การพัฒนาการทำนายค่าความตรงและความกลมของชิ้นงานในกระบวนการกลึงซีเอ็นซีโดยใช้การ แปลงเวฟเลท

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมอุตสาหการ ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2558 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DEVELOPMENT OF IN-

PROCESS PREDICTION OF STRAIGHTNESS AND ROUNDNESS IN CNC TURNING BY USING WAVELET TRANSFORM

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Industrial Engineering Department of Industrial Engineering Faculty of Engineering Chulalongkorn University Academic Year 2015 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การพัฒนาการทำนายค่าความตรงและความกลมของ	
	ชิ้นงานในกระบวนการกลึงซีเอ็นซีโดยใช้การแปลงเวฟ	
	เลท	
โดย	นายมุอ์มิน ศาสน์สันติวงศ์	
สาขาวิชา	วิศวกรรมอุตสาหการ	
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	รองศาสตราจารย์ ดร. สมเกียรติ ตั้งจิตสิตเจริญ	

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

คณบดีคณะวิศวกรรมศาสตร์

(รองศาสตราจารย์ ดร. สุพจน์ เตชวรสินสกุล)

คณะกรรมการสอบวิทยานิพนธ์

ประธานกรรมการ

(ผู้ช่วยศาสตราจารย์ ดร. สมชาย พัวจินดาเนตร) อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(รองศาสตราจารย์ ดร. สมเกียรติ ตั้งจิตสิตเจริญ)

กรรมการ

(รองศาสตราจารย์ ดร. วิภาวี ธรรมาภรณ์พิลาศ)

____กรรมการภายนอกมหาวิทยาลัย

(รองศาสตราจารย์ สมชาย พวงเพิกศึก)

มุอ์มิน ศาสน์สันติวงศ์ : การพัฒนาการทำนายค่าความตรงและความกลมของชิ้นงานใน กระบวนการกลึงซีเอ็นซีโดยใช้การแปลงเวฟเลท (DEVELOPMENT OF IN-PROCESS PREDICTION OF STRAIGHTNESS AND ROUNDNESS IN CNC TURNING BY USING WAVELET TRANSFORM) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร. สมเกียรติ ตั้ง จิตสิตเจริญ, 358 หน้า.

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ระหว่างความตรงและความกลมของ ชิ้นงานกับแรงตัด ภายใต้เงื่อนไขการตัดต่างๆในกระบวนการกลึง เพื่อใช้ในการสร้างสมการทำนาย ความตรงและความกลมของชิ้นงานเหล็กกล้าคาร์บอน (S45C) โดยใช้ไดนาโมมิเตอร์ในการ ตรวจวัดแรงในขณะตัดที่เกิดขึ้น และประยุกต์ใช้การแปลงเวฟเลทดอเบซีส์ในการแยกวิเคราะห์แรง ตัดพลวัต เพื่อให้สามารถแยกสัญญาณสัญญาณแรงตัดออกจากสัญญาณจากเศษโลหะและ สัญญาณรบกวนอื่นๆได้ จากการทดลองการแปลงเวฟเลทแรงตัดที่ได้จากการตัดภายใต้เงื่อนไข การตัดต่าง ๆ ซึ่งประกอบด้วย ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด และมุมคาย เศษโลหะ พบว่าความถี่จากการแตกหักของเศษโลหะจะมีความถี่ที่สูงและเกิดขึ้นในระดับชั้นเวฟ เลทที่ต่ำกว่า แรง ในส่วนของความถี่สอดคล้องกับความตรงจะมีความถี่ต่ำและจะถูกแยกอยู่ใน ระดับที่ 8 จากการแปลงเวฟเลท ดังนั้นจึงนำแรงตัดในระดับที่ 8 ของการแปลงเวฟเลทมาใช้ในการ สร้างสมการทำนายความกลมและความกลมชิ้นงานขณะตัดในรูปของพังก์ชันเอกซ์โพเนนเซียล

ผลการวิเคราะห์เพื่อตรวจสอบความแม่นยำของสมการโดยการทดสอบที่เงื่อนไขการตัด ใหม่ พบว่าสมการทำนายค่าความตรงและความกลมของชิ้นงานมีค่าความแม่นยำเท่ากับ 92.14% และ 95.51% ตามลำดับ ซึ่งถือว่าสมการทำนายความตรงและความกลมที่ถูกพัฒนาขึ้นนี้มีความ แม่นยำสูงและค่าความแม่นยำที่ได้สูงกว่างานวิจัยที่ผ่านมา

ภาควิชา	วิศวกรรมอุตสาหการ
สาขาวิชา	วิศวกรรมอุตสาหการ
ปีการศึกษา	2558

ลายมือชื่อนิสิต	
ลายมือชื่อ อ.ที่ปรึกษาหลัก	

5570337921 : MAJOR INDUSTRIAL ENGINEERING

KEYWORDS: CNC TURNING / STRAIGHTNESS / ROUNDNESS/ CUTTING FORCE RATIO MUMIN SASSANTIWONG: DEVELOPMENT OF IN-PROCESS PREDICTION OF STRAIGHTNESS AND ROUNDNESS IN CNC TURNING BY USING WAVELET TRANSFORM. ADVISOR: ASSOC. PROF. SOMKIAT TANGJITSITCHAROEN, 358 pp.

The aim of this research is to monitor the dynamic cutting forces in CNC turning process in order to investigate the relation between the straightness, the roundness and the dynamic cutting forces. The dynamic cutting forces occurred during the CNC turning process include the signals of straightness, roundness and noise. The Daubechies wavelet transform is employed to decompose the dynamic cutting forces into 10 levels in both time and frequency domains to determine the suitable level of the straightness and roundness signals, which is the 8th level. It is understood that the decomposed cutting forces, which are obtained from the 8th level, can be considered to predict the straightness and the roundness under various cutting conditions.

The multiple regression analysis is utilized to obtain the regression coefficients by using the least square method at 95% confident level. The proposed model has been proved by conducting the new cutting tests with the high accuracy of 92.14% for the straightness and 95.51% for the roundness, respectively.

Department:	Industrial Engineering	Student's Signature	
Field of Study:	Industrial Engineering	Advisor's Signature	
Tield of Olddy.			
Academic Year:	2015		

กิตติกรรมประกาศ

ขอบคุณอัลลอฮสำหรับทุกสิ่งในชีวิต ขอขอบคุณอาจารย์ที่ปรึกษาและกรรมการสอบ วิทยานิพนธ์ทุกท่านที่ได้ให้คำแนะนำและข้อคิดต่างๆ รวมทั้งตรวจแก้ไขข้อบกพร่องใน วิทยานิพนธ์ฉบับนี้ ขอขอบคุณพ่อ แม่ และทุกๆคนที่ได้ให้ความช่วยเหลือตลอดการทำวิจัยจน สำเร็จลุล่วงไปได้ด้วยดี

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	J
สาร	บญ

หน้า
บทคัดย่อภาษาไทยง
บทคัดย่อภาษาอังกฤษจ
กิตติกรรมประกาศฉ
สารบัญข
สารบัญตารางญ
สารบัญรูปฏ
บทที่ 1 บทน้ำ1
1.1 ที่มาและความสำคัญ1
1.2 วัตถุประสงค์งานวิจัย
1.3 ขอบเขตงานวิจัย
1.4 ผลที่คาดว่าจะได้รับ
1.5 ประโยชน์ที่คาดว่าจะได้รับ11
1.6 ขั้นตอนการดำเนินงานวิจัย
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง IGKORN UNIVERSITY
2.1 ทฤษฎีที่เกี่ยวข้อง12
2.2 งานวิจัยที่เกี่ยวข้อง
บทที่ 3 วิธีดำเนินการวิจัย
3.1 การออกแบบการทดลอง36
3.2 การกำหนดปัจจัยที่ใช้ในการทดลอง
3.3 เครื่องมือและอุปกรณ์ที่ใช้ในการทดลอง37
3.4 ขั้นตอนการดำเนินการวิจัย
3.5 การพัฒนาสมการทำนายความตรงและความกลมของชิ้นงานขณะตัด

3.6 การวิเคราะห์ข้อมูล	. 47
เทที่ 4 การวิเคราะห์ผลการทดลอง	. 49
4.1 ผลการทดลอง	.49
4.2 การวิเคราะห์ความสัมพันธ์ระหว่างแรงตัดกับค่าความตรง	.57
4.3 การวิเคราะห์ความสัมพันธ์ระหว่างความกลมและแรงตัด	.66
4.4 การวิเคราะห์ความสัมพันธ์ระหว่างแรงตัดพลวัตกับค่าความกลมในการตัดที่เกิดเศษ โลหะแบบต่อเนื่องและแตกหัก	.68
4.5 การวิเคราะห์ความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์ของชิ้นงานและอัตราส่วนแรง ตัด	.70
4.6 การวิเคราะห์ความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางชิ้นงานและอัตราส่วน ค่าเฉลี่ยความแปรปรวนแรงตัดพลวัต	.71
4.7 การวิเคราะห์ความสัมพันธ์ระหว่างเงื่อนไขการตัดต่างๆกับความตรงและความกลมของ ชิ้นงานและการเกิดเศษโลหะ	.72
4.8 การวิเคราะห์ผลการทดลอง	.93
4.9 การทดสอบการกระจายแบบปกติ	.95
4.10 การทดสอบความเป็นอิสระของข้อมูล	.97
4.11 การทดสอบความสม่ำเสมอของความแปรปรวน	.98
4.12 สมการทำนายความตรงของชิ้นงาน	.99
4.13 การทดสอบความแม่นยำของสมการ	102
มทที่ 5 สรุปผลการวิจัย อภิปรายผล และข้อเสนอแนะ	107
5.1 สรุปผลการวิจัย	107
5.2 อภิปรายผลการวิจัย	108
5.3 ข้อจำกัดและอุปสรรคในงานวิจัย	109

หน้า

ๆ

5.4 ข้อเสนอแนะ		10
รายการอ้างอิง		11
ภาคผนวก		15
ภาคผนวก ก โปร	รแกรมแปลงฟูเรียร์อย่างเร็วสำหรับวิเคราะห์สัญญาณแรงตัด 1	16
ภาคผนวก ขโปร	รแกรมแปลงเวฟเลทสำหรับวิเคราะห์สัญญาณแรงตัด1	20
ภาคผนวก ค การ	รวิเคราะห์ความตรงและแรงตัดโดยการแปลงเวฟเลทสำหรับเงื่อนไขการ	
ตัดต่างๆ		37
ภาคผนวกงการ	รวิเคราะห์ความกลมและแรงตัดโดยการแปลงเวฟเลทสำหรับเงื่อนไขการ	
ตัดต่างๆ		:46
ภาคผนวก จ ข้อเ	กำหนดทางเทคนิคเครื่องมือวัด 3	55
ประวัติผู้เขียนวิทยาเ	นิพนธ์3	58

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ผ

หน้า

สารบัญตาราง

ตารางที่ 1.1 ปัจจัยและระดับปัจจัยสำหรับการทดลอง10
ตารางที่ 2.1 ลักษณะความผิดปกติของความกลม24
ตารางที่ 2.2 วิธีการวัดค่าความกลม25
ตารางที่ 3.1 แสดงระดับปัจจัยของการทดลอง
ตารางที่ 3.2 เงื่อนไขการทดลอง
ตารางที่ 4.1 ผลการทดลอง
ตารางที่ 4.2 เงื่อนไขการตัดเพื่อการทดสอบความแม่นยำสมการทำนายความตรงและความ
กลม102
ตารางที่ 4.3 ผลการทดลองเพื่อทดสอบความแม่นยำ103

สารบัญรูป

รูปที่ 1.1 แรงตัดในแนวแกน 3 มิติ	
รูปที่ 1.2 แนวคิดในการทำวิจัย	
รูปที่ 1.3 ลักษณะสัญญาณแรงตัดพลวัตและความกลมในโดเมนเวลา	6
รูปที่ 1.4 ลักษณะสัญญาณแรงตัดพลวัตและความตรงในโดเมนเวลา	
รูปที่ 1.5 ลักษณะสัญญาณแรงตัดพลวัตและความตรงในโดเมนความถี่	
รูปที่ 1.6 แสดงการแปลงสัญญาณเวฟเลทในโดเมนเวลาของ Fx	7
รูปที่ 1.7 แสดงการแปลงสัญญาณเวฟเลทในโดเมนความถี่ของ Fx	7
รูปที่ 1.8 แสดงการแปลงสัญญาณเวฟเลทในโดเมนเวลาของ Fy	
รูปที่ 1.9 แสดงการแปลงสัญญาณเวฟเลทในโดเมนความถี่ของ Fy	
รูปที่ 1.10 แสดงการแปลงสัญญาณเวฟเลทในโดเมนเวลาของ Fz	9
รูปที่ 1.11 แสดงการแปลงสัญญาณเวฟเลทในโดเมนความถี่ของ Fz	
รูปที่ 2.1 กระบวนการกลึง	13
รูปที่ 2.2 เงื่อนไขการตัดของกระบวนการกลึง[8]	
รูปที่ 2.3 แบบจำลองการตัด	
รูปที่ 2.4 แสดงลักษณะมุมคายแบบ positive (ซ้าย) and negative (ขวา)	
รูปที่ 2.5 สัญญาณแรงตัดที่เกิดขึ้น	
รูปที่ 2.6 การคำนวณแรงป้อนตัดสถิตและแรงป้อนตัดพลวัตร	
รูปที่ 2.7 การคำนวณค่าเฉลี่ยความแปรปรวนของแรงตัดพลวัต	
รูปที่ 2.8 ตัวอย่างการแปลงสัญญาณจากโดเมนเวลาเป็นเมนความถี่	
รูปที่ 2.9 เวฟเลทที่ถูกสเกลและเลื่อนตำแหน่งไปที่ค่า a และ b ต่าง ๆ กัน	21
รูปที่ 2.10 ลักษณะของเวฟเลทในแฟมิลีต่างๆ	21
รูปที่ 2.11 ความตรงแบบ Endpoints	22

