable and semi-permeable models are nearly identical and serve as
lower bound whereas the energetically consistent model approaches to those three
models and also serve as upper bound at the entire range of distribution.

Eventually, the intensity factor Kiv on four models obtained from four models
are shown in figures 4.25 (c). It is found that when the applied mechanical load
increases, the magnitude and the trend of the electrical intensity factors Kiv are nearly
identical but the behavior of four models are clearly different. Moreover, the
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impermeable model serves as upper bound whereas the lower bound is switched of
energetically consistent and permeable models corresponding to turning point at op =
20 MPa which is similar to other planar cracks. In addition, with the increase of the
applied mechanical load, Kiv of the semi-permeable and energetically consistent models
of two penny-shaped cracks are nearly identical behavior which is the same as the single
penny-shaped crack, and those two models tend to approach the impermeable model. It
can be summarized that the increasing mechanical load has an influence to both the
magnitude and the lower bound of stress intensity factors Kiv, similar to other planar
cracks.
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Figure 4.25 (a), (b) and (c) are dependent of normalized stress and electric intensity

factors [Ki, Kiv] on the mechanical load for a two penny-shaped crack in infinite
medium. Results are reported on one penny-shaped crack
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4.2.3.2 Influence of remote tensile mechanical load on two penny-shaped crack in

horizontal direction

Finally, the last investigation for the mechanical load would be discussed by
considering a two penny-shaped crack in horizontal direction containing in a
transversely isotropic piezoelectric infinite medium. The crack geometry and the
material properties of piezoelectric medium are analogous to the section 4.1.5. The
major differences of the parameter compared to that of the previous case are that (i) the
radius and the distance of two penny-shaped crack in horizontal direction are fixed as
1 and 2.25 respectively, (ii) the applied uniaxial remote stress is varied from
[10,20,30,..., 100] MPa, (iii) the applied electric field Eo is fixed at 2.5 MV/m which
is similar to that of the previous section, and (iv) the dielectric permittivity inside the
crack gap is fixed & = 55 where & = 8.85x101? C/Vm is the permittivity of the air in
the crack gap. The stress and electric intensity factors [Ki,Kiv] along the crack front at
two different points (i.e., the maximum and minimum points, see figure 4.26) computed
from the fine mesh 144 elements per crack are shown in figures. 4.26 (a) and (b)
respectively. It is found that the increasing mechanical load op again tends to increase
the magnitude analogous to the case of two penny-shaped cracks in vertical direction,
which can be discussed as follows:

Figure 4.26 (a) indicates that when the mechanical load increases, the stress
intensity factor K at two different points under four crack models (i.e., impermeable,
permeable, semi-permeable and energetically consistent models) also increase,
the trend of two penny-shaped cracks in horizontal direction at both points (i.e.,
maximum and minimum points) are nearly identical to that of the single penny-shaped
crack; nevertheless, the magnitude Ki of both points are greater than single penny-
shaped crack. Moreover, the K| of three models (i.e., impermeable, permeable and semi-
permeable models) of two and single penny-shaped cracks are identical at the entire
range; Those three models also serve as upper bound whereas the lower bound is
energetically consistent model similar to the discussion mentioned in the former case.
Furthermore, the stress intensity factor Ki of the energetically consistent model
identically approaches those three models for all cracks. This can be concluded that
when the mechanical load increases, it influences only the magnitude of stress intensity
factors.

Finally, the intensity factor Kiv of two penny-shaped cracks in horizontal
direction on four models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models) obtained at both maximum and minimum points are
shown in figures 4.26 (b). Similarly it can be summarized that when the applied
mechanical load increases, the magnitude and the trend of the electrical intensity factors
Kiv are nearly identical to the single penny-shaped crack and, once again, the four
models are strongly different for all models of cracks. Moreover, at the two distinct
points, the impermeable model serves as upper bound whereas the lower bound is
switched of energetically consistent and permeable models corresponding to turning
point at oo = 20 MPa . This pattern is identical to the single penny-shaped crack.
Besides, at both two points, Kiv of the semi-permeable and energetically consistent
models are again identical, similar to the single penny-shaped crack. Those two models
also approach the impermeable model. It can be concluded that, similar to other planer
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crack, the increase of the applied mechanical load has influence to both the magnitude
and the lower bound of stress intensity factors Kiv.
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Figure 4.26 (a) and (b) are dependent of normalized stress and electric intensity factors
[Ki, Kiv] on the mechanical load for a two penny-shaped crack in infinite medium.
Results are reported on the maximum and minimum values

4.3 Influence of remote electrical load on four crack-face boundary conditions

Influence of electric load (electric field) on stress and electric intensity factors is
investigated. The several cracks are adopted for the exploration such as spherical cap
crack, cylindrical crack, tunnel crack, two penny-shaped crack in vertical direction and
the two penny-shaped cracks in horizontal direction. The effect of electric field will be
revealed in the next section

4.3.1 Influence of remote electrical load on spherical cap and cylindrical crack

At the outset, the two non-planar cracks such as spherical cap and cylindrical cracks is
employed to explore the stress and electric intensity factor on four crack-face model by
varying the remote electric load. The influence of electrical field will be revealed in the
following subsections.

4.3.1.1 Influence of remote electrical load on spherical cap crack

The first investigation for the influence of the electrical load is discussed by considering
a spherical cap crack embed in a transversely isotropic piezoelectric infinite medium.
The crack geometry, the mesh and the material properties of piezoelectric medium
are analogous to those in the section 4.2.1. The key parameter differences from the
previous case are that (i) the radius of spherical cap crack fixed as 1.2732395447352
corresponding to radius of penny-shaped crack as 1 (a = 1), (ii) the applied uniaxial
remote stress is fixed as 50 MPa, (iii) the applied electric field Eo is now varied from [-
4.5,-4,-3.5,...4.5] MV/m which is the key point of this section, and finally (iv) the
dielectric permittivity inside the crack gap is fixed & = 55 where & = 8.85x10? C/Vm
is the permittivity of the air in the crack gap. The present numerical results shown in
figures 4.27 (a) and (b) and (c) reveal that when the applied electric field increases from
negative to positive values, the magnitude of the normalized stress and electric
[Ki,Ki,Kiv], particularly the magnitude of the three models (i.e., impermeable, semi-
permeable and energetically consistent models), are extremely varied for the whole
range of electric field. This can be discussed in detail as follows.

The stress intensity factors Ki upon four models reported in figures 4.27 (a) are
obtained by comparing with the planar crack. It can be found that when the electric field
varies, those three models (i.e., impermeable, semi-permeable and energetically
consistent models) become different. For example, the energetically consistent models
increases whereas for the impermeable and semi-permeable models decreases the
magnitude at the range of negative electric field (Eo = -4.5 to Eo = 0 MV/m), and the
behavior of those three models become opposite at the range of positive electric field
(Eo = 0 to Eo = 4.5 MV/m). In contrast, the three models of penny-shaped crack are
completely identical and the values of those models are obviously higher than the non-
planar crack. Nevertheless, the trend of the energetically consistent models of both
planar and non-planar crack are similar behaviors by presenting the large slope at both
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sides of electric field range. Moreover, it is obvious that the bounds of planar and non-
planar crack of the positive electric field range are significantly different. For example,
the upper bound of spherical cap crack is permeable model whereas that of planar crack
serves as three models (i.e., permeable, semi-permeable and impermeable models).
Again, the lower bounds of both cracks slightly changed, for example the lower bound
of planar crack serves as energetically consistent model while it is switched of
impermeable and energetic consistent by showing the turning point at Eo = 2.5 MV/m.
In addition, one can see from figure 4.27 (a) that the permeable models of both planar
and non-planar crack are independent of electric field. However, the semi-permeable
and impermeable models are obviously dependent on electric field. This implies that
the electric field has an influence not only to the magnitude but also to the four boundary
conditions of both cracks.

The results of stress intensity factor Ki on four models are presented in figure
4.27 (b). Results reveal that when the electric field varies from -4.5 to 4.5 MV/m the
two models (i.e., impermeable and semi-permeable models) become opposite to the
magnitude of K, except the energetically consistent and permeable models. It can be
explained further that those two models tend to increase the magnitudes at both negative
and positive ranges of electric field, whereas the normalized stress Ki of planar crack
vanishes. Figure 4.27 (b) also indicates that the energetically consistent model still has
high slope compared to the other models. Furthermore, the upper bounds of positive
range of electric field serve as impermeable model whereas the lower bound is again
switched of permeable and energetically consistent models and this occurs at the
turning point of Eo = 1 MV/m. Throughout the range of electric field, the permeable
model shows the behavior identical to the Ki, indicating the independence toward
electric field. Similarly, the two models (i.e., impermeable and semi-permeable models)
are strongly dependent of electric field. Finally, it can be summarized from above
discussion that when the electric field varies from negative to positive values, it
influences to both the magnitudes of the three models (i.e., impermeable, semi-
permeable and energetically consistent models - except the permeable model) and lower
bounds of four models at the positive range of electric field.

