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CHAPTER 1 

INTRODUCTION 

In this chapter we first summarize and describe the motivations of the proposed research 

and the background review to demonstrate the historical development and statements 

of relevant works in this area. Then we address the objectives, the scope of work, the 

methodology and the significance of the proposed research. 

1.1 General 

During World War I piezoelectric material was employed as an essential part in various 

equipment and tools such as sonars, ultrasonic submarine detectors, transducers, 

hydrophones to return echo and etc. Such applications largely received an attention 

from many electromechanical material investigators to conduct further study. 

Nevertheless, these various applications were not extensively revealed to the public 

during that period. Presently, however, piezoelectric material has been significantly 

widespread and played an important role in economic development. It has been one of 

the major components for commercial, engineering and industrial works, all of which 

involve automotive, electronic, consumer, medical and military product. Examples 

include an actuator (e.g. ultrasonic equipment, ultrasonic cleaner, ultra precision 

positioner, ink jet print head, controlling helicopter rotor blades, disc drives, cigarette 

lighters and jewelry cleaners), a sensor (e.g. contact microphone, sonar, nondestructive 

testing device, airbag sensor, air flow sensor, keyless door entry, seat belt buzzers, 

knock sensors, depth finders, fish finders and musical instruments), a signal transmitter 

(e.g. Remote car opener, cellular phone, audible alarms, fuel atomizer and humidifiers), 

an audio frequency (e.g. microphones, earphones, beepers and buzzers in wireless 

application) and a medical instrument (e.g. hearing aid, the scanning probe 

microscopies, disposable patient monitors, foetal heart monitors, ultrasonic imaging, 

MRI machines and liver arm application). Piezoelectric material has been regarded as 

a smart material and commonly accepted among electromechanical material scientists 

that it exhibits coupling effect avail between electric and mechanic field when subject 

to some kind of mechanic stress. It also generates electric potential called the direct 

piezoelectric effect (brother Pierre Curie and Curie (1880))  In other word, they will 

produce electric field when subject to mechanic loading and vice versa. It also exhibits 

the converse piezoelectric effect Lippmann (1881). In addition, it leads to deformation 

when subject to electric field. The word “piezoelectric” means electricity resulting from 

pressure. It is derived from the Greek word “Piezo” or “Piezein” which means to 

squeeze or press and “electric” or “electron” which stands for amber or an ancient of 

electric charge. Nevertheless, there are properties of piezoelectric material of which the 

major drawbacks are breakability, responsive to collapse, low fracture viscosity, high 

inclination to expand crack throughout the applications and usage abatement. 

Piezoelectric material is a brittle body and utilized frequently in the part of 

applications, aiming especially to reduce the size of various equipment in electronic 

applications which directly withstand temperature change during the manufacture 

process. These issues lead to the crack in the body of piezoelectric material. If a fracture 

appears in such material, it will pander the stress concentration. Moreover, it also 
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induces stagnancy and breakage within material along the crack region, and eventually 

this will generate the peak failure. Such problem currently gives rise to further research 

essential to gain a deeper understanding about the crack behaviors in piezoelectric 

material. This is particularly because of the complicated affinity of the electro-

mechanical aspect with enigmatic anisotropic inside piezoelectric materials and of a 

variety of electric and mechanical loading conditions.  Such problems become a rather 

complicate issue and mainly unreachable as well. In addition, if dislocation and various 

flaw problem are additionally diagnosed, the predicament will be more complicate. 

Since this material is significantly exploited in a large number of various aspects, it is 

therefore essential to investigate the stress and electric intensity factors of the embed 

crack in piezoelectric materials. 

To imitate the behavior of the crack, various expedient assumptions must be 

incorporated. For the last three decades, facile mathematical simulations which have 

been basic upon linear constitutive law, has received a great attention from scientists 

who and increasingly interested and utilized by many investigators to several crack 

behaviors in many cases involving crack problems in piezoelectric material. 

Furthermore, such simulations are also the linear piezoelectric assumption which has 

carried out as well-set and adequate to predict the response throughout practical 

application. In linear piezoelectric context, to analyze a body embed no crack has been 

well-created in comparison with a body containing crack in which is mainly 

sophistication of electric and elastic field which give rise to complexity in the vicinity 

of the crack, Particularly the singularity along the crack front. In a previous 

investigation mostly have only studied and investigated simple crack geometries 

constituting planar, such as the penny-shaped crack, elliptical crack and straight crack 

and inclined straight crack under loading conditions (Park & Sun, 1993; Xu & 

Rajapakse, 2001; Wang & Jiang, 2002; Chen & Lim, 2005; Chiang & Weng, 2007)). 

This is not sufficient to gain insight into the behaviors of the cracks clearly. Moreover, 

many modeling of crack behaviors was restricted with specious parametric prediction 

in the geometries of the cracks, in particular curvilinear of the cracks in non-planar 

cracks (i.e., spherical cap and cylindrical cracks) and consideration of a various crack 

subtended angle of the surface in non-planar cracks such as spherical cap and 

cylindrical cracks, the aspect ratio of tunnel crack, and the interaction of two penny-

shaped cracks in vertical and horizontal directions which have currently not been 

widespread considered in infinite domain. Besides, there is less diagnosis of changed 

permittivity for planar and non-planar cracks (e.g., spherical cap crack, cylindrical 

crack, tunnel crack and a pair of penny-shaped cracks in vertical and horizontal 

directions) on crack-face assumptions  (i.e., impermeable, permeable, semi-permeable 

and energetically consistent models) which implied that the remaining electric quantity 

or electric induction current inside the crack gap including the crack surface that 

affected to non-zero stress and electric intensity factors, along the crack front in those 

geometries and less diagnosis of various loading conditions (i.e., remote tensile 

mechanical and electrical loads) associated with various electric boundary conditions. 

The main objective is to investigate the behavior of the piezoelectric material 

containing various cracks in infinite medium with affected relevant parameters to non-

zero stress and electric intensity factors with various electric boundary conditions such 

as permeable, impermeable, Simi-permeable and energetically consistent boundary 

conditions. In the present, influence of geometry, crack-face condition and loading on 
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intensity factors of cracks in 3D linear piezoelectric media is becoming more interesting 

and essential to conduct further research. 

The approach to investigate the fracture behavior, especially the stress and an 

electric intensity factor in piezoelectric materials is the simulation in arithmetic. Such 

spacious approach utilized to simulate the crack is upon basic of the Boundary Element 

Methods (BEMs) which was admitted as a numerical technique that is efficiently 

capable to compute the crack for fracture analysis in linear homogenous media. Later 

this technique is developed as weakly singular, SGBEM (Rungamornrat & Mear, 

2008).  

1.2 Literature and review 

In this part, a brief background and the present work related to the current investigation 

is discussed. The major purpose is to exhibit the study of crack behaviors in 

piezoelectric media to illustrate the gap of perception and the derivation of the present 

work. For this part of literature exploration, the parametric influential study would be 

discussed. This includes geometries, permittivity, loading conditions and electric 

boundary conditions aspect and etc. 

1.2.1 Influence of parameters on intensity factors 

Many investigators attempt to study the crack behaviors in a large number of different 

methods and various conditions to obtain required unknown quantities in the body 

containing the various cracks in piezoelectric medium.  (Kogan et al., 1996)  In the 

three-dimensional problem, they have applied spheroidal piezoelectric inclusion or 

penny-shaped crack subject to axisymmetric, in-plane and out of plane shear  (remote 

loading) in transversely isotropic piezoelectric (PZT-4, PZT-5H) infinite medium under 

electrical permeable boundary condition via the harmonic function (analytical solution) 

to investigate the stress and induction intensity factor. (Gao & Fan, 1999) They have 

examined and found that the uniform electric loads have no influence on the field 

singularities and obtain the field intensity factor in two-dimensional problem under 

transversely isotropic piezoelectric infinite medium with electric impermeable BC. 

They have also employed the elliptical hole subjected to uniform remote loads using 

the potential approach (analytical solution). (Chen & Shioya, 2000) By employing the 

potential theory (analytical solution) beneath the electric impermeable BC in the three-

dimensional problem, the penny-shaped crack subjected to axisymmetric arbitrary 

shear loading “ uniform shear and point loading” at the crack surface is employed in 

transversely isotropic piezoelectric (PZT-4, PZT-5, PZT-7A, PZT-6B, BaTiO3) finite 

medium to obtain the complex stress intensity factor. In addition, mode II and mode III 

are also derived in an exact manner, for the case of the uniform loading in comparison 

with Kogan et al. (1996). (Davı̀ & Milazzo, 2001) They have obtained the generalized 

stress intensity factors and the generalized relative crack displacement and compared 

with exact solution by using the horizontal crack “inclined crack with angle in a 

rectangular solid” applied to normal far-field stress and normal electric displacement 

(remote loading) via the boundary element method (numerical solution) in two-

dimensional transversely isotropic piezoelectric (PZT-4) infinite medium with electric 

impermeable BC. Again, the investigation of Jiang and Sun (2001) under electric 

impermeable BC in the three-dimensional and transversely isotropic piezoelectric 
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(PZT-4) infinite medium is   utilized in association with a half-penny-shaped crack. 

This is for half space problem under arbitrarily axisymmetric loading conditions. In 

addition, semicircular crack (applied at crack surface) is carried out by using the Henkel 

integral transform and dual integral equation. (Yang & Lee, 2002) they have applied 

the potential theory, Henkel transform and Fourier series to gain the Fredholm integral 

equation under the electric impermeable BC in three-dimensional transversely isotropic 

piezoelectric (PZT-6B) finite domain associated with a penny shaped crack under non-

axisymmetric in-plane and a pair of concentrated normal mechanical and electrical 

loads (at the crack surface). (Gruebner et al., 2003) In three-dimensional, transversely 

isotropic piezoelectric (PZT-4) finite domain, the mixed electric BC (limited permeable 

or Semi-permeable, permeable, impermeable) is discussed. The finite element method 

is employed in association with the Griffith crack in the piezoelectric block subject to 

external electromechanical load at the surface of the block.  (Landis, 2004) In three-

dimension transversely isotropic piezoelectric (PZT-5H) infinite medium under the 

standard infinitesimal deformation theory with the electrical consistent BC, the Griffith 

crack with electromechanical loading (at the crack faces) is employed to demonstrate 

that the energy release rate computed near the crack tip is equivalent to the total energy 

release rate in which this result is compared with the electric impermeable BC. (Denda 

& Mansukh, 2005) They have applied the multiple straight crack (e.g.,  two inclined 

cracks in an infinite body under uniaxial tension,  two aligned parallel cracks in an 

infinite body under uniaxial tension, and two collinear cracks in an infinite body under 

uniaxial tension (all at remote loading)), on the mixed mode BCs (electric impermeable 

and permeable BC) in two-dimensional orthogonal piezoelectric infinite medium by 

employing  much simpler linear solution procedure by Boundary element method 

(BEM) in association with the Green’s function approach. Also (Groh & Kuna, 2005) 

under the problem of two-dimensional transversely isotropic piezoelectric (PZT-4, 

PZT-5H, BaTiO3), infinite medium is investigated in association with the electric 

impermeable BC by using the kinked crack subject to electrical loading. In addition, 

Crack perpendicular is employed to an interface under electromechanical loading. 

Moreover, Griffith crack is applied under shear load and uniaxial load (all at remote 

loading) via the universal boundary element method, sub-domain technique and 

fundamental solution using Fourier series. For Ou and Chen (2007), based on Stroh’s 

theorem (Stroh, 1958) and the compact formulations under the electric Simi-permeable 

in two-dimensional transversely isotropic piezoelectric (PZT-4, PZT-5H, PZT-6B) 

infinite medium, they have applied the conducting crack “a center crack” under 

mechanical and electrical loading (remote loading). In the same year, (Qin et al., 2007) 

the electric impermeable is diagnosed in three-dimensional transversely isotropic 

piezoelectric (PZT-4, PZT-6B) infinite medium by employing a planar crack 

(Rectangular crack) under mechanical and electrical loads, Elliptical crack  under 

mechanical and electrical loads (all at remote) via the Finite-part integral and boundary 

element method associated with body force method. For (Nam & Watanabe, 2008) in 

two-dimensional transversely isotropic piezoelectric (PZT-4) infinite medium under the 

mixed BC (permeable and impermeable BC) via the finite element method, they have 

utilized a notch-like crack filled with a dielectric inclusion under electromechanical 

loading (remote loading). Moreover, (Solis et al., 2009) they have investigated the 

stress and electric intensity factor by utilizing three types of crack. The first one is the 

elliptical crack under electric and mechanical load. The second one is the prismatic 
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plate with central crack subject to uniform normal traction and electric displacement at 

two opposite faces. The last is prismatic plate with two edge cracks. All these three 

types of crack are subject to uniform normal traction and uniform electric displacement 

at the two opposite faces parallel to the crack via the boundary element method in three-

dimensional transversely isotropic piezoelectric (PZT-4) finite and infinite medium 

under the electric impermeable and permeable BC. The result of this investigation is 

also compared with other results. (Kuna, 2010) has applied the theoretical fundamentals 

of linear piezoelectric fracture mechanics under the mixed modes BC (impermeable, 

permeable, conducting and limited permeable “Simi-permeable”) in two-dimensional 

anisotropic piezoelectric (PZT-5H, PZT-4) switching domain by utilizing Griffith crack 

under a constant remote stress with perpendicular poling and electric field (remote 

loading). (Fang et al., 2011) in the electric impermeable BC via the complex variable 

method (analytical solution) in two-dimensional transversely isotropic piezoelectric 

(PZT-5H, PZT-4, BATIO3) infinite medium, the elliptical inclusion with an interfacial 

crack subjected to arbitrary singularity loads (point charge and anti-plane concentrated 

force) and remote anti-plane mechanical and in-plane electrical loads (remote loading) 

is employed. (Zhou et al., 2012) in three-dimensional transversely isotropic 

piezoelectric (BaTiO3-CoFe2O4) infinite medium via the generalized Almansi’s 

theorem and the Schmidt method (analytical solution) under the electric limit-

permeable BC (Simi-permeable), they have utilized the rectangular limited-permeable 

crack and two three-dimensional limited-permeable rectangular crack assumed a  

distributed normal stress loading (applied the crack surface). At the same time, (Zhao 

et al., 2012) The conventional displacement discontinuity method associated with  

green’s function method is employed on the electric impermeable BC in three-

dimensional transversely isotropic piezoelectric (BaTiO3) infinite medium with the 

vertical crack (the rectangular crack) subjected to the  uniform  mechanical and electric 

loading   (at crack surface), besides; (Sladek et al., 2012) They have investigated in 

two-dimensional transversely isotropic piezoelectric (PZT-4) in an inhomogeneous 

finite strip under the mixed boundary condition “permeable and impermeable”, the 

central interface crack of two dissimilar piezoelectric materials under a pure mechanical 

load at the crack surface is employed via a mesh less method based on the local Petro 

Galerkin approach associated with Quasi-static governing equations. (Li et al., 2013) 

under the electric impermeable BC in two-dimensional transversely isotropic 

piezoelectric (PZT-4 and PZT-5) infinite domain via the scaled boundary finite element 

method, the Infinite plate with central-inclined crack under remote tension and electric 

displacement load, Infinite plate with a branched crack under a uniform tension or a 

uniform electric displacement load and Finite plate with a central-inclined crack under 

a uniform tension or a uniform electric displacement load is used. (Hu & Chen, 2013) 

the cracked piezoelectric strip  under  in-plane  mechanical  and electric impact loadings 

(remote loading) is discussed under the electric impermeable BC in two-dimensional 

transversely isotropic piezoelectric infinite medium via the Fourier and Laplace 

transform to a singular integral equation. (Nan & Wang, 2013) the electrical mixed 

mode BC (permeable and impermeable) is employed associated with a through-

thickness crack of length “2a” under   a remote uniform normal stress and an electric 

displacement  (remote loading) beneath two-dimensional transversely isotropic 

piezoelectric (PZT-5H) infinite medium via the singular integral equation technique 

whereas the result is found that the effect of surface on the electric displacement 
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intensity factor depends on the crack face electric boundary condition and  influenced 

by the residual surface stress on the entire crack surface which compared with the 

theoretical result. (Tran & Mear, 2014) in the two-dimensional multi-field (anisotropic, 

elastic, isotropic, transversely isotropic “PZT-4” and magnetoelectroelastic) finite and 

infinite medium under the electric impermeable via a weakly singular, SGBEM, the 

Straight crack in infinite domain, subjected to either a uniaxial far-field stress or a far-

field electric induction, Rectangular plate with a central inclined crack subjected to 

either uniform tension stress or electric induction (remote loading). The result has 

indicated that the ‘generalized’ stress intensity factors are examined, highly accurate 

results are obtained with relatively coarse meshes under comparing with the exact 

solution and available result associated with different method. Also (Chen et al., 2014) 

a Simi-infinite conducting crack under mechanical  impact loading (at crack surface) 

under two-dimensional transversely isotropic piezoelectric (PZT-4, PZT-6B, PZT-7A 

and PZT-8) Simi-infinite medium under electric impermeable BC via the integral 

transform method, the wiener-Hopf  technique assembled with the universal function. 

Fan et al. (2014), the extended displacement discontinuity integral equation method 

(analytical solution) and  developed an extended displacement discontinuity boundary 

element method is employed with the electric impermeable BC in three-dimensional 

transversely isotropic piezoelectric (PZT-6B) infinite medium under the penny-shaped 

crack under a uniform electric and mechanical loading, non-uniform loading  (at the 

crack surface) 

The various parameters (e.g., geometry, loading conditions, permittivity in the 

crack gap, various geometries and four crack-face boundary conditions) have an 

influence to fracture in the piezoelectric medium. Many investigators have conducted 

researches on this topic. (Kogan et al., 1996) they have considered stress component in 

x and y-axis subjected to anti-symmetric (out of plane shear and in-plane shear) by 

varying the range of latitude (𝜔 = 0 to 80) to diagnose the quantities (load ratio) on the 

boundary of a spherical hole inside the piezoelectric-ceramics PZT-4 at 𝜗=0 and 𝜗=0, 

respectively. (Yang & Lee, 2002) The singular mechanical and electric fields and all 

mode-I field intensity factors are examined. For the first case, the stress intensity factor 

is considered in different ratio of the crack radius to layer thickness (a/h = 0.0 to 1.0) 

for PZT-6B ceramic under axisymmetric loads (case1 to case4). The second case is to 

investigate the change of normalized SIF (0=1.0x10-5&a=10mm ) with the applied 

electric field (E0 = -20 to 10x105 V/m) of the load case2. For the third case of non-

axisymmetric loads, the polar angle (𝜃=0 to 90 degree, a/h is constant and vary r0) on 

the face is considered by varying the polar angle of the crack (𝜃 = -200 to 200 degree) 

to demonstrate the stress IF and the ratio of r0 = b/a (a/h is constant and vary 𝜃) is 

represented to diagnose the SIF of the load case1 by varying 𝜃. (Gruebner et al., 2003) 

According to the distinct permittivity (0.5, 1.0 and 2.5) in various BC (e.g., 

impermeable, permeable and semi-permeable) are discussed by varying electrical load 

(-0.01 to 0.01 C/m2) to demonstrate  the stress intensity factor mode-I  and mode-IV   

and the case of the energy release  rate J and JM with the mechanical load (
22

ext

=10MPa). In this research, the investigation is to demonstrate that the influence of the 

permeability of the crack on electric and mechanical fields near the crack tip is 

considered, and that the influence on the stress intensity factors and energy release rate 

will be discussed and compared with the CT specimen. Furthermore, (Ou & Chen, 

2007) they have found that the normal crack opening displacement jump (NCODJ) is 
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always extremely small, whereas the electric potential drop (EPD) across the crack is 

very large and the energy release rate (ERR) influences the permittivity. In this 

investigation, they considered the permittivity (a =10-8, 1 2.5, 20000 0) by varying the 

distinct valued electric field (-0.5 to 0.5 MV/m) to demonstrate the influence of 

permittivity upon normalized crack opening displacement jump (NCODJ) and electric 

potential drop (EPD) of PZT-5H and PZT-4 with a =1mm and 22 
=20MPa. 

Moreover, the normalize crack tip ERR against the applied electric field (-0.5 to 0.5 

MV/m) for a central crack in PZT-4 and PZT-5H is subject to different mechanical 

loading levels (1, 5,10,20,50 Mpa) and the influence of the permittivity ((a =10-

8,1,2.5,200000) of medium inside crack gap on the crack tip ERR of PZT-5H, PZT-4 

and PZT-6B is investigated. According to Qin et al. (2007), the different ratio (a/b = 

1,2,3 and 4) with the position along the crack front ( b ) of the rectangular crack (x1/a 

= 0.0 to 1) is carried out. Besides, the aspect ratio of the elliptical crack (a/b = 1, 4/3, 

3/2 and 2) with varying the angle   (position) of the elliptical crack also considered 

to obtain the result of dimensionless intensity factor mode-I and mode-IV in which this 

result is compared with the exact and Chen’s result. As (Kuna, 2010) mentioned, the 

relative permittivity is diagnosed by varying the remote electric field (-1 to 1 MV/m) to 

demonstrate the total and mechanical EER (semi-permeable) of the Griffith’s crack in 

PZT-5H subject to the mechanical load (20MPa). The result can be found that 

experimental fracture investigations are relatively poor when compared the method 

because of many influent factors. For (Fang et al., 2011) the result is that the energy 

release rate (ERR) increases with an increment of the ellipse aspect ratio.  It is positive 

but can be negative when both mechanical and electric fields are applied.  This effect 

has been obtained from the shear modulus ratio(𝜆=0.1to20) with different loading 

(case1:  =0.5, xz   , 
z   = 0 and case2:  = 0.5, 0xz   , 

z   , distinct aspect 

ratio ( = 0.1 to 0.9) with different loading ( =0.5, xz yz   =  ),  the permittivity of  

PZT- 65/35, PZT-5H, PZT-4, BATIO3 with the constant =0.5, =0.5 by varying the 

angle of  the  elliptical crack ( = 0 to 180 degree). To enhance their computational, 

the different matric piezoelectric constants is varied 
)2(

15e (5, 10, 20) with the load cases 

(case1: XE E  , 0YE  ,  = 0.5
(2)

11,d (1)

110.5d  and case2: 0,XE  YE E   =0.5 
(2)

11d   

(1)

110.5d ). The aspect ratio is varied in the range  = 1,0.2,0.5,0.7,0.9 with the load (

XE  YE E  ). The permittivity of PZT- 65/35, PZT-5H, PZT-4, BATIO3 with the 

load ( X YE E   , 0.5E    ) is varied with the angle of the elliptical crack (𝛽= 0 to 180 

degree). Besides, the loading coefficient 
)2(

15e  (0.06 to 0.10) matric piezoelectric 

constant 
)2(

15e  (6 to 16) with the conditions / 2  ,  = 0.5 and ,X YE E E   

,XZ YZ       E=0.1,  = 0.5 , respectively, indicates the normalized ERR by varying 

different angle. According to (Zhou et al., 2012), various BC (permeable and semi-

permeable) is considered to indicate the stress intensity factors Kx along the crack edge  

with the conditions (D0/0 =1.0x108,B0/0=1.0x105 with l1 = l2) versus position (y/l2 = 

0.0 to 1.0). Moreover, the stress intensity factor Kx & Ky along the crack edge x=l1 and 

y = l2 with the condition (D0/0 =1.0x108
0 0, /B   B0/0 =1.0x105) is investigated by 
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varying (y/l2 = 0.0 to 5.0) and (y/l2 = 0.0 to 1.0) of various lengths l2 respectively.  In 

this case, the result revealed that the effects on the rate of the rectangular crack edge 

length on the stress intensity factors along the rectangular crack are large in comparison 

with Zhu’s result and the electrical permeable BC.  (Hu & Chen, 2013))  have found 

that the geometry  of the cracked strip  and  the electric loading  significantly  influence 

the  singular  field distributions  around  the  crack  tip.  For this investigation, they 

considered different angle (𝜃 = 0, 25 and 50 degree) by varying (TVs/c = 0 to 1), to 

obtain not only the dynamic hoop stress intensity factors while (LE 

=+0.5,h1/c=1,h2/c=3), but also the aspect ratio of the crack (h1/c and h2/c). The result 

was discussed to determine the maximum value of the normalized hoop stress intensity 

factors versus angles (-180 to 180 degree). Moreover, the different electrical loading 

(LE = -1.0 to +1.0) is carried out to indicate the dynamic HSIF, whereas the angle and 

the various lengths are constant (  =25, h2=3h1=3c). Besides, the aspect ratios of the 

crack (h1/c and h2/c) are varied to reveal the dynamic stress intensity factor KI(t) versus 

electric loading the normalized time.  

Clearly described above, a large number of studies related to theoretical 

modeling and analysis of cracks in piezoelectric media has been well recognized in the 

literature. However, work related to the investigation of the influence of various factors 

such as the crack geometry, crack-face conditions, loading conditions, properties of 

piezoelectric media and properties of a medium inside the crack gap on the fracture data 

along the crack front is still available only for certain scenarios and a limited range of 

parameters. Further studies are still required to provide more complete information and 

enhance fundamental understanding of the fracture behavior in piezoelectric materials.     

1.3 Objective of research 

The key objective of the proposed research is to fully investigate the influence of crack 

geometry, crack-face boundary conditions, loading conditions and permittivity inside 

the crack gap on the stress and electric intensity factors of cracks in piezoelectric media. 

1.4 Scope of research 

The proposed work is limited to (i) a three-dimensional, infinite medium made of a 

homogenous, transversely isotropic, linearly piezoelectric material and obeying the 

classical theory of linear piezoelectricity, (ii) a medium that is free of the body force 

and electric body charge, and (iii) the poling direction is directed along the axis of 

material symmetry. The influence of four parameters, (1) the geometry of cracks which 

is characterized by four representative cracks including a spherical cap crack, a 

cylindrical crack, a tunnel crack and a pair of two identical penny-shaped cracks, (2) 

the crack-face boundary conditions including the impermeable, permeable, semi-

permeable, and energetically consistent conditions, (3) the electrical and mechanical 

remote loading conditions, and (4) the dielectric permittivity of the medium inside the 

crack gap, on the values and distribution of the intensity factors along the crack front 

are investigated. 
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1.5 Methodology and procedures 

The key task of the present study is the efficient and accurate determination of the stress 

and electric intensity factors of cracks in piezoelectric media for various crack 

configurations and under various crack-face and loading conditions. To achieve this 

crucial task, following methodology and procedures are proposed. 

(1) The boundary value problem is formulated based on a classical theory of linear 

piezoelectricity. A method of boundary integral equations is utilized to obtain the final 

governing integral equations. 