รูปที่ 2.12 ความตรงแบบ Linear Regression22
รูปที่ 2.13 การสร้างเส้นตรงด้วยวิธีการ Least Square23
รูปที่ 2.14 ความตรงแบบ ISO 110123
รูปที่ 2.15 ความเบี่ยงเบนของรูปทรงเลขาคณิต24
รูปที่ 2.16 การวัดความกลมแบบ Circumferential Confining Gauge
รูปที่ 2.17 ตัวอย่างเครื่องมือวัดความกลม Detector rotating type[8]
รูปที่ 2.18 การวัดชิ้นงานแบบ Rotating on centers27
รูปที่ 2.19 ตัวอย่างเครื่องวัดค่าความกลมแบบ Table rotating type[8]27
รูปที่ 2.20 การวัดความกลมแบบโดยใช้ V-block[8]28
รูปที่ 3.1 ใดนาโมมิเตอร์ (Dynamometer)
รูปที่ 3.2 ออสซิลโลสโคป (Oscilloscope)
รูปที่ 3.3 เครื่องขยายสัญญาณ (Charge Amplifier)38
รูปที่ 3.4 เครื่องวัดความขรุขระผิว (Roughness tester)
รูปที่ 3.5 เครื่องวัดความกลม (Roundness Tester)
รูปที่ 3.6 ขั้นตอนการดำเนินงานวิจัย
รูปที่ 4.1 ลักษณะเศษโลหะจากการตัดภายใต้เงื่อนไขการตัด ได้แก่ ความเร็วตัด 200 ม.ต่อ
นาที อัตราป้อนตัด 0.15 มม.ต่อรอบ ความลึกในการตัด 0.4 มม. รัศมีจมูกมีด 0.4 มม. และ
มุมคายเศษโลหะ 11
ฐปที่ 4.2 สัญญาณความตรงชิ้นงานในโดเมนเวลาและความถี่โดยการแปลงฟูเรียร์แบบเร็ว 57
รูปที่ 4.3 สัญญาณแรงตัดในโดเมนเวลาและความถี่โดยการแปลงฟูเรียร์แบบเร็ว
รูปที่ 4.4 การแปลงเวฟเลทในโดเมนเวลาของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องแกน X58
รูปที่ 4.5 การแปลงเวฟเลทในโดเมนความถี่ของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องแกน
X

รูปที่ 4.6 การแปลงเวฟเลทในโดเมนเวลาของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องในแกน Y59
รูปที่ 4.7 การแปลงเวฟเลทในโดเมนความถี่ของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องแกน Y
รูปที่ 4.8 การแปลงเวฟเลทในโดเมนเวลาของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องในแกน Z
รูปที่ 4.9 การแปลงเวฟเลทในโดเมนความถี่ของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องแกน Z
รูปที่ 4.10 ลักษณะเศษโลหะจากการตัดภายใต้เงื่อนไขการตัด ได้แก่ ความเร็วตัด 100 ม.ต่อ นาที อัตราป้อนตัด 0.25 มม.ต่อรอบ ความลึกในการตัด 0.8 มม. รัศมีจมูกมีด 0.8 มม. และ มุมคายเศษโลหะ -6
รูปที่ 4.11 สัญญาณความตรงของชิ้นงานในโดเมนเวลาและความถี่โดยการแปลงฟูเรียร์แบบ เร็ว
รูปที่ 4.12 สัญญาณแรงตัดในโดเมนเวลาและความถี่โดยการแปลงฟูเรียร์แบบเร็ว62
รูปที่ 4.13 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนเวลาที่เกิดเศษโลหะแบบแตกหักในแกน X63
รูปที่ 4.14 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนความถี่ที่เกิดเศษโลหะแบบแตกหักในแกน X63
รูปที่ 4.15 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนเวลาที่เกิดเศษโลหะแบบแตกหักในแกน Y 64
รูปที่ 4.16 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนความถี่ที่เกิดเศษโลหะแบบแตกหักในแกน Y64
รูปที่ 4.17 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนเวลาที่เกิดเศษโลหะแบบแตกหักในแกน Z65
รูปที่ 4.18 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนความถี่ที่เกิดเศษโลหะแบบแตกหักในแกน Z
รูปที่ 4.19 ลักษณะเศษโลหะ สัญญาณแรงตัดพลวัตและสัญญาณความกลมที่ได้จากการตัด ที่ความเร็วตัด 200 ม/นาที อัตราป้อนตัด 0.15 มม. ความลึกตัด 0.4 มม. รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา

รูปที่ 4.20 ลักษณะเศษโลหะ สัญญาณแรงตัดพลวัตและสัญญาณความกลมที่ได้จากการตัด ที่ความเร็วตัด 150 ม/นาที อัตราป้อนตัด 0.25 มม. ความลึกตัด 0.8 มม. รัศมีจมูกมีด 0.4 มม.
มุมคายเศษโลหะ 11 องศา67
รูปที่ 4.21 การแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษโลหะแบบต่อเนื่องใน โดเมนเวลาของแกน X ซึ่งมีเงื่อนไขการตัดดังนี้ได้แก่ ความเร็วตัด 200 ม/นาที อัตราป้อนตัด
0.15 มม. ความลกตด 0.4 มม. รคมจมูกมด 0.8 มม. มุมคายเคษเลหะ 11 องคา
รูปที่ 4.22 การแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษโลหะแบบต่อเนื่องใน โดเมนเวลาของแกน Y ซึ่งมีเงื่อนไขการตัดดังนี้ได้แก่ ความเร็วตัด 200 ม/นาที อัตราป้อนตัด 0.15 มม. ความลึกตัด 0.4 มม. รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา
รูปที่ 4.23 การแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษโลหะแบบแตกหักใน โดเมนเวลาของแกน X ซึ่งมีเงื่อนไขการตัดดังนี้ได้แก่ ความเร็วตัด 150ม/นาที อัตราป้อนตัด 0.25 มม. ความลึกตัด 0.8 มม. รัศมีจมูกมีด 0.4 มม. มุมคายเศษโลหะ 11 องศา
รูปที่ 4.24 การแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษโลหะแบบแตกหักใน โดเมนเวลาของแกน Y ซึ่งมีเงื่อนไขการตัดดังนี้ได้แก่ ความเร็วตัด 150ม/นาที อัตราป้อนตัด 0.25 มม. ความลึกตัด 0.8 มม. รัศมีจมูกมีด 0.4 มม. มุมคายเศษโลหะ 11 องศา
รูปที่ 4.25 ความสัมพันธ์ระหว่างความตรงเบี่ยงศูนย์ของชิ้นงานและอัตราส่วนแรงป้อนตัด71
รูปที่ 4.26 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางของชิ้นงานและ อัตราส่วนค่าเฉลี่ยความแปรปรวนแรงพลวัต71
รูปที่ 4.27 กราฟแสดงความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์กับความเร็วตัดที่ 100, 150 และ 250 เมตรต่อนาที โดยมีความลึกตัด 0.4, 0.6 และ 0.8 มม. อัตราป้อนตัด 0.15 มม. และ
รัศมีจมูกมีด 0.4 มม. มุมคายเศษโลหะ -6 องศา72
รูปที่ 4.28 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับความเร็วตัดที่ 100, 150 และ 250 เมตรต่อนาที โดยมีความลึกตัด 0.4, 0.6 และ 0.8 มม. อัตราป้อนตัด 0.15 มม. และ รัศมีจมูกมีด 0.4 มม. มุมคายเศษโลหะ -6 องศา
รูปที่ 4.29 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัด ที่อัตราป้อนตัด 0.15 มม.
ความลกตด 0.8 มม. รัศม่จมูกมด 0.8 มม. มุมคายเศษโลหะ 11 องศา

รูปที่ 4.30 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ เงื่อนไขการตัด อัตราป้อนตัด 0.15 มม. ความลึกตัด 0.8 มม. รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา
รูปที่ 4.31 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่ความเร็วตัด 100 เมตรต่อนาที อัตราป้อนตัด 0.15 มิลลิเมตรต่อรอบ ความลึกตัด 0.8 มิลลิเมตร รัศมีจมูกมีด
0.8 และ คุมคายเศษโลหะ 11 องศา74
รูปที่ 4.32 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่ความเร็วตัด 200 เมตรต่อนาที อัตราป้อนตัด 0.15 มิลลิเมตรต่อรอบ ความลึกตัด 0.8 มิลลิเมตร รัศมีจมูกมีด 0.8 และ คุมคายเศษโลหะ 11 องศา
รูปที่ 4.33 การเกิดเศษโลหะเงื่อนไขการตัด ความเร็วตัด 100, 150 และ 200 ม./นาที อัตรา ป้อนตัด 0.15 มม. ความลึกตัด 0.4 มม. รัศมีจมูกมีด 0.4 มม. และมุมคายเศษโลหะ -6 องศา76
รูปที่ 4.34 กราฟแสดงความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์กับอัตราป้อนตัดที่ 0.15, 0.20 และ 0.25 มิลลิเมตรต่อรอบ โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที ความ ลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา
รูปที่ 4.35 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับอัตราป้อนตัดที่ 0.15, 0.20 และ 0.25 มิลลิเมตรต่อรอบ โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที
ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา
รูปที่ 4.36 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัดที่อัตราป้อนตัดที่ 0.15 และ 0.25 มิลลิเมตรต่อรอบ ความเร็วตัด 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา77
รูปที่ 4.37 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ เงื่อนไขการตัดที่อัตราป้อนตัดที่ 0.15 และ 0.25 มิลลิเมตรต่อรอบ ความเร็วตัด 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา
รูปที่ 4.38 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่อัตราป้อนตัดที่ 0.15 มิลลิเมตรต่อรอบ ความเร็วตัด 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา

รูปที่ 4.39 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่อัตราป้อนตัดที่	
0.25 มิลลิเมตรต่อรอบ ความเร็วตัด 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด	
0.8 มม. มุมคายเศษโลหะ 11 องศา	79
รูปที่ 4.40 การเกิดเศษโลหะเงื่อนไขการตัด อัตราป้อนตัด 0.15, 0.20 และ 0.25 มิลลิเมตรต่อ	
้รอบ ความเร็วตัด 200 ม./นาที ความลึกตัด 0.8 มม. รัศมีจมุกมีด 0.4 มม. และมุมคายเศษ	
โลหะ 11 องศา	79
รปที่ 4 41 กราฟแสดงความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศนย์กับความลึกตัดที่ 0 4 0 6	
และ ก 8 มิลลิเมตร โดยมีความเร็วตัด 100_150 และ 200 เมตรต่อนาที่ อัตราโปอนตัด 0.25	
มม.ต่อรอบ และ รัศมีจมกมีด 0.8 มม. มมคายเศษโลหะ 11 องศา	80
องใช้ 4 40 กลางปแสด ขอกามสับเพ้นส์อารงกางอ่างพิสัยเส้นข่างแสนย์กอก งกับอกกามอีกตัดที่ 6 4	
มูบท 4.42 111 พแสพงศาว เมสมพ แบวะ ศว เงศาพสยเส แผ เผศูเธยาเส เงกาบศาว เมสมพตท 0.4,	
0.6 และ 0.8 มิลิลเมตร์ เตียมครามเราเทต 100, 150 และ 200 เมตรตชนาท ชิตราบชินตต	0.0
่	80
รูปที่ 4.43 การวิเคราะห์ความตรงเบียงศูนย์ ณ เงื่อนไขการตัดที่ความลึกตัด 0.4 และ 0.8 มม.	
ความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัดที่ 0.20 มิลลิเมตรต่อรอบ และ รัศมีจมูกมีด 0.8	
มม. มุมคายเศษโลหะ 11 องศา	81
รูปที่ 4.44 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ การเงื่อนไขการตัดที่ความลึกตัด 0.4 และ	
0.8 มม. ความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัดที่ 0.20 มิลลิเมตรต่อรอบ และ รัศมีจมูก	
มีด 0.8 มม. มุมคายเศษโลหะ 11 องศา	81
รปที่ 4.45 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่ความลึกตัด 0.4	
มม. ความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัดที่ 0.20 มิลลิเมตรต่อรอบ และ รัศมีจมกมีด	
0.8 มม. มุมคายเศษโลหะ 11 องศา	82
รปที่ 4.46 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่ความลึกตัด 0.8	
้มม. ความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัดที่ 0.20 มิลลิเมตรต่อรอบ และ รัศมีจมกมีด	
0.8 มม. มุมคายเศษโลหะ 11 องศา	83
งบท 4.47 การเกาษณายาณี การเกาษณายา เสพา เทินกาศารามสาย 0.4, 0.6 และ 0.8 มม.	
ศาว เมเรางตุด 200 ม./นาพ ขุดราบขนุดด 0.2 มม. รุศมุคมูกมด 0.8 มม. และมุมคายเคษเลหะ	
1 1 "EN#11	83

รูปที่ 4.48 กราฟแสดงความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์กับรัศมีจมูกมีดที่ 0.4 และ 0.8 มม. โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.20 มิลลิเมตรต่อ	
รอบ ความลึกตัด 0.8 มม. และ มุมคายเศษโลหะ -6 องศา84	
รูปที่ 4.49 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับรัศมีจมูกมีดที่ 0.4 และ 0.8 มม. โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.20	
มลลเมตรตอรอบ ความลกตด 0.8 มม. และ มุมคายเคษเลหะ -6 องคา	
รูปที่ 4.50 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัดที่รัศมีจมูกมีดที่ 0.4 และ 0.8 มม. โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.25 มิลลิเมตรต่อรอบ ความลึกตัด	
0.4 มม. และ มุมคายเศษโลหะ -6 องศา85	,
รูปที่ 4.51 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ ณ เงื่อนไขการตัดที่รัศมีจมูกมีดที่ 0.4 และ 0.8 มม. โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.25 มิลลิเมตรต่อรอบ ความลึก ตัด 0.4 มม. และ มุมคายเศษโลหะ -6 องศา85	.)
รูปที่ 4.52 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่รัศมีจมูกมีดที่ 0.4 มน โดยบีดกวนเร็กตัด 450 เมตรต่อมาที่ อัตรารัโดนตัด 0.25 มิดดิเมตรต่อรอม ดกานดึกตัด	
AA. เกิดสาว เมือง เมาตาย (เบา เลขายายุ เกิด เกิด เกิด เป็น เมาตาย (.25 ผถิสเผยายายายาย (เมาตา เพลา เพย 0.1 เบา (และ เบาตายุ (สามาร์ (
0.4 มม. และ มุมคายเศษโลหะ -6 องศา	
รูปที่ 4.54 การเกิดเศษโลหะเงื่อนไขการตัด ได้แก่ รัศมีจมูกมีด 0.4 และ 0.8 มม. ความลึกตัด 0.6 มม. ความเร็วตัด 200 ม./นาที อัตราป้อนตัด 0.20 มม. และมุมคายเศษโลหะ 11 องศา 88	5
รูปที่ 4.55 กราฟแสดงความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์กับมุมคายเศษโลหะ -6 และ 11 องศา โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.15 มม.ต่อ	
รอบ ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม	;
รูปที่ 4.56 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับมุมคายเศษโลหะ -6 และ 11 องศา โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.15 มม.ต่อ รอบ ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม)