Finally, the electric intensity factor Kiv on four models (i.e., impermeable,
permeable, semi-permeable and energetically consistent models) is shown in figure
4.27 (c). It can be seen that along with the increase of the electric field from the negative
to the positive values of electric field, the magnitude of four models (i.e., impermeable
permeable, semi-permeable and energetically consistent models) are rather identical to
the trend of planar crack (a penny-shaped crack). More specifically, the impermeable
and semi-permeable models strongly depend on electric field. It can be observed further
from the figure that the curve of the energetically consistent models is reduced
compared with the stress Ki and K in the former discussion. It is nearly identical to
semi-permeable models at the range Eo = -2 to 1 MV/m but drops down when the
electric field is sufficiently large. In addition, at the positive electric range of electric
field, the upper bound is impermeable model whereas the lower bound is again switched
between the permeable and the energetically consistent model which occurs at the
turning point as Eo = 3.5 MV/m . Besides, the permeable model of Kiv again is fully
independent of electric field, similar to the normalized stress Ki and Ki in the previous
discussion. This can be concluded that when the electric field varies, it affects both the
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magnitude of three models (i.e., impermeable, semi-permeable and energetically
consistent models) and the lower bound of those four models.
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Figure 4.27 (a), (b) and (c) are dependent of normalized stress and electric intensity

factors [Ki, K, Kiv] on the electrical load for spherical cap crack in infinite medium.
Results are reported as average values

4.3.1.2 Influence of remote electrical load on cylindrical crack

Next, we consider a cylindrical crack embed in a transversely isotropic piezoelectric
infinite medium. The crack geometry, the mesh and the material properties of
piezoelectric medium are similar to the section 4.2.2. The major distinctions from
the previous research are that (i) the radius of cylindrical crack fixed as
1.2732395447352 corresponding to radius of penny-shaped crack as 1 (a = 1), (ii) the
applied uniaxial remote stress is fixed as 50 MPa, (iii) The applied electric field Eo now
varies from [-4.5,-4,-3.5,...,4.5] MV/m which is similar to the spherical cap crack,
and (iv) and the dielectric permittivity inside the crack gap is fixed & = 5 where & =
8.85x1012 C/Vm is the permittivity of the air in the crack gap. The numerical results
are presented in order to investigate the influence of electrical load on stress, and
electric intensity factors at three different points (i.e., top, middle and bottom points as
shown in figure 4.3) are displayed in figures 4.28 (a), 4.29 (a) and 4.30 (a). It can be
found that when the applied electric field increases throughout the range [-4.5 to 4.5
MV/m], the trends of the normalized stress and electric [Ki,Kn,Kiv] (only at the middle
point) and K are identical. However, the magnitude of those varies from positions
(i.e., top, middle and bottom points) along the crack front which can be discussed in
detail as follows:

The non-zero intensity factors Ki on four crack-face models (i.e., impermeable,
permeable, semi-permeable and energetically consistent models) at three distinct points
(i.e., top, middle and bottom points) reported in figure 4.28 (b), (c) and (d) are
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investigated. It can be found that as the electric field increases from the negative to the
positive values, the discrepancy of the magnitude depends on the positions (points)
along the crack front, for example, the magnitude of the top point is greater than other
two remaining points (i.e., middle and bottom points). Moreover, the three models (i.e.,
impermeable, semi-permeable and permeable models) are nearly identical which is very
similar to the planar crack (penny-shaped crack) at the top point of cylindrical crack,
and those three models gradually exhibit the distinctions when K is obtained from the
middle and bottom points respectively. It should be noted that the behaviors of three
points can be observed further from each figure, that the impermeable and semi-
permeable models at three different points (i.e., top, middle and bottom points) strongly
depend on the increasing electric field by exhibiting the slope of the magnitude,
whereas the three models of planar crack are completely identical. Again, figures
indicate that the permeable models are similarly independent of the electric field at all
points which is identical to the planar crack. Furthermore, the upper and lower bound
of all the three different points are permeable and energetically consistent models when
the electric field is in the positive range. It should be remarked again that the magnitude
of the energetically consistent models at three points of cylindrical crack are strongly
dependent on the increasing electric field, and that is analogous to the planar crack. This
can be implied that when the electric field varies from small to large values, it has an
influence to the magnitude of three models of cylindrical crack and also to one model
for planar crack, which is energetically consistent model.
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Figure 4.28 Dependent of normalized stress intensity factors [Ki] on the electrical load

for cylindrical crack in infinite medium. Results are reported on (a) all points, (b) top,
(c) middle and (d) bottom points

Next, the stress intensity factors Ki obtained from three distinct points (i.e., top,
middle and bottom points) under four crack-face models (i.e., impermeable, permeable,
semi-permeable and energetically consistent models) are studied as shown in figure
4.29(a), (b), (c) and (d). It can be found that when the electric field increases from small
to the large values [-4.5 to 4.5 MV/m], the magnitude of the bottom point are
significantly higher than other points (i.e., top and middle points), whereas the stress
K of planar crack vanishes. However, the behaviors of three different points are rather
different which can be observed further in detail. It can be found that the impermeable
and semi-permeable models of three points again depend on the increasing electric field
while the permeable models do not. Moreover, the bounds at the range of the positive
electric field at three points are rather distinct, for example, the upper bounds of any
points along the crack front of cylindrical crack are impermeable models whereas the
lower bounds of those three points are switched of permeable and energetically
consistent models corresponding to the turning point occurred at Eo = 3.5, Eo = 1.5 and
Eo = 1 MV/m for top, middle and bottom points respectively. In addition, the
energetically consistent model at the top point are also different from both middle and
bottom points by displaying the curve as a linear whereas at the remaining points exhibit
as non-linear when the negative electric field is obtained. These can be summarized that
the increasing electric field gives rise to affect not only the lower bound at any points
but also to the magnitude of those positions.
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Figure 4.29 Dependent of normalized stress intensity factors [Ku] on the electrical load
for cylindrical crack in infinite medium. Results are reported on (a) all points, (b) top,
(c) middle and (d) bottom points
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Next, we investigate the influence of stress intensity factors Kii on four crack-
face models (i.e., impermeable, permeable, semi-permeable and energetically
consistent models) only at the middle point along the crack front as reported in figure
4.30. It can be found that when the electric field increases from [-4.5 to 4.5 MV/m], the
impermeable and semi-permeable models fully depend on the electric field, by
exhibiting the increase of the magnitude. The slope of impermeable model, however, is
greater than the semi-permeable model. It is also found that the permeable is perfectly
independent of electric field by showing the constant magnitude. Furthermore, the
energetically consistent model starts to increase at Eo = 0 MV/m which is different
from the behavior of [Ki,Ki,Kiv] trends. Finally, results reveal that the upper bound at
the range of positive electric field serves as impermeable model, whereas the lower
bound is permeable model. This can be implied that when considering the negative and
positive range of electric field, it has influence to both the magnitude of stress Kin and
the bound of the four models.
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Figure 4.30 Dependent of normalized stress intensity factors [Kii] on the electrical load
for cylindrical crack in infinite medium. Results are reported on the middle point

Eventually, the influence of electric intensity factors K offered from three distinct
points (i.e., top, middle and bottom points) on four models (i.e., impermeable,
permeable and energetically consistent models) as illustrated in figure 4.31 (a), (b),(c)
and (d) are investigated. As the electric field increases [-4.5 to 4.5MV/m]. In addition,
the magnitude of three different points slightly changes. However, the behaviors of four
models are clearly distinct which would be investigated in detail.

From figure 4.31 (a), (b) and (c), it can be found that the semi-permeable and
impermeable of three points along the crack front strongly depend on electric field. On
the other hand, the permeable models are completely independent of electric field, and
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that behaviors are identical to planar crack. Moreover, the energetically consistent
models of three points (i.e., top, middle and bottom points) have similar trends by
implying the linear curve at the range of negative electric field and by indicating the
non-linear curve at the positive range of electric field which is similar to planar crack.
Besides, it can be noticed that the upper bounds of three points serve as impermeable
models while the lower bound varies from the three points at the range of positive
electric field. For example, at the top point, the lower bounds are permeable model,
whereas at both middle and bottom points they are switched of permeable and
energetically consistent models. This leads to the turning points of the lower bounds at

Eo = 4 MV/m for both points. These can be implied that when the electric field is
changed, it affects to both the magnitude and the lower bound of four crack models.
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Figure 4.31 Dependent of normalized electric intensity factors [Kiv] on the electrical

load for cylindrical crack in infinite medium. Results are reported on (a) all points, (b)
top, (c) middle and (d) bottom points

4.3.1.3 Comparison between spherical cap crack and cylinder crack

Form the above discussion, the stress and electric intensity factors [Ki,Kn,Kiv] offered
from both spherical cap crack and the top point of cylindrical crack on four models (i.e.,
impermeable, permeable, semi-permeable and energetically consistent models) have
major points which can be compared as follows.