(2) An existing numerical technique, based on a weakly singular symmetric 

Galerkin boundary element method (SGBEM) proposed by Rungamornrat and Mear 

(2008) and Phongtinnaboot et al. (2011), is utilized to determine the unknown crack-

face data such as the relative crack-face generalized displacement. 

(3) The stress and electric intensity factors along the crack front are post-processed 

from the relative crack-face generalized displacement using the existing formula 

proposed by Rungamornrat and Mear (2008) 

(4) Results for certain cases are compared with available benchmark solutions to 

validate the numerical technique employed. 

(5) The convergence of numerical solutions is fully investigated via a series of 

meshes with different levels of refinement. Sufficiently fine meshes are then chosen in 

the numerical study for investigating various parameters. 

In the parametric study, various scenarios covering the range of all parameters of 

interest are considered to provide a set of data sufficient for concluding final findings. 

1.6 Significance 

Extensive results obtained from the present investigation should directly offer 

fundamental and in depth understandings of the influence of various factors such as 

models used to simulate the crack-face conditions, crack geometry and loading 

conditions on the value and distribution of stress and electric intensity factors along the 

crack front. For instance, the sensitivity of the adopted crack-face condition and the 

corresponding parameters on predicted results should at least provide a useful guideline 

in the selection of a mathematical model suitable for a given scenario. 
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CHAPTER 2 

THEORETICAL CONSIDERATIONS 

This chapter briefly presents the clear problem statement, the basic field equations used 

to formulate the boundary value problem of cracks in linear piezoelectric media, various 

models for simulating the crack-face boundary conditions, and characteristics of the 

near-tip generalized stress field. In addition, the standard definition of the stress and 

electric intensity factors is also provided at the end of this chapter. 

2.1 Problem Descriptions 

In this section, we consider an infinite domain containing a planar and non-planar 

cracks in three-dimensional problem in which this material is linear, homogenous 

transversely anisotropic piezoelectric. In this particular case, the body force and electric 

charge is assumed to disappear at the beginning. In this case, to investigate the stress 

and electric intensity factors, along the crack front, we discuss only loading on crack 

surface and remote loading associated with various electric boundary conditions such 

as electrical impermeable, electric permeable, semi-permeable and energetically 

consistent boundary conditions indicated in Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Schematic of a linear piezoelectric body containing a crack infinite medium. 

 

In the current investigations, the various influence parameters are utilized to 

examine the non-zero stress and electric intensity factor. The geometries such as planar 

and non-planar cracks are first utilized to investigate various parameters including 

influence of geometry on four crack-face models.  The permittivity inside the crack gap 

is varied in the wide range on four crack-face models. The loading conditions such as 

applied remote tensile mechanical and electrical load are also varied in the wide range 

and the various boundary conditions (viz. impermeable, permeable, semi-permeable 

and energetically consistent models) are investigated in all cases. 
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2.2 Basic equations 

In this  section, we  firstly propose  a  set  of  basic  field  equations  governing  a  body 

constituting  a  linear  piezoelectric  material. In the piezoelectric problem, providing 

that the body force field and the body electric charges do not appear in the beginning, 

a set of field equations governing a piezoelectric body, including conservation of forces 

and electric charges, strain-displacement and electric field-electric potential relations 

and constitutive model for linear piezoelectricity can be presented below. The 

conservation of forces and electric charges is governed by 

 

0;0 









i

i

i

ij

x

D

x


                 (2.1) 

 

The strain-displacement and electric field-electric potential relations are given by 

 

 
iiijjiij Euu ,,, ;

2

1
                     (2.2)     

                                                                               

The constitutive model for linear piezoelectricity follows 

 

mimkmikmimmijkmijkmij keDeE ,, ;                         (2.3)      

                                                 

where ij,Di,ij,Ei and  ui are components of the stress tensor, electric induction vector, 

strain tensor, electric field and displacement vector, respectively; besides, Kim Is 

dielectric permittivity;   is the electric field and   emij  is piezoelectric constants.  

2.3 Boundary conditions Boundary conditions 

In this section, the essential conditions must be diagnosed including the basic field 

equation, the boundary conditions on the crack surfaces and outer boundary such as the 

mechanical and the electric conditions. Such conditions are significant information that 

must suitably be assigned in the analysis of piezoelectric media containing fracture. 

This information, particularly the boundary conditions on the crack surfaces, has a 

major influence on both the main data and behavior of the crack surface. For this 

investigation the outer boundary is considered in association with the uncoupled 

mechanical-electric boundary conditions, whereas the boundary conditions at the crack 

surface are considered in two groups. The first one is associated with uncoupled 

mechanical-electrical boundary conditions (i.e. Permeable and impermeable 

assumptions) and the second one with the fully mechanical-electrical boundary 

conditions (i.e. semi-permeable and energetically consistent assumptions). The four 

types of cracks are summarized in this investigation as following: 

For permeable crack, Parton (1967) was the first to propose the definition of the 

boundary condition, that there is an electric current inside the crack gap. For this special 

case, it means that both the electric induction
 
and electric potential normal to the crack 

surface are continuous on the both sides of the crack surface. This implies that both the 
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jump of the electric potential across crack surface and the electric potential drop across 

the crack surface vanish. Accordingly, the entire data for this case can be briefly 

summarized that the jump in the mechanical displacement ui and the surface electric 

charge 

4t are unknown in the beginning whereas the jump in the electric potential and 

the sum of the surface electric charges disappear (u4 = 0 and ( 4t  4 4 0t t   ) and 

the mechanical tractions 


it and 


it  are imposed. 

For impermeable crack, this boundary condition was firstly proposed by Deeg 

(1980) that there is no electric current inside the crack gaps. This means that on the both 

sides of the crack surface (upper and lower surfaces), the electric induction normal to 

the crack surface was supposed to disappear while the electric potential was unknown 

in the beginning. The known data for this case can be summarized that the generalized 

tractions 

It and 

It , are completely imposed, whereas the jump in the generalized 

displacement across the crack surfaces, represented by
  JJJ uuu , are unknown a 

priori. 

For semi-permeable crack, it is commonly known that the impermeable and 

permeable cracks are extreme cases. In this boundary condition is the mixed modes 

between impermeable and permeable boundary conditions, considering the permittivity 

inside the crack gap. It means that the vacuum inside the crack gap can partially induce 

electric induction. This derivation of this boundary is from Hao and Shen (1994)’s 

boundary condition which can be concluded that the mechanical traction 


it and 


it are 

prescribed and the sum of the surface electric charges disappear ( 04 t ) whereas 

the jump of generalized displacement are unknown in the beginning and must be 

satisfied the following extra condition: 

 

 44 uknut cii  

                             (2.4)                                   

 

Where Kc is the dielectric permittivity of the medium inside the crack gap 

For the energetically consistent crack, this boundary condition is a more realistic 

assumption from Landis (2004) in resolving the investigation of McMeeking (2004). 

The result can be found that energetically consistent model is equivalent to each other 

by increasing the traction on the crack surfaces in which Semi-permeable model is not 

considered. In this particular case from the discussion of the energetically consistent 

model,  the non-zero-mechanical traction  


it and 


it  which tend to pull the upper and 

lower crack surfaces can be separated into two parts  
  ii   and 

  ii  , where  

ii  ,  

and  

ii  ,  represent the normal and shear tractions respectively. In this crack,  

ii  ,  are 

completely imposed and the sum of the surface electric charges and the sum of the 

normal mechanical tractions disappears (i.e., t4 = 0 and 0 

iii  ), whereas the 

jump in the generalized displacement uJ, the mechanical normal traction 


i  and the 

surface electric charge 


4t are unknown and satisfy the relation. 
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22

4 )/()()2/1(   iijcj nuunk
      

          (2.5)

        

2.4 Near-tip generalized stress field of linear piezoelectric material 

Analogous to the work of Westergaard, Irwin, Sedona and Williams (1975) who were 

among the first group to carry out the near-tip field investigation of the crack body in 

infinite domain, it is possible to derive closed-form expressions for the stresses in the 

body in linear piezoelectric material with respect to the coordinate system. We 

determine a polar coordinate ( r, ) and standard coordinate system (x1,x2,x3) with the 

origin at the crack front xc where the plane x1 - x2 normal to the crack front at xc. The 

plane x2 – x3 and  x1 – x3 is the tangent plane at the point xc at the crack front (as shown 

in the figure below) and the orthonormal base vector (e1,e2,e3) is in the same direction 

of (x1,x2,x3) respectively. It can be illustrated that the stress field in any linear 

piezoelectric cracked body is offered by: 
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Figure 2.2 The coordinate system with notation utilized in near-tip generalized stress 

field along the crack front 

 

where iJ  represents the generalized (Mechanic and electric stress) stress tensor 

(i=1,2,3 and J=1,2,3,4) and Di=i4 are components of the electric induction vector. Kn 

and Am are constant in which depend primarily on position xc and  the conditional 

function fco where fco is the function with respect to  loadings, boundary conditions, 

geometries and material properties. )(n

iJ  is the stress function which depends only on   

(independent of radius r) in the first term and depends on the modes. For the higher-

r 

 
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order terms, 
 m

iJ  denotes the stress function with respect to   for the m-term and 

depending on geometries. In this particular case, the solution for the above equation 

(2.6) contains a first term that is proportional  r/1  . If and only if the radius r 0 

the first term approaches to infinity or called the singular at that point, but the other 

higher term remains finite or approach to zero called non-singular. Inasmuch, the 

generalized stress near the crack front varies with r/1 . The stress 
)(n

iJ  and 
 m

iJ  in 

equation (2.6) can be simply gained by asymptotic analysis for each proper problems. 

Unfortunately this is still not the perfect analysis for the analytical of boundary value 

problems. When the perfect stress field can be assigned, the stress function 
)(n

iJ  and 

 m

iJ  in equation (2.6) can be found by the procedure of standard series expansion. 

There are four types of loading that a crack can be experienced. Mode-I denoted 

as K1 or KI where the principal loads are applied normally to the crack plane and tend 

to open the crack. Mode-II denoted as K2 or KII  represents in-plane shear loading and 

tends to slide one crack surface with respect to the other plane. Mode-III denoted as K3 

or KIII represents out-of-plane shear and Mode-IV denoted as K4 or KIV represents 

electrical intensity factor on a crack body, or a combination of two or three modes. Each 

mode of loading offers the r/1  singularity at the crack front. The stress and electric 

intensity factors (or generalized stress) at a point cx   are determined by taking The limit 

r 0+  ,after the stress function of the left hand side of the equation (2.6) are known as 

shown: 
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                                                                                                       (2.7) 

 

Where the stress field [] in the right hand side of equation (2.7) depends on the local 

coordinate system (x1,x2,x3)  and can be obtained from each proper problems. 
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CHAPTER 3 

SOLUTION TECHNIQUE 

This section discusses the technique and procedure used to obtain the solution of the 

boundary value problem stated in Chapter II. A brief introduction to the weakly singular 

SGBEM adopted in the present study is presented first and then the post-process for the 

stress and electric intensity factors along the crack front is addressed. In addition, the 

generation of meshes used in the numerical study, convergence check and verification 

of the numerical technique are also included.     

3.1 Introduction of SGBEM 

From the mechanic computational aspect (fracture problem), to analyze fracture 

problems in infinite domain can be analyzed from two main groups, such as analytical 

and numerical technical groups. We can derive closed form for the fracture problem 

only for the case that the problem is not very sophisticated, for example two-

dimensional problems and simple geometries and etc. In such case the analysis is 

required. Solving the crack problems via the numerical technic is particularly 

reasonable for a complex or more complex problem such a three-dimensional problem 

or that of which geometries are complicated. In the numerical technique, there are many 

approaches such as finite difference method (FDM), finite element method (FEM) and 

boundary element method (BEM) and so on. These are considered as common methods 

to investigate the data along the crack front in the fracture problems.  

The difference between the finite element method (FEM) or finite different 

method (FDM), and the boundary element method (BEM) is that the finite element 

method is efficient for large scale and complex problem of fracture and is in the 

symmetric of sparse coefficient matric form. However, this method demands 

discretization in the whole domain, which means that the final governing integral 

equation involves the entire variables of the domain that is no need for crack problem. 

Moreover, the generation of mesh also requires in whole domain (involved crack 

surfaces) which needs to be considered as three-dimensional problem; hence, this 

method is not popular in use in infinite domain problem. The finite element method 

(FEM) can also be more difficult in practice.  

 In the group of boundary element method (BEM), on the other hand, the data 

appears only as unknown variable on the crack surface into the governing integral 

equation. This means that the dimension of the problem can be reduced. The BEM 

group is more effective in the area in which the FEM has difficulties.  They can be 

classified in many techniques for instance boundary element method (BEM) which 

based upon collocation technic (e.g. to satisfy integral equation at each point). The form 

of metrics is also the dense non-symmetric form. However, the BEM (based on 

collocation technique) is not suitable when the domain becomes larger and non-linear 

or non-homogeneous. It is then difficult to develop the governing equation as it is 

related to kernel which appears in governing integral equation, or we must implement 

the strong form of the governing integral equation.  
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 Another feature of the BEM group is the symmetric Galerkin boundary element 

method (SGBEM) which is based on symmetric Galerkin approximation or in weak 

form integral equation, which is to satisfy integral equation as average point.  Notably, 

this technique have separated singular kernel in the final governing formulation as 

many forms, such as Hyper singular SGBEM (which needs C1 element which is a high 

smoothness required for the shape function), strongly singular SGBEM (which needs 

C1 element) and weakly singular SGBEM (which needs C0 element in which the slope 

can be discontinuous and require only the continuous of function values essential for 

the shape function). According to the weakly singular, SGBEM have many advantages, 

inasmuch this method will be employed here. 

To obtain an integral equation applied for constituting fundamental of weakly 

singular, SGBEM must impose the stress and electric intensity factors along the crack 

front. We need a boundary integral equation (BIE) in term of complete boundary value 

problem including the whole data at the crack. The stress field along the crack front and 

the relative crack face can be employed to separate the stress and electric intensity 

factors in the equation (2.7). In this section, we can briefly summarize a series of 

boundary integral equation significant for weakly singular, SGBEM. We consider a 

crack body in the infinite domain in which the material is linear homogenous, 

transversely anisotropic piezoelectric media. The upper and lower crack surfaces 

denoted by 


CS  and 


CS , respectively, and the outward unit normal vector n+ and n- 

normal to the upper and the lower crack surface is determined in figure 3.1 below. The 

traction on the crack surface is supposed known a priori. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic of an isolated crack in three-dimensional, generally anisotropic 

infinite domain 

 

Eventually, The complete weakly  singular,  weak-form  boundary  integral  

equation  for  the generalized  surface  traction is assigned  which was developed and 
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offered by Rungamornrat and Mear (2008). It should be noted that each term contains 

weakly singular of 𝒪 (1/r). The final equation of weak form is shown below: 
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where K
~  represent a test function    yy KK  ~~ 

 
,
 

 CSy
 
,
 

 y
*

Kt  represent 

the generalized traction by    yy
 KK tt 2*

  
,  CSy  ;  J  denote the generalized jump 

of displacement; Dm is a surface differential operator assigned by Dm = niism/s 

Where 
ism 

represent alternating symbol. 

A specific solution of the unknown singular functions  
P

mJG  and 
IK

mJC  can be 

established by solving a system of partial differential equations. A method of Radon 

transforms which is analogous to the method utilized in work of   Rungamornrat and 

Mear (2008) is applied. Finally, the implemented solution is expressly displayed in term 

of a linear integral as below: 
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where z.r = 0 denote the line integral evaluated over a unit circle in the plane; 
tKsM

mJdNA  is 

the material-dependent constants can be presented by: 
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






 dNMsaJKbaJMsbKNdpbtpam

tKsM

mJdN EEEEA
4
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(3.4)

 

 

And   xξ P

iJH  is given which is independent of the generalized elastic moduli defined 

by: 
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 
 

34 r
H JPP

iJ


 ii xξ
xξ


                                                                                                      (3.5) 

where JP is represented as a generalized Kronecker delta symbol; JP(i – xi)is a Dirac-

delta functional distribution centered at point X. The outstanding product of an equation 

(3.1) is the weakly singular kernels contain only  iJ

iK

J

tK

tK

mJ nHGC ,,  of 𝒪(1/r)  

3.2 Determination of stress and electric intensity factors 

According to the definition, the mode-I, mode-II and mode-III stress intensity factors 

[K1, K2 and K3] and mode-IV electric intensity factor K4 are determined in equation 

(2.7). To implement the perfect analysis in contact with boundary value problems and 

estimate the stress and electric intensity factors, the complete integral equation for 

instance equation (3.1) can obtain the nodal values of the jump in the generalized 

displacements on the crack surfaces. This can be employed to evaluate the stress along 

crack front (since the crack-face nodal is recognized). Nevertheless, it might be 

complicate to carry out such an approach in a fashion which would permit the stress 

and electric intensity factors to be exactly assigned.  

For this difficulty, we look for an alternative to the definition of equation (2.7) 

to permit the stress and electric intensity factors appeared in term of the crack-face 

displacement information straightforwardly. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Schematic of an isolated crack in a three-dimensional, generally anisotropic, 

piezoelectric unbounded domain 

 

Here we indicate only the final alternative expression (Barnett and Asaro (1972) 

and Xu (2000)) which provides the stress and electric intensity factors in term of the 

jump of the displacement on the crack surface as shown: 
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)( Cx                        (3.7)    

      

Where k1=KII, k2=KI, k3=KIII and k4=KIV,   denote the angle between a  and e1 

as shown in figure 3.2 and the latter association, a and b are orthonormal vectors 

contained in the plane x3 = 0. Noted that equation (3.6) & (3.7) is carried out related to 

the local coordinate system (x1,x2,x3). 

The equation (3.6) still has a disadvantage (i.e., the equation includes taking 

limit). Later, to avoid this drawback, the other approach is offered inasmuch the stress 

and electric intensity factors can be obtained directly in term of the crack front nodal 

information (also see Rungamornrat and Mear 2008) as shown: 

 

 CCC xxx
*)(
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)( PJPJ uB

J
K




                  (3.8)
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 1,
1





 C

Cre 


                 (3.11)

                   

 is an angle satisfying sin=-e.e1, (C,-1) are the natural coordinates of XC 

(determined with respect to the computational element illustrated in figure 3.2), 
e

iPu )(  

are the component of 
e

iu )(  related to the local coordinate system (x1,x2,x3) and 

rc(,)=x(,)-XC. Emphasize that the quantities 
*

Pu  represented in equation (3.8), in 

reality only involve the nodal information along the crack front (where the “special” 

degrees of freedom are utilized) once i(C,-1) = 0; this for the nodes is not on the crack 

front. 

 

3.3 Mesh generations 

To imitate the crack behaviors on the boundary of the various geometries and the crack 

surfaces, the stress and electric intensity factors is imposed by weakly singular, 

SGBEM. This technique requires sufficient and fine mesh generation for 
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implementation. The aspect ratio of distorted elements has suitably reduced the size to 

avoid exceeded distortion. Also a finer implementation is employed in the area where 

fields are estimated at sophisticated vicinity for instance the area near the crack front, 

the mesh with smooth transition is utilized to relate the meshes. Furthermore, in the 

discretization, to obtain the unknown variable data along the crack surface appeared in 

the governing integral equation, the crack-tip element is utilized as shown in figure 

3.3(d) as the 9-nodes quadrilateral crack-tip elements illustrated in figure3.3 (a) which 

is more flexible and utilized along the crack front; Moreover, the crack-tip element have 

two advantage features; the first one is the corresponding shape functions can capture 

the first three term of asymptotic fields and the other is extra degree of freedom 

introduced along the crack front to directly capture to the strength of singularity or in 

other word, the first feature enables relatively large crack-tip elements be used along 

the crack front and the second feature provides a direct mean to assign the mixed-modes 

intensity factors without carrying extrapolations. Another crack elements is the 

quadrature element such as standard 8-nodes quadrilateral elements shown in figure 

3.3(b) and standard 6-nodes triangle elements illustrated in figure 3.3(c) which is 

utilized to connect the inner meshes.  

Since the domain becomes very large and the sector of the mesh is increased, 

i.e. the angle between each sector is reduced with respect to coordinate system, the 

transition will be employed to ensure the exact computation, the mesh transition must 

be implemented to other fashion indicated in figure 3.3(e).   

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
 

 

         (c) (b) 
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Figure 3.3 The elements employed in the discretization of various geometries (a) 9-

nodes quadrilateral crack tip elements, (b) standard 8-nodes quadrilateral elements and 

(c) standard 6-nodes triangle elements (e) an example of mesh transition 

 

3.4 Convergence check 

The major purpose is to ensure and verify the mesh generation that we have created in 

the previous section to be the finest meshes, and the mesh should be converged to the 

acceptable unchanged values. We will investigate the stress and electric intensity factor 

along the crack front on four distinct type of boundary conditions (i.e., permeable, 

impermeable, semi-permeable and energetically consistent models) under various 

geometry cracks. Examples include penny-shaped crack folded in circular ball or 

Spherical cap crack and penny-shaped crack folded in cylindrical or cylindrical crack, 

tunnel crack, two penny-shaped crack in vertical direction and two penny-shaped cracks 

in horizontal direction subjected to any kind of loading conditions (i.e., electrical and 

Mechanical loads) in a three-dimensional linear transversely anisotropic piezoelectric 

material by using weakly singular symmetric Galerkin boundary element method 

(SGBEM). The series of mesh generations will be utilized at least three meshes 

refinement with explicit distinct levels in each problem which depends primarily on the 

difficulty of the geometries and the considered domain size. The result of this 

converged implementation is very gainful for each mesh of the problem and this will 

become the exact benchmark in the next step. 

To implement the convergence of analysis, a collection of meshes is employed. 

The mesh refinement is used depending on the crucial level of region on the crack 

surface. Particularly, in vicinity of the crack front, the nine-node crack-tip elements are 

adopted to approximate, and the remaining regions on the crack surfaces are utilized 

eight-nodes and six-nodes-elements. The direction of symmetric axis is defined as x3-

axis. The piezoelectric material utilized in this study is transversely isotropic and the 

generalized moduli are analogous to PZT-4 illustrated in table 4.1.below: 

 

 

 

                                   

(e) 
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Table 3.1 Property of transversely isotropic piezoelectric materials, PZT-4 gained from 

Li et al., (2011). The axis of material symmetry is directed along the x3-axis direction. 

 

Elastic constants 

( Pa910 ) 

E1111 139 

E1122 77.8 

E1133 74.3 

E3333 113 

E1313 25.6 

Piezoelectric constants 
 2/ mC  

E1143 -6.98 

E3343 13.8 

E1341 13.4 

Dielectric Permittivity 
 )/(10 9 VmC  

-E1441 6.0 

-E3443 5.47 

 

3.4.1 Convergence of spherical cap crack in infinite medium under tensile remote 

loadings 

Here we consider a non-planar cracks containing in a transversely isotropic 

piezoelectric infinite medium which is made of PZT-4 as shown in figure 3.3 (a) and 

(b). The geometries are determined as the penny-shaped crack folded in a half of 

circular ball or spherical cap crack with the radius of penny-shaped crack a, the radius 

of the spherical cap cracks R  and the half-subtended angle  . These geometries will 

be employed to investigate intensity factors along the crack front in several cases, e.g., 

the half subtended angle, curvilinear of crack surface, remote tensile mechanical load, 

remote electrical load and the permittivity inside the crack gap.  

Where a = 1 is determined as a radius of the penny-shaped crack, the  present 

the half subtended angle of the crack surface ( = 90) and R is imposed the radius of 

the crack (R=1). The material symmetric axis and the poling direction are the same of 

the x3-axis. In this case, we employ three meshes which are explicitly different levels. 

The finest meshes contain 144 elements, whereas the medium meshes contains 64 

elements and the coarsest mesh contain 8 elements, respectively, as shown in the 

figure.3.3 (b). The piezoelectric medium of the crack is beneath the remote uniaxial 

tension 0 = 50 MPa, uniform electric field E0 = 2.5 MV/m in the x3 - direction. In this 

exploration, the permittivity is supposed as 5x8.85x10-12 C/Vm. 
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(a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.4 (a) schematic of a spherical cap crack in infinite domain and (b) three 

meshes utilized in computation. 

 

From the numerical results for stress and electric intensity factors [KI,KII,KIV] 

normalized by the results gained from the finest mesh (144 elements) as listed in the 

table 3.2 and 3.3, it can be found that the non-zero intensity factors computed from 

three meshes are in good agreement. More specifically, the disparity of the obtained 

results from the coarsest and the medium meshes compared with the fine mesh is less 

than 6.7640% and 0.5232% respectively for all crack face models (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models). It should be remarked 

that the coarsest mesh comprises only 8 elements along the crack front, and the rest 

elements is for the region of crack surface. 

Top view 

Elevation view 

Circular ball 

2x  
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Table 3.2 The convergence of normalized stress and electric intensity factors 

[KI,KII,KIV] for a spherical cap crack under remote uniform tensile stress 0 = 50 MPa 

and uniform electric field E0 = 2.5 MV/m for impermeable and permeable models 

 

Mesh 

Impermeable crack Permeable crack 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /

 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /

 

Coarse(1)  0.9600 0.9989 0.9868 0.9512 0.9938 0.9863 

Medium(2) 0.9979 1.0009 0.9999 0.9972 1.0005 0.9999 

Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  4.0004% 0.1143% 1.3246% 4.8842% 0.6188% 1.3723% 

%(2)&(3) 0.2144% 0.0850% 0.0081% 0.2762% 0.0476% 0.0071% 

 

Table 3.3 The convergence of normalized stress and electric intensity factors 

[KI,KII,KIV]  for a spherical cap crack under remote uniform tensile stress 0 = 50 MPa 

and uniform electric field E0 = 2.5 MV/m for Semi-permeable and energetically 

consistent models 

 

 

Mesh 

Semi-permeable crack Energetically consistent  crack 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /

 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /

 

Coarse(1) 
0.9495 0.9937 0.9324 0.9517 0.9969 0.9400 

Medium(2) 
0.9970 1.0005 0.9948 0.9966 1.0007 0.9961 

Fine(3) 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

% (1)&(3) 
5.0485% 0.6332% 6.7640% 4.8272% 0.3138% 6.0011% 

%(2)&(3) 
0.3027% 0.0469% 0.5232% 0.3405% 0.0732% 0.3922% 

  

3.4.2 Convergence of cylindrical cracks in infinite medium under tensile remote 

loadings 

Similarly, in this case we consider a cylindrical crack with the radius of penny-shaped 

crack a, radius of cylindrical cracks R and the half-subtended angle  embed in a 

transversely isotropic piezoelectric infinite medium which is made of PZT-4 as shown 

in figure 3.4 (a) and (b). These geometries will be utilized to explore the intensity 

factors in the three points (i.e., top, middle and bottom points) along the crack front in 
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several cases, e.g., the half subtended angle, curvilinear of crack surface, remote tensile 

mechanical load, remote electrical load and the permittivity inside the crack gap.  