รูปที่ 4.57 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัดมุมคายเศษโลหะ -6 และ 11
องศา โดยมีความเร็วตัด 150 เมตรต่อนาที่ อัตราป้อนตัด 0.20 มม.ต่อรอบ ความลึกตัด 0.8
มม. และ รัศมีจมูกมีด 0.4 มม
รูปที่ 4.58 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ เงื่อนไขการตัดมุมคายเศษโลหะ -6 และ
11 องศา โดยมีความเร็วตัด 150 เมตรต่อนาที่ อัตราป้อนตัด 0.20 มม.ต่อรอบ ความลึกตัด
0.8 มม. และ รัศมีจมูกมีด 0.4 มม90
รูปที่ 4.59 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่เงื่อนไขการตัดมุม
คายเศษโลหะ -6 องศา โดยมีความเร็วตัด 150 เมตรต่อนาที่ อัตราป้อนตัด 0.20 มม.ต่อรอบ
ความลึกตัด 0.8 มม. และ รัศมีจมูกมีด 0.4 มม91
รูปที่ 4.60 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่เงื่อนไขการตัดมุม
คายเศษโลหะ 11 องศา โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.20 มม.ต่อรอบ
ความลึกตัด 0.8 มม. และ รัศมีจมูกมีด 0.4 มม
รูปที่ 4.61 การเกิดเศษโลหะเงื่อนไขการตัด ได้แก่ มุมคายเศษโลหะ -6 และ 11 องศา รัศมี
จมูกมีด 0.8 มม.ความลึกตัด 0.6 มม. ความเร็วตัด 200 ม./นาที อัตราป้อนตัด 0.15 มม
รูปที่ 4.62 กราฟอันตรกิริยาระหว่างความตรงชิ้นงานและปัจจัยที่ใช้ในการทดลอง93
รูปที่ 4.63 กราฟอันตรกิริยาระหว่างความกลมชิ้นงานและปัจจัยที่ใช้ในการทดลอง
รูปที่ 4.64 ผลหลัก (Main effect) ของความตรงและปัจจัยที่ใช้ในการทดลอง
รูปที่ 4.65 ผลหลัก (Main effect) ของความกลมและปัจจัยที่ใช้ในการทดลอง
รูปที่ 4.66 Normal Probability Plot ข้อมูลความตรงของชิ้นงาน
รูปที่ 4.67 Normal Probability Plot ข้อมูลความกลมชิ้นงาน
รูปที่ 4.68 กราฟแสดงความสัมพันธ์ระหว่างค่าคลาดเคลื่อนกับลำดับการเก็บข้อมูลความตรง ชิ้นงาน
รูปที่ 4.69 กราฟแสดงความสัมพันธ์ระหว่างค่าคลาดเคลื่อนกับลำดับการเก็บข้อมูลความกลม ชิ้นงาน
รูปที่ 4.70 แสดงการทดสอบความสม่ำเสมอของความแปรปรวนความตรงของชิ้นงาน
รูปที่ 4.71 แสดงการทดสอบความสม่ำเสมอของความแปรปรวนความกลมชิ้นงาน

รูปที่ 4.72 การวิเคราะห์ความแปรปรวนของการถดถอยของสมการความตรง
รูปที่ 4.73 การวิเคราะห์ความแปรปรวนของการถดถอยของสมการความกลม
รูปที่ 4.74 การทดสอบสัมประสิทธิ์การถดถอยของสมการความตรง
รูปที่ 4.75 การทดสอบสัมประสิทธิ์การถดถอยของสมการความกลม
รูปที่ 4.76 การทดสอบความแม่นยำของสมการทำนายความตรง
รูปที่ 4.77 การทดสอบความแม่นยำของสมการทำนายความกลมชิ้นงาน

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญ

1.1.1 อุตสาหกรรมการผลิตของประเทศไทย

ภาคอุตสาหกรรมมีบทบาทสำคัญต่อการพัฒนาเศรษฐกิจของประเทศไทย จากการศึกษา พบว่า สัดส่วนมูลค่าผลผลิตอุตสาหกรรมต่อผลิตภัณฑ์มวลรวมภายในประเทศ และมูลค่าการ ส่งออกสินค่าอุตสาหกรรมต่อมูลค่าการส่งออกรวม มีอัตราการขยายตัวเพิ่มขึ้นอย่างรวดเร็ว โดยเฉพาะกลุ่มสินค่าอุตสาหกรรมที่ต้องใช้เทคโนโลยีระดับกลางและสูง เช่น ยานยนต์ อิเล็กทรอนิกส์ และเครื่องใช้ไฟฟ้า เป็นต้น[1]

ประเทศไทยได้ทำการเข้าร่วมในกลุ่มประชาคมอาเซียน (ASEAN Economic Community, AEC) หรือการรวมกันเป็นตลาดเดียว (Single Market) ในปี พ.ศ. 2558 หาก พิจารณาถึงกลุ่ม ASEAN+3 ซึ่งประกอบไปด้วยประเทศในกลุ่มอาเซียน 10 ประเทศ รวมกับ ประเทศจีน เกาหลีใต้และญี่ปุ่น ประเทศไทยจัดอยู่ในกลุ่มประเทศที่กลุ่มประเทศที่มีการพัฒนา ระดับกลาง หากเปรียบเทียบกับประเทศในกลุ่มที่มีทรัพยากรจำนวนมากและมีการใช้แรงงาน ค่าแรงต่ำเช่น พม่า ลาว เวียดนาม กัมพูชา อินโดนีเซีย จะพบว่าประเทศในกลุ่มนี้มีความได้เปรียบ ทางด้านกิจกรรมที่เน้นทรัพยากรและกิจกรรมที่ใช้แรงงานเป็นหลักเนื่องจากต้นทุนแรงงานที่ต่ำ กว่า ในขณะเดียวกันเมื่อนำไปเปรียบเทียบกับกลุ่มประเทศที่มีเทคโนโลยีและทุนที่สูงกว่าเช่น สิงคโปร์ เกาหลีใต้ และญี่ปุ่น พบว่าประเทศในกลุ่มนี้ก็มีความได้เปรียบในกิจกรรมที่เน้นบัจจัยทุน เป็นหลัก เนื่องจากมีการผลิตที่ใช้เทคโนโลยีในระดับที่สูงกว่า ด้วยเหตุนี้เองประเทศที่มีการพัฒนา อยู่ในระดับกลางอย่างประเทศไทยจึงติดอยู่ในกับดักที่เรียกว่ากับดักรายได้ปานกลาง (Middleincometrap) ทำให้สูญเสียความได้เปรียบในการแข่งขันทั้งกับกลุ่มประเทศที่มีต้นทุนแรงงานใน การผลิตต่่าและกลุ่มประเทศที่มีทุนและเทคโนโลยีสูงกว่า[2]

ดังนั้น ประเทศไทยจึงจำเป็นต้องเพิ่มขีดความสามารถในการแข่งขันของภาคอุตสาหกรรม ด้วยการส่งเสริมการวิจัยและพัฒนาองค์ความรู้เพื่อให้เกิดนวัตกรรม (Innovation) ขึ้น ภายในประเทศ เป็นการเพิ่มประสิทธิภาพทางการผลิตให้ไล่ตามความก้าวหน้าทางเทคโนโลยีใน ระดับโลกได้ และเพื่อเพิ่มขีดความสามารถทางการแข่งขันระหว่างประเทศ

1.1.2 อุตสาหกรรมงานขึ้นรูปความเที่ยงตรงสูง

อุตสาหกรรมงานขึ้นรูปความเที่ยงตรงสูง (Precision Machining Industry)[3] เป็น อุตสาหกรรมซึ่งผลิตชิ้นงานความเที่ยงตรงสูงให้อุตสาหกรรมอย่างเช่น อุตสาหกรรมไฟฟ้าและ อิเล็กทรอนิกส์ อุตสาหกรรมแม่พิมพ์ อุตสาหกรรมยานยนต์ อุตสาหกรรมเครื่องจักรกล อุตสาหกรรมอุปกรณ์ทางการแพทย์ เป็นต้น นำชิ้นส่วนที่ผลิตไปใช้ในการผลิตขั้นต่อไป เนื่องจาก ผลิตภัณฑ์ในปัจจุบัน เช่น ระบบเครื่องยนต์ คอมพิวเตอร์ อุปกรณ์สื่อสาร นั้นล้วนแต่ผลิตด้วย เทคโนโลยีที่ต้องการความแม่นยำ (Accuracy) และความเที่ยงตรงสูง (Precision) อีกทั้งประเทศ ไทยมีการผลิตชิ้นงานความเที่ยงตรงสูง เช่น เพลา ล้ออัลลอย คอพวงมาลัย ล้อตุนกำลัง คลัตซ์ ลูกสูบ ฯลฯ เพื่อป้อนสู่อุตสาหกรรมยานยนต์ และชิ้นส่วนได้แก่ ไมโครมอร์เตอร์ตลับลูกปืนขนาด เล็ก ฮาร์ดดิสก์ ฯลฯสำหรับอุตสาหกรรมไฟฟ้าและอิเล็กทรอนิกส์ ดังนั้นจึงกล่าวได้ว่าอุสาหกรรม การผลิตชิ้นงานความเที่ยงตรงนั้นมีความสำคัญเป็นอย่างมาก

ในอุตสาหกรรมงานขึ้นรูปความเที่ยงตรงสูงในโรงงานขนาดเล็กและมีกำลังการผลิตไม่ มากนักอาจมีการใช้เครื่องระบบ Manual อยู่บ้าง แต่ส่วนใหญ่จะใช้เครื่องจักรที่เป็นระบบ CNC เนื่องจากให้ความเที่ยงตรงและแม่นยำสูง เครื่องจักรกลอัตโนมัติที่สามารถทำงานได้โดยการป้อน ชุดโปรแกรมคำสั่งอย่างเครื่องจักรกลซีเอ็นซี (Computer Numerical Control) ได้เข้ามามีบทบาท สำคัญในอุตสาหกรรมการผลิตเพิ่มมากขึ้น โดยเฉพาะอย่างยิ่งเครื่องกลึงซีเอ็นซีเซ็นเตอร์ (CNC Turning Center: TC) เนื่องจากการกลึงเป็นปฏิบัติการขั้นพื้นฐานในงานอุตสาหกรรมที่ใช้กันอย่าง กว้างขวาง โดยเป็นการตัดโลหะที่ให้ชิ้นงานหมุนรอบตัวเองและมีดกลึงเคลื่อนที่เข้าหาชิ้นงาน เครื่องกลึงซีเอ็นซีสามารถทำงานที่ต้องการความเที่ยงตรงและความละเอียดสูงได้ดีกว่าเครื่องจักร ที่ควบคุมแบบ Manual มาก อีกทั้งสามารถรองรับการผลิตที่มีความหลากหลายได้ และเมื่อนำไป ทำงานร่วมกับระบบการผลิตอัจฉริยะ (Intelligent Manufacturing System, IMS) สามรถลดของ เสียที่จะเกิดขึ้นได้โดยใช้เซนเซอร์ในระบบการตรวจติดตามการผลิตซึ่งสามารถส่งข้อมูลได้ว่าเกิด ข้อผิดพลาดในการผลิตขึ้นหรือไม่ เป็นผลให้สามารถที่จะหยุดหรือดำเนินการผลิตต่งหรือปรับปรุง ค่าพารามิเตอร์ที่ใช้ในกระบวนการได้อย่างทันท่วงที

1.1.3 ความสำคัญของความตรงและความกลมในกระบวนการผลิต

การผลิตชิ้นงานรูปร่างทรงกระบอกซึ่งเป็นรูปร่างพื้นฐานสำหรับป้อนให้อุตสาหกรรมอื่นๆ นำชิ้นส่วนความเที่ยงตรงสูงนี้ไปประกอบการผลิตขั้นต่อไป เช่น กระบอกลูกสูบสำหรับ อุตสาหกรรมยานยนต์ แกนสปินเดิลมอเตอร์สำหรับฮาร์ดดิสก์ไดร์ฟในอุตสาหกรรมอิเล็กทรอนิกส์ แกนเลื่อนของเครื่องจักรสำหรับอุตสาหกรรมสร้างเครื่องจักรกล อุตสาหกรรมสร้างเครื่องมือ อุปกรณ์ทางการแพทย์ และอุตสาหกรรมแม่พิมพ์ เป็นต้น ซึ่งในการผลิตชิ้นงานลักษณะนี้จะใช้ เครื่องกลึง CNC การผลิตชิ้นงานให้มีความตรง (Straightness) และความกลม (Roundness) ที่ ถูกต้องแม่นยำนั้นมีความสำคัญอย่างมากโดยเฉพาะอย่างยิ่งชิ้นงานที่ต้องนำไปประกอบกัน หาก มีความคลาดเคลื่อนของรูปร่างชิ้นงานเกินกว่ากำหนด อาจทำให้ประกอบกันได้ไม่สมบูรณ์ ใน ชิ้นส่วนที่มีการหมุนหรือการเคลื่อนที่อาจส่งผลให้เกิดการเสียดสีและการสั่นสะเทือน อาจส่งผลต่อ การทำงานของเครื่องจักรได้ ปัจจัยสำคัญที่ใช้ในการควบคุมความตรงและความกลม ใน กระบวนการกลึง เช่น สัญญาณแรงตัด ความเร็วตัด อัตราป้อนตัด รัศมีจมูกมืด ความลึกตัด และ มุมคายเศษโลหะ[4-6] ซึ่งการตรวจวัดความตรงและความกลมชิ้นงานในกระบวนการผลิต สามารถทำได้หลังจากเสร็จสิ้นกระบวนการผลิตแล้วเท่านั้น ทำให้สูญเสียเวลา ต้องใช้เครื่องวัด ความละเอียดสูง ชิ้นงานได้รับความเสียหายจากการทดสอบ อีกทั้งการตรวจติดตามใน กระบวนการผลิตไม่สามารถตรวจติดตามชิ้นงานที่ผลิตได้ทั้งหมด