Results of the spherical cap crack can be summarized as follows. When the
electric field varies, the two models (i.e., impermeable, semi-permeable models) are
distinct and are strongly dependent of electric field which is completely different from
the penny-shaped crack, whereas both permeable and energetically consistent models
of both cracks (i.e., penny-shaped and spherical cap crack) exhibit clearly identical
trends. However, the magnitude of penny-shaped crack on four models is higher than
the spherical cap crack. It can be found that the bounds of planar and non-planar crack
of the positive electric field range are significantly different. For example, the upper
bound of spherical cap crack is pure permeable model whereas one is three models (i.e.,
permeable, semi-permeable and impermeable models) for the planar crack. Again, the
lower bounds of both cracks slightly change. For example, the lower bound of planar
crack serves as pure energetically consistent model while it is switched of impermeable
and energetic consistent. In addition, the permeable models of both planar and non-
planar cracks are independent of electric field. The semi-permeable and impermeable
models, on the contrary, are obviously dependent on electric field. Similarly, the stress
intensity factors K obtained from cylindrical crack at three different points (i.e., top,
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middle and bottom points) are compared with the previous cracks (i.e., spherical cap
and penny-shaped cracks). It is found that the magnitudes of three different points are
completely different depending on the point along the crack front. The behavior of
spherical cap crack is also very identical to K; at the bottom point of cylindrical crack.
Apart from the similarity of spherical cap crack, we can also indicate that the dependent
of electric field of K, at the top point along the crack front of cylindrical crack are
weaker than at the rest of the point (i.e., middle and bottom points). The dependent of
electric field for energetically consistent model at any points and penny-shaped crack
is still strong. Moreover, the upper and lower bound of both cylindrical crack (at any
points) and penny-shaped crack are identical but those lower bounds are different from
spherical cap crack.

For the stress intensity factor Ki obtained from spherical cap crack, it can be
found that with the increasing electric field, the three models (i.e., impermeable, semi-
permeable and energetically consistent models) are strongly dependent of electric field
at the entire range of electric field. Furthermore, the upper bounds of positive range of
electric field serve as impermeable whereas the lower bound is again switched of
permeable and energetically consistent models. Throughout the range of electric field,
it manifests that the permeable model shows similar behavior to the K. Identically, the
stress intensity factor Kn obtained from cylindrical crack at top, middle and bottom
points are considered to compare with spherical cap crack. It can be found that the
magnitudes of all points are completely different. In addition, the dependent and
independent of both three models (i.e., impermeable, semi-permeable and energetically
consistent models) and permeable model exhibit very identical behaviors. The
switching point of the lower bound of cylindrical crack at all points, however, is varied
depending on the point along the crack front. Those varying are also different from the
lower point of spherical cap crack.

For the stress intensity factors Kiu obtained only at the middle point of
cylindrical crack can be conclude that, the three models (i.e., impermeable, semi-
permeable and energetically consistent models) are similarly dependent on increasing
the electric field; however, the permeable model is not dependent of electric field
similar to Ky and K in previous discussion. Moreover, the upper and lower bounds of
K on four models serve as impermeable and permeable models at the positive range
of electric field respectively.

Finally, from the electric intensity factors Kiv on four models (i.e., impermeable,
permeable, semi-permeable and energetically consistent models) of spherical cap crack,
it can be concluded that the magnitude of penny-shaped crack on four models are
greater than that of spherical cap crack. Moreover, the behavior of both spherical cap
and penny-shaped cracks exhibit very identical trends. For example, the dependent of
electric field of three models (i.e., impermeable, semi-permeable and energetically
consistent models) of both planar and non-planar crack are also identical. In addition,
the permeable models of both cracks similarly are independent of electric field at the
entire range but the lower bounds of penny-shaped crack is different from spherical cap
crack - the lower bounds of spherical cap crack is switched of permeable and
energetically consistent models. On the other hand, results of stress intensity factors Kiv
obtained from top, middle and bottom points of cylindrical crack indicate that the
magnitude of top point is greater than the rest point. The behavior of Kiv at bottom point
of cylindrical crack are very identical to that of spherical cap crack. In addition to the
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similarity of both spherical and top point of cylindrical crack, it is also seen that the
lower bound of Ky at three points of cylindrical crack depends on the obtained electric
intensity factors Kiv along the crack front. In addition, the behavior of Ky at the top
point is very identical to the penny-shaped crack.

4.3.2 Influence of remote electrical load on tunnel crack

In this case, the influence of electrical load is investigated by considering a tunnel crack
containing in a transversely isotropic piezoelectric infinite medium. The crack
geometry, the mesh and the material properties of piezoelectric medium are
analogous to those applied in section 4.2.3. The essential distinctions from the previous
investigation are that (i) the end-radius and the half-length of tunnel crack are fixed asl
and 5 respectively (ii) the applied uniaxial remote stress is fixed as 50 MPa, (iii) the
applied electric field Eo is now varied from [-4.5,-4,-3.5,...,4.5] MV/m which is
similar to the other cracks, and (iv) and the dielectric permittivity inside the crack gap
is fixed & = 55 where & = 8.85x1012 C/Vm is the permittivity of the air in the crack
gap. The effect are offered to explore the influence of electrical load on stress and
electric intensity factors at two different points (i.e., the end-radius and half-length
points as illustrated in figure 4.23a) are reported in figures 4.32 (a),(b),(c) and (d). It
can be found that when the range of the applied electric field increases [-4.5 to 4.5
MV/m], the magnitude of the normalized stress and electric Ki and Kiv of both points
(i.e., the end-radius and the half-length points) are rather different. For example, the
magnitude of the half-length point is completely greater than that of both the end-radius
point and the penny-shaped crack as shown in figure 4.32(b) and (d). However, the
trends of both points and the penny-shaped crack are very almost identical along the
crack front which can be discussed in detail as follows:

At the outset, the numerical results of stress intensity factors K at two different
points (i.e., the end-radius and the half-length points) on four crack-face models (i.e.,
impermeable, permeable, semi-permeable and energetically consistent models)
reported in figure 4.32 (a) and (b) are investigated. It is found that when the range of
the electric field increase from small to large values [-4.5 to 4.5 MV/m], the magnitude
of both points are completely different and also different from that of the penny-shaped
crack. The trends of all points, however, are obviously identical similar to that of the
penny-shaped crack. More specifically, the three models of both point (i.e., the end-
radius and the half-length points) are also completely identical and independent of
electric field. In addition, those three models (i.e., impermeable, permeable and semi-
permeable models) serve as upper bounds, whereas the energetically consistent models
of both points strongly depend on the electric field and serve as the lower bound in
range of the positive electric field of which all behaviors are analogous to the behaviors
of penny-shaped crack. It can be observed further from the figure that the turning points
between the positive and negative ranges of the electric field are always generated at
Eo= 0 MV/m. Accordingly. From this investigation, one can thoroughly understand the
behaviors of the three models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models).

Finally, the influence of electric intensity factors Kiv on four crack models (i.e.,
impermeable, permeable, semi-permeable and energetically consistent models)
obtained from two distinct points (i.e., end-radius and the half-length points) are
reported in figure 4.32 (c) and (d). It can be found that when the electric field increases



114

[-4.5 to 4.5MV/m], the magnitude of Kiv at two points are rather different, i.e., the
magnitude of end-radius point is obviously less than that of the half-length points. More
specifically, the slops of Kiv for the half-length points are also higher than the other
point. Not only these behaviors but also the magnitude is identical to that of the planar
crack. For example, the impermeable and semi-permeable models extremely depend on
the electric field and the permeable models are independent of increasing of the electric
field. Moreover, the behaviors of energetically consistent models are linear curve at the
negative range of electric field whereas they change to the non-linear curve in the
positive range of electric field. In addition, the turning points of the negative and
positive electric field ranges again occur at Eo= 0 MV/m which is similar to those of
the planar crack. From the positive range of electric field, it can be indicated from figure
again that the upper bound is impermeable models whereas the lower bound us is
permeable model. It can be said that the behavior of the tunnel crack is similar to that
of the penny-shaped crack. The only difference is the magnitude.
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Figure 4.32 (a), (b), (c) and (d) are dependent of normalized electric intensity factors
[Ki, Kiv] on the electrical load for tunnel crack in infinite medium. Results are reported
on the end-radius and half-length points

4.3.3 Influence of remote electrical load on two pair of penny-shaped cracks

In this section, two pair of two penny-shaped cracks (e.g., two penny-shaped cracks in
both vertical and horizontal directions are studies of stress and electric intensity factor
on four crack-face models. each crack will be implemented in subsection follow.