Where the radius of the penny-shaped crack is defined as a = 1, the   is imposed 

as the half subtended angle of the crack surface ( = 90) and R indicates the radius of 

cylindrical crack (R=1). The material symmetric axis and the poling direction are 

identical to the x3-axis. In this special case, we similarly employ three meshes which 

are explicit different level similar to the spherical cap crack. The finest meshes contains 

144 elements, whereas the medium meshes contains 64 elements and the coarsest mesh 

contain 8 elements, respectively, as identically shown in  figure.3.3 (b). The 

piezoelectric medium of the cylindrical crack is upon the remote uniaxial tension 0 = 

50 MPa, uniform electric field E0 = 2.5 MV/m in the 3x -direction. In this exploration, 

the permittivity is assumed as 5x8.85x10-12 C/Vm 
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(b) 

 

Figure 3.5 (a) schematic of a cylindrical crack in infinite domain and (b) three meshes 

utilized in computation and coordinate of each meshes. 

 

Similarly, from the numerical results for stress and electric intensity factors [KI,KII,KIV]   

normalized by the harvests obtained from the finest mesh as reported in the table 3.4 

and 3.5, it is found that the stress and electric intensity factors provided from three 

meshes (i.e., coarse, medium and fine meshes) are well accepted.  In particular, the 

discrepancy of the given results from the medium meshes correlated with the fine mesh 

is less than 0.2381% respectively for all crack face models (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models). It should be noted 

again that the coarsest mesh comprises only 8 elements along the crack front. 
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Table 3.4 The convergence of normalized stress and electric intensity factors 

[KI,KII,KIV]   for a cylindrical crack under remote uniform tensile stress 0 = 50 MPa 

and uniform electric field E0 = 2.5 MV/m for impermeable and permeable models 

 

 

Mesh 

Impermeable crack Permeable crack 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /

 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /  

Coarse(1)  0.7301 0.9859 0.9688 0.7882 0.9852 1.0085 

Medium(2) 1.0024 1.0001 1.0006 0.9997 1.0002 0.9998 

Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  26.9892% 1.4128% 3.1240% 21.1765% 1.4797% 0.8523% 

%(2)&(3) 0.2381% 0.0106% 0.0587% 0.0315% 0.0172% 0.0179% 

 

Table 3.5 The convergence of normalized stress and electric intensity factors 

[KI,KII,KIV]   for a cylindrical crack under remote uniform tensile stress 0 = 50 MPa 

and uniform electric field E0 = 2.5 MV/m for Semi-permeable and energetically 

consistent models 

 

Mesh Semi-permeable crack Energetically consistent  crack 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /

 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /  

Coarse(1)  0.7874 0.9799 0.9222 0.7369 0.9874 0.9465 

Medium(2) 0.9998 1.0001 0.9993 0.9993 1.0002 1.0002 

Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  21.2552% 2.0061% 7.7769% 26.3120% 1.2648% 5.3509% 

%(2)&(3) 0.0184% 0.0149% 0.0712% 0.0705% 0.0185% 0.0244% 

 

3.4.3 A pair of penny-shaped cracks  

Next, we consider a pair of penny-shaped cracks, i.e., two penny-shaped crack in 

vertical direction and two penny-shaped crack in horizontal direction with radius a, and 

the distance of the two cracks L embed in a transversely isotropic piezoelectric infinite 

medium made of PZT-4 as indicated in figure 3.5 (a) and (b). These geometries will be 

utilized to explore other cases for instance interacting of both cracks, remote tensile 

mechanical load, remote electrical load and the permittivity inside the crack gap.  
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Where a is a radius of the penny-shaped crack (a = 1) and the L represent the 

distance of two cracks (L=0.5 and L=2.25 for two penny-shaped crack in both vertical 

and horizontal direction, respectively). The material symmetric axis and the poling 

direction are the same, which is the x3-direction. In this crack, we employ three meshes 

from explicitly different levels. The finest meshes contain 144 elements per a crack, 

whereas the medium meshes contains 64 elements and the coarsest mesh contain 8 

elements, respectively, as shown in the figure 3.5. The piezoelectric medium of the 

spherical crack is under remote uniaxial tension 0 = 50 MPa, uniform electric field E0 

= 2.5 MV/m in the x3-direction. In this exploration, the permittivity is 5x8.85x10-12 

C/Vm 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

3x

 

 

2x

 

 

1x

 

 

L  
 a  

 

a  

 

0

 

 

0

 

 

0E

 

 
L  
 

3x

 

 

1x

 

 

Crack A

 

 

Crack B

 

 

Crack B

 

 

Crack A

 

 

1x

 

 

2x

 

 

Poling  

 
3x

 

 

L  
 

L  
 

a  

 

a  

 

a  

 

a  

 

3x

 

 
2x

 

 

0E

 

 

Crack A  

 

Crack B  

 

0

 

 

0

 

 



 

 

29 

 

 

 

 

 

 

 

 

 

(c) 

Figure 3.6 (a) schematic of a pair of penny-shaped cracks in vertical direction in infinite 

domain and (b) a pair of penny-shaped cracks in horizontal direction and (c) three 

meshes utilized in computation. 

 

For the two penny-shaped crack in vertical direction, results from the numerical 

results for stress and electric intensity factors [KI, KII, KIV] given from the finest mesh 

(144 elements) recorded in the table 3.6 and 3.7 indicate that the stress and electric 

intensity factors of one penny-shaped cracks obtained from three meshes are good 

convergence. To be precise, the disparity of the gained results from the coarsest and the 

medium meshes compared with the fine mesh are less than 2.8575% and 0.2892%, 
respectively, for all crack-face models.  

Another cracks are two penny-shaped crack in horizontal direction. In this case, 

the numerical results for stress and electric intensity factors [KI,KIV] given from the 

finest mesh (144 elements) recorded in the table 3.8 and 3.9 show that the stress and 

electric intensity factors offer from three meshes are good acceptable. The disparity of 

the gained results from the coarsest and the medium meshes compared with the fine 

mesh are less than 1.2875% and 0.0561%, respectively, for all crack-face models. 
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Table 3.6 The convergence of normalized stress and electric intensity factors 

[KI,KII,KIV] for a pair of penny-shaped crack in vertical direction under remote uniform 

tensile stress 0 = 50 MPa and uniform electric field E0 = 2.5 MV/m for impermeable 

and permeable models 

Mesh Semi-permeable crack Energetically consistent  crack 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /

 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /  

Coarse(1)  0.9937 1.0286 0.9940 0.9938 1.0258 0.9938 

Medium(2) 1.0005 1.0029 1.0005 1.0005 1.0027 1.0005 

Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  0.6329% 2.8575% 0.6016% 0.6201% 2.5820% 0.6201% 

%(2)&(3) 0.0518% 0.2892% 0.0479% 0.0521% 0.2653% 0.0521% 

 

Table 3.7 The convergence of normalized stress and electric intensity factors 

[KI,KII,KIV] for a pair of penny-shaped cracks in vertical direction under remote uniform 

tensile stress 0 = 50 MPa and uniform electric field E0 = 2.5 MV/m  for Semi-

permeable and energetically consistent models 

Mesh Semi-permeable crack Energetically consistent  crack 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /

 

ref

I KK /

 

ref

II KK /

 

ref

IV KK /  

Coarse(1)  0.9938 1.0264 0.9940 0.9937 1.0266 0.9939 

Medium(2) 1.0005 1.0027 1.0005 1.0005 1.0027 1.0005 

Fine(3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  0.6238% 2.6441% 0.6042% 0.6290% 2.6616% 0.6065% 

%(2)&(3) 0.0520% 0.2708% 0.0512% 0.0519% 0.2728% 0.0511% 
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Table 3.8 The convergence of normalized stress and electric intensity factors [KI,KIV]  

for  two penny-shaped cracks in horizontal direction under remote uniform tensile stress 

0 = 50 MPa and uniform electric field E0 = 2.5 MV/m for impermeable and permeable 

models 

 

Mesh 

Impermeable crack Permeable crack 

ref

I KK /  
ref

IV KK /  
ref

I KK /  
ref

IV KK /  

Coarse(1)  0.9871 0.9875 0.9872 0.9872 

Medium(2) 1.0006 1.0007 1.0006 1.0006 

Fine(3) 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  1.2875% 1.2520% 1.2758% 1.2758% 

%(2)&(3) 0.0561% 0.0654% 0.0594% 0.0594% 

 

Table 3.9 (3.9) The convergence of normalized stress and electric intensity factors 

[KI,KIV] for two penny-shaped cracks in horizontal direction under remote uniform 

tensile stress 0 = 50 MPa and uniform electric field E0 = 2.5 MV/m for Semi-permeable 

crack and Energetically consistent crack 

 

Mesh 

Semi-permeable crack Energetically consistent crack 

ref

I KK /  
ref

IV KK /  
ref

I KK /  
ref

IV KK /  

Coarse(1)  0.9872 0.9873 0.9872 0.9873 

Medium(2) 1.0006 1.0006 1.0006 1.0006 

Fine(3) 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  1.2788% 1.2673% 1.2831% 1.2705% 

%(2)&(3) 0.0585% 0.0623% 0.0577% 0.0617% 

 

3.4.4 Tunnel crack 

Finally, we consider a tunnel crack with the half-length L and end-radius a containing 

in a transversely isotropic piezoelectric infinite medium as shown in figure 3.6. The 

material properties such as PZT-4 is utilized. In this case, the poling direction is similar 

to that of the symmetry axis of material as x3-axis. The geometry will be utilized to 

investigate other cases, for instance the aspect ratio (L/a), remote tensile mechanical 

load, remote electrical load and the permittivity inside the crack gap 

Where a  is the end-radius of tunnel crack (a is defined as 1), the L represent 

the half-length of tunnel cracks (L is determined as 5). In this crack, we employ three 
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meshes with explicitly different levels. As shown in the figure.3.5, the finest meshes 

contain 144 elements, whereas the medium meshes contains 72 elements and the 

coarsest mesh contain 24 elements respectively. The piezoelectric medium of the 

spherical crack is under remote uniaxial tension 0 = 50 MPa, uniform electric field E0 

= 2.5 MV/m in the x3-direction. In this exploration, the permittivity is 5x8.85x10-12 

C/Vm 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) Course mesh (24 elements) 

 

 

 

 

(b) Medium mesh (72 elements) 

 

 

 

 

 (c) Fine mesh (144 elements) 

Figure 3.7 (a) schematic of a tunnel crack in infinite domain, (b),(c) and (d) are three 

meshes utilized in computation such as 24, 72 and 144 elements. 

 

Finally, from the numerical results for stress and electric intensity factors [KI,KIV]   
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3.9, it can be found that the non-zero intensity factors [KI,KIV]   given from three meshes 

are acceptable. In particular, the discrepancy of the provided results from the coarsest 

and the medium meshes compared with the fine mesh is 1.8861% and 0.2364%, 
respectively, for all crack face models (i.e., impermeable, permeable, semi-permeable 

and energetically consistent models). It should be remarked again, that the coarsest 

mesh includes only 24 elements in the region along the crack front, whereas the rest are 

in the remaining crack surface. 

 

Table 3.10 The convergence of normalized stress and electric intensity factors [KI,KIV]  

for a tunnel crack under remote uniform tensile stress 0 = 50 MPa and uniform electric 

field E0 = 2.5 MV/m for impermeable and permeable models 

 

Mesh 

Impermeable crack Permeable crack 

ref

I KK /  
ref

IV KK /  
ref

I KK /  
ref

IV KK /  

Coarse(1)  1.0185 1.0189 1.0186 1.0186 

Medium(2) 1.0022 1.0024 1.0022 1.0022 

Fine(3) 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  1.8529% 1.8861% 1.8633% 1.8633% 

%(2)&(3) 0.2181% 0.2364% 0.2241% 0.2241% 

 

Table 3.11  The convergence of normalized stress and electric intensity factors [KI,KIV] 

for a tunnel crack under remote uniform tensile stress 0 = 50 MPa and uniform electric 

field E0 = 2.5 MV/m for Semi-permeable crack and Energetically consistent crack 

 

Mesh 

Semi-permeable crack Energetically consistent crack 

ref

I KK /  
ref

IV KK /  
ref

I KK /  
ref

IV KK /  

Coarse(1)  1.0186 1.0187 1.0186 1.0187 

Medium(2) 1.0022 1.0023 1.0022 1.0023 

Fine(3) 1.0000 1.0000 1.0000 1.0000 

% (1)&(3)  1.8607% 1.8719% 1.8568% 1.8691% 

%(2)&(3) 0.2226% 0.2297% 0.2208% 0.2285% 
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3.5 Verification 

The stress and electric intensity factors, along the crack front, in the infinite domain of 

three-dimensional, transversely anisotropic piezoelectric material resulting from the 

weakly singular, SGBEM under various boundary condition (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models) will be verified and 

compared with the existing benchmark solutions in the literatures in order to guarantee 

the accuracy of the current approach.  

In this work, we consider the penny-shaped crack with radius a containing in 

transversely isotropic piezoelectric unbound domain. The poling axis are directed along 

with x3-direction (the axis of material symmetry which is perpendicular on the crack 

surface) as indicated in figure 3.8 (a). The body is subjected to remote tensile 

mechanical and electrical loading 0 = 5 MPa and E0 = 0.5 MV/m as shown in figure 

3.8 (b). the material properties that used for this verification is PZT-4 and the three 

different meshes such as the coarse mesh (8 elements), the medium mesh (24 elements) 

and the fine mesh (64 elements) are utilized as illustrated in figure 3.9 (a),(b) and (c), 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

(a)      (b) 

Figure 3.8 (a) schematic of a penny-shaped crack in infinite domain, (b) the body 

subjected to remote tensile mechanical and electrical load 
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Figure 3.9 three mesh utilized in analysis, (a) Coarse mesh, (b) Medium mesh and (c) 

Fine mesh 

The result [KI,KIV] obtained from penny-shaped crack under four models are good 

agreement with exact solution such as KI,KIV (exact) are proposed by Chen et al (2000) 

for permeable and Li and Lee (2004) for permeable and semi-permeable models 

whereas KI,KIV (exact) for energetically consistent models are offered by Li et al (2011). 

The numerical result as indicated in table 3.10 and 3.11 show that the error for 

impermeable is less than 0.561%, for permeable 0.549%, for semi-permeable 0.551% 

and for energetically consistent models is less than 0.550%. Moreover, it manifest that 

even the coarse mesh can obtain the excellent results under various boundary 

conditions. 

 

Table 3.12 The verification of normalized stress and electric intensity factors [KI,KIV]  

for a penny-shaped crack under remote uniform tensile stress 0 = 5 MPa and uniform 

electric field E0 = 0.5 MV/m for impermeable and permeable models 

 

 

Mesh 

Impermeable crack Permeable crack 

/ Exact

IK K  / Exact

IVK K  / Exact

IK K  / Exact

IVK K  

Coarse(1)  5.6102 8.1242 5.6109 1.4177 

Medium(2) 5.6428 8.1707 5.6432 1.4259 

Fine(3) 5.6335 8.1568 5.6338 1.4235 

Exact 5.6419 8.1680 5.6419 1.4256 

Exact & (1)  0.5610% 0.5363% 0.5493% 0.5493% 

Exact & (2) -0.0158% -0.0331% -0.0240% -0.0240% 

Exact & (3) 0.1494% 0.1375% 0.1439% 0.1438% 
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Table 3.13 The verification of normalized stress and electric intensity factors [KI,KIV]  

for a penny-shaped crack under remote uniform tensile stress 0 = 5 MPa and uniform 

electric field E0 = 0.5 MV/m for semi-permeable and energetically consistent models 

 

 

Mesh 

Semi-permeable crack Energetically consistent crack 

/ Exact

IK K  / Exact

IVK K  / Exact

IK K  / Exact

IVK K  

Coarse(1)  5.6108 2.4130 3.4658 1.5960 

Medium(2) 5.6432 2.4269 3.4859 1.6052 

Fine(3) 5.6451 2.4277 3.4871 1.6058 

Exact 5.6419 2.4263 3.4852 1.6049 

Exact & (1)  0.5511% 0.5465% 0.5553% 0.5509% 

Exact & (2) -0.0228% -0.0264% -0.0201% -0.0236% 

Exact & (3) -0.0567% -0.0595% -0.0549% -0.0577% 
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CHAPTER 4 

NUMMERICAL RESULT AND DISCUSSIONS 

Extensive results on intensity factors are obtained to exhibit preciseness and efficacy of 

the weakly singular SGBEM. Spacious numerical simulations are implemented on 

crack in a three-dimensional, linear transversely anisotropic piezoelectric infinite 

medium under four distinct types of electrical boundary conditions on the crack surface 

(viz. impermeable, permeable, semi-permeable and energetically consistent boundary 

conditions). The five different cracks are computed here, i.e., the penny-shaped crack 

folded in a half circular ball (spherical cap crack), the penny-shaped crack folded in a 

cylinder (cylindrical crack), tunnel crack, two penny-shaped cracks in vertical direction 

and two penny-shaped cracks in the horizontal direction containing in a piezoelectric 

infinite medium subject to tensile remote electrical and mechanical loading conditions. 

 

4.1 Influence of geometry on four crack-face boundary conditions  

It still remains uncertain which of the four-type electric boundaries (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models), is physical 

methodical and more naturalistic. Accordingly, this uncertainty becomes the motivation 

for current investigations to predicate the four-types of the crack-face electric boundary 

conditions on non-zero intensity factors of piezoelectric medium embed isolated crack 

in infinite domain. The numerical approximated results of planar and non-planar cracks 

are then diagnosed. 

 In this investigation, we utilize the planar and non-planar geometries such as a 

spherical cap crack, a cylindrical crack, a tunnel crack, two penny-shaped cracks in a 

vertical direction and two penny-shaped crack in the horizontal direction to investigate 

the influence of various parameters on stress and electric intensity factors.  The 

parameters utilized in entire explorations are based on the table below: 

 

Table 4.1 the entire parameters, typical value and range that used to investigate stress 

and electric intensity factors on four crack-face boundary conditions 

 

Parameters Typical value Range 

1.Spherical and cylindrical crack 

- Permittivity c 

- Electric field E0 

- Mechanical load 0 

- Half-subtended angle  

- Boundary conditions 

- Curvature  

 

c =5x8.85x10-12C/Vm  

E0 = 2.5 MV/m 

0 = 50 MPa 

 =45 

4 BCs 

(No) 

 

2,2.5,3,…, 10c 

-4.5.-4…, 4.5MV/m 

10,20,…,100 MPa 

-5 to 90 degree 

(No) 

 = 1 to  = 18 

2.Tunnel crack 

Permittivity c 

Electric field E0 

Mechanical load 0 

 

c =5x8.85x10-12C/Vm  

E0 = 2.5 MV/m  

0 = 50 MPa 

 

2,2.5,3,…, 10c  

-4.5.-4…, 4.5MV/m 

10,20,…,100 MPa 
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Aspect ratio L/a 

Boundary conditions 

3.two penny-shaped crack in 

vertical direction 

Permittivity c 

Electric field E0 

Mechanical load 0 

Aspect ratio L/a 

Boundary conditions 

4.two penny-shaped crack in 

horizontal direction 

Permittivity c 

Electric field E0 

Mechanical load 0 

Aspect ratio L/a 

Boundary conditions 

 

5 

4 BCs 

 

 

c =5x8.85x10-12C/Vm  

E0 = 2.5 MV/m 

0 = 50 MPa 

0.5 

4 BCs 

 

 

c =5x8.85x10-12C/Vm  

E0 = 2.5 MV/m 

0 = 50 MPa 

2.25 

4 BCs 

 

0.5,1,1.5,…,10 

(No) 

 

 

2,2.5,3,…, 10c  

-4.5.-4…, 4.5MV/m 

10,20,…,100 MPa 

0.25,0.5,0.75,1…,10 

(No) 

 

2,2.5,3,…, 10c  

-4.5.-4…, 4.5MV/m 

10,20,…,100 MPa 

2.25,2.5,2.75,3…,10 

(No) 

 

4.1.1 Influence of crack-subtended angle for non-planar cracks. 

In this section, the non-planar crack such as spherical cap and cylindrical cracks is 

utilized to investigate the influence of the crack subtended angle on stress intensity 

factor along the crack front, which can be indicated in the following subsection. 

 

4.1.1.1 Influence of half subtended angle for penny-shaped crack folded in a half 

circular ball (spherical cap crack)  

At the outset, we consider a penny-shaped crack, folded in a half of circular ball or a 

spherical cap crack containing in a transversely isotropic piezoelectric infinite medium 

which is made of PZT-4. In this case, the finest mesh (144 elements) chosen in the 

convergence sections (3.4.1) is employed. The symmetric axis of material and the 

poling direction are similarly directed by the x3-axis. The crack is adopted to investigate 

the intensity factors along the crack front which can be concluded in the following (i) 

the crack- subtended angle  can be varied from [5,10,15,…90 degree], (ii) the remote 

uniaxial tension is fixed 0 = 50 MPa, (iii) the uniform electric field is defined as  E0 = 

2.5 MV/m  in the x3-direction and (iv) and the permittivity containing the crack gap is 

determined as c = 50 where 0 = 5x8.85x10-12 C/Vm is the permittivity of the air. 

The geometry is illustrated in the figure 4.1. 
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Figure 4.1 Schematic of a penny-shaped crack folded in circular ball (a spherical cap 

crack) in a piezoelectric infinite medium 

 

where a is a radius of the penny-shaped crack and is varied from a = 

0.087266462599717 ( = 5)  to a = 1.570796326794900 ( = 90),   represents the 

half-subtended angle of the crack surface whereas the radius R indicates the radius of 

spherical cap crack after folding (R is defined as 1).  

The influence of the half-subtended angle on intensity factors along the crack 

front obtained from the spherical cap crack by employing the finest mesh (144 

elements) are considered as reported in the figure 4.2 (a), (b) and (c) respectively. 

Results indicate that when the half-subtended angle increases, the stress intensity factor 

KIII expressly vanishes. The magnitude of the stress and electric intensity factors [KI, 

KII, KIV] of four crack-face models (i.e., permeable, impermeable, semi-permeable and 

energetically consistent models) are different values at the entire range. It can be 

discussed the detail as follow: 

The numerical results of stress intensity factors KI  are reported in figure. 4.2 

(a). It is found that when the half-subtended angle of the crack surface increases, the 

value of the stress intensity factor KI of four models (i.e., impermeable, permeable, 

semi-permeable and energetically consistent models) increases at the range   = 5 to  

= 25 degree (the peak magnitude) and decreases when the crack subtended angle 

increase. It can be observed further that the three models (i.e., impermeable, permeable 

and semi-permeable models) are nearly identical when half-subtended angle is 

relatively small at the range  = 5 to  = 15 degree and that those three models become 

clearly distinct when crack subtended angle is sufficiently large. Besides, Results also 

indicate that the energetically consistent model is lower than other three models in the 
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beginning and that one approach to the permeable model at the end. Moreover, it is 

found that the permeable and semi-permeable models show the same behaviors of 

distributions at the entire range. Furthermore, results reveal that the upper bound is 

permeable model whereas the lower bound is switched of energetically consistent and 

impermeable models at  = 45 degree. This can be concluded that when the half 

subtended angle becomes large ( = 25 to 90), it has influence not only to the values of 

the stress intensity factor  KI  of four models but also to the bounds of four crack-face 

models. 

Influence of half subtended angle of spherical cap crack on stress intensity 

factor KII can achieve results illustrated in figure. 4.2 (b). It is found that when the half-

subtended angle  increases, the magnitude of KII on four crack-face models increase 

to the peak magnitude at  = 65 degree and decreases to the end of distributions ( = 

65 to 90). It is obvious that four crack-face models are expressly not identical. However, 

results reveal that the bounds of four crack-face models are not switched, which means 

that the impermeable model is upper bound and the energetically consistent model is 

lower bound. Moreover, the effects also found that when half-subtended angle is small 

at  = 5 degree (starting point), the four models are nearly identical whereas the 

energetically consistent model is different from other three models at the end point. 

This can be summarized that as the half subtended angle is larger, it has a significant 

influence on the values of stress intensity factor KII.   

Eventually, Influence of half subtended angle of non-planar crack on electric 

intensity factors KIV on four crack-face models are obtained as illustrated in figure. 4.2 

(c). It is seen that when half subtended angle increases, the four crack-face models (i.e., 

impermeable, semi-permeable, energetically consistent and permeable models) 

differently increase the magnitude. It can be observed further from figure that the 

maximum values of the impermeable and permeable models are different from the 

semi-permeable and energetically consistent models, e.g. the impermeable and 

permeable models have the maximum values at the point   = 60 degree whereas the 

semi-permeable and energetically consistent models have the peak values at  = 35 

degree. Moreover, results also reveal that when the crack subtended angle increase, the 

lower bound is switched of permeable and energetically consistent models at  = 60 

degree whereas the impermeable model retains the upper bound at the entire range of 

distributions. Moreover, it is also found that when the crack subtended angle is 

sufficiently large at  = 90 degree, the semi-permeable and energetically models  are 

nearly identical to permeable model. This can be summarized that when half-subtended 

angle is large, it has influence to value of electric intensity factor KIV and the lower 

bound of four crack models, respectively.  
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        (c) 

Figure 4.2 (a), (b) and (c) are dependent of normalized stress and electric [KI, KII, KIV]  

intensity factors on the crack subtended angle for spherical cap crack in infinite 

medium.  

 

4.1.1.2 Influence of half subtended angle for penny-shaped crack folded in 

cylindrical under remote tensile loading 

In this case, we implement analogously to the case of spherical cap crack by considering 

a penny-shaped crack folded in a half of cylindrical or a cylindrical crack embed in a 

transversely isotropic piezoelectric infinite medium which made of PZT-4 illustrated in 

the figure 4.3(a). In this special case, we apply the finest mesh (144 elements) similar 

to the convergence section 3.4.2. The poling directions are analogous to the symmetric 

axis of material of x3-axis. The parameters of this investigations can be concluded in 

the following (i) the half subtended angle   vary from [5 ,10,15…90], (ii) the remote 

uniaxial tension is fixed 0 = 50 MPa, (iii) the uniform electric field is defined  E0 = 2.5 

MV/m  directed in  x3-direction, (iv) and the dielectric permittivity inside the crack gap 

is fixed c = 50 where 0 = 8.85x10-12 C/Vm is the permittivity of the air. 
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(a)  

 

 

 

 

 

 

 

(b) 

Figure 4.3 (a) Schematic of a penny-shaped crack folded in cylindrical pipe (a 

cylindrical crack) in a piezoelectric infinite medium (b) three different points on the 

mesh coordinate of cylindrical crack 

 

The stress and electric intensity factors [KI,KII,KIV]   are obtained from the three 

different points such as top, middle and bottom points of four crack-face models (i.e., 

impermeable, permeable, semi-permeable and energetically consistent models) as 

shown in figure 4.3 (b) whereas the stress intensity factor KIII only appears at the middle 

point (a point at the middle zone). When the half-subtended angle   increases, the 

results show that the normalized stress and electric [KI,KII,KIV] are different the 

magnitude and are different trends depending on the positions (i.e., top, middle and 

bottom points) which can be discussed as follow: 

Results indicated in figure 4.4(a), 4.4(b) and 4.4(c) are completely obtained. 