1.1.4 การตรวจติดตามกระบวนการผลิตด้วยการใช้เซนเซอร์

การตรวจติดตามกระบวนการผลิตโดยใช้เซนเซอร์ เป็นการตรวจติดตามทางอ้อม (Indirect monitoring process) โดยนำสัญญาณที่ตรวจจับได้ในกระบวนการผลิตมาแปลงค่า เพื่อให้ทราบสถานะของกระบวนการผลิต โดยไม่ต้องหยุดกระบวนการผลิตเพื่อตรวจสอบความ ผิดพลาดที่เกิดขึ้น[7]

รูปที่ 1.1 แรงตัดในแนวแกน 3 มิติ

การใช้เซนเซอร์เพื่อช่วยในการติดตามแรงที่เกิดขึ้นในกระบวนการกลึง ทำได้โดยการใช้ ไดนาโมมิเตอร์วัดแรงตัดที่เกิดขึ้น ดังแสดงในรูปที่ 1.1 ซึ่งแรงที่ได้สามารถแบ่งออกเป็น 3 แรง ได้แก่ แรงตัดในแนวรัศมี (Radius force, F_R หรือ Fx) แรงในทิศขนานกับการป้อนตัด หรือแรงป้อน ตัด (Feed force, F_F หรือ Fy) และแรงในทิศขนานกับทิศของความเร็วตัด หรือแรงตัดหลัก (Main force, F_c หรือ Fz)

สัญญาณแรงตัดที่ได้จากกระบวนการกลึงนี้ สามารถนำใช้ในการวิเคราะห์ติดตามสถานะ กระบวนการผลิต หรือควบคุมคุณภาพผลิตภัณฑ์ในระหว่างการกลึงได้ ซึ่งจากการศึกษางานวิจัยที่ ผ่านมา[8-10] ได้มีการประยุกต์ใช้สัญญาณแรงตัดเพื่อใช้ในการติดตาม ควบคุมและสร้าง แบบจำลองที่สามารถนำไปพยากรณ์ลักษณะของชิ้นงานในกระบวนการกลึงได้ เช่น ความคลาด เคลื่อนของเส้นผ่านศูนย์กลาง ความกลม ความขรุขระผิว ความตรง เป็นต้น แสดงให้เห็นว่าการใช้ สัญญาณแรงตัดมาประยุกต์ใช้ควบคุมคุณภาพชิ้นงานในกระบวนการกลึง สามารถใช้ตรวจสอบ ในขณะทำงานได้โดยไม่ต้องหยุดหรือรอให้เสร็จสิ้นกระบวนการผลิตก่อน ซึ่งจะเป็นประโยชน์อย่าง มากกับภาคอุตสาหกรรม เนื่องจากกกระบวนการผลิตในปัจจุบันเป็นการผลิตแบบต่อเนื่อง จาก แนวคิดพัฒนาการตรวจติดตามคุณภาพชิ้นงานในกระบวนการผลิตด้วยการใช้เซนเซอร์ตรวจวัด สัญญาณ จึงได้เสนอแนวคิดการทำวิจัยดังรูปที่ 1.2 โดยใช้ไดนาโมมิเตอร์ตรวจวัดแรงที่เกิดขึ้น ขณะตัด เพื่อหาความสัมพันธ์ระหว่างแรงตัดที่เกิดกับความตรงและความกลมชิ้นงาน

จากการศึกษางานวิจัยที่ผ่านมา ได้มีการศึกษาความสัมพันธ์ของแรงขณะตัดที่มีผลต่อ ความคลาดเคลื่อนเส้นผ่านศูนย์กลางชิ้นงานรูปทรงกระบอกในกระบวนการกลึง จากการ ตรวจสอบความกลมและความตรงจะพบว่า แอมพลิจูดแรงตัดรัศมี (Fx) มีทิศทางเดียวกับการ ตรวจสอบความกลมและเป็นแรงที่ส่งผลต่อรูปร่างความกลมชิ้นงาน ส่วนแรงป้อนตัด (Fy) เป็นแรง ที่ส่งผลต่อรูปร่างชิ้นงานในแนวตั้งฉากกับการวัดความตรงและความกลม ซึ่งเมื่อวัดความตรงและ ความกลมของชิ้นงานนั้นพบว่ามีแนวโน้มไปในทิศทางเดียวกัน กล่าวคือในชิ้นงานที่มีค่าความ ตรงที่ดีหรือมีค่าความตรงเบี่ยงศูนย์ต่ำ ชิ้นงานนั้นจะมีค่าความกลมที่ดีหรือมีค่าพิสัยเส้นผ่าน ศูนย์กลางที่ต่ำด้วย

รูปที่ 1.2 แนวคิดในการทำวิจัย

1.1.5 ที่มาของงานวิจัย

งานวิจัยที่ผ่านมาได้ทำการศึกษาความสัมพันธ์ระหว่างแรงตัดในกระบวนการกลึงกับ เงื่อนไขการตัดต่างๆ ได้แก่ สัญญาณแรงตัด ความเร็วตัด ความลึกตัด อัตราป้อนตัด มุมคายเศษ โลหะ และรัศมีจมูกมีด เป็นต้น ซึ่งได้แสดงให้เห็นว่าปัจจัยเหล่านี้มีผลต่อคุณภาพของชิ้นงานใน กระบวนการกลึง[11-15] งานวิจัยที่ศึกษาเพิ่มเติมเพื่อหาความสัมพันธ์ระหว่างสัญญาณแรงตัด กับความตรงโดยนำสัญญาณแรงตัดพลวัตมาทำการแปลงค่าจากโดเมนเวลาให้อยู่ในรูปของ โดเมนความถี่ด้วยวิธีการแปลงฟูเรียร์อย่างเร็ว (Fast Fourier Transform) จากนั้นหาสัญญาณที่มี ความสัมพันธ์ระหว่างแรงตัดกับค่าความตรง แล้วนำสัญญาณที่มีความสัมพันธ์กันไปใช้สร้าง สมการจำลองความตรงขณะตัด พบว่าแรงตัดพลวัตมีความสัมพันธ์กับความตรงและสามารถนำ ค่ามาวิเคราะห์หาสมการทำนายความตรงได้[8] และยังมีงานวิจัยที่ศึกษาความสัมพันธ์ระหว่าง แรงตัดกับความกลม โดยใช้อัตราค่าส่วนค่าเฉลี่ยความแปรปรวนแรงตัดพลวัตมาใช้สร้างสมการ ทำนายความกลมชิ้นงานขณะตัด พบว่าแรงตัดพลวัตกับความกลมนั้นมีความสัมพันธ์กันและ สามารถนำไปใช้สร้างสมการทำนายความกลมของชิ้นงานขณะตัดได้[9] งานวิจัยที่กล่าวมา ข้างต้นนั้นมีข้อจำกัดคือในการนำค่าแรงตัดพลวัตมาใช้วิเคราะห์สร้างสมการ ไม่ได้ทำการแยก สัญญาณแตกหักของเศษโลหะและสัญญาณรบกวนอื่นออกจากสัญญาณของแรงตัดก่อน ส่งผล ให้สมการที่ได้มีความคลาดเคลื่อนเกิดขึ้น

ผลการวิเคราะห์แรงตัดพลวัตในกระบวนการตัดที่เกิดเศษโลหะแบบแตกหักโดยมีเงื่อนไข การตัดดังนี้คือ ความเร็วตัด 200 เมตรต่อวินาที อัตราการป้อน 0.25 มิลลิเมตรต่อรอบ ความลึกใน การตัด 0.8 มิลลิเมตร รัศมีจมูกมีด 0.8 มิลลิเมตร และมุมคายโลหะ 11

จากรูปที่ 1.3 จะเห็นได้ว่าลักษณะการเกิดรูปคลื่นของแรงตัดพลวัตและความกลมนั้นมี ลักษณะรูปคลื่นที่คล้ายคลึงและสอดคล้องกัน เมื่อทำการแปลงสัญญาณแรงตัดและความตรงจาก โดมเนเวลาในรูปที่ 1.4 ให้อยู่ในโดเมนความถี่โดยการแปลงฟูเรียร์อย่างเร็ว ผลที่ได้แสดงให้เห็นว่า ทั้ง 2 สัญญาณเกิดความถี่ที่ใกล้เคียงกันคือที่ความถี่ 32 H_z ดังรูปที่ 1.5 ในส่วนของการแปลง ข้อมูลแรงตัดโดยใช้วิธีเวฟเลททำการแยกย่อยสัญญาณออกเป็น 10 ระดับ จากรูปที่ 1.6 - 1.11 ได้ แสดงให้เห็นว่าสามารถแยกความถี่แรงตัดและความถี่อื่นๆที่ปะปนอยู่ออกจากกันได้ โดยความถี่ ของความตรงจะอยู่ที่ระดับ 8

จากงานวิจัยที่ผ่านมาซึ่งแสดงให้เห็นว่าสามารถนำแรงตัดพลวัตมาใช้สร้างสมการทำนาย ความกลมและความตรงได้ และจากข้อมูลผลการทดลองเบื้องต้นจึงเป็นที่มาของงานวิจัยนี้ ซึ่ง เสนอการวิเคราะห์ความสัมพันธ์ของแรงตัดพลวัตกับความตรงและความกลมของชิ้นงาน โดยใช้ การวิเคราะห์เวฟเลท (Wavelet Transform) เพื่อแยกสัญญาณการแตกหักของเศษโลหะและ สัญญาณรบกวนอื่นออกจากสัญญาณของแรงตัดก่อน แล้วจึงนำสัญญาณแรงตัดที่ระดับ 8 ไปใช้ สร้างสมการทำนายความตรงและความกลมซึ่งจะทำให้ได้สมการมีความถูกต้องแม่นยำมากขึ้น และยังสามารถทำนายได้ทั้งความตรงและความกลมของชิ้นงานขณะตัดได้อีกด้วย

รูปที่ 1.4 ลักษณะสัญญาณแรงตัดพลวัตและความตรงในโดเมนเวลา

รูปที่ 1.5 ลักษณะสัญญาณแรงตัดพลวัตและความตรงในโดเมนความถี่

0					Original Signal					
	an de de la construction de la construction La construction de la construction La construction de la construction d	a ha shika shika ga shika ka		And the second second		we have been been been been been been been be		and the state of the second state of the secon	tenden ander alle ber die bester Nicht einer die bester die seiner	
0	0.1	0.2	0.3	0.4	Detail Signal D1	0.6	0.7	0.8	0.9	
	way in the substre	And the state of	A A MAR ANA AMANA	ality out tax	Hat the state	-	the state of the state	and the second second	and the state of the	and by
	0.1	0.2	0.3	0.4	0.5 Detail Signal D2	0.6	0.7	0.8	0.9	
)]	tent sten in a start din the	يرافقون والدوا والمحمد وحسيسة	مرجعين أرغن أسراف فاستقسط	un have been been and	المدومية الارد والمستان وفاهرون با	and a stand of the second	ميلاس وبالالعامية	يري واندواس <mark>الروم بعن الجس</mark>	والمساوية والمحاولة والمتحاولة والمحاربة	daala
1 Constant	and a state of a state of build	and the state of the second second	and so the second s	and the second second	Barris Street and Street St	-Store a state also	Building the same of the s	And a star of the star of the star	and the second second second second	dama.
0	0.1	0.2	0.3	0.4	Detail Signal D3	0.6	0.7	0.8	0.9	
)]		1	And the second second		and the second second second second			and the second second	and the second second second second	
		1								
΄ο	0.1	0.2	0.3	0.4	Detail Signal D4	0.6	0.7	0.8	0.9	
3		1		İ	1		1	1		
		1	i	1						
0	0.1	0.2	0.3	0.4	Detail Signal D5	0.6	0.7	0.8	0.9	
	1	1			1	1	1			_
]	1	1	······			1	1		1	
0	0.1	0.2	0.3	0.4	Detail Sianal D6	0.6	0.7	0.8	0.9	
	l.	1	1	1	1	1		1	I.	
]	i	i	i i			i				
0	0.1	0.2	0.3	0.4	Detail Signal D7	0.6	0.7	0.8	0.9	
	-			-						-
1		i i		Man County County	Salaran and a second and		a strategy and the strategy and			Str. alle
0	0.1	0.2	0.3	0.4	Detail Signal D8	0.6	0.7	0.8	0.9	
i Loo										
	1	1								
0	0.1	0.2	0.3	0.4	Detail Signal D9	0.6	0.7	0.8	0.9	
2	1	1	1		1	1	1		Ť.	
	- i	i	i	1	1	i	1		i	
0	0.1	0.2	0.3	0.4	Detail Stanal D10	0.6	0.7	0.8	0.9	
					3	6				
		<u> </u>		1		1	1		1	
0	0.1	0.2	0.3	0.4	0.5 Time (a)	0.6	0.7	0.8	0.9	