4.3.3.1 Influence of remote electrical load on two penny-shaped crack in vertical

direction

In this special case, we aim to consider the influence of electric field by discussing a
two penny-shaped cracks in vertical direction embed in a transversely isotropic
piezoelectric infinite medium. The geometry, the mesh and the material properties of
piezoelectric medium of the two penny-shaped cracks are analogous to section
4.2.3.1. The major difference from the previous investigation are that (i) the radius a
the distance L of a two penny-shaped cracks are fixed asl and 0.5 respectively (ii) the
applied uniaxial remote stress is fixed as 50 MPa, (iii) The applied electric field Eo is
now varied from [-4.5,-4,-3.5,...,4.5] MV/m which is similar to the other cracks, and
(iv) the dielectric permittivity inside the crack gap is fixed & = 5& where & = 8.85x10
12.C/Vm is the permittivity of the air in the crack gap. The numerical results reported in
figures 4.33 (a) and (b) are obtained from the point along the crack front of a penny-
shaped crack. It is seen that as the applied electric field increases [-4.5 to 4.5 MV/m],
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the magnitude of the normalized stress and electric Ki and Kiv along the crack front is
slightly discrepant from the single penny shaped crack. For example, the magnitude of
the two penny-shaped crack is clearly less than that of the penny-shaped crack of both
Ki and Kiv. Moreover, the behaviors of both cracks (i.e., the two penny-shaped crack
and the penny-shaped crack) are completely identical which can be observed in detail
as follows.

First, the numerical results of stress intensity factors K on four crack-face
models (i.e., impermeable, permeable, semi-permeable and energetically consistent
models) reported in figure 4.33 (a) are obtained. It can be found that when the electric
field varies form [-4.5 to 4.5 MV/m], the three models (i.e., impermeable, permeable
and semi-permeable models) are nearly identical and are weak dependent of the
increase of the electric field which is similar to the behavior of planar cracks (i.e., the
penny-shaped crack). Moreover, as the electric field increases, the energetically
consistent model analogous to penny-shaped crack strongly depends on the electric
field. The figures 4.33(a) also reveal that the turning point of the negative and positive
range occurs at Eo = OMV/m. This can be implied that as the electric field increases,
the trend of stress intensity factor Ki on four models of the two penny-shaped cracks
with the distance of both cracks L=0.5 are very similar to those of penny-shaped crack
or the general planar cracks.

In this special case, the stress intensity factor Ki obtained from two penny-
shaped crack in vertical direction under four models (i.e., impermeable, permeable,
semi-permeable and energetically consistent models) are proposed. It is found that
increasing the electric field, Ki of impermeable, semi-permeable and energetically
consistent models are significantly dependent of electric field whereas the permeable
model is independent of electric field at the entire range. However, the distribution of
four models are negative values. Similarly the electric field Eo = OMV/m is the point
that the energetically consistent model start to decrease the magnitude. This reveal that
when the distance of the two crack is relative small, it give rise to appear Ki and it
influences to impermeable, semi-permeable and energetically consistent models

Eventually, the influence of numerical result on intensity factor obtained from
four crack-face models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models) are proposed. It reveal that with the increase of the
electric field from [-4.5 to 4.5MV/m], the trends of the normalized electric Kiv of both
two penny-shaped cracks and penny-shaped crack are very identical; nevertheless, the
magnitude of the two penny-shaped cracks is less than the single penny-shaped crack.
It can be observed from figure 4.33 (b) again that the lower bound on the range of the
positive electric is permeable model, whereas the upper bound is still impermeable
model. Moreover, it is similar to penny-shaped crack that the permeable models are
clearly independent of the increasing electric field. On the other hand, the two models
(i.e., impermeable and semi-permeable models) extremely depend on the increasing
electric field and the results reveal in the figure that the turning point of the electric
field range is at Eo = 0 MV/m. This can be implied that the Kiv of the two penny-shaped
crack in vertical direction on four models exhibits the same behaviors as those of the
penny-shaped crack.
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Figure 4.33 (a), (b) and (c) are dependent of normalized stress and electric intensity

factors [Ki, Ki, Kiv] on the electrical load for two penny-shaped cracks in infinite
medium. Results are reported on one penny-shaped crack

4.3.3.2 Influence of remote electrical load on two penny-shaped crack in horizontal

direction

For final investigation, we again focus on the influence of electric field by considering
a two penny-shaped cracks in horizontal direction containing in a transversely isotropic
piezoelectric infinite medium. The geometry of the crack, the mesh and the material
properties of piezoelectric medium of the two penny-shaped cracks are analogous to
the section 4.2.3.2. The major difference from the previous research are that (i) the
radius a the distance L of a two penny-shaped cracks are fixed asl and 2.25 (horizontal
direction) respectively, (ii) the applied uniaxial remote stress is fixed as 50 MPa, (iii)
the applied electric field Eo is now varied from [-4.5,-4,-3.5,...,4.5] MV/m which is
similar to the previous cracks, and (iv) the dielectric permittivity inside the crack gap
is fixed & = 55 where & = 8.85x1012 C/Vm is the permittivity of the air in the crack
gap. The effects illustrated in figures 4.34 (a) and (b) are gained from the two different
points (i.e., maximum and minimum values) along the crack front of a penny-shaped
crack. From the influence the increasing applied electric field from -4.5 to 4.5 MV/m,
it can be found that the magnitude of the normalized stress and electric Ki and Kiv of
two points along the crack front are the same as those of the pure penny shaped crack.
However, the behaviors of the both cracks (i.e., the two penny-shaped crack in
horizontal direction and the penny-shaped crack) are completely identical which is
similar to the previous section. This can be concluded in detail as follows.
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Figure 4.34 (a) shows that as the electric field increases from negative to
positive values [-4.5 to 4.5 MV/m], the stress intensity factors K obtained from both
points (i.e., maximum and minimum points) on four models are exactly identical to
penny-shaped crack. There are a few identical points exhibited in this investigation.
First, the three modes (i.e., impermeable, permeable and semi-permeable models) are
independent of the electric field. Second, the energetically consistent models depend
on increasing the electric field as discussed in previous sections. In addition, as the
electric field increases, at the large distance of the two penny-shaped cracks the electric
field does not affect the four models as penny-shaped crack should be.

Finally, the result in figure 4.34 (b) obtained from the maximum and minimum
points of the two penny-shaped cracks are investigated. It is found that as the electric
field increases, both the trends and the behaviors of the electric intensity factors Kv are
very identical to the penny-shaped crack. Again, the trends of two penny-shaped crack
in horizontal direction can be concluded similarly to those mentioned in the previous
discussion, e.g., the strong dependent on three models (i.e., impermeable, semi-
permeable and energetically consistent models) of the electric field, the obvious
independent of electric field on the permeable model. Besides, it should be noted that
when the distance of the two penny-shaped crack is large, the influence of the increasing
electric field in independent, and does not differ from the four boundary conditions as
the penny-shaped crack should be.
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Figure 4.34 (a) and (b) are dependent of normalized stress and electric intensity factors

[Ki, Kiv] on the electrical load for two penny-shaped cracks in infinite medium. Results
are reported on the maximum and minimum values

4.4 Influence of permittivity on four crack-face boundary conditions

In this section, the influence of permittivity inside the crack gap are investigate on stress
and electric intensity factors along the crack font are investigated on four crack-face
models (e.g., impermeable, permeable, semi-permeable and energetically consistent
models). The multiple cracks including planar and non-planar are adopted for this study
are utilized such as the non-planar cracks (e.g., spherical cap and cylindrical cracks),
the planar cracks (e.g., the tunnel crack and two pair of penny-shaped cracks in both
vertical and horizontal directions) which can discuss in the following sections.

4.4.1 Influence of permittivity on spherical cap and cylindrical crack
First, the non-planar cracks such as spherical cap and cylindrical cracks are utilized to

investigate the influence of permittivity inside the crack gap on stress and electric
intensity factors. The investigation will be carried out in subsection follow.

4.4.1.1 Influence of permittivity on spherical cap crack

In this special case, we investigate the influence of the permittivity & of a medium
inside the crack gap by considering the spherical cap cracks with radius R embedded
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a piezoelectric infinite medium which is made of PZT-4 similar to the previous case.
The key information different from the previous case are that (i) the permittivity of a
medium inside the crack gap which is determined by & = xe where « is termed the
relative permittivity and & = 8.85x10 2 C/(Vm) is the permittivity of the air that can
be varied [k = 2,2.5,3,3.5,....,10], (ii) the half subtended angle and the radius R of the
spherical cap crack are defined as &= 45 degree and R =1.2732395447352, and (iii)
the uniform remote tension op is determined to be 50 MPa whereas the electric
field Eo still remains at 2.5 MV/m, and (iv) only the finest meshes (144 elements)
of crack configuration are utilized in the investigation. The numerical results of stress
and electric intensity factors [Ki,Ki,Kiv] obtained from the average points along the
crack front on four crack-face models (i.e., impermeable, permeable, semi-permeable
and energetically consistent models) are investigated as shown in figures 4.35 (a),(b)
and (c) which can be discussed in detail as follows.