The normalized stress KI of four models at the three different points (e.g., top, middle 

and bottom points) reveals that when the crack subtended angle increases, the 

magnitude KI of the top point increase and are greater than the middle and bottom points 

respectively. It can be observed further that the peak magnitude of middle and bottom 

points are respectively occurred at  = 35 and  = 25 degree whereas the top point is 
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strongly increase at the entire range without the peak magnitude. Moreover, the upper 

bounds of three different points are strongly changed depending on the positions along 

the crack front. For example, it is impermeable model for the top point and permeable 

model for both middle and bottom points throughout the range of distribution, whereas 

the lower bound is energetically consistent model for the top point, and that again are 

switched between energetically consistent and impermeable models at the middle and 

bottom points. More specifically, those switching points are completely different such 

as the switching point of middle and bottom points are occurred at  = 85 and at  = 70 

degree, respectively. Furthermore, it is obvious that the impermeable model depends 

strongly on the increase of crack-subtended angle; this means that at the top point KI is 

greater than both permeable and semi-permeable models whereas the impermeable 

model is lower than those two models at the middle and bottom points. Besides, results 

indicate that not only the three crack-face models (i.e., impermeable, permeable and 

semi-permeable models) of three different points are nearly identical when half-

subtended angle is relative small( = 5 to  = 20 degree) but also the energetically 

consistent model expressly approaches to the permeable model only at the bottom point 

at  = 90 degree.  It can then be concluded that when the half-subtended angle increases, 

not only the three crack models are identical when half-subtended angle is small but 

also the switching point of the lower bounds at middle and bottom points become also 

different. Results also reveal that the upper bounds are also changed depending on the 

positions along the crack front. Besides, the energetically consistent models are 

significantly approached to permeable model only at bottom point.  
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(d) 

Figure 4.4 Dependent of normalized stress intensity factors KI on the crack subtended 

angle for cylindrical crack in infinite medium. Results are reported on (a) all points, the 

(b) top, (c) middle and (d) bottom points 

 

The harvest reported in the figure 4.5(a),(b),(c) and (d) of a penny-shaped crack 

folded in a cylindrical pipe (a cylindrical crack) on four crack-face models indicate that 

when the half-subtended angle increases, the stress intensity factors KII at various 

positions (i.e., top, middle and bottom points) are unequivocally different. It is also 

found that the magnitude of KII at the top point is less than both middle and bottom 

point as indicated in the figure 4.5(a) which can be discussed in detail as follows. As 

half-subtended angle increase, figure 4.5(b), (c) and (d) show that the distributions of 

KII on four crack-face models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models) in three distinct points (i.e., top, middle and bottom 

points) variously increase. It can be observed further that the maximum values of KII 

differently occur, for example, at  = 70 degree it occurs at the bottom point, at  = 65 

degree is occurred only for the impermeable model on the top point (for the permeable, 

semi-permeable and energetically consistent models of  KII completely decrease) and 

KII of four models at the middle point strongly increase. Results also show that the 

bounds of each position (i.e., top, middle and bottom points) is not changed. For 

example, at both middle and bottom points, the upper bound and the lower bounds are 

impermeable and energetically consistent models respectively. Nevertheless, at the top 

point, the lower bound is permeable model. This can be concluded that when crack-

subtended angle increases, it influences not only the value of intensity factors KII but 
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also the bounds of four crack-face models; more specifically, the difference of both 

upper and lower bounds at the top and the two points (i.e., middle and bottom points). 
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Figure 4.5 Dependent of normalized stress intensity factors KII on the crack subtended 

angle for cylindrical crack in infinite medium. Results are reported on (a) all points, the 

(b) top, (c) middle and (d) bottom points 

 The stress intensity factors KIII obtained only at a middle point (at middle zone 

between top and bottom points) of a quarter (1/4) along the crack front are investigated 

as mentioned in figure 4.6. It indicates that when the crack-subtended angle increases, 

the four crack-face models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models) strongly decrease to different minimum values, for 

example, at  = 80 degree for impermeable and  = 85 for permeable, semi-permeable 

and energetically consistent models; however, the distributions are in negative values. 

Moreover, results manifest that the bounds including upper and lower bound are 

respectively impermeable and permeable models at the entire range. Besides, the 

numerical results KIII appear only at the middle zone between the top and bottom points 

whereas the top and bottom points completely disappear.  This can be concluded that 

when half-subtended angle of cylindrical crack increases, it has influence the value of 

stress intensity factors KIII with different minimum values and also give rise to the 

negative value of four crack-face models. 
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Figure 4.6  Dependent of normalized stress intensity factors KIII on the crack subtended 

angle for cylindrical crack in infinite medium. Results are reported on the middle point 

 

The numerical results of electric intensity factors KIV of a penny-shaped crack 

folded in a cylindrical pipe (a cylindrical crack) are eventually obtained from various 

points such as top, middle and bottom points as displayed in the figure 4.7(a). Results 

indicate that as the half-subtended angle increase, the electric intensity factors KIV are 

completely different and increase to the differential peak magnitude depending on the 

0

III
III

K
K

R
  

2/


   

0

0

12

50

2.5 /

5 8.85 10 /c

MPa

E MV m

C Vm

 



   

 



 

 

50 

positions (i.e., top, middle and bottom points) and the four crack-face models, for 

example, the peak magnitude of impermeable models, the two models (i.e., semi-

permeable and energetically consistent models) and permeable model of middle points 

are occurred at  = 65, at  = 50 and at  = 75 degree, respectively. Results reveal 

further from figure 4.7 (b),(c) and (d) that the impermeable model of three different 

points are upper bound at  the entire range whereas the lower bounds is switched of 

permeable and energetically consistent models which is different from the lower bound 

at the top point (lower bound is completely permeable). It can be observed further that 

the switching points of lower bound at both middle and bottom points are completely 

different, for instance, the bottom point is at  = 60 degree whereas at the middle point 

is shifted to  = 85 degree. Besides, results also report that when the half-subtended 

angle is large, the semi-permeable model at both middle and bottom points are 

converged to permeable models at the end distribution at  = 90 degree which is distinct 

from the beginning  = 5 degree. Throughout above discussions of electric intensity 

factors KIV illustrated in the figure 4.7(a) to 4.7(d), it can be summarized that as the 

half-subtended angle increases, it significantly influences both the value electric 

intensity factors KIV and the bounds of four crack-face models at three different points, 

i.e., the lower bounds at the middle and bottom point.  
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       (d) 

Figure 4.7 Dependent of normalized electric intensity factors KIV on the crack 

subtended angle for cylindrical crack in infinite medium. Results are reported on (a) all 

points, the (b) top, (c) middle and (d) bottom points 

 

4.1.1.3 Comparison between spherical cap crack and cylinder crack 

From the above discussion, the difference and similarity of the numerical results 

obtained from both spherical cap and cylindrical cracks can be concluded in the 

following:   

For the spherical cap crack, It can be found that as the crack subtended angle 

increase from [5, 10, 15,…, 90] with the constant loading,  KI of four models are 

completely different and are dependent on the crack subtended angle. For example, the 

magnitude of four models increases to the peak points when the crack subtended angle 

is relative small and the magnitude of those four models decreases when the crack 

subtended angle is sufficiently large. Results also indicate further that the three models 

(i.e., impermeable, permeable and semi-permeable models) are identical and 

independent on the boundary conditions. For example, when the crack subtended angle 

is small in the beginning and those three models are completely different when the crack 

subtended angle is large. In addition, the energetically consistent model is lower than 

those three models (i.e., impermeable, permeable and semi-permeable modes) at the 

beginning range and it approaches to permeable model at the end range. Besides, it is 

seen again that the increasing crack subtended angle has an influence only to the lower 

bound by switching of energetically consistent and impermeable model corresponding 

to turning point. On the contrary, the stress intensity factors KI obtained from other non-
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planar cracks (i.e., cylindrical crack) at three different points (i.e., top, middle and 

bottom points) are provided when the crack subtended angle increases. It can be found 

again that all the behaviors and trends are very identical and analogous to the spherical 

cap crack only at the bottom points. However, the other remaining points (i.e., middle 

and top points) exhibit less identical behaviors respectively. In addition to the similarity 

of both cracks (i.e., spherical cap and cylindrical cracks on the bottom point), the upper 

bound at the top point is impermeable model which is different form upper bound at 

both middle and bottom points. Again, the lower bound at the top point is energetically 

model which is completely distinct from lower bound of both middle and bottom points 

by switching of lower bounds). Moreover, the behavior of impermeable model the top 

point is different from the remaining points (i.e., middle and bottom points) 

The numerical results obtained from the stress intensity factors KII of spherical 

cap crack can be concluded as follows. It can be found that when the crack subtended 

angle increases, the magnitude of four models (i.e., impermeable, permeable, semi-

permeable and energetically consistent models) strongly depends on the crack 

subtended angle,  for example, they simultaneously increase to the maximum point at 

the beginning range and those four models will be decreased when the crack subtended 

angle is sufficiently large. Moreover, the increasing crack subtended angle has no 

influence to the bounds of four crack models. Identically, the stress intensity factors KII 

obtained from the cylindrical crack at three different points (i.e., top, middle and bottom 

points) are proposed to compare the KII of spherical cap crack. It is found again that 

when the crack subtended angle increases, the magnitude KII of three different points 

are completely different values depending on different points. It exhibits only the 

behavior of the bottom point which is very identical with the behavior of spherical cap 

crack. Apart from, the similarity of the spherical cap crack, it has no the maximum 

points both KII  at the middle point and also three models at the top points i.e., 

permeable, semi-permeable and energetically consistent models (accept impermeable). 

Moreover, it is also found that the lower bound at the top point is permeable model 

which is different from the lower bound of both middle and bottom points. Overall, it 

can be concluded that the increasing crack subtended angle has an influence not only 

to magnitude KII of both cracks but also to the bounds of four models of cylindrical 

crack, especially the bounds at the top point. 

The difference between spherical cap crack and cylindrical crack is the stress 

intensity factor KIII in which the cylindrical crack appears only the middle point (a point 

of the middle zone is located between the top and bottom points). It can be concluded 

that when the crack subtended angle increases, the magnitude of four models becomes 

completely different and tend to decrease the magnitude to the different minimum 

values when the crack subtended angle is sufficiently large; however, it is negative 

intensity factors.  This meant that the crack surface has influence to the magnitude but 

not to the bound of four models.  

Different to the stress intensity factors [KI,KII]   is the electric intensity factor 

KIV of non-planar cracks. The results of the spherical cap crack can be summarized as 

follow. It can be found that increasing the crack subtended angle, the magnitude of four 

crack-face models are complete different and are dependent on the crack subtended 

angle. Results also show that the maximum points of the magnitude of the two models 

(i.e., semi-permeable and energetically consistent models) are not identical to that of 

impermeable and permeable models. Moreover, the lower bound of four models are 
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switching of permeable and energetically consistent models. In addition, energetically 

consistent model approaches the permeable model. Identically, the electric intensity 

factor KIV obtained from the cylindrical crack is offered to correlate the spherical cap 

crack. When the increasing crack subtended angle, the magnitude of four models 

become completely different and dependent on the crack subtended angle at the three 

different points (i.e., top, middle and bottom points). Moreover, behaviors and the 

trends of the normalized KIV at the bottom points of cylindrical crack are very identical 

to that of spherical cap crack. In addition to the parity of both cracks, it is seen that 

when the crack subtended angle increases, the lower bound of the top point is permeable 

model which is different from the middle and bottom points. Furthermore, the turning 

point of lower bound of both spherical cap and cylindrical cracks at the bottom point is 

clearly identical. 

4.1.2 Influence of curvature for non-planar cracks. 

This section, we investigate the influence on the curvature of the crack surface. The 

stress and electric intensity factors will be obtained by using the non-planar crack i.e., 

spherical cap crack and cylindrical crack, which can be seen as follow. 

4.1.2.1 Influence of curvature on penny-shaped crack folded in circular ball 

(spherical cap crack) 

To demonstrate the influence of curvature on four crack-face boundary conditions, the 

investigation is similar to the previous section 3.4.1 in which we consider a penny-

shaped crack folded in a half of circular ball or spherical cap crack. The geometry is 

illustrated in the figure 4.1 which is embed in a transversely isotropic piezoelectric 

infinite medium. The material properties is assumed as PZT-4. The symmetric axis of 

material and the poling direction are analogous to the x3-axis. To investigate influence 

of the intensity factors along the crack front, the data can be concluded as follow: (i) 

the  = R/2a is varied from [1,1.0588,1.250,…,18] (ii) radius of a penny-shaped crack 

for creating the spherical cap crack is defined as 1, (iii) the radius of spherical cap crack 

varies from R = 0.636619772367581 (the half-subtended angle is now equal to 90 

degree) till R = 11.459155902616500 (the half-subtended angle is now at 5 degree), 

and (iv) the remote uniaxial tension is fixed 0 = 50 MPa , (v) the uniform electric field 

is fixed  E0 = 2.5 MV/m and (vi) the permittivity inside the crack gap is fixed c = 50 

where 0 = 8.85x10-12 C/Vm is the permittivity of the air.  

 The non-zero stress and electric intensity factors [KI,KII,KIV]  obtained on four 

crack-face models (i.e., impermeable, permeable, semi-permeable and energetically 

consistent models) come from as average value of the point along the crack front as 

shown in the figure 4.8(a),(b) and (c). Results reveal that as the curvature becomes flat 

crack, the stress and electric intensity factors [KI,KIV] are strongly increased when the 

curvature is sufficiently large. On the contrary, the stress KII is increased at large 

curvature and decreased when the curvature becomes small or nearly the flat crack. This 

can be discussed as follows. 

  According to the numerical results of stress intensity factors KI on four crack-

face models (i.e., impermeable, permeable, semi-permeable and energetically 

consistent models), it can be seen that the stress intensity factors KI are strongly 
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increased when the curvature is sufficiently large and that one are converged to the flat 

crack when the curvature is reduced. This means that the crack opening is strongly 

inhibited by curvature of the surface at the range  =1 to  =6 as indicated in the figure 

4.8(a). Moreover, results show that the lower bounds are switched between the 

impermeable and energetically consistent model at  =2, whereas the upper bound is 

dominated by permeable models. In addition, the three models (i.e., permeable, semi-

permeable and energetically consistent models) are nearly identical in the beginning 

and the energetically consistent model gradually develops lower than the permeable 

and semi-permeable models when the curvature is small. It can be observed further that 

the impermeable model are converged to the permeable and semi-permeable models at 

the end point. It should be noted that at  =1 to 1.5, KI  of four models are negative 

values. From their distribution, it can be summarized that when the curvature is 

sufficiently large, it influences not only the values of intensity factors but also the lower 

bound of four crack models. 

 The numerical results of the stress intensity factor KII obtained in the figure 

4.8(b) are investigated on four crack-face model. It shows that when the crack-face 

model is reduced to the flat crack, the value of stress intensity factors KII is increased 

to the maximum value at  =1.6364. Provided that, the curvature is sufficiently large 

and the magnitude gradually decreased when the curvature begins to reduce at the range 

 =1.6364  to  =18. Besides, it can be demonstrated that the upper bound is 

impermeable model whereas the lower bound is energetically consistent model. This 

can be implied that when the curvature is reduced, it has influence upon the magnitude 

of stress intensity factor KII corresponding to the maximum value. 

 Finally, the electric intensity factors KIV are discussed in association with four 

crack-face boundary conditions (BCs) shown in the figure 4.8(c). Results manifest that 

when the curvature becomes flat crack, the distribution of stress intensity factors KIV on 

four crack-face models become completely different. This means that when the 

curvature is sufficiently large, the value of KIV significantly tend to increase 

corresponding to the flat of curvature at the range  =1 to =6. Moreover, the upper 

bound is impermeable crack whereas the lower bounds are switched of energetically 

consistent and permeable models. More specifically, this means that when  =0 to  

=1.5, the lower bound is energetically consistent model whereas the permeable models 

become the lower bound at the range  =1.5 to  =18 as observed in the figure 4.8c. 

This can be conclude that as the curvature of crack-face model are reduced to the flat 

crack, the magnitudes of four crack-face BCs and the bounds play a significant role and 

that affects the lower bound of four crack-face models. 
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(c) 

Figure 4.8 (a), (b) and (c) are dependent of normalized stress and electric [KI, KII, KIV] 

intensity factors on the curvature for spherical cap crack in infinite medium. Results are 

reported as average values 

4.1.2.2 Influence of curvature on penny-shaped crack folded in a cylindrical 

(cylindrical crack) 

Consider a penny-shaped crack folded in a cylindrical (a cylindrical crack), the 

geometry is illustrated in the figure 4.3 which is embed in a transversely isotropic 

piezoelectric infinite medium. The material properties constitutes as PZT-4. The finest 

mesh from the convergence section 3.4.2 is utilized for the cylindrical crack. The 

symmetric axis of material and the poling direction analogous to the x3-axis., the data 

for obtaining the intensity factors can be concluded as follow (i) the  = R/2a  is varied 

from [1 to18] (ii) radius of a penny-shaped crack for creating the cylindrical crack is 

fixed as 1, (iii) the radius of cylindrical crack is varied from R = 0.636619772367581 

(the half-subtended angle is equal to 90 degree) till R = 11.459155902616500 (the half-

subtended angle is now at 5 degree). (iv) the remote uniaxial tension is fixed 0 = 

50MPa, (v) the uniform electric field is fixed  E0 = 2.5 MV/m similar to the x3-direction, 

(vi) and the permittivity inside the crack gap is fixed c = 50 where 0 = 8.85x10-12 

C/Vm is the permittivity of the air. 

 The numerical results of stress and electric intensity factors [KI,KII,KIV] and KIII 

(only at middle point) of cylindrical crack offered from three different points (top, 

middle and bottom points) of a quarter (1/4) along the crack front are reported in figure 

4.9(a), 4.10(a) and 4.11(a). It can be seen that when the curvature is reduced to planar 
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crack, the value of KI, KII and KIV are explicitly different depending on the positions 

which can be discussed in detail in the following: 

Results of stress intensity factors KI  reported in figure 4.9(b), (c) and (d) 

indicate that the magnitude of three different points strongly increase; nevertheless, the 

value of magnitude which is near the planar crack are different, for example, for the 

middle and bottom points are approximately occurred at  =9 whereas for the top point 

is approximately occurred at  =4.5. Apart from, the three models (i.e., impermeable, 

permeable and semi-permeable models) at three points (i.e., top, middle and bottom 

points) are nearly identical when the curvature is sufficiently large. On the contrary, the 

energetically consistent model is obviously less than other three models. Furthermore, 

results manifest that the bound of four crack-face models at three distinct points along 

the crack front are clearly different, for example, the upper bound at both middle and 

bottom point are identically permeable whereas at the top point is impermeable. Again, 

the lower bound at both top and middle point is obviously energetically consistent 

model, whereas the lower bound at bottom points are obviously switched between 

impermeable and energetically consistent model when half-subtended angle is 

sufficiently large corresponding to the turning point at  =1.2857. This can be 

concluded that when the curvature converged to planar crack, it influences not only 

value of mode-I stress IF but also the bounds of four crack-face boundary condition 

possess both upper and lower bound. 
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          (d) 

Figure 4.9 Dependent of normalized stress intensity factors [KI] on the curvature for 

cylindrical crack in infinite medium. Results are reported on (a) all points, the (b) top, 

(c) middle and (d) bottom points 

 

 For the results of stress intensity factors KII on four crack-face models (i.e., 

impermeable, permeable, semi-permeable and energetically consistent models) are 

again similar to the spherical cap crack only some point. The value of stress KII at three 

different points (i.e., top, middle and bottom points) will be mentioned in figure 4.10 

(a). According to the result, provided that the curvature is reduced to flat crack, the 

values of stress KII at three different points obviously increase when the curvature is 

large corresponding to the maximum point. For example, it occurs in the bottom point 

at  =1.3846 and in the middle point at  =1.2, whereas only the impermeable of the 

top point occurs  =1.6364 as reported in figure 4.10(b),(c) and (d) respectively. It can 

be observed further that the distribution of stress KII at the top point are explicitly 

different from both the middle and bottom points. More specifically, the three crack 

models (i.e., permeable, semi-permeable and energetically consistent model) at the top 

point have no maximum value.  Moreover, results also indicate that the upper bounds 

of four models at three distinct points are identically impermeable, whereas the lower 

bounds change depending on the point along the crack front. For example, the lower 

bound of both middle and bottom point are energetically consistent, at the same time it 

is dominated by permeable at the top point. It can be concluded that as the curvature 

converged to flat crack, it has influence to the maximum points of stress intensity factor 

and to the lower bounds of four models. 
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Figure 4.10 Dependent of normalized stress intensity factors [KII] on the curvature for 

cylindrical crack in infinite medium. Results are reported on (a) all points, the (b) top, 

(c) middle and (d) bottom points 

 

 It is obvious that the stress intensity factors KIII obtained from four crack-face 

models (i.e., impermeable, permeable, semi-permeable and energetically consistent 

models) at both the top and the bottom points vanished, whereas at a middle (a point at 

middle zone) of a quarter (1/4) along the crack front as reported in figure 4.11 the 

magnitude indicates that when the curvature converged to planar crack, the three 

models (viz. permeable, semi-permeable and energetically consistent models) 

extremely increase with high slop at the range  =1 to  =3.6 approximately and then 

the slop will lower to the end point, whereas the impermeable model strongly decrease 

to the minimum point at  =1.2857 and then start increasing to the end distribution 

which means that the impermeable model can be increased and decreased. It can be 

observed further that the three models started at the same point and gradually exhibited 

the difference when the curvature becomes flat. Besides, the upper and lower bounds 

are impermeable and permeable models respectively. This can be concluded that as the 

curvature becomes flat, it affects the magnitude of four crack-face models or, more 

specifically, the impermeable model. 
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Figure 4.11 Dependent of normalized stress intensity factors [KIII] on the curvature for 

cylindrical crack in infinite medium. Results are reported on the middle point 
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 Finally, the influence of the electric intensity factors KIV of cylindrical crack 

obtained from three different point (i.e., top, middle and bottom points) reported in 

figure 4.12(a) indicates that as the curvature converged to planar crack, the value of 

electric IFs of four crack face boundary conditions (BCs) again become different and 

strongly increases with different range of high slop for example, the magnitude value 

of middle and bottom points are occurred at  =9 whereas for the top point is occurred 

at  =9 approximately. This would be discussed in details as follows; figure 4.12(b), 

(c) and (d) show that the values of electric IFs of four models (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models) are  nearly similar to 

planar crack at the top point and gradually show the distinct value at the middle and 

bottom points. It can be observed further that the bounds of four models change, for 

instance at the top point, the upper and lower bound form as impermeable and 

permeable models respectively. Moreover, the middle and bottom points illustrated that 

the upper bounds clearly form identically as impermeable (analogous to the upper 

bound of the top point), whereas the lower bound  significantly switches between 

energetically consistent and permeable model corresponding to turning point, for 

example the turning point of lower bound at middle point occurs at  =1.1250 and at 

=1.3846 for the bottom point. It can be concluded that the turning points at a quarter 

(1/4) along the crack front change depending on the curvature, and that when the 

curvature of surface change, it affects not only to the magnitude of electric IFs but to 

lower bound at three different points. 
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(d) 

Figure 4.12 Dependent of normalized electric intensity factors [KIV] on the curvature 

for cylindrical crack in infinite medium. Results are reported on (a) all points, the (b) 

top, (c) middle and (d) bottom points 

 

4.1.2.3 Comparison between spherical cap crack and cylinder crack 

Considering the result mentioned above, the difference and similarity of the numerical 

results obtained from both spherical cap and cylindrical crack of four crack-face models 

can be summarized as follows.   

Results of spherical cap crack is proposed. It implies that with the reducing 

curvature of the crack, the magnitude KI of four models are strongly dependent of the 

large curvature but the four models are independent on the boundaries. Moreover, when 

the curvature is reduced to flat crack, only the energetically consistent model is 

dependent on the curvature whereas other three models are not. In addition the reducing 

curvature of the crack also affects the lower bond of four models (the lower bound is 

switched of impermeable and energetically consistent models). Similarly, the stress 

intensity factors KI on four models at three different points (i.e., top, middle and bottom 

points) of cylindrical crack are obtained to compare the influence of curvature of 

spherical cap crack. Here we find that with the reducing curvature of the crack, the 

magnitude KI of three different points become clearly different among four models. 

Moreover, the behaviors and the trends at the top point are very identical to the spherical 

cap crack. Apart from the similarity of the spherical cap crack, the results show that the 
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upper bounds at the top point of cylindrical crack are impermeable, whereas the lower 

bounds at both top and middle points are similarly energetically consistent models. 

The stress intensity factor KII obtained from spherical cap crack on four crack 

models (i.e., impermeable, permeable, semi-permeable and energetically consistent 

models). It is found that with the reducing curvature of the crack surface, the 

magnitudes of four crack models are strongly dependent of large curvature. For 

example, they increase to the maximum value when the curvature is large but decrease 

when the curvature reduces to flat crack. Moreover, the reducing curvature of the crack 

surface does not affect the bounds of four crack models. Identically, comparison 

between spherical cap and cylindrical cracks becomes more interesting when the stress 

intensity factors KII are obtained of four models at the three different points (i.e., top, 

middle and bottom points). It is found that as the curvature of the crack surface reduces, 

the magnitude of normalized stress KII at three different points becomes clearly distinct. 

Similarly, the similarity of spherical cap crack to cylindrical crack is focused only on 

the top point of cylindrical crack. Apart from the similarity of both cracks, from the 

numerical results offered from cylindrical crack, it can be observed further that when 

the curvature of the crack reduces, the dependent of KII for the rest points (i.e., middle 

and top points) are nearly identical to spherical cap crack (or similar to the bottom point 

of cylindrical crack) at the large curvature of crack surface. Moreover, the reducing 

curvature of the crack surface influences only the lower bound of the stress intensity 

factors KII obtained from the three different points. For example, the lower bound of 

both middle and bottom points are energetically consistent whereas it is permeable 

models for the top point. 

The difference between spherical cap crack and cylindrical crack is the 

appearance of stress intensity factors KIII only at the middle points of cylindrical crack. 