รูปที่ 1.6 แสดงการแปลงสัญญาณเวฟเลทในโดเมนเวลาของ Fx

รูปที่ 1.7 แสดงการแปลงสัญญาณเวฟเลทในโดเมนความถี่ของ Fx

					Original Signal					
	a barting a link link	e massi hatan lanan salami	allow a start and a start and	ور والمنعر الروس	المراجع br>مراجع المراجع ال	L. Able Minder	the fail of the second second	ير معرفاليون وي		angles h
50 <u>C. (P. 100</u>	0.1	0.2	0.3	0.4	Detail Signal D1	0.6	0.2	0.8	0.9	
50	them built a same provide	white of the barry plate to		and a lead and a superior	and have been a strend and the state of the	a subserve de literar	way all be seen he	MALINA AND IN IN	Internet and second second	بارا طروق
0 veryant room	and the state of the state of the state	A	a sumeril marshare	Manager and the	A DAMA AND A DAMA AND AND AND AND AND AND AND AND AND AN	a de la serie d	Instantin and a starting	And the state of the	at a star of the second star of the	(and the second s
ŏ	0.1	0.2	0.3	0.4	Detail Signal D2	0.6	0.7	0.8	0.9	
O Martinet	where the state of the state of the	and a surface to a surger state	and such a second	يدر الاروبية وردار	and a deal manage data data da abase da	المعالم المراجع	and she had been	بيناير بغر بمرايد	and the second states	Annali
	An area - subjections	The Long Street storethy	-transferrer barrenter	all all which have	Distance in the second s	perference and perfector	a strange dissingly and	and the second	and a second standard st	(Assessed))
Ŭ0	0.1	0.2	0.3	0.4	Detail Signal D3	0.6	0.7	0.8	0.9	
0	denni li no de	and the second second	Marine Contractor		and the second second		mark as here as	the second second	and addition to a	
) at the state	and a second second			and the second		A DECEMBER OF STREET	A DISCOUTE OF THE OWNER OWNER OF THE OWNER OWNE		And the state of t	Manager and Providence
Ŭ0	0.1	0.2	0.3	0.4	Detail Signal D4	0.6	0.7	0.8	0.9	
]		1	1	1	1		1		Ĺ	
	and the second			the they have - on		bay toy and there	**************************************		404-1-040	
ο .	0.1	0.2	0.3	0.4	Detail Signal D5	0.6	0.7	0.8	0.9	
0					î	1				- 83
		1	1	i i	1	1		1	1	
0	0.1	0.2	0.3	0.4	Detail Signal D6	0.6	0.7	0.8	0.9	
2	I.	1	1	I.	1	T.	1	1	I.	
		1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ĺ	1	1	i	1	
0	0.1	0.2	0.3	0.4	Detail Signal D7	0.6	0.7	0.8	0.9	
	and annual annual				CREATING OF THE PROPERTY AND INC.	ourse here a	annen an tai		and the second	
	i	1	1	ĺ	i	j	1			
0	0.1	0.2	0.3	0.4	Detail Ŝiĝnal D8	0.6	0.7	0.8	0.9	
		1		1	1		ļ.			8
	i i	1	1				1			
0	0.1	0.2	0.3	0.4	Detail Bignal D9	0.6	0.7	0.8	0.9	
	T.	1	1	1	1	1	1	1	Ť.	
	i	1	i	1	1		1	1	i i	
0	0.1	0.2	0.3	0.4	Detail Stanal D10	0.6	0.7	0.8	0.9	
0		1			1					
0	i	i	i	1	1	i i	1	i	1	
0	0.1	0.2	0.3	0.4	0.5 Time (s)	0.6	0.7	0.8	0.9	

รูปที่ 1.8 แสดงการแปลงสัญญาณเวฟเลทในโดเมนเวลาของ Fy

100	🗖 🖌 ความถ่	ଶ୍ରରନରିନ	งกับความ	ปตรง	Original Signal					
10 5		1		Î.	1	l.	1	1	L.	
ŏ	A i	- i	1	Î	1		Ĵ		hermond	Mun
0 x 1	0 100	200	300	400	Detail 🗐 hal D1	600	700	800	900	1000
4	ľ.	T	3	1	1	T.	1	8	1	15
á				ma	in market warden wa	min the man	unut Milling	hundredteren the	mad mother Miles	Historitation
ŏ	100	200	300	400	Detail Signal D2	600	700	800	900	1000
0.2		1	1	1	1		1	1	6 9	
	12	I	0	L.	1	. Annel Marchine	and A have	A children	- delater with	when
ο	100	200	300	400	Detail Signal D3	600	700	800	900	1000
2	E.	1	1	1	1	I.	1	1	Lange and	
1 L	E.	Ĩ	human	1	1		- la		man while how I	Malphin
Ŭ	100	200	300	400	Detail 🖓 hal D4	600	700	800	900	1000
0.2	E.	1	1	1.1			1		-	
> 0.1	Ľ		An march whether	durt Alurks	up man werkingt	Montenan	white Manual			
g O	100	200	300	400	Detail Signal D5	600	700	800	900	1000
to 0.2	Ê	T T	1	Ť.	1	Ť.	ี ส้	ถาณร	บกวน	
\$ U.]	di mare	mululus	menterman	maile	j.	L.	Î	2 2	Ê	-
o we	100	200	300	400	Detail Signal D6	600	700	800	900	1000
a 0.2		1	1	1	1	1	1	1	Ť.	
0.1	and think we	man Al	1	Ĩ	1	100	Ĩ.	20	1	
Ő	100	200	300	400	Detail Signal D7	600	700	800	900	1000
2	1	1	1	1	1		1	1	l.	
	1		1					1	1	Star
ŏ	100	200 2	a. 200	400	Detail Signal DB	600	700	800	900	1000
5	K 1913 1415	184 ETAILAI 84	ENTITIE.	HAIRIAN	1	1	1			
0	A La	T	3	T.	1	18	Л	1	1	
0	100	200	300	400	Detail Signal D9	600	700	800	900	1000
5	T.	1	1	1	1	1	1	1	Ľ.	
0	E.	Τ		E	1	1	1		1	
0	100	200	300	400	Detail Signal D10	600	700	800	900	1000
5	T	1	3	Î	1	Ü	1	<u></u>	T.	
	Ē	- i	1	- î	i	- i	1	1	Ĩ	
0	100	200	300	400	500 Frequency	600	700	800	900	1000

🖵 🖌 ความถี่สุดดคล้องกับความตรง Original Signal

รูปที่ 1.9 แสดงการแปลงสัญญาณเวฟเลทในโดเมนความถี่ของ Fy

20					Original Signal				
	والعلاق ومعادلة ومعادلة	الدائية وحداثة والدورال على إلى	والعاربين والمقالين الحل	and the second second	the second s	المتحاطين والمتحاد والم	- الم والمركز و الم المالي المالية الم	مرجعة والمراجعة وراقته	Harley, and the schedule of here a
0	0.1	0.2	0.3	0.4	Dotoil Bishol D1	0.6	0.7	0.8	0.9
- -					Detail Signal Di		NEW.		
-	and the second second second		- Contraction of the second				A STATE OF THE OWNER	Alexandrah pure	in the stand is well as the stand is a second s
0	0.1	0.2	0.3	0.4	Detail 9i§nal D2	0.6	0.7	0.8	0.9
	to be address of the other state	the sale stands in a shifter	and states in the second second	and in the state of the	Name of the other states of the states of th	terran and the second	Margarian States on Arthurs	and the state of the state of the state	and say a life of the say of a d
	And the set of the set of the	and see how only a second	ale color de la	- I - I - I - I - I - I - I - I - I - I		and the second	A -temponiste este	and the second second second	in a superior provident and a star
0	0.1	0.2	0.3	0.4	Detail Signal D3	0.6	0.7	0.8	0.9
	in a state of the state of the state of the	a house been being a being	Mary and an an damage	Hill an bit it and	and a state of the second s		week was a mere all se	and the state of the section of	and the second second second second
						-	T 114 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		an an an an an an
u 	U.1	U.2	0.3	0.4	Detail Signal D4	0.6	U.7	0.8	0.9
					a magan in angla mbay angla	+ Annonion mark and	 	and at hat was	412-92-10-01-1-01-10-00-00-00-00-00-00-00-00-0
0	0.1	0.2	0.3	Π.4	D 1 185 105	0.6	0.7	0.8	19
	0.1	0.2			Detail Signal D5				0.0
	10 10 10 100								
0	0.1	0.2	0.3	0.4	Dotail Bignal DG	0.6	0.7	0.8	0.9
						in the second se			
*	~								1
0	0.1	0.2	0.3	0.4	Detail Signal D7	0.6	0.7	0.8	0.9
					1				
	j	i	i	1	i		i	i	i
0	0.1	0.2	0.3	0.4	Detail Signal D8	0.6	0.7	0.8	0.9
		<u> </u>							
U	U.1	0.2	0.3	U.4	Detail Signal D9	0.6	U.7	0.8	0.9
	1	1		1					I.
	Ĵ.	- Î	i	- i	i.	- i	- i	i.	ĺ.
0	0.1	0.2	0.3	0.4	Detail Signal D10	0.6	0.7	0.8	0.9
		1			1				
	Ì	Î	i.	í	í		í	i i	Î
0	0.1	0.2	0.3	0.4	0.5 Time (s.)	0.6	0.7	0.8	0.9

รูปที่ 1.10 แสดงการแปลงสัญญาณเวฟเลทในโดเมนเวลาของ Fz

รูปที่ 1.11 แสดงการแปลงสัญญาณเวฟเลทในโดเมนความถี่ของ Fz

1.2 วัตถุประสงค์งานวิจัย

 เพื่อศึกษาความสัมพันธ์ระหว่างความตรงและความกลมของชิ้นงานกับแรงตัดภายใต้ เงื่อนไขการตัดต่างๆโดยใช้เทคนิคการแปลงเวฟเลท

 พัฒนาสมการทำนายความตรงและความกลมของชิ้นงานขณะกลึง ไม่ว่าเศษโลหะที่ เกิดจะเป็นชนิดใดและเงื่อนไขการตัดจะเปลี่ยนไปอย่างไรก็ตาม

1.3 ขอบเขตงานวิจัย

1. ศึกษากระบวนการกลึงปลอกโดยใช้การตัดแบบแห้ง (Dry Cutting) ด้วยเครื่องกลึง ซีเอ็นซี ยี่ห้อ Mazak รุ่น NEXUS 200MY/MSY

2. ชิ้นงานที่ใช้ในการทดลอง คือ เหล็กกล้าคาร์บอน S45S เส้นผ่าน ศูนย์กลาง 34 – 40 มิลลิเมตร ยาว 300 มิลลิเมตร

3. ด้ามมีดกลึง (Tool Holder) ที่ใช้ ได้แก่ ด้ามมีดเบอร์ PDJNR2525M-15 (ด้ามมีดลบ) และ ด้ามมีดเบอร์ SDJCR2525M-11 (ด้ามมีดบวก)

4. เม็ดมีดแบบคาร์ไบด์เคลือบผิว (Coated Carbide)

5. ปัจจัยและระดับปัจจัยสำหรับการทดลอง ดังตารางที่ 1.1

 5. วัดแรงตัดที่เกิดขึ้นขณะตัดชิ้นงานโดยใช้ไดนาโมมิเตอร์วัดแรง 3 ทิศทาง (3-Component Dynamometer) ยี่ห้อ KISTLER รุ่น 9121

ปัจจัย 🔋	าลงกรองพุทธระดับ
ความเร็วตัด GHU	100, 150 และ 200 (เมตร/นาที)
อัตราป้อนตัด	0.15, 0.20 และ 0.25 (มิลลิเมตร/รอบ)
ความลึกตัด	0.4, 0.6 และ 0.8 (มิลลิเมตร)
รัศมีจมูกมีด	0.4 และ 0.8 (มิลลิเมตร)
มุมคายเศษโลหะ	-6 และ +11 (องศา)

ตารางที่ 1.1 ปัจจัยและระดับปัจจัยสำหรับการทดลอง

1.4 ผลที่คาดว่าจะได้รับ

สมการความสัมพันธ์ระหว่างความตรงของชิ้นงานกับอัตราส่วนแรงตัดที่เกิดขึ้นในขณะตัด ภายใต้เงื่อนไขการตัดต่างๆ ที่มีความแม่นยำมากขึ้น เพื่อใช้ในการวิเคราะห์ความตรงและความ กลมของชิ้นงานในขณะกลึง

1.5 ประโยชน์ที่คาดว่าจะได้รับ

1) พัฒนาเครื่องกลึงซีเอ็นซีอัจฉริยะ เพื่อรองรับระบบการผลิตอัจฉริยะในอนาคต

เป็นแนวทางในการพัฒนาระบบการตรวจติดตามความตรงและความกลมของ
ผิวชิ้นงานในขณะตัดสำหรับกระบวนการตัดอื่น ๆ

1.6 ขั้นตอนการดำเนินงานวิจัย

1) ศึกษาการใช้เครื่องกลึงซีเอ็นซี วิธีเก็บสัญญาณ รวมทั้งการแปลงข้อมูลที่ได้

 สึกษาข้อจำกัดของเครื่องมือที่ใช้ในการทดลอง รวมถึงวิธีการติดตั้งอุปกรณ์ การเก็บ ข้อมูลสำหรับแรงตัด และวิธีการใช้งานพื้นฐานสำหรับเครื่องกลึงซีเอ็นซี

3) ออกแบบการทดลอง และกำหนดเงื่อนไขการตัด

4) ทำการทดลอง

5) วัดและเก็บค่าแรงตัดในขณะตัด และค่าความตรงของชิ้นงานหลังจากทำการตัดตาม เงื่อนไขที่กำหนด

6) ทดสอบความสัมพันธ์ระหว่างแรงตัดกับความตรงและความกลมของชิ้นงานด้วยวิธีการ แปลงเวฟเลท (Wavelet Transform)

7) วิเคราะห์ข้อมูลที่ได้โดยใช้หลักการทางสถิติ

8) สรุปผลการดำเนินการวิจัย และข้อเสนอแนะ

9) จัดทำรูปเล่มวิทยานิพนธ์

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 ทฤษฎีที่เกี่ยวข้อง

2.1.1 กระบวนการตัดเฉือน (Machining Process)