The results reported in figure 4.35 (a) are obtained from the research on four
crack-face models. It can be found that the stress intensity factor K of three models
(i.e., impermeable, permeable and semi-permeable models) is not identical and the
results of semi-permeable models depend on permittivity of the medium inside the
crack gap. Accordingly, the magnitude increases from impermeable to the permeable
modes when the values of permittivity increase. This is in contrast to the stress intensity
factors Ki on the penny-shaped crack, in which those three models are identical and
independent of the permittivity of the medium inside the crack gap. This follows the
works of previous investigators (i.e., Li and Lee, 2004; Chen et al, 2000 and Chen and
Lim, 2005) who specify that the three models (i.e., impermeable, permeable and semi-
permeable models) are identical and independent of medium inside the crack gap and
depend only on the mechanical loading. It can be found again from figure 4.32 (a) that
the K, of energetically consistent model strongly depends on the permittivity of medium
inside the crack. In addition, the upper bound is permeable model whereas the lower
bound is switched of energetically consistent and impermeable models. This finding is
in contrast with the solution for penny-shaped cracks, in which the energetically
consistent model is less than the other three models (i.e., impermeable, permeable and
semi-permeable models) in the entire range of & which is analogous to the prediction
of Li et al, 2011. This can be implied that the non-planar crack plays a significant role
on K for three crack model.

Next, the numerical results stress intensity factors Ki obtained from the average
points along the crack front are studied as reported in figure 4.35 (b). It is found that
when the permittivity of medium inside the crack gap increase, the magnitude of three
models (e.g., impermeable, permeable and semi-permeable models) are strongly
different. It can be observed further from figure that the semi-permeable model is varied
from the impermeable to permeable model which is in contrast with the semi-permeable
model of stress intensity factors Ki. Moreover, it is again seen that the upper bound is
completely impermeable model whereas the lower bound still remains the energetically
consistent model. Besides, results also reveal that the energetically consistent model
varies from lower bound and that one approaches to the permeable model when the
permittivity of the medium increase. This indicates that increasing the permittivity of
non-planar crack has essentially influence to the behavior of semi-permeable model.

Finally, the electric intensity factors Ky gained from four models (i.e.,
impermeable, permeable, semi-permeable and energetically consistent models) are
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investigated as reported in figure 4.35 (c). it is manifested that as the permittivity gof
medium inside the crack gap increase, the two models (i.e., semi-permeable and
energetically consistent models) are decreased and are strongly dependent on the
medium inside the crack gap. This behavior is similar to that of the penny-shaped crack
which is different to the stress intensity factors Ki. It is also found that the semi-
permeable model varies from impermeable to permeable model, and that the upper
bound is impermeable models whereas the lower bound still remains permeable model.
This indicates that the influence of permittivity inside the crack gap affects the
magnitude of two models (i.e., semi-permeable and energetically consistent models).
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4.4.1.2 Influence of permittivity on cylindrical crack

Next, we consider the influence of the permittivity & of a medium inside the crack gap
for a cylindrical cracks with radius R embed in a piezoelectric infinite medium which
is made of PZT-4 analogous to the previous section. The main distinction from the
previous section are that (i) the permittivity of a medium inside the crack gap which is
determined by & = xe& where & = x& is termed the relative permittivity and & =
8.85x10*2 C/(Vm) is the permittivity of the air which can be varied [«
=2,2.5,3,3.5,....,10], (ii) the half subtended angle and the radius R of the cylindrical
crack are determined as &= 45 degree and R =1.2732395447352, (iii) the uniform
remote tension ov is determined as 50 MPa whereas the electric field Eo is fixed
as 2.5 MV/m, and (iv) only the finest meshes (144 elements) similar to previous section
are employed in the study. In this special case, the numerical results of stress and
electric intensity factors [Ki,Kn,Kiv] and Kin (only middle point) obtained from the three
distinct points (i.e., top, middle and bottom points) of a quarter [1/4] along the crack
front on four crack-face models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models) are explored as shown in figures 4.36 (a) to (d), 4.37
(a) to (d), 4.38 and 4.39(a) to (d). This would be discussed in detail as follows.

The effects reported in figure 4.36 (a), (b), (c) and (d) are obtained on four crack-
face models. It can be found that as the permittivity & increases, the stress intensity
factor K at three points (i.e., top, middle and bottom points) of three models (i.e.,
impermeable, permeable and semi-permeable models) are clearly different. Such
differences depend on the three points. For example, at the top point, the discrepancy
of the three models is small but will be large at the lower points (e.g., middle and bottom
points). It can be observed further that the three points of semi-permeable models are
dependent on permittivity of the medium inside the crack gap and that the semi-
permeable model varies from impermeable to permeable models which is different from
the solutions of three models for penny-shaped crack found in the works of many
investigators (e.g., Liand Lee, 2004; Chen et al., 2000 and Chen and Lim, 2005). Figure
4.36 (b),(c) and (d) show that the predicted K, of energetically consistent models of the
three points (i.e., top, middle and bottom points) increase and strongly depend on the
permittivity of medium inside the crack gap, and that the energetically consistent model
approaches to permeable model analogous to penny-shaped crack. Similarly, the
bounds of the obtained stress intensity factors K at the three points are identical, i.e.,
the upper bounds at the top, the middle and the bottom points are impermeable whereas
the lower bound is energetically consistent and model. This behavior is in agreement
with the solution for penny-shaped cracks in which energetically consistent is less than
the three models (i.e., impermeable, permeable and semi-permeable models). This is
also similar to the work of Li et al., 2011 with the increase of the permittivity as
mentioned in the previous Section. This can be implied that the cylindrical crack is
distinct for three crack models at all points.
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Figure 4.36 (a), (b), (c) and (d) are dependent of normalized stress intensity factors [Ki]
on the permittivity for a cylindrical cracks in infinite medium. Results are reported on
all points, the top, middle and bottom points
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Here we investigate the influence of permittivity on stress intensity factors Ki at three
points along the crack front, on four crack-face models (i.e., impermeable, permeable,
semi-permeable and energetically consistent models) as shown in figure 4.37 (a), (b),
(c) and (d). It can be found that as the permittivity & increases, the magnitude of stress
intensity factor Ky at the bottom point is greater than at the middle and the top points
respectively. Moreover, the bottom point exhibits the discrepancy of the magnitude
which is greater than the remaining points for instance, the three models (i.e.,
impermeable, permeable and semi-permeable models) at any points are completely
different. More specifically, the semi-permeable at three points also decreases and
approaches to permeable model which depends on the three points. Clearly, the upper
bounds at the all points are impermeable model whereas the lower bounds of the top
point are permeable model, and energetically consistent model for the two remaining
points (i.e., middle and bottom points). This can be concluded that when the permittivity
increases, it has an influence on the lower bound of three different points which is not
identical.
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Figure 4.37 Dependent of normalized stress intensity factors [Ku] on the permittivity
for a cylindrical cracks in infinite medium. Results are reported on (a) all points, (b)
top, (¢) middle and (d) bottom points

Results shown in figure 4.38 gained from normalized stress intensity factors K
only at the middle point on four models along the crack front are investigated. It can be
found that with the increasing permittivity, the upper bound and lower bound of
predicted solutions of both semi-permeable and energetically consistent models are
impermeable and permeable respectively. Moreover, the three models (i.e.,
impermeable, permeable and semi-permeable models) are different and are dependent
of permittivity which is similar to the stress intensity factors [Ki,Ku] as discussed in
prior discussion. In addition, it can be observed further that the semi-permeable and
energetically consistent models share similar trends, and that those two models vary
from impermeable to permeable model when the permittivity increases. In conclusion,
it can be summarized that the permittivity has influence to magnitude of the semi-
permeable model and the energetically models.
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for a cylindrical cracks in infinite medium. Results are reported on the middle point

Finally, the influence of permittivity on the electric intensity factors Kiv on four models
(i.e., impermeable, permeable, semi-permeable and energetically consistent models) at
three different points (i.e., top, middle and bottom points) are illustrated in figure 4.39
(@), (b), (c) and (d). It can be found that as the permittivity increases, the magnitude of
top point is greater than that of other points (i.e., middle and energetically consistent).
The trends of Kiv at those three points, however, are identical. For example, the three
models (i.e., impermeable, permeable, semi-permeable models) are also not identical
and the two models including the semi-permeable and energetically consistent models
share rather similar trends and are strongly dependent of permittivity inside the crack
gap. Moreover, those two models again varies from impermeable to permeable models.
Besides, it is seen again from the figures that at three different points, the upper bound
and lower bound still remain impermeable and permeable respectively. In short, it can
conclude that the increasing permittivity affects only the magnitude of semi-permeable
and energetically consistent models respectively.
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Figure 4.39 Dependent of normalized electric intensity factors [Kiv] on the permittivity
for a cylindrical cracks in infinite medium. Results are reported on (a) all points, (b)
top, (¢) middle and (d) bottom points
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4.4.1.3 Comparison between spherical cap and cylinder cracks

Throughout the discussion, for the influence of permittivity above on the stress and
electric intensity factors [Ki,Kn,Kiv] obtained from both spherical cap crack and the top
point of cylindrical crack on four models (i.e., impermeable, permeable, semi-
permeable and energetically consistent models) there are a few important points which
can be compared as follows.