It can be found that with the reducing curvature of the crack surface, the magnitude of 

four models are strongly depend on the curvature of crack surface, i.e., the impermeable 

model has the minimum points at the large curvature of crack surface. 

The electric intensity factors KIV obtained from the two non-planar cracks (i.e., 

spherical cap and cylindrical cracks) on four models. The results of spherical cap cracks 

indicate that with the reducing curvature of the crack, the magnitudes of four models 

are strongly dependent when the curvature of crack surface is large. Moreover, when 

the curvature of crack surface is sufficiently large, the three models (i.e., permeable, 

semi-permeable and energetically consistent models) are independent of boundaries 

different from the impermeable model. On the contrary, the four models are dependent 

of boundaries when the curvature is largely reduced. In addition, the reducing curvature 

of the crack also affects the lower bound of four models by switching of permeable and 

energetically consistent models. Again, providing that the load condition remains the 

same, in which the electric intensity factors KIV obtained from cylindrical crack at three 

different points (i.e., top, middle and bottom points) on four crack-face models, the 

magnitude KIV of three different points are dependent of crack subtended angle. Apart 

from the same behavior of both cracks (i.e., spherical cap crack and cylindrical crack 

only at the top point), the bound of the top points are different from both middle and 

bottom point. For example, the upper bound and lower bound are impermeable and 

permeable respectively. 
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4.1.3 Influence of geometry by varying aspect ratio of tunnel crack 

In this case, we consider a tunnel crack with the half-length L and end-radius a 

containing in a transversely isotropic piezoelectric infinite medium. The material 

properties such as PZT-4 is utilized. In this case, we utilize the mesh from 72 to 300 

elements. The poling direction is similar to the symmetry axis of material of x3-axis. 

The geometry and the meshes are displayed in the figure 4.13 (a),(b),(c) and (d). To 

investigate intensity factors along the crack front, the parameters of this study can be 

concluded as follow (i) the aspect ratio of half-length L and end-radius a (L/a) are varied 

from [0.5 ,1,1.5…10 ], (ii) the end-radius is fixed by 1 whereas the half-length are varied 

from 0.5 to 10, (iii) the remote uniaxial tension is fixed 0 = 50 MPa, (iv) the uniform 

electric field is fixed  E0 = 2.5 MV/m in the x3-direction, (v) and the dielectric 

permittivity inside the crack gap is fixed c = 50 where 0 = 8.85x10-12 C/Vm is the 

permittivity of the air in the crack gap. 
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(c) Medium mesh (180 elements) 

 

 

 

      (d) Fine mesh (300 elements) 

Figure 4.13 (a) Schematic of tunnel crack in a piezoelectric infinite medium and (b),(c) 

and (d) are the example of the meshes that utilized for the investigation 
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The influence of the crack aspect ratio L/a of a tunnel crack on the intensity 

factors along the crack front under four types of crack-face conditions is investigated. 

The normalized maximum stress and electric intensity factors [KI ,KIV] at two different 

points (i.e., end-radius and middle of half-length point) on the crack front are shown in 

figure 4.14 (a) and (b). It can be found that as the half-length point increases, the 

magnitude of stress and electric intensity factors [KI ,KIV] strongly increases which can 

be discussed as follows. 

 Numerical results reported in figure 4.14 (a) indicate that the stress intensity 

factors KI of three crack-face models (i.e., impermeable, permeable and semi-

permeable models) at any points are completely identical throughout the range of 

distributions along the crack front (L/a = 0.5 to L/a = 10), whereas the energetically 

consistent models are clearly lower than those three models. It can be observed further 

that the magnitudes of two different points (end-radius and middle of half-length points) 

are clearly distinct. The result shows that the magnitude of  KI at end-radius point is 

lower than the magnitude of  middle of half-length points, which can be concluded that 

as the aspect ratio increases, it has an influence only to the magnitude of stress intensity 

factor KI. 

 The electric intensity factor KIV of four crack-face models at two distinct points 

such as at the end-radius and middle of half-length points along the crack front are 

shown in figure 4.14 (b). One is found that as the aspect ratio (L/a) increases, the 

magnitude of four models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models) are obviously different throughout the range of 

distribution, and also that the bounds of electric intensity factor KIV at any points along 

the crack front and the impermeable and permeable conditions serve as the upper and 

lower bounds respectively.   
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      (b) 

Figure 4.14 (a) and (b) are dependent of normalized stress and electric intensity factors 

[KI, KIV] on the aspect ratio for tunnel crack in infinite medium. Results are reported on 

both the end-radius and half-length points  

 

4.1.4 Interacting of two penny-shaped crack in vertical directions 

In this investigation, we consider two penny-shaped cracks with radius a and the 

distance between the two cracks L, referred to as crack-A and crack-B which are 

embedded in a transversely isotropic and piezoelectric infinite medium. The material 

properties such as PZT-4 is employed. In this special case, we utilize the mesh as 144 

elements. The poling direction is identical to the symmetric axis of material of x3-axis. 

The geometry and the mesh are displayed as indicated schematically in Figure 4.15 (a) 

and (b). The parameters used in this exploration can be summarized as follow: (i) the 

distance between the two cracks L is varied [0.25,0.5,0.75,1,2,3,….,10], (ii) the radius 

of the cracks is defined as 1, (iii) the remote uniaxial tension is fixed as 0 = 50 MPa, 

(iv) the uniform electric field is fixed  E0 = 2.5 MV/m  in the x3-direction, (v) and the 

dielectric permittivity inside the crack gap is fixed c = 50  where 0 = 8.85x10-12 C/Vm 

is the permittivity of the air in the crack gap. 
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(b) 

Figure 4.15 (a) Schematic of two penny-shaped cracks in vertical direction in a 

piezoelectric infinite medium and (b) are the meshes for one penny-shaped crack that 

utilized for the investigation 

 

 The influence of interacting of two penny-shaped cracks corresponding with L/a 

on the intensity factors along the crack front under four types of crack-face conditions 

are investigated. The normalized stress and electric intensity factors [KI, KII, KIV] at the 

point on the crack front are reported in figure 4.16 (a), (b) and (c). It can be found that 

when the distance of two penny-shaped crack increase, the magnitude of the stress and 

electric intensity factors [KI, KII, KIV] strongly dependent of the distance of the two 

cracks in the beginning range of distribution whereas the stress intensity factors KIII 

vanished. It can be discussed as follows: 

 The numerical results of stress intensity factors KI  reported in figure 4.16 (a) 

are obtained. It can be found that as the distance (L/a) increases, the four crack-face 

models strongly increase in the beginning. For example, the stress intensity KI 

increasingly and identically drives the values at the range from L/a=0.25 to 4 at the 

three crack models (i.e., impermeable, permeable and semi-permeable models). This 

means that those three models are independent of boundary conditions and are 
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significantly distinct from the energetically consistent model by forming as higher 

magnitude throughout the range of distribution. It can be further explored that the pure 

penny-shaped crack is formed as the stress intensity factor with constant value which 

is significantly different from the two penny-shaped cracks of four crack-face boundary 

conditions. This implies that as the distance of the two cracks in vertical direction (x3-

direction) increases, it has influence on the magnitude of four crack-face models 

 The stress intensity factor KII  reported in figure 4.16 (b) are investigated on 

four crack models (i.e., impermeable, permeable, semi-permeable and energetically 

consistent models). It can be found that as the distance of the two cracks increases, the 

magnitude of  KII  strongly increases and are nearly identical at the range of 

distributions. Moreover, the convergence of four models is converged to penny-shaped 

crack. Besides, It can be investigated further that the energetically consistent model are 

greater than other three crack models (i.e., impermeable, permeable and semi-

permeable models) at the range L/a=0.25 to 4, whereas the magnitude of pure penny-

shaped crack is constant and is greater than two penny-shaped crack model. 

Accordingly, it can be summarized that as the interacting of the two crack is large, it 

has an influence to the stress intensity factors KII  at the beginning of the range and the 

effect of the boundary conditions is small throughout distribution. 

 Finally, the electric intensity factor KIV  on four models reported in figure 4.16 

(c) are obtained. It can be found that as the distance of the two crack increase, the four 

crack-face models (i.e., impermeable, permeable, semi-permeable and energetically 

consistent models) are completely different, and significantly increase in the beginning 

of the range. For example, the KIV strongly drives the magnitude at the range L/a=0.25 

to 4 and it is eventually converged to the pure penny-shaped cracks. Moreover, the 

impermeable model is formed as upper bound whereas the lower bound is formed as 

permeable model. In addition, it is assured that the results is correct by indicating  that 

the four crack-face models are converged to pure penny-shaped crack. Overall, it can 

be summarized that as the distance of the two crack increases, it influences the values 

of electric intensity factors  KIV on four models in the beginning of distribution. 
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 (c) 

Figure 4.16 (a),(b) and (c) are dependent of normalized stress and electric intensity 

factors [KI,KII,KIV]   on the interaction for two penny-shaped crack in infinite medium. 

Results are reported on a penny-shaped cracks 

 

4.1.5 Interacting of two penny-shaped crack in horizontal directions 

As for the last investigation we consider two identical penny-shaped cracks with radius 

a and the distance between the two cracks L, referred to as crack-A and crack-B, which 

are embedded in a transversely isotropic, piezoelectric infinite medium as indicated in 

figure 4.17. The material properties such as PZT-4 is utilized. In this final case, we 

utilize the mesh as 144 elements similar to previous case. The poling direction is 

identical to the symmetry axis of material of x3-axis. The parameters used in this 

investigation can be summarized as follow: (i) the distance between the two cracks L/a 

in horizontal direction is varied [2.25,2.5,2.75,3,4,5,….,10], (ii) the radius of the cracks 

is utilized as 1, (iii) the remote uniaxial tension is fixed 0 = 50 MPa, (iv) the uniform 

electric field is fixed E0 = 2.5 MV/m in the x3-direction, (v) and the dielectric 

permittivity inside the crack gap is fixed c = 50 where 0 = 8.85x10-12 C/Vm is the 

permittivity of the air in the crack gap. 
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(b) 

Figure 4.17 (a) Schematic of two penny-shaped cracks in horizontal direction in a 

piezoelectric infinite medium and (b) are the meshes for one penny-shaped crack that 

utilized for the investigation 

 

To explore the influence of the interaction between the two penny-shaped cracks 

corresponding with L/a , the intensity factors along the crack front under four crack-

face models are investigated at two different points (i.e., maximum and minimum 

values) as reported in the figure 4.18 (a) and (b) respectively. Results indicate that as 

the distance of the two cracks in horizontal direction increases, the values of stress and 

electric intensity factors [KI,KIV] tend to decrease. This can be discussed as follows: 

The numerical results reported in figure 4.18 (a) are obtained from four crack-

face models (i.e., impermeable, permeable, semi-permeable and energetically 

consistent models). It can be found that as the distance of the two crack increases, the 

stress intensity factor KI are strongly decreased at the two points (i.e., maximum and 

minimum values) providing that the distance L/a is relative small at the range L/a = 
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0.25 to L/a = 5. On the other hand, the value of KI are constant when the distance of 

the two cracks remains sufficiently large. Moreover, the three models (i.e., 

impermeable, permeable and semi-permeable models) at two positions are completely 

identical whereas the energetically consistent models at the two positions are clearly 

less than those three models. This can be concluded that as the distance increases, it has 

an influence to the values of KI at the two positions (i.e., maximum and minimum 

values).  

 Eventually, results of electric intensity factors KIV obtained from two different 

points (e.g., maximum and minimum points) on four crack-face models are shown in 

figure 4.18 (b). It can be found that as the distance of the two crack increases, the 

electric intensity factors KIV of four crack-face models (i.e., impermeable, permeable, 

semi-permeable and energetically consistent models) are completely different. On the 

other hand, they are strongly decreased when the distance of the two cracks remains 

small at the range L/a = 0.25 to L/a = 2. Moreover, the bounds of four crack-face 

models are not changed which means that the impermeable model serves as upper 

bound whereas the permeable model serves as lower bound. This implies that it 

influences the four boundary conditions when the distance L/a increases. 
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    (b) 

Figure 4.18 (a) and (b) are dependent of normalized stress and electric intensity factors 

[KI, KIV] on the interaction for two penny-shaped crack in infinite medium. Results are 

reported on the maximum and minimum values and planar crack along the crack front 

 

4.2 Influence of remote tensile mechanical load on four crack-face boundary 

conditions 

In this section, the influence of mechanical load is investigated to obtain the stress and 

electric intensity factors along the crack front. Both planar and non-planar cracks are 

utilized by using the fine mesh that have verified in the convergence section. The results 

from those cracks will be carried out in the following sections 

 

4.2.1 Influence of remote tensile mechanical load on spherical cap and cylindrical 

crack 

The two non-planar crack such as spherical cap cracks are employed to study the 

influence of mechanical load on intensity factors along the crack front. Each crack will 

be implemented in the following. 

 

4.2.1.1 Influence of remote tensile mechanical load on spherical cap crack 

We consider a spherical cap crack  embedded  in  a  transversely  isotropic piezoelectric  

infinite  medium.  The  crack  geometry  and  the  material  properties  of piezoelectric  

medium  are  similar  to  those  diagnosed  in  the  section  4.1.1.1;  However, the key 
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differences from the previous case are that (i) the half subtended angle  of  the  surface  

(θ)  is  fixed as 45 degree,  (ii)  the  applied uniaxial remote stress is varied from 

[10,20,30,…, 100] MPa, (iii) The applied electric field E0   is fixed  at  2.5  MV/m  

which  is  identical  as that of the previous example, and (iv) the dielectric permittivity 

inside the crack gap is fixed c = 50 where 0 = 8.85x10-12 C/Vm is the permittivity of 

the air in the crack gap. Numerical results of intensity factors computed from the fine 

mesh 144 elements (see Figure. 4.1) are reported in figures. 4.19 (a), (b) and (c) 

respectively. It is found that the increasing mechanical load 0 tends to increase the 

magnitude of the stress and electric intensity factors [KI,KII,KIV], for all crack-face 

models. In addition, the rate of increase of KII  is more rapid than that two models and 

this can be discussed as follows.   

Figure 4.19(a) shows that, as the mechanical load increases, KI of the permeable 

models is the upper bound whereas the energetically consistent models are the lower 

bound and nearly identical to impermeable models. Moreover, it can be found that the 

stress intensity factor KI of the semi-permeable crack varies from the same point of the 

permeable models when the mechanical load is relatively small and it gradually shows 

the difference as  the  applied  remote  stress  increases.  However, it should  be noted 

again that, when the applied mechanical stress is small, the stress intensity factor KI  of 

the energetically consistent models  is  nearly identical to the  impermeable  model. 

Besides, it can be observed further that when the applied mechanical load increases, the 

three models (i.e., impermeable, permeable, semi-permeable models) of planar crack 

are completely identical which is significantly different from spherical cap crack and 

those three models serve as upper bound, whereas the energetically consistent model 

are obviously less than those three models and serves as lower bound. This can be 

concluded that when the mechanical load increases, the KI of both planar and non-

planar cracks become clearly different as discussed above. 

The results of a non-planar crack upon the stress intensity factor  KII can be 

described in figures 4.19 (b). We found that the increasing applied mechanical load  

tends  to  increase  the  magnitude  of  the   stress  intensity  factor KII whereas the planar 

crack is obviously vanished. Furthermore, the stress intensity factor KII under four 

models of electrical boundary conditions (i.e., impermeable, permeable, semi-

permeable and energetically consistent models) is not identical. It is can be observed 

further that the upper bound serves as impermeable models while the energetically 

consistent as lower bound. In addition, when the mechanical load is small, the semi-

permeable and permeable models are nearly identical but the permeable model is 

converged to the energetically consistent models when the mechanical load is 

sufficiently large. It can be conclude that the increasing applied mechanical load has an 

influence only to permeable model. 

Finally, the result of non-planar crack on the intensity factor KIV on four models 

can be reported in figures 4.19 (c). It is found that when the applied mechanical load 

increases, the electrical intensity factors KIV tend to increase as well. Moreover, the 

impermeable model is the upper bound of the entire range, whereas the lower bound is 

switched of energetically consistent and permeable models corresponding to turning 

point at 0 = 30 MPa  (as the turning point of planar crack occurred at 0 = 20 MPa  ). 

However, when the applied mechanical is sufficiently large, it can be observed further 

that  KIV of both the semi-permeable and energetically consistent models  share identical 

trends  and  approach  to the  impermeable  model. It can be summarized that the turning 
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points of both planar and non-planar cracks (the penny-shaped and the spherical cap 

cracks) of lower bounds are completely different whereas the trends of both cracks are 

nearly identical. 
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   (c) 

Figure 4.19 (a), (b) and (c) are dependent of normalized stress and electric intensity 

factors [KI, KII, KIV] on the mechanical load for spherical cap crack in infinite medium. 

Results are reported as average values 
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4.2.1.2 Influence of remote tensile mechanical load on cylindrical crack 

As an example of non-planar cracks, we consider  a  cylindrical  crack  containing  in  

a  transversely  isotropic piezoelectric  infinite  medium.  The  crack  geometry  and  the  

material  properties  of piezoelectric  medium  are  similar  as  those  diagnosed  in  the  

previous sections 4.1.1.2  However, the key differences from the previous case are 

similar to those of spherical cap crack and this would be explained as follows, (i) the 

half subtended angle  of  the  surface  θ  is  fixed as 45 degree,  (ii)  the  applied uniaxial 

remote stress is varied from [10,20,30,…, 100] MPa, (iii) the applied electric field E0   

is fixed  at  2.5  MV/m  which  is  identical  as that of the previous example, and (iv) 

and the dielectric permittivity inside the crack gap is fixed c = 50 where 0 = 8.85x10-

12 C/Vm is the permittivity of the air in the crack gap. Numerical results of intensity 

factors computed from the fine mesh 144 elements (see Figure. 4.1) are obtained from 

three different points (i.e., top, middle and bottom points) reported in figures. 4.20 (a), 

4.21 (a), 4.22 and 4.3(a) respectively. It can be found that the increasing mechanical 

load 0  leads to the increase of the magnitude of the stress and electric intensity factors 

[KI,KII,KIV] for all three points except the KIII, KII of middle points and the top point 

respectively,  and this can be discussed below.   

Figure 4.20 (b), (c) and (d) shows that, as the mechanical load increase, KI  of 

all points are clearly less than the penny-shaped crack.  The upper bounds of top point 

serve as three models (i.e., impermeable, permeable and semi-permeable models) 

similar to the penny-shaped crack, at both middle and bottom point they serve as 

permeable.  It can be found that the lower bounds of three distinct points and planar 

crack are completely and identically formed as the energetically consistent. Moreover, 

the stress intensity factor KI of the three models (i.e., impermeable, permeable and semi-

permeable models) is completely identical and analogous to those models of planar 

crack, whereas only KI of the semi-permeable and permeable are nearly identical at both 

top and bottom points.  However, it should be noted again that, when the applied 

mechanical stress is small, the stress intensity factor KI  at the bottom point of the 

permeable and  semi-permeable  models  is  nearly  identical and  shows the difference 

as the mechanical load increases. This can be concluded that when the mechanical load 

increases, the KI of both planar cracks are the same as the top point  and are strongly 

different at both middle and bottom points as discussed above. 
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(d) 

Figure 4.20 Dependent of normalized stress intensity factors [KI] on the mechanical 

load for cylindrical crack in infinite medium. Results are reported on values 
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The results of a non-planar crack on the stress intensity factor  KII on four models (i.e., 

impermeable, permeable, semi-permeable and energetically consistent models) can be 

explained in figures 4.21 (b), (c) and (d). It can be found that when the applied 

mechanical load increases, the KII have a tendency to increase the magnitude only at 

both middle and bottom points while the KII at the top point decrease as the planar crack 

is clearly vanished. Furthermore, the stress intensity factor KII of three different points 

under four models of electrical boundary conditions (i.e., impermeable, permeable, 

semi-permeable and energetically consistent models) are completely different. It can be 

observed further that the upper bounds of KII at any points are formed as impermeable 

and, again, only the lower bound of the top bottom point are energetically consistent 

models. In contrast, the lower bounds of both the top and bottom points is switched of 

energetically consistent and permeable model corresponding to the turning point at 0 

= 30 MPa  and 0 = 70 MPa  respectively. In addition, when the mechanical load is 

small, the permeable models strongly approach the energetically at the top and middle 

points, which is clearly distinct from the bottom point. It can be conclude that when the 

mechanical load increases, it has influence to the lower bounds of the top and bottom 

points and to the magnitude of KII at three points. 
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     (d) 

Figure 4.21 Dependent of normalized stress intensity factors [KII] on the mechanical 

load for cylindrical crack in infinite medium. Results are reported on (a) all points, (b) 

top, (c) middle and (d) bottom points 

 

Next, the numerical results of a non-planar crack upon the maximum of the stress 

intensity factor  KIII only at a middle point (a point along middle zone between the top 

and bottom point) under four models are obtained as reported in figure 4.22. It can be 

found that the increasing applied mechanical load leads to the decrease of the magnitude 

of the stress intensity factor KIII whereas the planar crack is vanished. Moreover, the 

stress intensity factor KIII under four models of electrical boundary conditions (i.e., 

impermeable, permeable, semi-permeable and energetically consistent models) is 

completely different. It can be investigated further that the upper bound is impermeable 

models while the permeable model serves as lower bound. Besides, as the mechanical 

load increase, the semi-permeable and energetically models share nearly identical trend. 

To be more precise, the semi-permeable model varies from the point near the permeable 

model at the beginning and approaches the energetically consistent model when the 

mechanical load is sufficiently large. It can be conclude that the increasing applied 

mechanical load has only the values of the stress intensity factors 
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Figure 4.22 Dependent of normalized stress intensity factors [KIII] on the mechanical 

load for cylindrical crack in infinite medium. Results are reported on the middle point 

 

Finally, the effect of a non-planar crack on the electric intensity factor KIV of 

three different points (i.e., top, middle and bottom points) under four models can be 

reported in figures 4.23 (c). It is found that when the applied mechanical load increases, 

the electrical intensity factors KIV of three different points tends to increase but still 

significantly less than the magnitude of planar crack. Moreover, the impermeable 

models are  upper bounds for the all points whereas the lower bound is switched of 

energetically consistent and permeable models corresponding to turning points such as 

at 0 = 20 MPa  , 0 = 30 MPa  for the top and middle point respectively (as the turning 

point of planar crack occurs at0 = 20 MPa  ). In addition, when the applied mechanical 

is sufficiently large, KIV at all points (i.e., top, middle and bottom points) of the semi-

permeable and energetically consistent models share nearly identical trends and 

approach the impermeable model. It can be summarized that as the mechanical load 

increases, the turning points of lower bound of both planar and non-planar cracks are 

once again different at the middle and bottom points, except at the top point where the 

values remain the same. 
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(d) 

Figure 4.23 Dependent of normalized electric intensity factors [KIV] on the mechanical 

load for cylindrical crack in infinite medium. Results are reported on (a) all points, (b) 

top, (c) middle and (d) bottom points 
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4.2.1.3 Comparison between spherical cap crack and cylinder crack 

From the above discussion, when the mechanical load increases from 

[10,20,30,….,100] MPa, the difference and the similarity of the numerical results of 

intensity factor [KI,KII, KIII,KIV] obtained from both spherical cap and cylindrical cracks 

can be concluded as follows:   

The numerical results of the spherical cap crack utilized for investigations the 

influence of applied tensile mechanical load can be summarized as follow. It is seen 

that when the mechanical load increases, the magnitude of KI on four crack models for 

spherical cap crack and the penny-shaped crack become different. While KI of three 

models (i.e., impermeable, permeable and semi-permeable models) are identical for 

penny-shaped crack, the stress intensity factors KI of three models are different for 

spherical cap crack. Accordingly, the curvature of non-planar crack indicates the 

dependent of electric field on stress intensity factor KI. In contrast, the electric field has 

no influence to KI for the penny-shaped crack in three models but has influence to the 

energetically consistent model. Given the stress intensity factors KI obtained from other 

non-planar cracks (i.e., cylindrical crack) at three different points (i.e., top, middle and 

bottom points), it can be found that when the mechanical load increases, all the 

behaviors and trends are very identical analogous to the spherical cap crack only at the 

bottom points. In addition to this similarity of the both cracks (i.e., spherical cap and 

cylindrical cracks on the bottom point), the magnitude of KI on four models at the top 

point are greater than the magnitude of KI at the rest points. Moreover, the three models 

(i.e., impermeable, permeable and semi-permeable models) of cylindrical crack only at 

the top points are completely identical similar to those three models of penny-shaped 

crack. Nevertheless, the three models are still different at both middle and bottom point. 

It can be concluded that the three models become outstanding when the stress intensity 

factors are considered at bottom point, whereas the behavior of KI is the same as penny-

shaped crack at the bottom point. 

The stress intensity factors KII of spherical cap crack firstly illustrate results. It 

can be found that when the applied mechanical load increases, the magnitude of four 

models (i.e., impermeable, permeable, semi-permeable and energetically consistent 

models) also increases and depends on the mechanical load, whereas the planar crack 

is vanished. Furthermore, the stress intensity factor KII  under those four models is 

completely different. It can be further observed that the upper bound is impermeable 

model while the energetically consistent serves as lower bound. In addition, when the 

mechanical load is small, the semi-permeable and permeable models are nearly 

identical whereas they are converged to the energetically consistent models when the 

mechanical load is sufficiently large. Identically, the stress intensity factors KII obtained 

from the cylindrical crack at three different points (i.e., top, middle and bottom points) 

are proposed to compare the KII of spherical cap crack. When the mechanical load 

increases, the magnitude of  KII are completely different for all points. Furthermore, the 

stress intensity factor KII of the bottom point under four models exhibits a strongly 

identical behavior to that of the spherical cap crack. Apart from the identical behavior 

of both cracks, the upper bounds of KII at any points are formed as impermeable and, 

once again, only the lower bounds of the top bottom point are energetically consistent 

models. On the contrary, the lower bounds of both the top and bottom points are 

switched of energetically consistent and permeable model. In addition, it can be found 

that when the mechanical load is small, the permeable models strongly approach the 
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energetically at the top and middle points which is nevertheless clearly distinct from 

the bottom point.  

The different point between spherical cap crack and cylindrical crack is the 

stress intensity factor KIII in which the cylindrical crack appears only the middle point 

(a point of the middle zone is located between the top and bottom points). It can be 

concluded that when the crack mechanical load increases, the magnitude of four models 

are completely different as they decrease the magnitude. Moreover, the semi-permeable 

model varies from permeable to energetically consistent model and their bounds, such 

as upper and lower bound serve as impermeable and permeable respectively. 

 Finally, the results of the spherical cap crack can be summarized as follows. 