กระบวนการตัดเฉือน (Machining Process) [7] หมายถึง การผลิตโดยใช้เครื่องมือตัด (Cutting tool) ในการกำจัดเนื้อวัสดุออกเพื่อให้มีขนาดและรูปร่างตามที่ต้องการ โดยกระบวนการ ตัด ประกอบไปด้วย 3 กระบวนการหลัก ได้แก่ การกลึง การเจาะ และการกัด ส่วนกระบวนการ ตัดอื่นๆประกอบด้วย การไส (Shaping) การไสยาว (Planing) การแทงขึ้นรูป (Broaching) และ การเลื่อย (Sawing) รวมถึงกระบวนการใช้ผงขัด (Abrasive) ในการกำจัดเนื้อวัสดุออก เช่น การ เจียระไน (Grinding)

นอกจากการแบ่งกระบวนการตัดตามชนิดของเครื่องมือตัดเพียงอย่างเดียวแล้ว ยัง สามารถแบ่งตามลักษณะของกระบวนการตัด ได้แก่ กระบวนการตัดฉาก (Orthogonal Cutting) หมายถึง กระบวนการตัดที่มีทิศทางการเคลื่อนที่ของวัสดุในแนวตั้งฉากกับคมตัด และกระบวนการ ตัดเฉียง (Oblique Cutting) หมายถึง กระบวนการตัดที่มีทิศทางการเคลื่อนที่ของวัสดุทำมุมกับ คมตัด

2.1.2 กระบวนการกลึง (Turning)

กระบวนการกลึง[7, 8] เป็นกระบวนการตัดแบบต่อเนื่อง (Continuous Cut) โดยที่มีดตัด จะเคลื่อนที่ขนานไปกับแกนหมุนและตัดผิวด้านนอกออก ทำให้ขนาดเส้นผ่านศูนย์กลางของ ชิ้นงานมีขนาดลดลง ตัวแปรทางเลขาคณิตที่สำคัญของกระบวนการกลึง คือ รัศมีจมูกมีดตัด (Nose radius) ด้านข้างมุมคาย (Side rake) ด้านหลังมุมคาย (Back rake) และด้านข้างของมุม ตัด (Side cutting edge angle) เศษโลหะจะไหลออกมาที่หน้ามุมคาย (Rake face) ของมีดตัด

รูปที่ 2.1 กระบวนการกลึง

ปัจจัยสำคัญที่ทำให้เกิดกระบวนการกลึง ประกอบไปด้วยปัจจัยดังต่อไปนี้

- อัตราการป้อนตัด (Feed rate) คือ อัตราเร็วของการเดินมีดในทิศทางตามแกนหมุน ของชิ้นงาน หรือระยะที่ใบมีดกลึงเคลื่อนที่ไปได้ต่อการหมุนของชิ้นงาน 1 รอบ มี หน่วยเป็นมิลลิเมตรต่อรอบ (mm/r) หรือนิ้วต่อรอบ (in/r)
- ความเร็วตัด (Cutting speed) คือ ความเร็วของผิวของชิ้นงานที่ต้องทำการตัดออก เคลื่อนที่ผ่านคมมีดตัดของมีดกลึง มีหน่วยเป็นเมตรต่อนาที (m/min) หรือฟุตต่อ นาที (ft/min)
- ความลึกตัด (Depth of cut) คือ ความหนาของชิ้นงานที่ต้องการตัดในแนวรัศมีและ ตั้งฉากกันแกนการหมุนของชิ้นงาน มีหน่วยเป็นมิลิเมตร (mm) หรือนิ้ว (in)

ซึ่งผลที่ได้จากการตัดก็คือ ขนาดของชิ้นงาน (Dimension) ความละเอียดของผิว (Surface roughness) เศษกลึง (Chip) และการสึกหรอของมีดกลึง (Tool wear)

2.1.3 เงื่อนไขการตัด (Cutting Conditions)

เงื่อนไขการตัด (Cutting Conditions) [6, 8, 16] ประกอบไปด้วย ความเร็วตัด (Cutting speed, v) อัตราการป้อนตัด (Feed rate, f) และความลึกตัด (Depth of cut, d) ซึ่งความเร็วตัด จะเป็นผลรวมของเวคเตอร์ขอความเร็วที่เกิดจากการหมุน และการป้อน

รูปที่ 2.2 เงื่อนไขการตัดของกระบวนการกลึง[8]

$$V_{c} = rac{V}{cos heta}$$
 (2.3-1)
 V_{c} = ความเร็วตัด (เมตร/นาที)

โดยที่

V = ความเร็วผิว (เมตร/นาที)

แต่ความเร็วที่เกิดขึ้นจากการป้อนมีค่าน้อยมาก เมื่อเทียบกับความเร็วผิวของชิ้นงาน จึง ทำให้ *cosθ* → 1 จึงสามารถประมาณได้ว่า

$$V_c = V \tag{2.3-2}$$

และความสัมพันธ์ของความเร็วตัดและความเร็วรอบ (Spindle speed) แสดงได้ดังนี้

$$v = \frac{\pi D N_w}{1,000} \tag{2.3-3}$$

N_w= ความเร็วรอบของชิ้นงาน (รอบ/นาที)

อัตราการป้อนตัด เมื่อกำหนดให้มีดกลึงมีมุมข้างคมตัด (Side cutting edge angle) เท่ากับ $heta_s$ และกำลังเคลื่อนที่ด้วยอัตราการป้อนตัด f สามารถคำนวณหาความหนาของเศษวัสดุ ก่อนตัด f_a และความกวางของการตัด b หาได้จาก

$$f_a = f \cos \theta_s \tag{2.3-4}$$

$$b = \frac{d}{\cos\theta_s} \tag{2.3-5}$$

โดยที่

f = อัตราการป้อน (มิลลิเมตร/รอบ)

d = ความลึกในการตัด (มิลลิเมตร) เริ่ม

ความเร็วป้อน (Feed speed) คือ ความเร็วในการเคลื่อนที่ของมีดตัด คำนวณได้จาก

$$V_f = f N_w \tag{2.3-6}$$

โดยที่

V_f = ความเร็วป้อน (มิลลิเมตร/นาที)

อัตราการกำจัดโลหะ (Metal removal rate) คือ ปริมาณของวัสดุที่ตัดต่อหน่วยเวลา สามารถคำนวณได้จาก

$$Z_w = 1,000 f dV (2.3-7)$$

โดยที่

Z_w = อัตราการกำจัดโลหะ (ลูกบาศก์มิลลิเมตร/นาที)

เวลาในการตัด (Cutting time) คือ เวลาที่เครื่องมือตัดใช้ในการเคลื่อนย้ายจากจุด ตำแหน่งเริ่มต้น ไปยังตำแหน่งสุดท้ายของการตัด สามารถคำนวณได้จาก

$$T_m = \frac{L}{V_t} \tag{2.3-8}$$

โดยที่ T_m = เวลาในการตัด (นาที) L = ความยาวของส่วนที่ต้องการกลึง (มิลลิเมตร)

2.1.4 การเกิดเศษโลหะ[8]

ในกระบวนการตัด ชิ้นงานจะรับแรงกระทำจากเครื่องมือตัดผ่านคมตัด ซึ่งมีผลให้ชิ้นงาน เกิดความเค้นขึ้นหลายลักษณะ ดังแสดงใน รูปที่ 2.3 จุดที่ 1 เป็นบริเวณที่วัสดุอยู่ในสภาวะไม่มี ความเค้น เมื่อเคลื่อนที่มาถึงจุดที่ 2 จึงรับความเค้นจากแรงตัด ความเค้นจึงเพิ่มสูงขึ้นจากการแปร รูปยืดหยุ่น (Elastic deformation region) จนเข้าไปถึงเขตการแปรรูปถาวร (Plastic deformation region) เมื่อมาถึงจุดที่ 3 ความเค้นจะเพิ่มสูงขึ้นจนเกิดการแปรรูปอย่างถาวร ซึ่งจะถือว่าเป็นเศษ วัสดุเมื่อเคลื่อนที่ถึงจุดที่ 4 ซึ่งในจุดนี้เศษวัสดุจะมีความแข็งมากกว่าชิ้นงาน เนื่องจากเกิด Work hardening ที่จุดที่ 5 ถือว่าเศษวัสดุเคลื่อนที่พ้นเขตการแปรรูปออกมาแล้ว ความเค้นเริ่มลดลงและ เมื่อมาถึงจุดที่ 6 เศษโลหะจะไม่มีความเค้นจากคมตัด

รูปที่ 2.4 แสดงลักษณะมุมคายแบบ positive (ซ้าย) and negative (ขวา)

มีดตัดประกอบด้วยมุม คือ มุมคาย (Rake angle, **α**) และมุมหลบ (Clearance angle) โดยมุมคายจะเป็นตัวกำหนดทิศทางการเคลื่อนที่ของเศษโลหะ ส่วนมุมหลบจะเป็นมุมระหว่าง ผิวขึ้นงานที่ผ่านการกลึงแล้วกับผิวหลบ (flank face) โดยระหว่างการตัด คมตัดของมีดกลึงจะถูก ตั้งไว้ในตำแหน่งที่แน่นอนระยะต่ำกว่าพื้นผิวของชิ้นงาน รูปแบบเศษโลหะที่เกิดขึ้นจะขึ้นอยู่กับ ความลึกตัด (t,) ในขณะที่เศษโลหะก่อตัวตามระนาบเฉือน ความหนาเศษโลหะจะเพิ่มขึ้นเป็น t₂ อัตราส่วนระหว่าง t, กับ t₂ เรียกว่า อัตราส่วนความหนาของเศษโลหะ (Chip thickness ratio, r) ซึ่งเขียนได้ดังสมการที่ 2.4-1 และอัตราส่วนนี้จะมีค่าน้อยกว่า 1 เสมอ เนื่องจากความหนาของเศษ โลหะหลังการตัดจะมากกว่าความหนาก่อนการตัดเสมอ

$$r = \frac{t_1}{t_2} \tag{2.4-1}$$

และความยาวของระนาบเฉื่อนสามารถคำนวณได้จาก

$$l = \frac{t_1}{\sin\phi} = \frac{t_2}{\cos(\phi - \alpha)} \tag{2.4-2}$$

โดยที่ *l* = ความยาวระนาบเฉือน (มิลลิเมตร)

t₁ = การป้อน หรือความลึกในการตัดแล้วแต่กรณี (มิลลิเมตร)

- t₂ = ความหนาของเศษโลหะ (มิลลิเมตร)
- Ø = มุมระนาบเฉือน (องศา)
- α = มุมคายเศษโลหะ (องศา)

จากสมการที่ 2.4-2 จะได้

$$\frac{t_1}{t_2} = \frac{\sin\phi}{\cos(\phi - \alpha)} \tag{2.4-3}$$

จากความสัมพันธ์

HULALONGKORN UNIVERSITY

$\cos(\phi - \alpha) = \cos\phi\cos\alpha + \sin\phi\sin\alpha$

แทนค่าลงในสมการที่ 2.4-3 จะได้

$$\tan \emptyset = \frac{\left(\frac{t_1}{t_2} \cos \alpha\right)}{1 - \left(\frac{t_1}{t_2}\right) \sin \alpha} \tag{2.4-4}$$

จากสมการที่ 2.4-1 แทนค่าลงในสมการ 2.4-4 จะได้

$$tan\emptyset = \frac{r_a cos\alpha}{1 - r_a sin\alpha}$$
(2.4-5)

จากสมการที่ 2.4-5 มุมคายเศษวัสดุเป็นตัวแปรที่มีผลต่อมุมระนาบเฉือนในกรณีที่มุมคายเศษ วัสดุมีค่ามากขึ้น จะมีผลให้ความหนาของเศษวัสดุมีค่าลดลง และมุมระนาบเฉือนมีค่าเพิ่มขึ้นค่า ของมุมระนาบเฉือนสามารถใช้คำนวณค่าที่สำคัญอีกตัวหนึ่ง คือ พื้นที่ระนาบเฉือนได้ดังนี้

$$A_s = \frac{t_1 b}{\sin\phi} \tag{2.4-6}$$

โดยที่ A_s = พื้นที่ระนาบเฉือน (ตารางมิลลิเมตร) b = ความกว้างของการตัด (มิลลิเมตร) เศษโลหะที่เกิดขึ้นในกระบวนการตัดกาจมีลักษณะไ

เศษโลหะที่เกิดขึ้นในกระบวนการตัดอาจมีลักษณะได้หลายรูปแบบ ซึ่งเศษโลหะที่เกิดขึ้น นี้มีความคม อาจเกิดการขัดสีที่ผิวของชิ้นงาน ทำให้คุณภาพผิวจากการตัดไม่ดี และเศษโลหะอาจ เกาะติดอยู่ที่มุมของปลายมีด ซึ่งปัจจัยที่เกี่ยวข้องกับการเกิดเศษโลหะ ได้แก่ วัสดุของชิ้นงาน เรขาคณิตของมีดตัด สารหล่อเย็น การเคลื่อนที่ทางพลศาสตร์ของเครื่องกลึง และเงื่อนไขการตัด แต่เศษโลหะที่เกิดขึ้นนี้สามารถบังคับให้เกิดการแตกหักได้โดย ตัวหักเศษโลหะ (Chip breaker) ซึ่งจะอยู่บนมุมคายของมีดตัด โดยวางตัวขวางกับทิศทางการไหลของเศษโลหะ เพื่อบังคับให้เศษ โลหะเกิดการโค้งงอ เกิดความเค้นดึงในเศษโลหะและเกิดการแตกหัก[17, 18]