Results of the spherical cap crack can be predicated as follow. It is found that
the stress intensity factor K, of three models are not identical and the results of semi-
permeable models are dependent on permittivity of the medium inside the crack gap. In
contrast with the stress intensity factors Ki on the penny-shaped crack, those three
models are identical and are independent of the permittivity of the medium inside the
crack gap. Moreover, It is seen again that the K of energetically consistent model of
both cracks (i.e., spherical cap and penny-shaped crack) strongly depends on the
permittivity of medium inside the crack gap and the results also reveal that the upper
bound is permeable models whereas the lower bound is switched of energetically
consistent and impermeable models. This finding is in contrast with the solution for
penny-shaped cracks that one is less than the three models (e.g., impermeable,
permeable and semi-permeable models) in the entire range of &. For the cylindrical
crack, the stress intensity factors Ki obtained from the top, middle and bottom points
can be compared with other cracks that increasing the permittivity, the magnitude K, of
penny-shaped crack are greater than the magnitude of K; obtained from three points. It
is also found that the behaviors of spherical cap crack of four models are very similar
to K, of cylindrical crack at the bottom point; in contrast, the behavior of penny-shaped
crack on four models are very identical to Ki of cylindrical crack at the top point. In
addition to the similarity of those crack behaviors, it is also found that the dependent of
three crack models (i.e., impermeable, permeable and energetically consistent models)
of increasing the permittivity strongly depend on the points along the crack front for
example at the top and bottom points of cylindrical crack along the crack front, it is
found that the three models are nearly identical at the top point whereas the three models
of Ki at bottom point can clearly see the distinct of the three models ; moreover, the
energetically consistent model of cylindrical (at all points) and penny-shaped crack is
strongly still dependent on increasing the permittivity at the entire range

Next, the stress intensity factor Ki harvested from spherical cap crack is found
that increasing the permittivity, the three models (i.e., impermeable, semi-permeable
and energetically consistent models). It is found that when the permittivity of medium
inside the crack gap increase, the magnitude of three models (e.g., impermeable,
permeable and semi-permeable models) are strongly different whereas the penny-
shaped crack have zero intensity factor Kii. Moreover, it is again seen that the upper
bound is impermeable model whereas the lower bound still remains the energetically
consistent model. Besides, results also reveal that the energetically consistent and semi-
permeable models are strongly dependent of increasing the permittivity. Parallel to
spherical cap crack is cylindrical crack. The stress intensity factors K at three different
points (i.e., top, middle and bottom points) are harvested to compare the spherical cap
crack. It is found that the magnitude of three points of cylindrical crack are completely
different; however, the behavior at the top point of cylindrical crack are very identical
to spherical cap crack. Again, a part from the similarity of both cracks, it is found that
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the lower bound of three point of cylindrical crack strongly depend on the points along
the crack front for example at top point, lower bound is permeable whereas the lower
bound is energetically consistent model at the middle and bottom points

For the stress intensity factors Kii gained only at the middle point of cylindrical
crack can be conclude that, the three models (i.e., impermeable, permeable, semi-
permeable and energetically consistent models) are completely different when the
permittivity increase; more specifically, the semi-permeable and energetically
consistent models are identical and are dependent of increasing permittivity

Finally, the electric intensity factors Kiv on four models (i.e., impermeable,
permeable, semi-permeable and energetically consistent models) of spherical cap crack
can be concluded that the magnitude of penny-shaped crack on four models are greater
than magnitude of spherical cap crack when the permittivity increase. It is found that
the two models (e.g., semi-permeable and energetically consistent models) are
decreased and are strongly dependent on the medium inside the crack gap similar
behavior to the penny-shaped crack. It is also seen that the semi-permeable and
energetically consistent models varies from impermeable to permeable models and
results show that the upper bound is impermeable models whereas the lower bound still
remains permeable model, for both spherical and penny-shaped crack. Identically, the
results from cylindrical crack are obtained on four crack models. It is found that the
magnitude of three different points are completely different. Moreover, result also
reveal that the Kiv of spherical cap crack are very identical to the bottom point of
cylindrical; in contrast, Kiv of penny-shaped crack are very identical to the top point of
cylindrical crack.

4.4.2 Influence of permittivity of tunnel crack

In this case, the influence of the permittivity & of a medium inside the crack gap is
considered for a tunnel cracks with end-radius a and the half-length L containing in a
piezoelectric infinite medium which is made of PZT-4 similar to the previous section.
The main parameter difference from the previous section are that (i) the permittivity
of a medium inside the crack gap which is determined by & = x& where « is termed
the relative permittivity and & = 8.85x10 "2 C/(Vm) is the permittivity of the air which
can be varied [« = 2,2.5,3,3.5,....,10], (ii) the end-radius and the half-length of the
crack are defined as1and 5, (iii) the uniform remote tension op is determined as
50 MPawhereas the electric field Eo isfixed as 2.5 MV/m, and (iv) only the finest
meshes (180 elements) similar to the non-planar section are utilized in the investigation.
The numerical results of stress and electric intensity factors [Ki,Kiv] offered from the
two different points (i.e., end-radius and half-length points) along the crack front on
four crack-face models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models) are investigated as displayed in figures 4.40 (a) and
(b). This would be discussed in detail as follows.

From results illustrated in figure 4.40 (a) on stress intensity factor K of four
models, (i.e., impermeable, permeable, semi-permeable and energetically consistent
models), it is found that that as the permittivity increases & = x& from [2 to 10], the
magnitude of both points (i.e., end-radius and half-length points) become greater than
that of penny-shaped crack. The trend and behaviors of both cracks, however, is nearly
identical. For example, the three models (i.e., impermeable, permeable and semi-
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permeable models) of both points of tunnel crack are again the same as penny-shaped
crack and those three models serve as upper bound analogous to the work of many
researchers (e.g., Li and Lee, 2004; Chen et al, 2000 and Chen and Lim, 2005). In
addition, the energetically consistent models of both point are still dependent of the
increase of the permittivity inside the crack gap, and serve as the lower bound and
approaches to the upper bound similar to the solutions of Li et al, 2011. This can be
implied that the increasing permittivity has influence only to the magnitude of the stress
intensity factor K of both points which is not different to penny-shaped crack

Finally, the influence of electric intensity factors Kiv of two different points on
four models are investigated as illustrated in figures 4.40 (b). As the permittivity varies
from [2 to 10], the magnitude of electric intensity factors Kiv of both points between
the end-radius and the half-length points are again greater than that of the penny-shaped
crack. The experiment shows that the semi-permeable and energetically consistent
models are strongly dependent of permittivity and are identical to the two models of
penny-shaped crack. In addition, the upper and lower bound serves as the impermeable
and permeable models. Such result is again similar to the planar crack. This can be
concluded that as the permittivity increases with the half-length as 5, only the
magnitude is greater than penny-shaped crack. Nevertheless, the trends on electric
intensity factor of both points (i.e., end-radius and half-length points) are identical.
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Figure 4.40 (a) and (b) are dependent of normalized electric intensity factors [Ki, Kiv]
on the permittivity for a tunnel crack in infinite medium. Results are reported on the
end-radius and half-length points

4.4.3 Influence of permittivity of two penny-shaped crack in vertical direction

For this part, we investigate the influence of the permittivity & of a medium inside the
crack gap by applying the two-penny-shaped cracks in vertical direction with radius a
and the distance of the two cracks L containing in a piezoelectric infinite medium which
is made of PZT-4 similar to the previous sections. The main differences from the
previous section are that (i) the permittivity of a medium inside the crack gap which is
defined by & = x& where x is termed the relative permittivity and & = 8.85x10 -
12C/(Vm) is the permittivity of the air that can be varied [x=2,2.5,3,3.5,....,10], (ii) the
radius and the vertical distance of the crack are defined as 1 and 5 respectively, (iii)
the uniform remote tension oy is determined as 50 MPa whereas the electric field
Eo isfixed as 2.5 MV/m, and (iv) only the finest meshes (144 elements per a penny-
shaped crack) similar to the penny-shaped crack are employed in this study.

The numerical results of stress and electric intensity factors [Ki, K, Kiv] obtained from
the average values in one of two penny-shaped cracks along the crack front under four
crack-face models (i.e., impermeable, permeable, semi-permeable and energetically
consistent models) are illustrated in figures 4.41 (a) and (b) which can be discussed in
detail as follows.