When the applied mechanical load increases, the electrical intensity factors KIV tends 

to increase, and the magnitude with higher slope of penny-shaped crack are greater than 

that of spherical cap crack. Moreover, the impermeable models of both cracks (i.e., 

planar and non-planar cracks) are always the upper bound whereas the lower bounds 

similarly are always switched of energetically consistent and permeable models for the 

entire range. Furthermore, when the applied mechanical increases, KIV of the semi-

permeable and energetically consistent models of both cracks, i.e., spherical cap and 

penny-shaped cracks, shares nearly identical trends. However, those two models 

approach to the impermeable model for penny-shaped crack whereas they are parallel 

to impermeable model. Identically, the electric intensity factor KIV obtained from the 

cylindrical crack is offered to correlate the spherical cap crack and to be versus with 

planar crack. With the increasing mechanical load, the trend of electrical intensity 

factors KIV of three different points are different by increasing the magnitude and are 

also less than the magnitude of penny-shaped crack. Moreover, the behaviors of 

spherical cap crack are identical to that of cylindrical crack at the top point. In addition 

to the parity of both cracks, the impermeable models are always upper bounds for the 

all points and analogous to both spherical cap and penny-shaped crack, whereas the 

lower bounds are the same for both cracks (i.e., spherical cap and penny-shaped cracks) 

by switching of energetically consistent and permeable models. In addition, as the crack 

subtended angle increases, the lower bound of the top point is permeable model which 

is different from the rest of the points. Besides, the convergence of both semi-permeable 

and energetically consistent of three different points is the strongest at the top point, 

which is similar to planar crack. 

4.2.2 Influence of remote tensile mechanical load on tunnel crack 

In this case, we consider  a  tunnel  crack  embedded  in  a  transversely  isotropic 

piezoelectric  infinite  medium.  The  crack  geometry  and  the  material  properties  of 

piezoelectric  medium  are  analogous to  the  section  4.1.3.  Nevertheless, the major 

differences from the previous case are that (i) the radius of end-radius and the half-

length are fixed as 1 and 5, respectively  (ii)  the  applied uniaxial remote stress is varied 

from [10,20,30,…, 100] MPa, (iii) the applied electric field E0   is fixed  at  2.5  MV/m  

which  is  similar to that of the previous section, and (iv) the dielectric permittivity 

inside the crack gap is fixed  c = 50 where 0 = 8.85x10-12 C/Vm is the permittivity of 

the air in the crack gap. Numerical results of non-zero intensity factors at two different 

points, i.e., at the end-radius and the half-length points (see figure 4.24 (a)), treated 

from the fine mesh 180 elements are reported in figures 4.24 (b) and (c) respectively. It 
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is found that the increasing mechanical load 0  has a tendency to increase the 

magnitude of the stress and electric intensity factors [KI,KIV], for all crack models. In 

addition, the rate of increase of [KI,KIV] at half-length point is more rapid than at the 

radius point and this can be discussed as follows:   

Figure 4.24(b) indicates that, when the mechanical load increases, the stress 

intensity factor KI of end-radius point are significantly less than the values of half-

length point. Moreover, the KI of three models (i.e., impermeable, permeable and semi-

permeable models) are nearly identical for the all points and form as upper bound, 

whereas the lower bound is energetically consistent model. Moreover, the stress 

intensity factor KI of the energetically consistent model approaches those three models. 

This can be concluded that as the mechanical load increases, it has influence only to the 

magnitude of stress intensity factors.   

Finally, the numerical result of planar crack on the intensity factor KIV on four 

models can be reported in figures 4.24 (c). It can be found that when the applied 

mechanical load increases, the electrical intensity factors KIV of two different points 

(i.e., end-radius and half-length points) lead to the increase of the magnitude. For both 

points, the impermeable model is upper bound whereas the lower bound is switched of 

energetically consistent and permeable models corresponding to turning point at 0 = 

30 MPa  . Once again, it can be found that when the applied mechanical is sufficiently 

large, KIV of the semi-permeable and energetically consistent models  share  nearly  

identical trends for every point and approach  the  impermeable  model. It can be 

summarized that the increasing mechanical loads has an influence to the magnitude and 

the lower bound of stress intensity factors KIV. 
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(c) 

Figure 4.24 (a) the positions at end-radius and half-length points, (b) and (c) are 

dependent of normalized stress and electric intensity factors [KI, KIV] on the mechanical 

load for a tunnel crack in infinite medium. Results are reported on the end-radius and 

half-length points 
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4.2.3 Influence of remote tensile mechanical load on a pair of penny-shaped 

crack 

The two penny-shaped crack in vertical and horizontal directions are provided to 

conduct the influence of remote mechanical load which can be implement in the next 

sections. 

 

4.2.3.1 Influence of remote tensile mechanical load on two penny-shaped crack in 

vertical direction 

For the next investigation, we consider a two penny-shaped  crack  in vertical direction 

containing in  a  transversely  isotropic piezoelectric  infinite  medium.  The  crack  

geometry  and  the  material  properties of piezoelectric  medium  are  analogous to  the  

section  4.1.4. The major differences of the parameter compared to that from the 

previous case are that (i) the radius and the vertical distance of two penny-shaped crack 

are fixed as 1 and 0.5 respectively (ii)  the  applied uniaxial remote stress is varied from 

[10,20,30,…, 100] MPa, (iii) the applied electric field E0   is fixed  at  2.5  MV/m  which  

is  similar to that of the previous section, and (iv)  the dielectric permittivity inside the 

crack gap is fixed c = 50 where 0 = 8.85x10-12 C/Vm is the permittivity of the air in 

the crack gap. The results of non-zero intensity factors along the crack front treated 

from the fine mesh 144 elements per crack are reported in figures. 4.25 (a) and (b) 

respectively. It can be found that as the mechanical load increases, 0 again tends to 

increase the magnitude of the stress and electric intensity factors [KI, KIV]. The rate of 

increase of [KI, KIV] can be discussed as follows:   

Figure 4.25(a) shows that when the mechanical load increases, the stress 

intensity factor KI under four crack models (i.e., impermeable, permeable, semi-

permeable and energetically consistent models) also increases. Again, it is found that 

the trend of two penny-shaped cracks are nearly identical to that of the single penny-

shaped crack but the slop of magnitude are less than one. Moreover, the KI of three 

models (i.e., impermeable, permeable and semi-permeable models) are also nearly 

identical throughout the range of distribution and those three model serve as upper 

bound whereas the lower bound is expressly energetically consistent model. In addition, 

the stress intensity factor KI of the energetically consistent model again approaches to 

those three models. This can be concluded that when the mechanical load increases, it 

has influence only to the magnitude of stress intensity factors.   

Results from figure 4.25 (b) indicate that when the distance of the two cracks is 

small, the stress intensity factor KII are appeared. It is manifested that when the 

mechanical load increase, the four models tend to decrease. Moreover, KII of 

impermeable, permeable and semi-permeable models are nearly identical and serve as 

lower bound whereas the energetically consistent model approaches to those three 

models and also serve as upper bound at the entire range of distribution. 

Eventually, the intensity factor KIV on four models obtained from four models 

are shown in figures 4.25 (c). It is found that when the applied mechanical load 

increases, the magnitude and the trend of the electrical intensity factors KIV are nearly 

identical but the behavior of four models are clearly different. Moreover, the 
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impermeable model serves as upper bound whereas the lower bound is switched of 

energetically consistent and permeable models corresponding to turning point at 0 = 

20 MPa  which is similar to other planar cracks. In addition, with the increase of the 

applied mechanical load, KIV of the semi-permeable and energetically consistent models 

of two penny-shaped cracks are nearly identical behavior which is the same as the single 

penny-shaped crack, and those two models tend to approach the impermeable model. It 

can be summarized that the increasing mechanical load has an influence to both the 

magnitude and the lower bound of stress intensity factors KIV, similar to other planar 

cracks. 
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(c) 

Figure 4.25 (a), (b) and (c) are dependent of normalized stress and electric intensity 

factors [KI, KIV] on the mechanical load for a two penny-shaped crack in infinite 

medium. Results are reported on one penny-shaped crack 
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4.2.3.2 Influence of remote tensile mechanical load on two penny-shaped crack in 

horizontal direction 

Finally, the last investigation for the mechanical load would be discussed by 

considering a two penny-shaped crack in horizontal direction containing in a 

transversely isotropic piezoelectric infinite medium.  The  crack  geometry  and  the  

material  properties of piezoelectric  medium  are  analogous to  the  section  4.1.5. The 

major differences of the parameter compared to that of the previous case are that (i) the 

radius and the distance of two penny-shaped crack in horizontal direction are fixed as 

1 and 2.25 respectively, (ii)  the  applied uniaxial remote stress is varied from 

[10,20,30,…, 100] MPa, (iii) the applied electric field E0   is fixed  at  2.5  MV/m  which  

is  similar to that of the previous section, and (iv) the dielectric permittivity inside the 

crack gap is fixed c = 50 where 0 = 8.85x10-12 C/Vm is the permittivity of the air in 

the crack gap. The stress and electric intensity factors [KI,KIV] along the crack front at 

two different points (i.e., the maximum and minimum points, see figure 4.26) computed 

from the fine mesh 144 elements per crack are shown in figures. 4.26 (a) and (b) 

respectively. It is found that the increasing mechanical load 0  again tends to increase 

the magnitude analogous to the case of two penny-shaped cracks in vertical direction, 

which can be discussed as follows:   

Figure 4.26 (a) indicates that when the mechanical load increases, the stress 

intensity factor KI at two different points under four crack models (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models) also increase,  

the trend of two penny-shaped cracks in horizontal direction at both points (i.e., 

maximum and minimum points) are nearly identical to that of the single penny-shaped 

crack; nevertheless, the magnitude KI of both points are greater than single penny-

shaped crack. Moreover, the KI of three models (i.e., impermeable, permeable and semi-

permeable models) of two and single penny-shaped cracks are identical at the entire 

range; Those three models also serve as upper bound whereas the lower bound is 

energetically consistent model similar to the discussion mentioned in the former case. 

Furthermore, the stress intensity factor KI of the energetically consistent model 

identically approaches those three models for all cracks. This can be concluded that 

when the mechanical load increases, it influences only the magnitude of stress intensity 

factors.   

Finally, the intensity factor KIV of two penny-shaped cracks in horizontal 

direction on four models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models) obtained at both maximum and minimum points are 

shown in figures 4.26 (b). Similarly it can be summarized that when the applied 

mechanical load increases, the magnitude and the trend of the electrical intensity factors 

KIV are nearly identical to the single penny-shaped crack and, once again, the four 

models are strongly different for all models of cracks. Moreover, at the two distinct 

points, the impermeable model serves as upper bound whereas the lower bound is 

switched of energetically consistent and permeable models corresponding to turning 

point at 0 = 20 MPa  . This pattern is identical to the single penny-shaped crack. 

Besides, at both two points, KIV of the semi-permeable and energetically consistent 

models are again identical, similar to the single penny-shaped crack. Those two models 

also approach the impermeable model. It can be concluded that, similar to other planer 
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crack, the increase of the applied mechanical load has influence to both the magnitude 

and the lower bound of stress intensity factors KIV. 
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Figure 4.26 (a) and (b) are dependent of normalized stress and electric intensity factors 

[KI, KIV] on the mechanical load for a two penny-shaped crack in infinite medium. 

Results are reported on the maximum and minimum values 

 

4.3 Influence of remote electrical load on four crack-face boundary conditions 

Influence of electric load (electric field) on stress and electric intensity factors is 

investigated. The several cracks are adopted for the exploration such as spherical cap 

crack, cylindrical crack, tunnel crack, two penny-shaped crack in vertical direction and 

the two penny-shaped cracks in horizontal direction. The effect of electric field will be 

revealed in the next section 

4.3.1 Influence of remote electrical load on spherical cap and cylindrical crack 

At the outset, the two non-planar cracks such as spherical cap and cylindrical cracks is 

employed to explore the stress and electric intensity factor on four crack-face model by 

varying the remote electric load. The influence of electrical field will be revealed in the 

following subsections.  

4.3.1.1 Influence of remote electrical load on spherical cap crack 

The first investigation for the influence of the electrical load is discussed by considering 

a spherical cap crack embed in a transversely isotropic piezoelectric infinite medium.  

The  crack  geometry, the mesh  and  the  material  properties of piezoelectric  medium  

are  analogous to  those in the  section  4.2.1. The key parameter differences from the 

previous case are that (i) the radius of spherical cap crack fixed as 1.2732395447352 

corresponding to radius of penny-shaped crack as 1 (a = 1), (ii)  the  applied uniaxial 

remote stress is fixed as 50 MPa, (iii) the applied electric field E0 is now varied from [-

4.5,-4,-3.5,…4.5] MV/m  which  is  the key point of this section, and finally (iv) the 

dielectric permittivity inside the crack gap is fixed c = 50 where 0 = 8.85x10-12 C/Vm 

is the permittivity of the air in the crack gap. The present numerical results shown in 

figures 4.27 (a) and (b) and (c) reveal that when the applied electric field increases from 

negative to positive values, the magnitude of the normalized stress and electric 

[KI,KII,KIV], particularly the magnitude of the three models (i.e., impermeable,  semi-

permeable and energetically consistent models), are extremely varied for the whole 

range of electric field. This can be discussed in detail as follows. 

 The stress intensity factors KI upon four models reported in figures 4.27 (a) are 

obtained by comparing with the planar crack. It can be found that when the electric field 

varies, those three models (i.e., impermeable, semi-permeable and energetically 

consistent models) become different. For example, the energetically consistent models 

increases whereas for the impermeable and semi-permeable models decreases the 

magnitude at the range of negative electric field (E0 = -4.5 to E0 = 0 MV/m), and the 

behavior of those three models become opposite at the range of positive electric field 

(E0 = 0 to E0 = 4.5 MV/m). In contrast, the three models of penny-shaped crack are 

completely identical and the values of those models are obviously higher than the non-

planar crack. Nevertheless, the trend of the energetically consistent models of both 

planar and non-planar crack are similar behaviors by presenting the large slope at both 
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sides of electric field range. Moreover, it is obvious that the bounds of planar and non-

planar crack of the positive electric field range are significantly different. For example, 

the upper bound of spherical cap crack is permeable model whereas that of planar crack 

serves as three models (i.e., permeable, semi-permeable and impermeable models). 

Again, the lower bounds of both cracks slightly changed, for example the lower bound 

of planar crack serves as energetically consistent model while it is switched of 

impermeable and energetic consistent by showing the turning point at E0 = 2.5 MV/m. 

In addition, one can see from figure 4.27 (a) that the permeable models of both planar 

and non-planar crack are independent of electric field. However, the semi-permeable 

and impermeable models are obviously dependent on electric field. This implies that 

the electric field has an influence not only to the magnitude but also to the four boundary 

conditions of both cracks. 

 The results of stress intensity factor KII on four models are presented in figure 

4.27 (b). Results reveal that when the electric field varies from -4.5 to 4.5 MV/m the 

two models (i.e., impermeable and semi-permeable models) become opposite to the 

magnitude of KI except the energetically consistent and permeable models. It can be 

explained further that those two models tend to increase the magnitudes at both negative 

and positive ranges of electric field, whereas the normalized stress KII of planar crack 

vanishes. Figure 4.27 (b) also indicates that the energetically consistent model still has 

high slope compared to the other models. Furthermore, the upper bounds of positive 

range of electric field serve as impermeable model whereas the lower bound is again 

switched of permeable and energetically consistent models and this occurs at the 

turning point of E0 = 1 MV/m. Throughout the range of electric field, the permeable 

model shows the behavior identical to the KI, indicating the independence toward  

electric field. Similarly, the two models (i.e., impermeable and semi-permeable models) 

are strongly dependent of electric field. Finally, it can be summarized from above 

discussion that when the electric field varies from negative to positive values, it 

influences to both the magnitudes of the three models (i.e., impermeable, semi-

permeable and energetically consistent models - except the permeable model) and lower 

bounds of four models at the positive range of electric field. 

 Finally, the electric intensity factor KIV on four models (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models) is shown in figure 

4.27 (c). It can be seen that along with the increase of the electric field from the negative 

to the positive values of electric field, the magnitude of four models (i.e., impermeable 

permeable, semi-permeable and energetically consistent models) are rather identical to 

the trend of planar crack (a penny-shaped crack). More specifically, the impermeable 

and semi-permeable models strongly depend on electric field. It can be observed further 

from the figure that the curve of the energetically consistent models is reduced 

compared with the stress KI and KII in the former discussion. It is nearly identical to 

semi-permeable models at the range E0 = -2 to 1 MV/m but drops down when the 

electric field is sufficiently large. In addition, at the positive electric range of electric 

field, the upper bound is impermeable model whereas the lower bound is again switched 

between the permeable and the energetically consistent model which occurs at the 

turning point as E0 = 3.5 MV/m  . Besides, the permeable model of KIV again is fully 

independent of electric field, similar to the normalized stress KI and KII in the previous 

discussion. This can be concluded that when the electric field varies, it affects both the 



 

 

101 

magnitude of three models (i.e., impermeable, semi-permeable and energetically 

consistent models) and the lower bound of those four models. 
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          (c) 

Figure 4.27 (a), (b) and (c) are dependent of normalized stress and electric intensity 

factors [KI, KII, KIV] on the electrical load for spherical cap crack in infinite medium. 

Results are reported as average values  

4.3.1.2 Influence of remote electrical load on cylindrical crack 

Next, we consider a cylindrical crack embed in a transversely isotropic piezoelectric 

infinite medium.  The  crack  geometry, the mesh  and  the  material  properties of 

piezoelectric  medium  are  similar to  the  section  4.2.2. The major distinctions from 

the previous research are that (i) the radius of cylindrical crack fixed as 

1.2732395447352 corresponding to radius of penny-shaped crack as 1 (a = 1), (ii)  the  

applied uniaxial remote stress is fixed as 50 MPa, (iii) The applied electric field E0  now 

varies from [-4.5,-4,-3.5,…,4.5] MV/m  which  is  similar to the spherical cap crack, 

and (iv) and the dielectric permittivity inside the crack gap is fixed c = 50 where 0 = 

8.85x10-12 C/Vm is the permittivity of the air in the crack gap. The numerical results 

are presented in order to investigate the influence of electrical load on stress, and 

electric intensity factors at three different points (i.e., top, middle and bottom points as 

shown in figure 4.3) are displayed in figures 4.28 (a), 4.29 (a) and 4.30 (a). It can be 

found that when the applied electric field increases throughout the range [-4.5 to 4.5 

MV/m], the trends of the normalized stress and electric [KI,KII,KIV]  (only at the middle 

point) and KIV are identical. However, the magnitude of those varies from positions 

(i.e., top, middle and bottom points) along the crack front which can be discussed in 

detail as follows: 

 The non-zero intensity factors KI on four crack-face models (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models) at three distinct points 

(i.e., top, middle and bottom points) reported in figure 4.28 (b), (c) and (d) are 
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investigated. It can be found that as the electric field increases from the negative to the 

positive values, the discrepancy of the magnitude depends on the positions (points) 

along the crack front, for example, the magnitude of the top point is greater than other 

two remaining points (i.e., middle and bottom points). Moreover, the three models (i.e., 

impermeable, semi-permeable and permeable models) are nearly identical which is very 

similar to the planar crack (penny-shaped crack) at the top point of cylindrical crack, 

and those three models gradually exhibit the distinctions when KI is obtained from the 

middle and bottom points respectively. It should be noted that the behaviors of three 

points can be observed further from each figure, that the impermeable and semi-

permeable models at three different points (i.e., top, middle and bottom points) strongly 

depend on the increasing electric field by exhibiting the slope of the magnitude, 

whereas the three models of planar crack are completely identical.  Again, figures 

indicate that the permeable models are similarly independent of the electric field at all 

points which is identical to the planar crack. Furthermore, the upper and lower bound 

of all the three different points are permeable and energetically consistent models when 

the electric field is in the positive range. It should be remarked again that the magnitude 

of the energetically consistent models at three points of cylindrical crack are strongly 

dependent on the increasing electric field, and that is analogous to the planar crack. This 

can be implied that when the electric field varies from small to large values, it has an 

influence to the magnitude of three models of cylindrical crack and also to one model 

for planar crack, which is energetically consistent model. 
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     (d) 

Figure 4.28  Dependent of normalized stress intensity factors [KI] on the electrical load 

for cylindrical crack in infinite medium. Results are reported on (a) all points, (b) top, 

(c) middle and (d) bottom points 

 

Next, the stress intensity factors KII obtained from three distinct points (i.e., top, 

middle and bottom points) under four crack-face models (i.e., impermeable, permeable, 

semi-permeable and energetically consistent models) are studied as shown in figure 

4.29(a), (b), (c) and (d). It can be found that when the electric field increases from small 

to the large values [-4.5 to 4.5 MV/m], the magnitude of the bottom point are 

significantly higher than other points (i.e., top and middle points), whereas the stress 

KII of planar crack vanishes. However, the behaviors of three different points are rather 

different which can be observed further in detail. It can be found that the impermeable 

and semi-permeable models of three points again depend on the increasing electric field 

while the permeable models do not. Moreover, the bounds at the range of the positive 

electric field  at three points are  rather distinct, for example, the upper bounds of any 

points along the crack front of cylindrical crack are impermeable models whereas the 

lower bounds of those three points are switched of permeable and energetically 

consistent models corresponding to the turning point occurred at E0 = 3.5, E0 = 1.5 and 

E0 = 1 MV/m for top, middle and bottom points respectively. In addition, the 

energetically consistent model at the top point are also different from both middle and 

bottom points by displaying the curve as a linear whereas at the remaining points exhibit 

as non-linear when the negative electric field is obtained. These can be summarized that 

the increasing electric field gives rise to affect not only the lower bound at any points 

but also to the magnitude of those positions. 
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     (d)  

Figure 4.29 Dependent of normalized stress intensity factors [KII] on the electrical load 

for cylindrical crack in infinite medium. Results are reported on (a) all points, (b) top, 

(c) middle and (d) bottom points  
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Next, we investigate the influence of stress intensity factors KIII on four crack-

face models (i.e., impermeable, permeable, semi-permeable and energetically 

consistent models) only at the middle point along the crack front as reported in figure 

4.30. It can be found that when the electric field increases from [-4.5 to 4.5 MV/m], the 

impermeable and semi-permeable models fully depend on the electric field, by 

exhibiting the increase of the magnitude. The slope of impermeable model, however, is 

greater than the semi-permeable model. It is also found that the permeable is perfectly 

independent of electric field by showing the constant magnitude. Furthermore, the 

energetically consistent model starts to increase at E0 = 0 MV/m  which is different 

from the behavior of [KI,KII,KIV] trends. Finally, results reveal that the upper bound at 

the range of positive electric field serves as impermeable model, whereas the lower 

bound is permeable model. This can be implied that when considering the negative and 

positive range of electric field, it has influence to both the magnitude of stress KIII and 

the bound of the four models. 
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Figure 4.30 Dependent of normalized stress intensity factors [KIII] on the electrical load 

for cylindrical crack in infinite medium. Results are reported on the middle point 

 

Eventually, the influence of electric intensity factors KIV offered from three distinct 

points (i.e., top, middle and bottom points) on four models (i.e., impermeable, 

permeable and energetically consistent models) as illustrated in figure 4.31 (a), (b),(c) 

and (d) are investigated. As the electric field increases [-4.5 to 4.5MV/m]. In addition, 

the magnitude of three different points slightly changes. However, the behaviors of four 

models are clearly distinct which would be investigated in detail.  

From figure 4.31 (a), (b) and (c), it can be found that the semi-permeable and 

impermeable of three points along the crack front strongly depend on electric field. On 

the other hand, the permeable models are completely independent of electric field, and 
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that behaviors are identical to planar crack. Moreover, the energetically consistent 

models of three points (i.e., top, middle and bottom points) have similar trends by 

implying the linear curve at the range of negative electric field and by indicating the 

non-linear curve at the positive range of electric field which is similar to planar crack. 

Besides, it can be noticed that the upper bounds of three points serve as impermeable 

models while the lower bound varies from the three points at the range of positive 

electric field. For example, at the top point, the lower bounds are permeable model, 

whereas at both middle and bottom points they are switched of permeable and 

energetically consistent models. This leads to the turning points of the lower bounds at  

E0 = 4 MV/m for both points. These can be implied that when the electric field is 

changed, it affects to both the magnitude and the lower bound of four crack models. 
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      (d) 

Figure 4.31 Dependent of normalized electric intensity factors [KIV] on the electrical 

load for cylindrical crack in infinite medium. Results are reported on (a) all points, (b) 

top, (c) middle and (d) bottom points 

4.3.1.3 Comparison between spherical cap crack and cylinder crack 

Form the above discussion, the stress and electric intensity factors [KI,KII,KIV]  offered 

from both spherical cap crack and the top point of cylindrical crack on four models (i.e., 

impermeable, permeable, semi-permeable and energetically consistent models) have 

major points which can be compared as follows. 

Results of the spherical cap crack can be summarized as follows. When the 

electric field varies, the two models (i.e., impermeable, semi-permeable models) are 

distinct and are strongly dependent of electric field which is completely different from 

the penny-shaped crack, whereas both permeable and energetically consistent models 

of both cracks (i.e., penny-shaped and spherical cap crack) exhibit clearly identical 

trends. However, the magnitude of penny-shaped crack on four models is higher than 

the spherical cap crack. It can be found that the bounds of planar and non-planar crack 

of the positive electric field range are significantly different. For example, the upper 

bound of spherical cap crack is pure permeable model whereas one is three models (i.e., 

permeable, semi-permeable and impermeable models) for the planar crack. Again, the 

lower bounds of both cracks slightly change. For example, the lower bound of planar 

crack serves as pure energetically consistent model while it is switched of impermeable 

and energetic consistent. In addition, the permeable models of both planar and non-

planar cracks are independent of electric field. The semi-permeable and impermeable 

models, on the contrary, are obviously dependent on electric field. Similarly, the stress 

intensity factors KI obtained from cylindrical crack at three different points (i.e., top, 
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middle and bottom points) are compared with the previous cracks (i.e., spherical cap 

and penny-shaped cracks). It is found that the magnitudes of three different points are 

completely different depending on the point along the crack front. The behavior of 

spherical cap crack is also very identical to KI at the bottom point of cylindrical crack. 

Apart from the similarity of spherical cap crack, we can also indicate that the dependent 

of electric field of KI at the top point along the crack front of cylindrical crack are 

weaker than at the rest of the point (i.e., middle and bottom points). The dependent of 

electric field for energetically consistent model at any points and penny-shaped crack 

is still strong. Moreover, the upper and lower bound of both cylindrical crack (at any 

points) and penny-shaped crack are identical but those lower bounds are different from 

spherical cap crack. 