2.1.5 แรงในการตัดและสัญญาณแรงตัด

แรงในการตัดและสัญญาณแรงตัดแบ่งได้เป็น 3 แรงหลัก คือ แรงตัดที่เกิดในแนวรัศมี (แรงรัศมี, Fr หรือ Fx) แรงในทิศทางขนานกับทิศของการป้อน (แรงป้อนตัด, Ff หรือ Fy) และแรง ในทิศทางขนานกับทิศของความเร็วตัด (แรงตัดหลัก, Fc หรือ Fz) โดยในในการวัดแรงตัดที่เกิดขึ้น จะใช้เครื่องไดนาโมมิเตอร์ (Dynamometer) และใช้แอมปลิไฟเออร์ (Charge Amplifier) ในการ ขยายสัญญาณแรงตัดที่เกิดขึ้น โดยแรงตัดในเบื้องต้นจะอยู่ในรูปของสัญญาณแรงตัดซึ่งเป็นแบบ อนาล็อกดังรูปที่ 2.6 ซึ่งประกอบไปด้วย 3 แรงที่สำคัญ คือ

- แรงตัดศูนย์ คือ แรงที่ยังไม่เกิดการตัดจริง เกิดจากสัญญาณรบกวน (Noise) ของอุปกรณ์
- แรงตัดพลวัต (Dynamic force) คือ แรงที่เกิดขึ้นจริงขณะทำการตัด
- แรงตัดสถิต (Static force) คือ เกิดจากผลต่างระหว่างค่าเฉลี่ยแรงตัดพลวัตและค่าเฉลี่ย แรงตัดศูนย์

รูปที่ 2.5 สัญญาณแรงตัดที่เกิดขึ้น

17
2.1.6 การคำนวณแรงป้อนตัดสถิตและแรงป้อนตัดพลวัตสำหรับทำนายความตรง ชิ้นงานขณะตัด

การคำนวณค่าของแรงตัดจากโดเมนเวลา[9] จะพิจารณาที่ค่าแอมพลิจูดของแรงป้อนตัด พลวัตนั่นคือค่าแรงป้อนตัดพลวัตที่มากที่สุด (F_{y(max)}) ลบด้วยค่าแรงป้อนตัดพลวัตที่น้อยที่สุด (F_{y(min}) ซึ่งสัมพันธ์กับความตรงของชิ้นงานที่พิจารณาความสูงของความขรุขระผิวที่สูงที่สุด (Max) กับค่าที่น้อยที่สุด (min) ซึ่งวิธีการพิจารณาการคำนวณแรงตัดเพื่อหาอัตราส่วนแรงนั้น ดังแสดงใน รูปที่ 2.7

รูปที่ 2.6 การคำนวณแรงป้อนตัดสถิตและแรงป้อนตัดพลวัตร

อย่างไรก็ตาม ขนาดของแรงตัดพลวัตอาจเปลี่ยนแปลงไปตามเงื่อนไขการตัดที่แตกต่าง กัน ซึ่งกระทบต่อขนาดและผิวสำเร็จของชิ้นงาน ดังนั้นอัตราส่วนระหว่างแรงป้อนตัดพลวัตและแรง ป้อนตัดสถิต จึงถูกนำมาประยุกต์ใช้เพื่อประมาณค่าความตรงของชิ้นงาน โดยสันนิษฐานว่า อัตราส่วนแรงตัดสามารถคำนวณความตรงของชิ้นงานได้โดยไม่แปรเปลี่ยนไปตามเงื่อนไขการตัด โดยการประยุกต์ใช้อัตราส่วนระหว่างแรงทั้งสอง ทำให้สามารถอธิบายความตรงของชิ้นงานได้แม้ เงื่อนไขการตัดเปลี่ยนแปลงไป

2.1.7 การคำนวณค่าเฉลี่ยความแปรปรวนของแรงตัดพลวัตสำหรับการทำนาย ความกลมในขณะตัด

ค่าเฉลี่ยความแปรปรวนของแรงตัด (Average Variances) [9] คำนวณโดยแบ่งแรงขณะ ตัดออกเป็นสองส่วน คือ ส่วนที่ค่าแรงเป็นบวก และส่วนที่ค่าแรงเป็นลบ แล้วนำมาหาค่าเฉลี่ย ของแรงค่าบวก ลบด้วยค่าเฉลี่ยของแรงค่าลบดังรูปที่ 2.8 สมการที่ได้ดังสมการที่ 2.7-1 ถึง 2.7-3 คือ

$$AVF_x = X_1 - X_2$$
 (2.7-1)

รูปที่ 2.7 การคำนวณค่าเฉลี่ยความแปรปรวนของแรงตัดพลวัต

2.1.8 การแปลงฟูเรียร์อย่างเร็ว (Fast Fourier Transform)

การวิเคราะห์สัญญาณ (Signal Analysis) เป็นสิ่งสำคัญในการประมวลผลของสัญญาณ นั้น ซึ่งถ้ารู้ถึงองค์ประกอบต่างๆของสัญญาณว่าส่วนไหนสำคัญ ส่วนไหนสามารถตัดทิ้งได้โดยไม่ ก่อให้เกิดความคลาดเคลื่อนมากนัก ก็สามารถที่จะประมวลผลสัญญาณได้อย่างมีประสิทธิภาพ มากขึ้นโดยการแปลงสัญญาณจากโดเมนเวลา (Time Domain) ไปเป็นโดเมนความถี่ (Frequency Domain) ข้อมูลโดยทั่วไปที่อยู่ในโดเมนเวลา (Time domain) สามารถแสดงในโดเมนความถี่ (Frequency domain) ได้โดยการแปลงฟูเรียร์อย่างเร็ว โดยที่เมื่อนำข้อมูลสัญญาณมาพล็อต เทียบกับเวลาจะได้รูปแบบของข้อมูลที่อยู่ในลักษณะของคลื่นซายน์ (Sine wave) จะเห็นได้ว่า ข้อมูลเกิดการแกว่งขึ้นลงเป็นรูปแบบซ้าๆ โดยรูปแบบที่แกว่งขึ้นลงครบหนึ่งรอบใช้เวลา T ซึ่ง เรียกว่าคาบ คาบมีความสัมพันธ์กับความถี่คือ f = 1/T คือ จำนวนของคาบคลื่นใน 1 วินาที โดย ข้อมูลดังกล่าวสามารถวิเคราะห์ในเชิงความถี่ได้ดังรูปที่ 2.9

รูปที่ 2.8 ตัวอย่างการแปลงสัญญาณจากโดเมนเวลาเป็นเมนความถี่

2.1.9 การวิเคราะห์สัญญาณแรงตัดพลวัตด้วยการแปลงเวฟเลท

เงื่อนไขการตัดที่เกิดเศษโลหะแบบแตกหัก แรงตัดจะมีค่าสูงจากอิทธิพลของแรงเศษโลหะ แตกหัก การนำแรงตัดที่เกิดขึ้นมาคำนวณอาจส่งผลให้เกิดความคลาดเคลื่อนในการทำนายความ ตรงของชิ้นงาน ดังนั้น การแปลงสัญญาณแรงตัดพลวัตด้วยการวิเคราะห์เวฟเลทจะทำให้สามารถ ใช้แรงตัดพลวัตอธิบายความตรงของชิ้นงานได้แม่นยำมากยิ่งขึ้น ในกรณีที่แรงตัดเกิดจากเงื่อนไข ที่ให้เศษโลหะเป็นแบบแตกหัก

การแปลงเวฟเลท (Wavelet Transform) เป็นการแปลงสัญญาณจากโดเมนเวลาไปสู่ โดเมนความถี่เช่นเดียวกับการแปลงฟูเรียร์ (Fourier Transform) และสามารถแปลงจากโดเมน ความถี่ไปเป็นโดเมนเวลาได้ โดยการแปลงกลับ (Inverse Transform) หลักการของทั้ง 2 วิธีที่นี้มี คล้ายคลึงกัน คือฟังก์ชันสามารถแทนได้ด้วยผลรวมเชิงเส้นของสัมประสิทธิ์ (Coefficient) และ ฟังก์ชันพื้นฐาน (Basic function)

การแปลงเวฟเลทในส่วนฟังก์ชันพื้นฐานส่วนใหญ่เรียกว่าฟังก์ชันเวฟเลทแม่ (Mother Wavelet Function) มีคุณสมบัติในการการหดเข้า (Compressing) หรือขยายออก (Dilation) สเกลและเลื่อนตำแหน่งพารามิเตอร์ เวฟเลทที่ถูกสเกลและเลื่อนตำแหน่งไปที่ค่า a และ b ต่างๆดัง แสดงในรูปที่ 2.10 ซึ่งจากสมการจะพบว่ามีการปรับค่าเพื่อให้สัญญาณที่ได้หลังจากปรับสเกล แล้วมีพลังงานเท่ากับเวฟเลทแม่ด้วยการคูณ <mark>1</mark> การวิเคราะห์ข้อมูลสัญญาณด้วยกระบวนการ แปลงเวฟเลท คือการแยกสัญญาณให้ออกมาดังรูปของเว็ฟเล็ตแม่ที่การปรับสเกลและตำแหน่งที่ แตกต่างกันไป[9, 10]

รูปที่ 2.9 เวฟเลทที่ถูกสเกลและเลื่อนตำแหน่งไปที่ค่า a และ b ต่าง ๆ กัน

เวฟเลทแบ่งออกเป็นลักษณะต่างๆเรียกว่า แฟมมิลี่ (Family) โดยมีรูปแบบคลื่นสัญญาณ ที่แตกต่างกันออกไป เช่น เวฟเลทแบบดอเบซีส์, เวฟเลทแบบเมเยอร์ และเวฟเลทแบบฮาร์ เป็นต้น ดังแสดงในรูปที่ 2.11

รูปที่ 2.10 ลักษณะของเวฟเลทในแฟมิลีต่างๆ

ในการพิจารณาวิเคราะห์สัญญาณแรงตัดพลวัตจากตัวอย่างการทดลอง ให้พิจารณาจาก ลักษณะสัญญาณแรงตัดพลวัตที่เกิดขึ้นว่ามีลักษณะใกล้เคียงกับลักษณะเวฟเลทในแฟมิลีใด จากนั้นจึงเลือกใช้ฟังก์ชันดังกล่าวในการแปลงสัญญาณแรงตัดพลวัตนั้น

2.1.10 ความตรง (Straightness)

ความตรง (Straightness) [18-20] คือระยะระหว่างเส้นที่ขนานกันสองเส้นที่ครอบคลุม จุดสูงสุดและจุดต่ำสุดของเส้นที่พิจารณา ถ้ากำหนดให้แนวทางเดินในอุดมคติเป็นเส้นตรง การ เกิดข้อผิดพลาดแนวตรง หมายถึง การเบี่ยงเบนใด ๆ จากเส้นตรงแนวนอนเรียกว่า ความตรง แนวนอน (Horizontal Straightness) และในแนวตั้งฉากเรียกว่า ความตรงแนวตั้งฉาก (Vertical Straightness)

ความตรงมีผลต่อคุณสมบัติ และประสิทธิภาพในการทำงานของชิ้นงานนั้น ๆ เช่น ลูกสูบที่ มีลักษณะบิดงอมากจะทำให้เกิดการเสียดสีขึ้นขณะใช้งาน ทำให้เกิดความร้อนสูงชิ้นจากส่วนพวก แกนล้อ หรือชิ้นส่วนประเภทงานสวม จำเป็นจะต้องมีค่าความแม่นยำสำหรับความตรงของชิ้นงาน เป็นอย่างมาก เพื่อให้สามารถประกอบเข้ากับชิ้นงานอื่นได้ ซึ่งหากรูปร่างของชิ้นงานไม่สมบูรณ์ อาจส่งผลต่อกระบวนการประกอบล่าช้า และประสิทธิภาพของชิ้นส่วนนั้น ๆ ลดลงอีกด้วย ใน ปัจจุบันความตรงที่นิยมใช้มีอยู่ด้วยกัน 3 แบบได้แก่

 ความตรงแบบ Endpoints เกิดจากการลากเส้นตรง (เส้นประ) จากจุดเริ่มต้นไปยังจุด สุดท้ายดังรูปที่ 2.12 ค่าความตรงแบบ Endpoints คือค่าระยะระหว่างเส้นคู่ขนานที่ขนานกับ เส้นประ โดยเส้นหนึ่งลากผ่านสุดสูงสุดและอีกเส้นหนึ่งลากผ่านจุดต่ำสุด

รูปที่ 2.11 ความตรงแบบ Endpoints

2. ความตรงแบบ Linear Regression เกิดจากการสร้างเส้นตรง (เส้นประ) ด้วยวิธีการ Least Square โดยการสร้างเส้นตรงให้เป็นตัวแทนของข้อมูลโดยการเฉลี่ย โดยตั้งสมมติฐานว่า เส้นตรง (เส้นประ) นั้นมีความสัมพันธ์เป็นแบบเชิง เส้น (X แปรผันตรงกับ Y) จากรูปที่ 2.13-2.14 สามารถอธิบายแบบง่ายๆ ว่า ขนาดของ (r1)2 -(r2)2 +(r3)2 +(r4)2 -(r5)2 +(r6)2 มีค่าน้อยที่สุด ถ้ากรณีค่าน้อยที่สุดมีค่าเป็นศูนย์จะได้ว่า (r1)2 -(r2)2 +(r3)2 +(r4)2 -(r5)2 +(r6)2 = 0 หรือ (r1)2 +(r3)2 +(r4)2 +(r6)2 = (r2)2 +(r5)2 ค่าความตรงแบบ Linear Regression คือค่าระยะ ระหว่างเส้นขนานที่ขนานกับเส้นประ โดยเส้นหนึ่งลากผ่านสุดสูงสุดและอีกเส้นหนึ่งลากผ่านจุด ต่ำสุด

รูปที่ 2.12 ความตรงแบบ Linear Regression

รูปที่ 2.13 การสร้างเส้นตรงด้วยวิธีการ Least Square

 3. ความตรงแบบ ISO 1101 หรือแบบ Minimum Zone เกิดจากการสร้างเส้นตรงคู่ขนาน (เส้นประ) โดยให้เส้นที่เราพิจารณานั้นอยู่ภายในเส้นคู่ขนานดังรูปที่ 2.15 ค่าความตรงแบบISO 1101 คือ ค่าระยะระหว่างเส้นขนานที่สั้นที่สุด