Figure 4.41 (a) shows the numerical results of stress intensity factors Ki on four
models (i.e., impermeable, permeable, semi-permeable and energetically consistent



138

models). The figure shows that, under the same condition, as the permittivity inside
the crack gap increases [2 to 10], the magnitude of normalized stress intensity factors
Ki of the two penny-shaped cracks on four models are expressly less than the penny-
shaped crack. Nevertheless, the trends of both cracks are a little bit different. More
specifically, the identical and independent of permittivity for penny-shaped crack on
three models (i.e., impermeable, permeable, and semi-permeable models) which is
analogous to the work of many researchers (e.g., Li and Lee, 2004; Chen et al, 2000
and Chen and Lim, 2005) as discussed in previous cases, but those three models of two
penny-shaped cracks are weak dependent of permittivity as indicated in figure
4.41(a.1). Moreover, the dependent of the energetically consistent models of both two
and one penny-shaped cracks are again very identical and that one tend to increase and
approach to the three models (i.e., impermeable, permeable, semi-permeable models).
This can be concluded that as the permittivity increases, it affects not only the
magnitude of stress intensity factor Ki but also the three crack-face models (i.e.,
impermeable, permeable, semi-permeable models)

Another results vanished from penny-shaped crack is the stress intensity factor
Kn as shown in figure4.41 (b). It is found that when the permittivity increase, the four
models (i.e., impermeable, permeable, semi-permeable and energetically consistent
models) are different and negative values. Moreover, the semi-permeable model are
dependent of permittivity inside the crack gap and that one tend to decrease the
magnitude at the entire range. Results also reveal that the energetically consistent model
is dependent of permittivity and tend to decrease at the entire range. It should be
remarked that the upper bound of this case is energetically consistent model whereas
the lower bound is permeable model. It can be summarized that increasing the
permittivity, it influences to the magnitude Ki of four models; more specifically, the
semi-permeable and energetically consistent models

Eventually, the electric intensity factors Kiv obtained on four crack models are
investigated as illustrated in figures 4.41 (c). It can be found that as the permittivity
increases, the upper and lower bounds of predicted solutions including semi-permeable
and energetically consistent models are impermeable and permeable models
respectively. Moreover, the magnitude Kiv predicted from the two penny-shaped cracks
is clearly less than that of the penny-shaped crack. The two models (i.e., semi-
permeable and energetically consistent models) are the same behaviors and are
dependent of permittivity by varying from the impermeable to permeable models. This
implies again that, with a small distance L, the influence of the increasing permittivity
only affects the magnitude of stress intensity factors which is not different from other
planar crack
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Figure 4.41 (a, a.1) (b) and (c) dependent of normalized stress and electric intensity
factors [Ki, Ku, Kiv] on the permittivity for a two penny-shaped cracks in vertical
direction in infinite medium. Results are reported on one penny-shaped crack
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4.4.4 Influence of permittivity of two penny-shaped crack in horizontal direction

Finally, the influence of the permittivity & of a medium inside the crack gap is
investigated for the two-penny-shaped cracks in horizontal direction with radius a and
the distance of the two cracks L containing in a piezoelectric infinite medium which is
made of PZT-4 analogous to the previous section. The main differences from the
previous section are that (i) the permittivity of a medium inside the crack gap is assigned
by & = xe where « is termed the relative permittivity and & = 8.85x10712 C/(Vm) is
the permittivity of the air that can be varied [« = 2,2.5,3,3.5,....,10], (ii) the radius and
the horizontal distance of the two cracks are imposed as 1 and 2.25 respectively, (iii)
the uniform remote tension oy is fixed as 50 MPa whereas the electric field Eo is
defined as 2.5 MV/m, and (iv) only the finest meshes (144 elements per a penny-shaped
crack) similar to the penny-shaped crack are utilized in this exploration. The numerical
results of stress and electric intensity factors [Ki, Kiv] obtained from the two different
points (i.e., maximum and minimum values) for one of the two penny-shaped cracks,
under four crack-face models (i.e., impermeable, permeable, semi-permeable and
energetically consistent models) are obtained as shown in figures 4.42 (a) and (b). This
would be discussed in detail as follows.

Results of stress intensity factors Ki of two different points (i.e., maximum and
minimum points) on four crack-face models (i.e., impermeable, permeable, semi-
permeable and energetically consistent models) are illustrated in figure 4.42 (a). Results
show that as the permittivity increases, the magnitude of K; at the maximum point for
two penny-shaped cracks in horizontal direction is expressly greater than both the
minimum and the penny-shaped crack, respectively. In this case, the three models (i.e.,
impermeable, permeable and energetically consistent models) are again completely
identical and are independent of permittivity, for the two different typed cracks.
Furthermore, the energetically consistent models of the two points are dependent on the
permittivity analogous to that of penny-shaped crack. It is seen that the upper bounds
of the two points serve as those three models whereas the lower bounds are the
energetically consistent models. This can be concluded that the increasing permittivity
has effect only the magnitude Ki on four model and the trends of stress intensity factor
Ki on four models is selfsame to Ki other planar cracks

Finally, the above discussion obviously shows that the three models (i.e.,
impermeable, permeable, semi-permeable models) of the stress intensity factors K, are
identical while the electric intensity factors Kiv on four crack models at the two points
(i.e., maximum and minimum points) are not identical, which is analogous to penny-
shaped crack and other planar cracks. Besides, from conclusion of the previous sections,
it is found that the two models (i.e., semi-permeable and energetically consistent
models) are strongly dependent of permittivity and those two models vary from
impermeable to permeable models, respectively. Similarly, the impermeable model is
upper bound whereas the lower bound is permeable. This implies that as the permittivity
increases, the trends of both two penny-shaped cracks in horizontal direction with the
distance 2.25 and of one penny-shaped crack are identical.
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Figure 4.42 (a) and (b) are dependent of normalized electric intensity factors [Ki, Kiv]
on the permittivity for two penny-shaped cracks in horizontal direction in infinite
medium. Results are reported on the maximum and minimum values along the crack

front
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CHAPTER 5
CONCLUSIONS

This thesis mainly discussed the stress and electric intensity factors of cracks in
piezoelectric media for various crack configurations under various crack-face and
loading conditions. The boundary value problem is formulated based on a classical
theory of linear piezoelectricity. A method of boundary integral equations is utilized to
obtain the final governing integral equation. An existing numerical technique based on
a weakly singular symmetric Galerkin boundary element method (SGBEM) proposed
by Rungamornrat and Mear (2008) and Phongtinnaboot et al. (2011) is utilized to
determine the unknown crack-face data such as the relative crack-face generalized
displacement. The stress and electric intensity factors along the crack front are post-
processed from the relative crack-face generalized displacement using the existing
formula proposed by Rungamornrat and Mear (2008).

The verification of this method is insisted with the existing benchmark solution.
The convergence of numerical results are implemented in order to verify the finest
meshes with different levels of mesh refinement by utilizing the impermeable scheme.
The finest meshes of each problem are then chosen in the influence study of various
parameters. The first convergence solution are for the non-planar cracks (i.e., a
spherical cap and cylindrical cracks). The second ones are for the planar cracks (i.e.,
the tunnel crack, two pair of two penny-shaped cracks in both vertical and horizontal
directions) containing in a piezoelectric infinite domain. The numerical results from
convergence solutions manifest that the predicted stress and electric intensity factors
are well accepted by using the impermeable scheme. Finally, those finest meshes of
each crack problems are imposed and utilized in the influence study of various
parameters in the next step.

In the influence study of cracks with various parameters under four boundary
conditions is investigated to obtain the numerical results on stress and electric intensity
factors along the crack front by using the weakly singular SGBEM. The main study are
the influence of geometries (i.e., the crack subtended angle, the curvature of non-planar
cracks, the aspect ratio of tunnel crack and the interaction of two penny-shaped cracks
in both vertical and horizontal directions), the influence of both mechanical and
electrical loads of all planar and non-planar cracks and the influence of dielectric
permittivity inside the crack gap for all planar and non-planar cracks. Eventually, the
numerical results of various parameters in 3D cracks under four crack-face models can
be concluded in the following sections.

5.1 Influence of geometry on intensity factors

Influence of half-subtended angle for non-planar cracks (i.e., spherical cap and cylinder
cracks) under four crack-face models (i.e., impermeable, permeable, semi-permeable
and energetically consistent models) can be concluded in two main points. first, they
introduces the peak magnitude of Ki, Kir and Kiv on four crack-face models in the entire
range of increasing the crack subtended angle whereas Kii on four models of cylinder
crack produce the minimum values in the negative stress intensity factors. Second, the
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crack-subtended angle at the entire range also affect to the bounds of all non-planar
cracks under four crack-face models which can be briefly summarized as follow: in the
entire range, the crack-subtended angle obviously does not affect to the upper bounds
of all stress and electric intensity factors [Ki, Ki, K and Kiv] for all non-planar cracks
such as the upper bound of K are permeable models, and the upper bounds of Ki, K
and Kiv are impermeable models. Similarly, at the small crack subtended angle also has
no influence to lower bounds of all stress and electric intensity factors [Ki, Ku, K and
K] for all non-planar cracks. Nevertheless, at the large crack subtended angle, it
influences to the lower bound of Ki and Kiv such as the lower bound of Ki for all non-
planar crack are switched of energetically consistent and impermeable models and the
lower bound of Ky for all non-planar cracks are switched of permeable and
energetically consistent models. However, it should be noted that the lower bounds of
non-symmetric curve crack (e.g., cylindrical crack) have different behavior of upper
and lower bounds depending on the position along the crack front which is different
from the symmetric curve crack (e.g., spherical cap crack).