For the stress intensity factor KII obtained from spherical cap crack, it can be 

found that with the increasing electric field, the three models (i.e., impermeable, semi-

permeable and energetically consistent models) are strongly dependent of electric field 

at the entire range of electric field. Furthermore, the upper bounds of positive range of 

electric field serve as impermeable whereas the lower bound is again switched of 

permeable and energetically consistent models. Throughout the range of electric field, 

it manifests that the permeable model shows similar behavior to the KI. Identically, the 

stress intensity factor KII obtained from cylindrical crack at top, middle and bottom 

points are considered to compare with spherical cap crack. It can be found that the 

magnitudes of all points are completely different. In addition, the dependent and 

independent of both three models (i.e., impermeable, semi-permeable and energetically 

consistent models) and permeable model exhibit very identical behaviors. The 

switching point of the lower bound of cylindrical crack at all points, however, is varied 

depending on the point along the crack front. Those varying are also different from the 

lower point of spherical cap crack. 

For the stress intensity factors KIII obtained only at the middle point of 

cylindrical crack can be conclude that, the three models (i.e., impermeable, semi-

permeable and energetically consistent models) are similarly dependent on increasing 

the electric field; however, the permeable model is not dependent of electric field 

similar to KI and KII in previous discussion. Moreover, the upper and lower bounds of 

KIII on four models serve as impermeable and permeable models at the positive range 

of electric field respectively. 

Finally, from the electric intensity factors KIV on four models (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models) of spherical cap crack, 

it can be concluded that the magnitude of penny-shaped crack on four models are 

greater than that of spherical cap crack. Moreover, the behavior of both spherical cap 

and penny-shaped cracks exhibit very identical trends. For example, the dependent of 

electric field of three models (i.e., impermeable, semi-permeable and energetically 

consistent models) of both planar and non-planar crack are also identical. In addition, 

the permeable models of both cracks similarly are independent of electric field at the 

entire range but the lower bounds of penny-shaped crack is different from spherical cap 

crack  - the lower bounds of spherical cap crack is switched of permeable and 

energetically consistent models. On the other hand, results of stress intensity factors KIV 

obtained from top, middle and bottom points of cylindrical crack indicate that the 

magnitude of top point is greater than the rest point. The behavior of KIV at bottom point 

of cylindrical crack are very identical to that of spherical cap crack. In addition to the 
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similarity of both spherical and top point of cylindrical crack, it is also seen that the 

lower bound of KIV at three points of cylindrical crack depends on the obtained electric 

intensity factors KIV along the crack front. In addition, the behavior of KIV at the top 

point is very identical to the penny-shaped crack. 

4.3.2 Influence of remote electrical load on tunnel crack 

In this case, the influence of electrical load is investigated by considering a tunnel crack 

containing in a transversely isotropic piezoelectric infinite medium.  The  crack  

geometry, the mesh  and  the  material  properties of piezoelectric  medium  are  

analogous to those applied in section  4.2.3. The essential distinctions from the previous 

investigation are that (i) the end-radius and the half-length of tunnel crack are fixed as1 

and 5 respectively (ii)  the  applied uniaxial remote stress is fixed as 50 MPa, (iii) the 

applied electric field E0 is now varied from [-4.5,-4,-3.5,…,4.5] MV/m  which  is  

similar to the other cracks, and (iv) and the dielectric permittivity inside the crack gap 

is fixed c = 50 where 0 = 8.85x10-12 C/Vm is the permittivity of the air in the crack 

gap. The effect are offered to explore the influence of electrical load on stress and 

electric intensity factors at two different points (i.e., the end-radius and half-length 

points as illustrated in figure 4.23a) are reported in figures 4.32 (a),(b),(c) and (d). It 

can be found that when the range of the applied electric field increases [-4.5 to 4.5 

MV/m], the magnitude of the normalized stress and electric KI and KIV of both points 

(i.e., the end-radius and the half-length points) are rather different. For example, the 

magnitude of the half-length point is completely greater than that of both the end-radius 

point and the penny-shaped crack as shown in figure 4.32(b) and (d). However, the 

trends of both points and the penny-shaped crack are very almost identical along the 

crack front which can be discussed in detail as follows: 

 At the outset, the numerical results of stress intensity factors KI at two different 

points (i.e., the end-radius and the half-length points) on four crack-face models (i.e., 

impermeable, permeable, semi-permeable and energetically consistent models) 

reported in figure 4.32 (a) and (b) are investigated. It is found that when the range of 

the electric field increase from small to large values [-4.5 to 4.5 MV/m], the magnitude 

of both points are completely different and also different from that of the penny-shaped 

crack. The trends of all points, however, are obviously identical similar to that of the 

penny-shaped crack. More specifically, the three models of both point (i.e., the end-

radius and the half-length points) are also completely identical and independent of 

electric field. In addition, those three models (i.e., impermeable, permeable and semi-

permeable models) serve as upper bounds, whereas the energetically consistent models 

of both points strongly depend on the electric field and serve as the lower bound in 

range of the positive electric field of which all behaviors are analogous to the behaviors 

of penny-shaped crack. It can be observed further from the figure that the turning points 

between the positive and negative ranges of the electric field are always generated at 

E0= 0 MV/m. Accordingly. From this investigation, one can thoroughly understand the 

behaviors of the three models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models). 

 Finally, the influence of electric intensity factors KIV on four crack models (i.e., 

impermeable, permeable, semi-permeable and energetically consistent models) 

obtained from two distinct points (i.e., end-radius and the half-length points) are 

reported in figure 4.32 (c) and (d). It can be found that when the electric field increases 
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[-4.5 to 4.5MV/m], the magnitude of KIV at two points are rather different, i.e., the 

magnitude of end-radius point is obviously less than that of the half-length points. More 

specifically, the slops of KIV for the half-length points are also higher than the other 

point. Not only these behaviors but also the magnitude is identical to that of the planar 

crack. For example, the impermeable and semi-permeable models extremely depend on 

the electric field and the permeable models are independent of increasing of the electric 

field. Moreover, the behaviors of energetically consistent models are linear curve at the 

negative range of electric field whereas they change to the non-linear curve in the 

positive range of electric field. In addition, the turning points of the negative and 

positive electric field ranges again occur at E0= 0 MV/m which is similar to those of 

the planar crack. From the positive range of electric field, it can be indicated from figure 

again that the upper bound is impermeable models whereas the lower bound us is 

permeable model. It can be said that the behavior of the tunnel crack is similar to that 

of the penny-shaped crack. The only difference is the magnitude. 
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       (d) 

Figure 4.32 (a), (b), (c) and (d) are dependent of normalized electric intensity factors 

[KI, KIV] on the electrical load for tunnel crack in infinite medium. Results are reported 

on the end-radius and half-length points  

4.3.3 Influence of remote electrical load on two pair of penny-shaped cracks 

In this section, two pair of two penny-shaped cracks (e.g., two penny-shaped cracks in 

both vertical and horizontal directions are studies of stress and electric intensity factor 

on four crack-face models. each crack will be implemented in subsection follow. 

 

4.3.3.1 Influence of remote electrical load on two penny-shaped crack in vertical 

direction 

In this special case, we aim to consider the influence of electric field by discussing a 

two penny-shaped cracks in vertical direction embed in a transversely isotropic 

piezoelectric infinite medium.  The geometry, the mesh and the material properties of 

piezoelectric  medium of the two penny-shaped cracks  are  analogous to  section  

4.2.3.1.  The major difference from the previous investigation are that (i) the radius a 

the distance L of a two penny-shaped cracks are fixed as1 and 0.5 respectively (ii)  the  

applied uniaxial remote stress is fixed as 50 MPa, (iii) The applied electric field E0   is 

now varied from [-4.5,-4,-3.5,…,4.5] MV/m  which  is  similar to the other cracks, and 

(iv) the dielectric permittivity inside the crack gap is fixed c = 50 where 0 = 8.85x10-

12 C/Vm is the permittivity of the air in the crack gap. The numerical results reported in 

figures 4.33 (a) and (b) are obtained from the point along the crack front of a penny-

shaped crack. It is seen that as the applied electric field increases [-4.5 to 4.5 MV/m], 

3333

0 3343

IV
IV

K E
K

E a
  

0

12

5, 1

50

5 8.85 10 /c

L a

MPa

C Vm

 

 

   

 

0E  



 

 

117 

the magnitude of the normalized stress and electric KI and KIV along the crack front is 

slightly discrepant from the single penny shaped crack. For example, the magnitude of 

the two penny-shaped crack is clearly less than that of the penny-shaped crack of both 

KI and KIV. Moreover, the behaviors of both cracks (i.e., the two penny-shaped crack 

and the penny-shaped crack) are completely identical which can be observed in detail 

as follows. 

 First, the numerical results of stress intensity factors KI on four crack-face 

models (i.e., impermeable, permeable, semi-permeable and energetically consistent 

models) reported in figure 4.33 (a) are obtained. It can be found that when the electric 

field varies form [-4.5 to 4.5 MV/m], the three models (i.e., impermeable, permeable 

and semi-permeable models) are nearly identical and are weak dependent of the 

increase of the electric field which is similar to the behavior of planar cracks (i.e., the 

penny-shaped crack). Moreover, as the electric field increases, the energetically 

consistent model analogous to penny-shaped crack strongly depends on the electric 

field. The figures 4.33(a) also reveal that the turning point of the negative and positive 

range occurs at E0 = 0MV/m. This can be implied that as the  electric field increases, 

the trend of stress intensity factor KI on four models of the two penny-shaped cracks 

with the distance of both cracks L=0.5 are very similar to those of  penny-shaped crack 

or the general planar cracks. 

In this special case, the stress intensity factor KII obtained from two penny-

shaped crack in vertical direction under four models (i.e., impermeable, permeable, 

semi-permeable and energetically consistent models) are proposed. It is found that 

increasing the electric field, KII of impermeable, semi-permeable and energetically 

consistent models are significantly dependent of electric field whereas the permeable 

model is independent of electric field at the entire range. However, the distribution of 

four models are negative values. Similarly the electric field E0 = 0MV/m is the point 

that the energetically consistent model start to decrease the magnitude. This reveal that 

when the distance of the two crack is relative small, it give rise to appear KII and it 

influences to impermeable, semi-permeable and energetically consistent models 

 Eventually, the influence of numerical result on intensity factor obtained from 

four crack-face models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models) are proposed. It reveal that with the increase of the 

electric field from [-4.5 to 4.5MV/m], the trends of the normalized electric KIV of both 

two penny-shaped cracks and penny-shaped crack are very identical; nevertheless, the 

magnitude of the two penny-shaped cracks is less than the single penny-shaped crack. 

It can be observed from figure 4.33 (b) again that the lower bound on the range of the 

positive electric is permeable model, whereas the upper bound is still impermeable 

model. Moreover, it is similar to penny-shaped crack that the permeable models are 

clearly independent of the increasing electric field. On the other hand, the two models 

(i.e., impermeable and semi-permeable models) extremely depend on the increasing 

electric field and the results reveal in the figure that the turning point of the electric 

field range is at E0 = 0 MV/m. This can be implied that the KIV of the two penny-shaped 

crack in vertical direction on four models exhibits the same behaviors as those of the 

penny-shaped crack. 
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           (b) 

Figure 4.33 (a), (b) and (c) are dependent of normalized stress and electric intensity 

factors [KI, KII, KIV] on the electrical load for two penny-shaped cracks in infinite 

medium. Results are reported on one penny-shaped crack 

 

4.3.3.2 Influence of remote electrical load on two penny-shaped crack in horizontal 

direction 

For final investigation, we again focus on the influence of electric field by considering 

a two penny-shaped cracks in horizontal direction containing in a transversely isotropic 

piezoelectric infinite medium.  The geometry of the crack, the mesh  and  the  material  

properties of piezoelectric  medium of the two penny-shaped cracks  are  analogous to  

the  section  4.2.3.2. The major difference from the previous research are that (i) the 

radius a the distance L of a two penny-shaped cracks are fixed as1 and 2.25 (horizontal 

direction)  respectively, (ii)  the  applied uniaxial remote stress is fixed as 50 MPa, (iii) 

the applied electric field E0   is now varied from [-4.5,-4,-3.5,…,4.5] MV/m  which  is  

similar to the previous cracks, and (iv) the dielectric permittivity inside the crack gap 

is fixed c = 50 where 0 = 8.85x10-12 C/Vm is the permittivity of the air in the crack 

gap. The effects illustrated in figures 4.34 (a) and (b) are gained from the two different 

points (i.e., maximum and minimum values) along the crack front of a penny-shaped 

crack. From the influence the increasing applied electric field from -4.5 to 4.5 MV/m, 

it can be found that the magnitude of the normalized stress and electric KI and KIV of 

two points along the crack front are the same as those of the pure penny shaped crack. 

However, the behaviors of the both cracks (i.e., the two penny-shaped crack in 

horizontal direction and the penny-shaped crack) are completely identical which is 

similar to the previous section. This can be concluded in detail as follows. 
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 Figure 4.34 (a) shows that as the electric field increases from negative to 

positive values [-4.5 to 4.5 MV/m], the stress intensity factors KI obtained from both 

points (i.e., maximum and minimum points) on four models are exactly identical to 

penny-shaped crack. There are a few identical points exhibited in this investigation. 

First, the three modes (i.e., impermeable, permeable and semi-permeable models) are 

independent of the electric field. Second, the energetically consistent models depend 

on increasing the electric field as discussed in previous sections. In addition, as the 

electric field increases, at the large distance of the two penny-shaped cracks the electric 

field does not affect the four models as penny-shaped crack should be. 

 Finally, the result in figure 4.34 (b) obtained from the maximum and minimum 

points of the two penny-shaped cracks are investigated. It is found that as the electric 

field increases, both the trends and the behaviors of the electric intensity factors KIV are 

very identical to the penny-shaped crack. Again, the trends of two penny-shaped crack 

in horizontal direction can be concluded similarly to those mentioned in the previous 

discussion, e.g., the strong dependent on three models (i.e., impermeable, semi-

permeable and energetically consistent models) of the electric field, the obvious 

independent of electric field on the permeable model. Besides, it should be noted that 

when the distance of the two penny-shaped crack is large, the influence of the increasing 

electric field in independent, and does not differ from the four boundary conditions as 

the penny-shaped crack should be. 
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 (b) 

Figure 4.34 (a) and (b) are dependent of normalized stress and electric intensity factors 

[KI, KIV] on the electrical load for two penny-shaped cracks in infinite medium. Results 

are reported on the maximum and minimum values  

 

4.4 Influence of permittivity on four crack-face boundary conditions 

In this section, the influence of permittivity inside the crack gap are investigate on stress 

and electric intensity factors along the crack font are investigated on four crack-face 

models (e.g., impermeable, permeable, semi-permeable and energetically consistent 

models). The multiple cracks including planar and non-planar are adopted for this study 

are utilized such as the non-planar cracks (e.g., spherical cap and cylindrical cracks), 

the planar cracks (e.g., the tunnel crack and two pair of penny-shaped cracks in both 

vertical and horizontal directions) which can discuss in the following sections. 

 

4.4.1 Influence of permittivity on spherical cap and cylindrical crack 

First, the non-planar cracks such as spherical cap and cylindrical cracks are utilized to 

investigate the influence of permittivity inside the crack gap on stress and electric 

intensity factors. The investigation will be carried out in subsection follow. 

 

4.4.1.1 Influence of permittivity on spherical cap crack 

In this special case, we investigate the influence of the permittivity c of a medium 

inside the  crack  gap by  considering the spherical cap cracks with radius  R embedded 
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a piezoelectric infinite medium which is made of PZT-4  similar  to  the  previous  case.  

The  key  information different from the previous case are that (i) the permittivity of a 

medium inside the crack gap which is determined by c = 0 where  is termed the 

relative permittivity and 0  = 8.85x10 -12 C/(Vm) is the permittivity of the air that can 

be varied [ = 2,2.5,3,3.5,….,10], (ii) the half subtended angle and the radius R of the 

spherical  cap  crack  are  defined  as  = 45 degree and    R =1.2732395447352, and (iii)  

the uniform  remote tension 0 is  determined  to  be  50  MPa whereas  the  electric  

field  E0   still  remains  at  2.5 MV/m, and (iv) only the finest meshes (144 elements) 

of crack configuration are utilized in the investigation. The numerical results of stress 

and electric intensity factors [KI,KII,KIV] obtained from the average points along the 

crack front on four crack-face models (i.e., impermeable, permeable, semi-permeable 

and energetically consistent models) are investigated as shown in figures 4.35 (a),(b) 

and (c) which can be discussed in detail as follows. 

 The results reported in figure 4.35 (a) are obtained from the research on four 

crack-face models. It can be found that the stress intensity factor KI of three models 

(i.e., impermeable, permeable and semi-permeable models) is not identical and the 

results of semi-permeable models depend on permittivity of the medium inside the 

crack gap. Accordingly, the magnitude increases from impermeable to the permeable 

modes when the values of permittivity increase. This is in contrast to the stress intensity 

factors KI on the penny-shaped crack, in which those three models are identical and 

independent of the permittivity of the medium inside the crack gap. This follows the 

works of previous investigators (i.e., Li and Lee, 2004; Chen et al, 2000 and Chen and 

Lim, 2005) who specify that the three models (i.e., impermeable, permeable and semi-

permeable models) are identical and independent of medium inside the crack gap and 

depend only on the mechanical loading. It can be found again from figure 4.32 (a) that 

the KI of energetically consistent model strongly depends on the permittivity of medium 

inside the crack. In addition, the upper bound is permeable model whereas the lower 

bound is switched of energetically consistent and impermeable models. This finding is 

in contrast with the solution for penny-shaped cracks, in which the energetically 

consistent model is less than the other three models (i.e., impermeable, permeable and 

semi-permeable models) in the entire range of c which is analogous to the prediction 

of Li et al, 2011. This can be implied that the non-planar crack plays a significant role 

on KI for three crack model. 

 Next, the numerical results stress intensity factors KII obtained from the average 

points along the crack front are studied as reported in figure 4.35 (b). It is found that 

when the permittivity of medium inside the crack gap increase, the magnitude of three 

models (e.g., impermeable, permeable and semi-permeable models) are strongly 

different. It can be observed further from figure that the semi-permeable model is varied 

from the impermeable to permeable model which is in contrast with the semi-permeable 

model of stress intensity factors KI. Moreover, it is again seen that the upper bound is 

completely impermeable model whereas the lower bound still remains the energetically 

consistent model. Besides, results also reveal that the energetically consistent model 

varies from lower bound and that one approaches to the permeable model when the 

permittivity of the medium increase. This indicates that increasing the permittivity of 

non-planar crack has essentially influence to the behavior of semi-permeable model. 

 Finally, the electric intensity factors KIV gained from four models (i.e., 

impermeable, permeable, semi-permeable and energetically consistent models) are 
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investigated as reported in figure 4.35 (c). it is manifested that as the permittivity 0of 

medium inside the crack gap increase, the two models (i.e., semi-permeable and 

energetically consistent models) are decreased and are strongly dependent on the 

medium inside the crack gap. This behavior is similar to that of the penny-shaped crack 

which is different to the stress intensity factors KI. It is also found that the semi-

permeable model varies from impermeable to permeable model, and that the upper 

bound is impermeable models whereas the lower bound still remains permeable model. 

This indicates that the influence of permittivity inside the crack gap affects the 

magnitude of two models (i.e., semi-permeable and energetically consistent models). 
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    (c) 

Figure 4.35 (a), (b) and (c) are dependent of normalized stress and electric intensity 

factors [KI, KII,KIV] on the permittivity for spherical cap cracks in infinite medium. 

Results are reported as average values 

0

II
II

K
K

a
  

3333

0 3343

IV
IV

K E
K

E a
  

  

  



 

 

125 

4.4.1.2 Influence of permittivity on cylindrical crack 

Next, we consider the influence of the permittivity c of a medium inside the  crack  gap 

for a cylindrical cracks with radius  R embed in a piezoelectric infinite medium which 

is made of PZT-4  analogous  to  the  previous  section.  The  main  distinction from the 

previous section are that (i) the permittivity of a medium inside the crack gap which is 

determined by c = 0 where c = 0 is termed the relative permittivity and 0 = 

8.85x10-12 C/(Vm) is the permittivity of the air which can be varied [ 

=2,2.5,3,3.5,….,10], (ii) the half subtended angle and the radius R of the cylindrical  

crack  are  determined  as  = 45 degree and  R =1.2732395447352,  (iii)  the uniform  

remote tension 0 is  determined  as  50  MPa whereas  the  electric  field  E0   is fixed 

as  2.5 MV/m, and (iv) only the finest meshes (144 elements) similar to previous section 

are employed in the study. In this special case, the numerical results of stress and 

electric intensity factors [KI,KII,KIV] and KIII (only middle point) obtained from the three 

distinct points (i.e., top, middle and bottom points) of a quarter [1/4] along the crack 

front on four crack-face models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models) are explored as shown in figures 4.36 (a) to (d), 4.37 

(a) to (d), 4.38 and 4.39(a) to (d). This would be discussed in detail as follows. 

 The effects reported in figure 4.36 (a), (b), (c) and (d) are obtained on four crack-

face models. It can be found that as the permittivity c increases, the stress intensity 

factor KI at three points (i.e., top, middle and bottom points) of three models (i.e., 

impermeable, permeable and semi-permeable models) are clearly different. Such 

differences depend on the three points. For example, at the top point, the discrepancy 

of the three models is small but will be large at the lower points (e.g., middle and bottom 

points). It can be observed further that the three points of semi-permeable models are 

dependent on permittivity of the medium inside the crack gap and that the semi-

permeable model varies from impermeable to permeable models which is different from 

the solutions of three models for penny-shaped crack found in the works of many 

investigators (e.g., Li and Lee, 2004; Chen et al., 2000 and Chen and Lim, 2005). Figure 

4.36 (b),(c) and (d) show that the predicted KI of energetically consistent models of the 

three points (i.e., top, middle and bottom points) increase and strongly depend on the 

permittivity of medium inside the crack gap, and that the energetically consistent model 

approaches to permeable model analogous to penny-shaped crack. Similarly, the 

bounds of the obtained stress intensity factors KI at the three points are identical, i.e.,  

the upper bounds at the top, the middle and the bottom points are impermeable whereas 

the lower bound is energetically consistent and model.  This behavior is in agreement 

with the solution for penny-shaped cracks in which energetically consistent is less than 

the three models (i.e., impermeable, permeable and semi-permeable models). This is 

also similar to the work of Li et al., 2011 with the increase of the permittivity as 

mentioned in the previous Section. This can be implied that the cylindrical crack is 

distinct for three crack models at all points. 
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  (d) 

Figure 4.36 (a), (b), (c) and (d) are dependent of normalized stress intensity factors [KI] 

on the permittivity for a cylindrical cracks in infinite medium. Results are reported on 

all points, the top, middle and bottom points 
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Here we investigate the influence of permittivity on stress intensity factors KII at three 

points along the crack front, on four crack-face models (i.e., impermeable, permeable, 

semi-permeable and energetically consistent models) as shown in figure 4.37 (a), (b), 

(c) and (d). It can be found that as the permittivity c increases, the magnitude of stress 

intensity factor KII at the bottom point is greater than at the middle and the top points 

respectively. Moreover, the bottom point exhibits the discrepancy of the magnitude 

which is greater than the remaining points for instance, the three models (i.e., 

impermeable, permeable and semi-permeable models) at any points are completely 

different. More specifically, the semi-permeable at three points also decreases and 

approaches to permeable model which depends on the three points. Clearly, the upper 

bounds at the all points are impermeable model whereas the lower bounds of the top 

point are permeable model, and energetically consistent model for the two remaining 

points (i.e., middle and bottom points). This can be concluded that when the permittivity 

increases, it has an influence on the lower bound of three different points which is not 

identical. 
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         (d)  

Figure 4.37 Dependent of normalized stress intensity factors [KII] on the permittivity 

for a cylindrical cracks in infinite medium. Results are reported on (a) all points, (b) 

top, (c) middle and (d) bottom points 

 

Results shown in figure 4.38 gained from normalized stress intensity factors KIII 

only at the middle point on four models along the crack front are investigated. It can be 

found that with the increasing permittivity, the upper bound and lower bound of 

predicted solutions of both semi-permeable and energetically consistent models are 

impermeable and permeable respectively. Moreover, the three models (i.e., 

impermeable, permeable and semi-permeable models) are different and are dependent 

of permittivity which is similar to the stress intensity factors [KI,KII] as discussed in 

prior discussion. In addition, it can be observed further that the semi-permeable and 

energetically consistent models share similar trends, and that those two models vary 

from impermeable to permeable model when the permittivity increases. In conclusion, 

it can be summarized that the permittivity has influence to magnitude of the semi-

permeable model and the energetically models. 
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Figure 4.38 Dependent of normalized stress intensity factors [KIII] on the permittivity 

for a cylindrical cracks in infinite medium. Results are reported on the middle point 

 

Finally, the influence of permittivity on the electric intensity factors KIV on four models 

(i.e., impermeable, permeable, semi-permeable and energetically consistent models) at 

three different points (i.e., top, middle and bottom points) are illustrated in figure 4.39 

(a), (b), (c) and (d). It can be found that as the permittivity increases, the magnitude of 

top point is greater than that of other points (i.e., middle and energetically consistent). 

The trends of KIV at those three points, however, are identical. For example, the three 

models (i.e., impermeable, permeable, semi-permeable models) are also not identical 

and the two models including the semi-permeable and energetically consistent models 

share rather similar trends and are strongly dependent of permittivity inside the crack 

gap. Moreover, those two models again varies from impermeable to permeable models. 

Besides, it is seen again from the figures that at three different points, the upper bound 

and lower bound still remain impermeable and permeable respectively. In short, it can 

conclude that the increasing permittivity affects only the magnitude of semi-permeable 

and energetically consistent models respectively. 
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          (d) 

Figure 4.39  Dependent of normalized electric intensity factors [KIV] on the permittivity 

for a cylindrical cracks in infinite medium. Results are reported on (a) all points, (b) 

top, (c) middle and (d) bottom points 
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4.4.1.3 Comparison between spherical cap and cylinder cracks 

Throughout the discussion, for the influence of permittivity above on the stress and 

electric intensity factors [KI,KII,KIV] obtained from both  spherical cap crack and the top 

point of cylindrical crack on four models (i.e., impermeable, permeable, semi-

permeable and energetically consistent models) there are a few important points which 

can be compared as follows. 