Influence of curvature for non-planar cracks (i.e., spherical cap and cylindrical
cracks) on four crack-face models can be summarized in three main points. First, it
inhibits the crack opening indicated by the negative magnitude of K, on four crack face
models. Second, in the large curvature, Ku of all non-planar cracks produce the
maximum values on four crack face models; Moreover, Kii produces the negative value
on four crack face models. Finally, the large curvature influences to the bounds on four
crack-face models which can shortly concluded as follow: in the entire range, the
curvature explicitly does not influence to or do not change the upper bounds of all stress
and electric intensity factors [Ki, Ki, Kin and Kiv] for all non-planar cracks such as the
upper bound of K, are permeable models whereas upper bound of penny-shaped crack
serve as three models, and the upper bounds of K, Kin and Kiv are impermeable models
(the upper bound of Kyv is identical to penny-shaped crack). Similarly, at the range of
the near-flat curvature, it also has no influence to lower bounds of all stress and electric
intensity factors [Ki, Kn, Kin and Kiv] for all non-planar cracks (lower bounds of Ki and
Kiv are now identical to penny-shaped crack). Nevertheless, at the large curvature, it
influences to the lower bound of K; and Kiv such as the lower bound of K for all non-
planar crack are switched of impermeable and energetically consistent models whereas
the lower bound of penny-shaped crack is energetically consistent model. The lower
bounds of Ky for all non-planar cracks at the large curvature are switched of
energetically consistent and permeable models whereas lower bound of penny-shaped
crack is permeable model). However, it should be noted that the behavior of non-
symmetric curve crack (e.g., cylindrical crack) have different behavior depending on
the position along the crack front which is different from the symmetric curve crack
(e.q., spherical cap crack).

The influence of aspect ratio on intensity factors Ki and Kiv obtained from tunnel
crack can be concluded that when the aspect ratio is small, upper bounds of Ki and Kiv
are the three models (i.e., impermeable, permeable and semi-permeable models) and
impermeable models (similar to penny-shaped crack), respectively, whereas the lower
bounds of Ki and Kiv are energetically consistent and permeable models (similar to
penny-shaped crack), respectively

The influence of vertical interaction on intensity factor Ki, Kirand Kiv obtained
from two penny-shaped cracks in vertical direction can be concluded that when the
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distance of the two cracks is relative small, the upper bounds of Ki, Ki and Kiv are
respectively the three models (i.e., impermeable, permeable and semi-permeable
models), energetically consistent and impermeable models, respectively (K of penny-
shaped crack vanishes), whereas the lower bounds of Ki, Kiv and Ki are energetically
consistent, permeable and the three models (i.e., permeable, semi-permeable and
energetically consistent models), respectively. It is obvious that the magnitude of Ki
are negative value.

The influence of horizontal interaction on intensity factor K; and Kiv obtained
from two penny in horizontal direction, it can be summarized that when the horizontal
interaction is small, the upper bounds of Ki and Kiv of four crack-face models are the
three models (i.e., impermeable, permeable and semi-permeable models) and
impermeable models, respectively, whereas the lower bounds of K, and K are
energetically consistent and permeable models, respectively, which is identical to upper
bound and lower bound of K and Kiv for penny-shaped crack

5.2 Influence of mechanical loading on intensity factors

For the planar cracks (i.e., tunnel crack, penny shaped cracks, two penny-shaped cracks
in vertical and horizontal directions), the influence of mechanical loading on the stress
intensity factors Ki, Kiv and Ki (K only for the case of two penny-shaped cracks in
vertical direction) of four models can be summarized that at the entire range of
increasing the mechanical loading, the upper bounds of Ki, Kiv and K; on four models
are energetically consistent, impermeable models and the three models (i.e.,
impermeable, permeable and semi-permeable models), respectively, whereas the lower
bounds of Ki, Kirand Kiv are identically energetically consistent, permeable models and
the switching models between energetically consistent and permeable models,
respectively.

For non-planar cracks (i.e., spherical and cylinder cracks), influence of
mechanical load can be summarized that at the entire range of increasing mechanical
load, the upper bounds of K; and Kiv for all non-planar cracks under four models are
permeable and energetically consistent models, respectively, whereas the upper bound
of K for all non-planar cracks and the upper bound of K (only at the middle point of
cylinder crack) are permeable models. The lower bound of K for all non-planar cracks,
the lower bound of Ky for spherical cap crack and the lower bound of Ky at the bottom
points of cylindrical crack are energetically consistent models. Moreover, the lower
bounds of Kiv for all non-planar cracks and the lower bound K at the top and middle
points of cylinder crack are switched of energetically consistent and permeable models.
However, the lower bound of Kii only at the middle point is permeable model at the
entire range.

5.3 Influence of electrical loading (electric field) on intensity factors

For the planar cracks (i.e., penny-shaped crack, tunnel crack, two penny-shaped crack
in vertical and horizontal directions), the influence of electrical loading on the stress
intensity factors Ki, Kiv and Kii (only for the case of two penny-shaped cracks in vertical
direction) on four models can be summarized that at the positive range of electric field,
the upper bounds of Ki, Ki and Ki on four crack models are impermeable and
energetically consistent and three models (i.e., impermeable, permeable and semi-
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permeable models), respectively, whereas the lower bound of Ki, Kin and Ky are
energetically consistent, permeable and the switching models (the switching models
between permeable and energetically consistent models), respectively.

For the non-planar cracks (i.e., spherical cap and cylinder cracks), the stress
intensity factors Ki, Ki, Kiv and Kin (only at the middle point of cylinder crack) of four
models can be concluded that at the positive range of electric field, the upper bounds
(K1) of spherical cap crack, the upper bound (Ki) of middle and bottom points of cylinder
crack are permeable models. The upper bounds of Kii and Ky for all non-planar cracks,
the upper bound of K; at the top point and upper bound of Ky at the middle of cylinder
crack are impermeable models. However, the lower bounds (Ki) of spherical cap crack
is switched of impermeable and energetically consistent models. The lower bounds of
Ki at all points of cylinder crack are energetically consistent models. Similarly, the
lower bounds (K and Kiv) of for spherical cap crack, lower bound of Ky at all points
and lower bound of Kiv at the middle and bottom points of cylinder crack are switched
of permeable and energetically consistent models. Nevertheless, the lower bounds of
K at the middle point and the lower bound of Ky at the top point of cylinder crack
serve as permeable models.

5.4 Influence of permittivity inside the crack gap on intensity factors

For the planar cracks (i.e., penny-shaped crack, tunnel crack, two penny-shaped crack
in vertical and horizontal directions), the influence of permittivity inside the crack gap
on stress intensity factors Ki, Kiv and K (only for the case of two penny-shaped cracks
in vertical direction) can be concluded that the upper bounds of Ki, Kiv and Ki (Ki of
all planar cracks; except, two penny-shaped crack in vertical direction) on four models
are energetically consistent, impermeable and three models (i.e., impermeable,
permeable and semi-permeable models), respectively. The upper bound of K for two
penny-shaped crack in vertical direction is permeable models. However, the lower
bounds of Ki and Kiv for all planar cracks are energetically consistent and permeable
models, respectively, which is analogous to the lower bounds of Ki only for two penny-
shaped cracks in vertical direction also permeable model.

Finally, the influence of permittivity inside the crack gap of non-planar cracks
(i.e., spherical cap and cylinder cracks) on electric intensity factors Ki, Ki, Kiv and Kin
(only at the middle point of cylinder crack) under four models can be concluded that
the upper bounds (Ki) of spherical cap crack, the upper bound of K; at the middle and
bottom points of cylinder crack are permeable models. The upper bounds (Kiand Kiv)
of spherical cap crack, the upper bound of Kiand Kiv at all points of cylinder crack, the
upper bound of K; at the top point and the upper bound of Kii only at the middle point
of cylinder crack are impermeable models. Vice versa, the lower bounds of K; for
spherical cap crack is switched of energetically consistent and impermeable models.
Identically, the lower bound of K at all points of cylindrical crack, the lower bound of
Kun for spherical cap crack and the lower bound of K at the middle and bottom points
of cylindrical crack are energetically consistent models. Finally, the lower bound of Ky
at the top point, the lower bound of K at the middle point of cylinder crack and the
lower bound of K for all non-planar crack are permeable models.
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