Results of the spherical cap crack can be predicated as follow. It is found that 

the stress intensity factor KI of three models are not identical and the results of semi-

permeable models are dependent on permittivity of the medium inside the crack gap. In 

contrast with the stress intensity factors KI on the penny-shaped crack, those three 

models are identical and are independent of the permittivity of the medium inside the 

crack gap. Moreover, It is seen again that the KI of energetically consistent model of 

both cracks (i.e., spherical cap and penny-shaped crack) strongly depends on the 

permittivity of medium inside the crack gap and the results also reveal that the upper 

bound is permeable models whereas the lower bound is switched of energetically 

consistent and impermeable models. This finding is in contrast with the solution for 

penny-shaped cracks that one is less than the three models (e.g., impermeable, 

permeable and semi-permeable models) in the entire range of c. For the cylindrical 

crack, the stress intensity factors KI obtained from the top, middle and bottom points 

can be compared with other cracks that increasing the permittivity, the magnitude KI of 

penny-shaped crack are greater than the magnitude of KI obtained from three points. It 

is also found that the behaviors of spherical cap crack of four models are very similar 

to KI of cylindrical crack at the bottom point; in contrast, the behavior of penny-shaped 

crack on four models are very identical to KI of cylindrical crack at the top point. In 

addition to the similarity of those crack behaviors, it is also found that the dependent of 

three crack models (i.e., impermeable, permeable and energetically consistent models) 

of increasing the permittivity strongly depend on the points along the crack front for 

example at the top and bottom points of cylindrical crack along the crack front, it is 

found that the three models are nearly identical at the top point whereas the three models 

of KI at bottom point can clearly see the distinct of the three models ; moreover, the 

energetically consistent model of cylindrical (at all points) and penny-shaped crack is 

strongly still dependent on increasing the permittivity at the entire range 

Next, the stress intensity factor KII harvested from spherical cap crack is found 

that increasing the permittivity, the three models (i.e., impermeable, semi-permeable 

and energetically consistent models). It is found that when the permittivity of medium 

inside the crack gap increase, the magnitude of three models (e.g., impermeable, 

permeable and semi-permeable models) are strongly different whereas the penny-

shaped crack have zero intensity factor KII. Moreover, it is again seen that the upper 

bound is impermeable model whereas the lower bound still remains the energetically 

consistent model. Besides, results also reveal that the energetically consistent and semi-

permeable models are strongly dependent of increasing the permittivity. Parallel to 

spherical cap crack is cylindrical crack. The stress intensity factors KII at three different 

points (i.e., top, middle and bottom points) are harvested to compare the spherical cap 

crack. It is found that the magnitude of three points of cylindrical crack are completely 

different; however, the behavior at the top point of cylindrical crack are very identical 

to spherical cap crack. Again, a part from the similarity of both cracks, it is found that 
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the lower bound of three point of cylindrical crack strongly depend on the points along 

the crack front for example at top point, lower bound is permeable whereas the lower 

bound is energetically consistent model at the middle and bottom points 

For the stress intensity factors KIII gained only at the middle point of cylindrical 

crack can be conclude that, the three models (i.e., impermeable, permeable, semi-

permeable and energetically consistent models) are completely different when the 

permittivity increase; more specifically, the semi-permeable and energetically 

consistent models are identical  and are dependent of increasing permittivity 

Finally, the electric intensity factors KIV on four models (i.e., impermeable, 

permeable, semi-permeable and energetically consistent models) of spherical cap crack 

can be concluded that the magnitude of penny-shaped crack on four models are greater 

than magnitude of spherical cap crack when the permittivity increase. It is found that 

the two models (e.g., semi-permeable and energetically consistent models) are 

decreased and are strongly dependent on the medium inside the crack gap similar 

behavior to the penny-shaped crack. It is also seen that the semi-permeable and  

energetically consistent models varies from impermeable to permeable models and 

results show that the upper bound is impermeable models whereas the lower bound still 

remains permeable model, for both spherical and penny-shaped crack. Identically, the 

results from cylindrical crack are obtained on four crack models. It is found that the 

magnitude of three different points are completely different. Moreover, result also 

reveal that the KIV of spherical cap crack are very identical to the bottom point of 

cylindrical; in contrast, KIV of penny-shaped crack are very identical to the top point of 

cylindrical crack.  

4.4.2 Influence of permittivity of tunnel crack 

In this case, the influence of the permittivity c of a medium inside the  crack  gap is  

considered  for a tunnel cracks with end-radius  a and the half-length L containing  in a 

piezoelectric infinite medium which is made of PZT-4  similar to  the previous section.  

The  main  parameter difference from the previous section are that (i) the permittivity 

of a medium inside the crack gap which is determined by c = 0 where  is termed 

the relative permittivity and 0  = 8.85x10 -12 C/(Vm) is the permittivity of the air which 

can be varied [ = 2,2.5,3,3.5,….,10], (ii) the end-radius and the half-length of the  

crack  are  defined  as 1 and  5,  (iii)  the uniform  remote tension 0 is  determined  as  

50  MPa whereas  the  electric  field  E0   is fixed as  2.5 MV/m, and (iv) only the finest 

meshes (180 elements) similar to the non-planar section are utilized in the investigation. 

The numerical results of stress and electric intensity factors [KI,KIV] offered from the 

two different points (i.e., end-radius and half-length points) along the crack front on 

four crack-face models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models) are investigated as displayed in figures 4.40 (a) and 

(b). This would be discussed in detail as follows. 

 From results illustrated in figure 4.40 (a) on stress intensity factor KI of four 

models, (i.e., impermeable, permeable, semi-permeable and energetically consistent 

models), it is found that that as the permittivity increases c = 0 from [2 to 10], the 

magnitude of both points (i.e., end-radius and half-length points) become greater than 

that of penny-shaped crack. The trend and behaviors of both cracks, however, is nearly 

identical. For example, the three models (i.e., impermeable, permeable and semi-
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permeable models) of both points of tunnel crack are again the same as penny-shaped 

crack and those three models serve as upper bound analogous to the work of many 

researchers (e.g., Li and Lee, 2004; Chen et al, 2000 and Chen and Lim, 2005). In 

addition, the energetically consistent models of both point are still dependent of the 

increase of the permittivity inside the crack gap, and serve as the lower bound and 

approaches to the upper bound similar to the solutions of  Li et al, 2011. This can be 

implied that the increasing permittivity has influence only to the magnitude of the stress 

intensity factor KI of both points which is not different to penny-shaped crack 

 Finally, the influence of electric intensity factors KIV of two different points on 

four models are investigated as illustrated in figures 4.40 (b). As the permittivity varies 

from [2 to 10], the magnitude of electric intensity factors KIV of both points between 

the end-radius and the half-length points are again greater than that of the penny-shaped 

crack. The experiment shows that the semi-permeable and energetically consistent 

models are strongly dependent of permittivity and are identical to the two models of 

penny-shaped crack. In addition, the upper and lower bound serves as the impermeable 

and permeable models. Such result is again similar to the planar crack. This can be 

concluded that as the permittivity increases with the half-length as 5, only the 

magnitude is greater than penny-shaped crack. Nevertheless, the trends on electric 

intensity factor of both points (i.e., end-radius and half-length points) are identical. 
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(b) 

Figure 4.40 (a) and (b) are dependent of normalized electric intensity factors [KI, KIV] 

on the permittivity for a tunnel crack in infinite medium. Results are reported on the 

end-radius and half-length points  

 

4.4.3 Influence of permittivity of two penny-shaped crack in vertical direction 

For this part, we investigate the influence of the permittivity c of a medium inside the  

crack  gap by applying the two-penny-shaped cracks in vertical direction with radius  a 

and the distance of the two cracks L containing  in a piezoelectric infinite medium which 

is made of PZT-4  similar to  the previous sections.  The  main  differences from the 

previous section are that (i) the permittivity of a medium inside the crack gap which is 

defined by c = 0 where  is termed the relative permittivity and 0  = 8.85x10 -

12C/(Vm) is the permittivity of the air that can be varied [ = 2,2.5,3,3.5,….,10], (ii) the 

radius and the vertical distance of the  crack  are  defined  as 1 and  5 respectively,  (iii)  

the uniform  remote tension 0 is  determined  as  50  MPa whereas  the  electric  field  

E0   is fixed as  2.5 MV/m, and (iv) only the finest meshes (144 elements per a penny-

shaped crack) similar to the penny-shaped crack are employed in this study.  

The numerical results of stress and electric intensity factors [KI, KII, KIV] obtained from 

the average values in one of two penny-shaped cracks along the crack front under  four 

crack-face models (i.e., impermeable, permeable, semi-permeable and energetically 

consistent models) are illustrated in figures 4.41 (a) and (b) which can be discussed in 

detail as follows. 

 Figure 4.41 (a) shows the numerical results of stress intensity factors KI on four 

models (i.e., impermeable, permeable, semi-permeable and energetically consistent 
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models).  The figure shows that, under the same condition, as the permittivity inside 

the crack gap increases [2 to 10], the magnitude of normalized stress intensity factors 

KI of the two penny-shaped cracks on four models are expressly less than the penny-

shaped crack. Nevertheless, the trends of both cracks are a little bit different. More 

specifically, the identical and independent of permittivity for penny-shaped crack on 

three models (i.e., impermeable, permeable, and semi-permeable models) which is 

analogous to the work of many researchers (e.g., Li and Lee, 2004; Chen et al, 2000 

and Chen and Lim, 2005) as discussed in previous cases, but those three models of two 

penny-shaped cracks are weak dependent of permittivity as indicated in figure 

4.41(a.1). Moreover, the dependent of the energetically consistent models of both two 

and one penny-shaped cracks are again very identical and that one tend to increase and 

approach to the three models (i.e., impermeable, permeable, semi-permeable models). 

This can be concluded that as the permittivity increases, it affects not only the 

magnitude of stress intensity factor KI but also the three crack-face models (i.e., 

impermeable, permeable, semi-permeable models) 

 Another results vanished from penny-shaped crack is the stress intensity factor 

KII as shown in figure4.41 (b). It is found that when the permittivity increase, the four 

models (i.e., impermeable, permeable, semi-permeable and energetically consistent 

models) are different and negative values. Moreover, the semi-permeable model are 

dependent of permittivity inside the crack gap and that one tend to decrease the 

magnitude at the entire range. Results also reveal that the energetically consistent model 

is dependent of permittivity and tend to decrease at the entire range. It should be 

remarked that the upper bound of this case is energetically consistent model whereas 

the lower bound is permeable model. It can be summarized that increasing the 

permittivity, it influences to the magnitude KII of four models; more specifically, the 

semi-permeable and energetically consistent models 

 Eventually, the electric intensity factors KIV obtained on four crack models are 

investigated as illustrated in figures 4.41 (c). It can be found that as the permittivity 

increases, the upper and lower bounds of predicted solutions including semi-permeable 

and energetically consistent models are impermeable and permeable models 

respectively. Moreover, the magnitude KIV predicted from the two penny-shaped cracks 

is clearly less than that of the penny-shaped crack. The two models (i.e., semi-

permeable and energetically consistent models) are the same behaviors and are 

dependent of permittivity by varying from the impermeable to permeable models. This 

implies again that, with a small distance L, the influence of the increasing permittivity 

only affects the magnitude of stress intensity factors which is not different from other 

planar crack 
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    (c) 

Figure 4.41 (a, a.1) (b) and (c) dependent of normalized stress and electric intensity 

factors [KI, KII, KIV] on the permittivity for a two penny-shaped cracks in vertical 

direction in infinite medium. Results are reported on one penny-shaped crack 
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4.4.4 Influence of permittivity of two penny-shaped crack in horizontal direction 

Finally, the influence of the permittivity c of a medium inside the  crack  gap is 

investigated for the two-penny-shaped cracks in horizontal direction with radius  a and 

the distance of the two cracks L containing  in a piezoelectric infinite medium which is 

made of PZT-4  analogous to  the previous section.  The  main  differences from the 

previous section are that (i) the permittivity of a medium inside the crack gap is assigned 

by c = 0 where  is termed the relative permittivity and 0 = 8.85x10-12 C/(Vm) is 

the permittivity of the air that can be varied [ = 2,2.5,3,3.5,….,10], (ii) the radius and 

the horizontal distance of the two cracks  are  imposed  as 1 and  2.25 respectively,  (iii)  

the uniform  remote tension 0 is  fixed  as  50  MPa whereas  the  electric  field  E0   is 

defined as  2.5 MV/m, and (iv) only the finest meshes (144 elements per a penny-shaped 

crack) similar to the penny-shaped crack are utilized in this exploration. The numerical 

results of stress and electric intensity factors [KI, KIV] obtained from the two different 

points (i.e., maximum and minimum values) for one of the two penny-shaped cracks, 

under four crack-face models (i.e., impermeable, permeable, semi-permeable and 

energetically consistent models) are obtained as shown in figures 4.42 (a) and (b). This 

would be discussed in detail as follows. 

 Results of stress intensity factors KI of two different points (i.e., maximum and 

minimum points) on four crack-face models (i.e., impermeable, permeable, semi-

permeable and energetically consistent models) are illustrated in figure 4.42 (a). Results 

show that as the permittivity increases, the magnitude of KI at the maximum point for 

two penny-shaped cracks in horizontal direction is expressly greater than both the 

minimum and the penny-shaped crack, respectively. In this case, the three models (i.e., 

impermeable, permeable and energetically consistent models) are again completely 

identical and are independent of permittivity, for the two different typed cracks. 

Furthermore, the energetically consistent models of the two points are dependent on the 

permittivity analogous to that of penny-shaped crack. It is seen that the upper bounds 

of the two points serve as those three models whereas the lower bounds are the 

energetically consistent models. This can be concluded that the increasing permittivity 

has effect only the magnitude KI on four model and the trends of stress intensity factor 

KI on four models is selfsame to KI other planar cracks 

 Finally, the above discussion obviously shows that the three models (i.e., 

impermeable, permeable, semi-permeable models) of the stress intensity factors KI are 

identical while the electric intensity factors KIV on four crack models at the two points 

(i.e., maximum and minimum points) are not identical, which is analogous to penny-

shaped crack and other planar cracks. Besides, from conclusion of the previous sections, 

it is found that the two models (i.e., semi-permeable and energetically consistent 

models) are strongly dependent of permittivity and those two models vary from 

impermeable to permeable models, respectively. Similarly, the impermeable model is 

upper bound whereas the lower bound is permeable. This implies that as the permittivity 

increases, the trends of both two penny-shaped cracks in horizontal direction with the 

distance 2.25 and of one penny-shaped crack are identical. 



 

 

142 

 
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

.88

.92

.96

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28 Impermeable

Permeable 

Semi-permeable

Energetically consistent

Penny-shaped crack

Minimum values

Maximum values

 

      (a) 

 
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

2.40

3.00

3.60

4.20

4.80

5.40

6.00

6.60

7.20

7.80

8.40

9.00

9.60

Impermeable

Permeable

Semi-permeable

Energetically consistent

Penny-shaped crack

Minimum point

Maximum values

 

     (b) 

Figure 4.42 (a) and (b) are dependent of normalized electric intensity factors [KI, KIV] 

on the permittivity for two penny-shaped cracks in horizontal direction in infinite 

medium. Results are reported on the maximum and minimum values along the crack 

front  
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CHAPTER 5 

CONCLUSIONS 

This thesis mainly discussed the stress and electric intensity factors of cracks in 

piezoelectric media for various crack configurations under various crack-face and 

loading conditions. The boundary value problem is formulated based on a classical 

theory of linear piezoelectricity. A method of boundary integral equations is utilized to 

obtain the final governing integral equation. An existing numerical technique based on 

a weakly singular symmetric Galerkin boundary element method (SGBEM) proposed 

by Rungamornrat and Mear (2008) and Phongtinnaboot et al. (2011) is utilized to 

determine the unknown crack-face data such as the relative crack-face generalized 

displacement. The stress and electric intensity factors along the crack front are post-

processed from the relative crack-face generalized displacement using the existing 

formula proposed by Rungamornrat and Mear (2008).  
 The verification of this method is insisted with the existing benchmark solution. 

The convergence of numerical results are implemented in order to verify the finest 

meshes with different levels of mesh refinement by utilizing the impermeable scheme. 

The finest meshes of each problem are then chosen in the influence study of various 

parameters. The first convergence solution are for the non-planar cracks (i.e., a 

spherical cap and cylindrical cracks). The second ones are for the planar cracks (i.e., 

the tunnel crack, two pair of two penny-shaped cracks in both vertical and horizontal 

directions) containing in a piezoelectric infinite domain. The numerical results from 

convergence solutions manifest that the predicted stress and electric intensity factors 

are well accepted by using the impermeable scheme. Finally, those finest meshes of 

each crack problems are imposed and utilized in the influence study of various 

parameters in the next step. 

In the influence study of cracks with various parameters under four boundary 

conditions is investigated to obtain the numerical results on stress and electric intensity 

factors along the crack front by using the weakly singular SGBEM. The main study are 

the influence of geometries (i.e., the crack subtended angle, the curvature of non-planar 

cracks, the aspect ratio of tunnel crack and the interaction of two penny-shaped cracks 

in both vertical and horizontal directions), the influence of both mechanical and 

electrical loads of all planar and non-planar cracks and the influence of dielectric 

permittivity inside the crack gap for all planar and non-planar cracks. Eventually, the 

numerical results of various parameters in 3D cracks under four crack-face models can 

be concluded in the following sections. 

5.1 Influence of geometry on intensity factors 

Influence of half-subtended angle for non-planar cracks (i.e., spherical cap and cylinder 

cracks) under four crack-face models (i.e., impermeable, permeable, semi-permeable 

and energetically consistent models) can be concluded in two main points. first, they 

introduces the peak magnitude of KI, KII and KIV on four crack-face models in the entire 

range of increasing the crack subtended angle whereas KIII  on four models of cylinder 

crack produce the minimum values in the negative stress intensity factors. Second, the 

0E  



 

 

144 

crack-subtended angle at the entire range also affect to the bounds of all non-planar 

cracks under four crack-face models which can be briefly summarized as follow: in the 

entire range, the crack-subtended angle obviously does not affect to the upper bounds 

of all stress and electric intensity factors [KI, KII, KIII and KIV] for all non-planar cracks 

such as the upper bound of KI are permeable models, and the upper bounds of KII, KIII 

and KIV are impermeable models. Similarly, at the small crack subtended angle also has 

no influence to lower bounds of all stress and electric intensity factors [KI, KII, KIII and 

KIV] for all non-planar cracks. Nevertheless, at the large crack subtended angle, it 

influences to the lower bound of KI and KIV such as the lower bound of KI for all non-

planar crack are switched of energetically consistent and impermeable models and the 

lower bound of KIV for all non-planar cracks are switched of permeable and 

energetically consistent models. However, it should be noted that the lower bounds of 

non-symmetric curve crack (e.g., cylindrical crack) have different behavior of upper 

and lower bounds depending on the position along the crack front which is different 

from the symmetric curve crack (e.g., spherical cap crack). 

 Influence of curvature for non-planar cracks (i.e., spherical cap and cylindrical 

cracks) on four crack-face models can be summarized in three main points. First, it 

inhibits the crack opening indicated by the negative magnitude of KI on four crack face 

models. Second, in the large curvature, KII of all non-planar cracks produce the 

maximum values on four crack face models; Moreover, KIII produces the negative value 

on four crack face models. Finally, the large curvature influences to the bounds on four 

crack-face models which can shortly concluded as follow:  in the entire range, the 

curvature explicitly does not influence to or do not change the upper bounds of all stress 

and electric intensity factors [KI, KII, KIII and KIV] for all non-planar cracks such as the 

upper bound of KI are permeable models whereas upper bound of penny-shaped crack 

serve as three models, and the upper bounds of KII, KIII and KIV are impermeable models 

(the upper bound of KIV is identical to penny-shaped crack). Similarly, at the range of 

the near-flat curvature, it also has no influence to lower bounds of all stress and electric 

intensity factors [KI, KII, KIII and KIV] for all non-planar cracks (lower bounds of KI and 

KIV are now identical to penny-shaped crack). Nevertheless, at the large curvature, it 

influences to the lower bound of KI and KIV such as the lower bound of KI for all non-

planar crack are switched of impermeable and energetically consistent models whereas 

the lower bound of penny-shaped crack is energetically consistent model. The lower 

bounds of KIV for all non-planar cracks at the large curvature are switched of 

energetically consistent and permeable models whereas lower bound of penny-shaped 

crack is permeable model). However, it should be noted that the behavior of non-

symmetric curve crack (e.g., cylindrical crack) have different behavior depending on 

the position along the crack front which is different from the symmetric curve crack 

(e.g., spherical cap crack). 

 The influence of aspect ratio on intensity factors KI and KIV obtained from tunnel 

crack can be concluded that when the aspect ratio is small, upper bounds of KI and KIV 

are the three models (i.e., impermeable, permeable and semi-permeable models) and 

impermeable models (similar to penny-shaped crack), respectively, whereas the lower 

bounds of KI and KIV are energetically consistent and permeable models (similar to 

penny-shaped crack), respectively 

The influence of vertical interaction on intensity factor KI, KII and KIV obtained 

from two penny-shaped cracks in vertical direction can be concluded that when the 
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distance of the two cracks is relative small, the upper bounds of KI, KII and KIV are 

respectively the three models (i.e., impermeable, permeable and semi-permeable 

models), energetically consistent and impermeable models, respectively (KII of penny-

shaped crack vanishes), whereas the lower bounds of KI, KIV and KII are energetically 

consistent, permeable and the three models (i.e., permeable, semi-permeable and 

energetically consistent models), respectively. It is obvious that the magnitude of KII 

are negative value. 

 The influence of horizontal interaction on intensity factor KI and KIV obtained 

from two penny in horizontal direction, it can be summarized that when the horizontal 

interaction is small, the upper bounds of KI and KIV of four crack-face models are the 

three models (i.e., impermeable, permeable and semi-permeable models) and 

impermeable models, respectively, whereas the lower bounds of KI and KIV are 

energetically consistent and permeable models, respectively, which is identical to upper 

bound and lower bound of KI and KIV  for penny-shaped crack 

5.2 Influence of mechanical loading on intensity factors 

For the planar cracks (i.e., tunnel crack, penny shaped cracks, two penny-shaped cracks 

in vertical and horizontal directions), the influence of mechanical loading on the stress 

intensity factors KI, KIV and KII (KII only for the case of two penny-shaped cracks in 

vertical direction) of four models can be summarized that at the entire range of 

increasing the mechanical loading, the upper bounds of KII, KIV and KI on four models 

are energetically consistent, impermeable models and the three models (i.e., 

impermeable, permeable and semi-permeable models), respectively, whereas the lower 

bounds of KI, KII and KIV are identically energetically consistent, permeable models and 

the switching models between energetically consistent and permeable models, 

respectively. 

 For non-planar cracks (i.e., spherical and cylinder cracks), influence of 

mechanical load can be summarized that at the entire range of increasing mechanical 

load, the upper bounds of KI and KIV for all non-planar cracks under four models are 

permeable and energetically consistent models, respectively, whereas the upper bound 

of KII for all non-planar cracks and the upper bound of KIII (only at the middle point of 

cylinder crack) are permeable models. The lower bound of KI for all non-planar cracks, 

the lower bound of KII for spherical cap crack and the lower bound of KII at the bottom 

points of cylindrical crack are energetically consistent models. Moreover, the lower 

bounds of KIV for all non-planar cracks and the lower bound KII at the top and middle 

points of cylinder crack are switched of energetically consistent and permeable models. 

However, the lower bound of KIII only at the middle point is permeable model at the 

entire range. 

5.3 Influence of electrical loading (electric field) on intensity factors 

For the planar cracks (i.e., penny-shaped crack, tunnel crack, two penny-shaped crack 

in vertical and horizontal directions), the influence of electrical loading on the stress 

intensity factors KI, KIV and KII (only for the case of two penny-shaped cracks in vertical 

direction) on four models can be summarized that at the positive range of electric field, 

the upper bounds of KIV, KII and KI on four crack models are impermeable and 

energetically consistent and three models (i.e., impermeable, permeable and semi-
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permeable models), respectively, whereas the lower bound of KI, KII and KIV are 

energetically consistent, permeable and the switching models (the switching models 

between permeable and energetically consistent models), respectively. 

 For the non-planar cracks (i.e., spherical cap and cylinder cracks), the stress 

intensity factors KI, KII, KIV and KIII (only at the middle point of cylinder crack) of four 

models can be concluded that at the positive range of electric field, the upper bounds 

(KI) of spherical cap crack, the upper bound (KI) of middle and bottom points of cylinder 

crack are permeable models. The upper bounds of KII and KIV for all non-planar cracks, 

the upper bound of KI at the top point and upper bound of KIII at the middle of cylinder 

crack are impermeable models. However, the lower bounds (KI) of spherical cap crack 

is switched of impermeable and energetically consistent models. The lower bounds of 

KI at all points of cylinder crack are energetically consistent models. Similarly, the 

lower bounds (KII and KIV) of for spherical cap crack, lower bound of KII at all points 

and lower bound of KIV at the middle and bottom points of cylinder crack are switched 

of permeable and energetically consistent models. Nevertheless, the lower bounds of 

KIII at the middle point and the lower bound of KIV at the top point of cylinder crack 

serve as permeable models. 

5.4 Influence of permittivity inside the crack gap on intensity factors 

For the planar cracks (i.e., penny-shaped crack, tunnel crack, two penny-shaped crack 

in vertical and horizontal directions), the influence of permittivity inside the crack gap 

on stress intensity factors KI,  KIV and KII (only for the case of two penny-shaped cracks 

in vertical direction) can be concluded that the upper bounds of KII, KIV and KI (KI of 

all planar cracks; except, two penny-shaped crack in vertical direction) on four models 

are energetically consistent, impermeable and three models (i.e., impermeable, 

permeable and semi-permeable models), respectively. The upper bound of KI for two 

penny-shaped crack in vertical direction is permeable models. However, the lower 

bounds of KI and KIV for all planar cracks are energetically consistent and permeable 

models, respectively, which is analogous to the lower bounds of KII only for two penny-

shaped cracks in vertical direction also permeable model.  

 Finally, the influence of permittivity inside the crack gap of non-planar cracks 

(i.e., spherical cap and cylinder cracks) on electric intensity factors KI, KII, KIV and KIII 

(only at the middle point of cylinder crack) under four models can be concluded that 

the upper bounds (KI) of spherical cap crack, the upper bound of KI at the middle and 

bottom points of cylinder crack are permeable models. The upper bounds (KII and KIV) 

of spherical cap crack, the upper bound of KII and KIV at all points of cylinder crack, the 

upper bound of KI at the top point and the upper bound of KIII only at the middle point 

of cylinder crack are impermeable models. Vice versa, the lower bounds of KI for 

spherical cap crack is switched of energetically consistent and impermeable models. 

Identically, the lower bound of KI at all points of cylindrical crack, the lower bound of 

KII for spherical cap crack and the lower bound of KII at the middle and bottom points 

of cylindrical crack are energetically consistent models. Finally, the lower bound of KII 

at the top point, the lower bound of KIII at the middle point of cylinder crack and the 

lower bound of KIV for all non-planar crack are permeable models. 
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