2.1.11 ความตรงของพื้นผิวทรงกระบอก (Straightness of a cylindrical surface) ความตรงถูกนำไปใช้กับพื้นผิวของรูปทรงกระบอก ซึ่งคล้ายกับพื้นผิวเรียบพร้อมกับ ข้อยกเว้นอีกอย่างหนึ่ง นับตั้งแต่พื้นผิวที่กลม องค์ประกอบของเส้นของพื้นผิวตรงข้ามจะต้องได้รับ การพิจารณาเมื่อตรวจสอบความตรง พิกัดความเผื่อของความตรงแบบเต็มรูปแบบอาจไม่สามารถ ใช้ได้ สำหรับองค์ประกอบเหล่านี้ เนื่องจากเงื่อนไขเช่น การสูญเสียนอกจากนี้พิกัดความเผื่อของ ความตรงไม่ได้เป็นตัวเพิ่มพิกัดความเผื่อของขนาด[21, 22]

พิจารณาเส้นตรงบนผิวงานทรงกระบอกทั้ง 3 แบบ ที่พื้นผิวของทรงกระบอกในแนวตั้ง พบว่าสามารถเกิดลักษณะของเส้นตรงได้ดังต่อไปนี้

- เกิดจากเส้นตรงในแนวตั้ง (Vertical Generators are straight)

-เกิดจากวงกลมเสมือนเป็นเส้นตรง (Generating circles are intrinsically straight)

- เกิดจากเกลี่ยวขดเป็นเส้นตรง (Helixes are intrinsically straight)

2.1.12 ความกลม (Roundness)

ในการประกอบชิ้นส่วนวงกลมหรือทรงกระบอก หากนำชิ้นส่วนมาทำการวัดขนาดของ เส้นผ่านศูนย์กลาง 2 จุด ที่อยู่ตรงข้ามกันด้วยเครื่องมืออย่างเช่น ไมโครมิเตอร์ จะพบว่าขนาดของ เส้นผ่านศูนย์กลางของแต่ละมุมที่ทำการวัดมีขนาดไม่เท่ากัน อันมีสาเหตุมาจากความกลมที่ไม่ สมบูรณ์[4] นั่นแสดงให้เห็นว่าการควบคุมเพียงขนาดของเส้นผ่านศูนย์กลางชิ้นงานเพียงอย่าง เดียวนั้นไม่เพียงพอ แต่ต้องพิจารณาความถูกต้องทางรูปทรงเรขาคณิตด้วย โดยการตรวจสอบ ข้อผิดพลาดโดยการหมุนชิ้นงานไปรอบๆ เพื่อหาความเบี่ยงเบนของชิ้นงาน

รูปที่ 2.15 ความเบี่ยงเบนของรูปทรงเลขาคณิต

โดยความเบี่ยงเบนของความกลมที่เกิดขึ้นนี้มีอาจมีสาเหตุมาจากกระบวนการผลิต เช่น การจับยึดชิ้นงาน ความเยื้องศูนย์ของเครื่องจักร สิ่งสกปรกหรือเศษโลหะที่ตกค้างอยู่บริเวณที่ยึด จับชิ้นงาน ความไม่สมดุลของเครื่องจักร ความร้อน การสั่นสะเทือน และโก่งของชิ้นงานเมื่อถูก เครื่องมือตัดกระทำขณะผลิต เป็นต้น ซึ่งความผิดปกติของความกลมที่สามารถพบได้โดยทั่วไป มี ดังตารางที่ 2.1

ตารางที่ 2.1 ลักษณะความผิดปกติของความกลม

ในกระบวนการผลิตที่ต้องการความละเอียดสูง ความกลมของชิ้นงานส่งผลโดยตรงต่อ การประกอบ ในชิ้นส่วนที่มีการหมุนความกลมส่งผลกระทบทำให้เกิดเสียง การสั่นสะเทือน และ ส่งผลกระทบโดยตรงต่อจุดศูนย์กลางในการหมุนของชิ้นส่วนของเครื่องจักร ในชิ้นส่วนที่ต้องมีการ เคลื่อนที่ ความกลมส่งผลต่อการเสียดสี และการสึกหรอของชิ้นส่วนได้ การวัดค่าความกลมมี 4 วิธี แบ่งตามลักษณะการอ้างอิงจากวงกลมในอุดมคติที่แตกต่างกันดังตารางที่ 2.2

วิธีการในการวัดความกลม[8, 23]

- วิธีการวัดความกลมแบบ Diametral Method เป็นวิธีการวัดขนาดเส้นผ่านศูนย์กลาง หลายๆ จุด โดยทำการวัดจุดที่อยู่ตรงข้าม 180 องศา วิธีการนี้เป็นวิธีการที่มีประสิทธิภาพ หรือค่าความกลมที่ไม่น่าเชื่อถือ
- วิธีการวัดความกลมแบบ Circumferential Confining Gauge เป็นการหมุนเครื่องมือวัด รอบชิ้นงานที่ทำการวัด โดยระยะห่างระหว่างเครื่องมือวัดและชิ้นงานมีความสำคัญต่อ ความน่าเชื่อถือ แต่วิธีการนี้ไม่สามารถใช้ในการวัดความร่วมศูนย์ (Concentricity) ความเรียบ (Flatness) ได้

รูปที่ 2.16 การวัดความกลมแบบ Circumferential Confining Gauge

รูปที่ 2.17 ตัวอย่างเครื่องมือวัดความกลม Detector rotating type[8]

 Rotating on centers ตัวอย่างของชิ้นงานที่นิยมใช้วิธีนี้ในการวัด ได้แก่ เพลา เป็นต้น เพื่อใช้ในการตรวจสอบค่าความกลมขณะหมุนอยู่บนศูนย์ ซึ่งค่าความคลาดเคลื่อนที่ เกิดขึ้นอาจมีสาเหตุมาจากความเยื้องศูนย์ของตัวยึดชิ้นงาน ความได้ระนาบของชิ้นงาน

รูปที่ 2.18 การวัดชิ้นงานแบบ Rotating on centers

รูปที่ 2.19 ตัวอย่างเครื่องวัดค่าความกลมแบบ Table rotating type[8]

 Assessment using a V-block วิธีการนี้จะวาง V-block ไว้บนพื้นเรียบ หลังจากนั้นนำ ชิ้นงานที่ต้องการวัดมาวางบน V-block อีกทีหนึ่ง ยึดเครื่องมือวัดไว้กับที่ หลังจากนั้น หมุนชิ้นงานไปโดยรอบจนครบ 360 องศา โดยที่มุมของ V-block 60 องศา หรือ 90 องศา ให้ผลการวัดเช่นเดียวกัน[24]

รูปที่ 2.20 การวัดความกลมแบบโดยใช้ V-block[8]

2.1.13 การวิเคราะห์ความแปรปรวน

ในกรณีที่ต้องการศึกษาค่าเฉลี่ยของประชากร 2 ชุด แต่ต้องการทดลองเพียงครั้งเดียว สามารถทำการวิเคราะห์ได้โดยการวิเคราะห์ความแปรปรวน (Analysis of Variance, ANOVA) โดยอาศัยการวิเคราะห์ความแปรปรวนของค่าตอบสนอง หรือคุณลักษณะทางคุณภาพ แบ่ง ออกเป็น 2 ส่วน คือ

- ความแตกต่างที่สามารถอธิบายได้ (Explained Variation) คือ ความแตกต่างหรือการ เปลี่ยนแปลงในการออกแบบการทดลองจากวิธีการปฏิบัติหรือปัจจัย บางครั้งเรียกว่า ความแตกต่างประหว่างกลุ่ม (Between group variation)
- 2) ความแตกต่างที่ไม่สามารถอธิบายได้ (Unexplained Variation) คือ ความแตกต่างหรือ การเปลี่ยนแปลงที่ไม่สามารถอธิบายได้ เนื่องจากขาดความรู้ ซึ่งบางครั้งเกิดจากผู้ศึกษา ทราบถึงบัจจัยที่ก่อให้เกิดการเปลี่ยนแปลง แต่ไม่สามารถควบคุมได้ในการทดลอง ซึ่งใน การวิเคราะห์ความแปรปรวนกล่าวถึงในรูปความผิดพลาดที่ยังไม่สามารถอธิบายได้ (Error residual) หากผู้ทำการทดลองมีความรู้ความสามารถมากขึ้น ความผิดพลาดใน ส่วนนี้จะลดลง

2.1.14 การวิเคราะห์ความถดถอย (Multiple Regression) รูปแบบสมการความถดถอยเชิงพหุคูณ

การวิเคราะห์ความถดถอยเชิงพหุคูณ (Multiple Regression Analysis)[25] เป็นการศึกษา ความสัมพันธ์ระหว่างตัวแปรอิสระตั้งแต่ 2 ตัวขึ้นไปกับตัวแปรตาม 1 ตัว การวิเคราะห์นั้นจะต้อง หาค่าสัมประสิทธิ์สหสัมพันธ์พหุคูณ (Multiple Correlation Coefficient) เพื่อให้ทราบว่าตัวแปร อิสระกับตัวแปรมีความสัมพันธ์กันในลักษณะใด สำหรับการวิเคราะห์การถดถอยพหุคูณจะต้องหา สมการถดถอย เพื่อใช้ในการพยากรณ์ตัวแปรตาม (Y) รวมทั้งหาค่าสหสัมพันธ์พหุคูณ (Multiple Correlation) และค่าความคลาดเคลื่อนมาตรฐาน เพื่อหาความสัมพันธ์เชิงเส้นตรงที่เป็นไปได้ สูงสุดระหว่างตัวแปรอิสระหรือตัวแปรต้นกับตัวแปรตาม รูปแบบจำลองการถดถอยเชิงเส้นพหุคูณ ที่มีตัวแปรถดถอย k ตัว มีรูปแบบดังสมการที่ 2.12-1

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_x x_x + e$$
(2.12-1)

พารามิเตอร์ β_j, j = 0,1, ..., k ถูกเรียกว่าสัมประสิทธิ์การถดถอย แบบจำลองนี้ แสดงระนาบแบบเกิน (Hyper plane) ที่มีมิติ k ของตัวแปรถดถอย x_j พารามิเตอร์ β_j แสดงถึงการ เปลี่ยนแปลงที่เกิดขึ้นกับตัวแปรตาม y ต่อหนึ่งหน่วยการเปลี่ยนแปลงที่เกิดกับ x_j เมื่อตัวแปรอิสระ ที่เหลือ x_i (i≠j) มีค่าคงตัว

สมมติฐานหรือเงื่อนไขของการวิเคราะห์ความถดถอยเชิงพหุคูณ

- ความคลาดเคลื่อนมีการแจกแจงแบบปกติ
- 2) ค่าเฉลี่ยความคลาดเคลื่อนเท่ากับศูนย์ นั่นคือ E(e)=0
- 3) ค่าความแปรปรวนความคลาดเคลื่อนเป็นค่าคงที่ที่ไม่ทราบค่า $u(e)={\sigma_e}^2$
- 4) e, และ e, เป็นอิสระต่อกัน ; (i≠j) นั้นคือ covariance (e, , e,) = 0

2.1.15 การวิเคราะห์ผล

การใช้ P-Value ทดสอบสมมุติฐาน

วิธีหนึ่งในการสรุปผลการทดสอบสมมุติฐาน คือ การแสดงว่าสมมุติฐานหลักจะถูกปฏิเสธ ที่ระดับนัยสำคัญ (**α**) ที่กำหนดหรือไม่ โดย P-Value จะแสดงถึงค่าที่จะใช้ในการปฏิเสธ H_o และผู้ ตัดสินใจสามารถสรุปผลการทดลองที่ระดับนัยสำคัญอื่นๆได้

โดยปกติเมื่อสมมุติฐานหลัก H₀ ถูกปฏิเสธ เราจะพิจารณาค่า P-Value ว่าเป็น α ที่น้อย ที่สุดซึ่งทำให้ข้อมูลมีนัยสำคัญ เมื่อรู้ค่า P-Value แล้ว ผู้ทดลองก็จะสามารถทราบว่าข้อมูลมี นัยสำคัญอย่างไร โดยไม่ต้องอาศัยการวิเคราะห์ข้อมูล ซึ่งมีการกำหนดระดับนัยสำคัญไว้ก่อน

การวิเคราะห์ค่าสัมประสิทธิ์การตัดสินใจ (Coefficient of determination: R²)

ค่าส้มประสิทธิ์การตัดสินใจ เป็นค่าที่ใช้อธิบายความสามารถของสมการถดถอยหรือตัว แปรอิสระในสมการว่า สามารถอธิบายการเปลี่ยนแปลงค่าตอบสนองหรือตัวแปรตาม ได้ใน สัดส่วนเท่าใด ยิ่งมีค่ามาก ก็แสดงว่าสมการมีความเหมาะสมในการใช้อธิบายตัวแปรตามมาก แต่ในทางปฏิบัตินิยมใช้ค่าที่ทำการปรับค่าแล้ว (R_{adj}^2) แทน เนื่องจากค่าสัมประสิทธิ์ในการ ตัดสินใจมีความไวในการเปลี่ยนแปลงของจำนวนตัวแปรอิสระในสมการ [26]

2.2 งานวิจัยที่เกี่ยวข้อง

เดือนพรรณ จันทนา (2558)[8]

งานวิจัยนี้ทำการศึกษาหาความสัมพันธ์ระหว่างอัตราส่วนของแรงและพิสัยเส้นผ่าน ศูนย์กลาง โดยใช้แรงตัดที่ภายใต้เงื่อนไขการตัดต่างๆ ประกอบไปด้วยปัจจัยในการตัด ได้แก่ ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด และมุมคายเศษโลหะ เพื่อนำข้อมูลที่ได้จาก การทดลองนี้ไปพัฒนาสมการทำนายความกลมของชิ้นงาน โดยประยุกต์ใช้อัตราส่วนแรงตัดใน กระบวนการกลึง เหล็กกล้าคาร์บอนเกรด S45C ด้วย ใบมีดคาร์ไบด์เคลือบผิวด้วยสารเคลือบ ไทเทเนียมคาร์บอนไนไตรด์ (TiCN) จากผลวิจัยแสดงให้เห็นว่า อัตราส่วนค่าเฉลี่ยความแปรปรวน แรงตัดพลวัต (AVF,/AVF,) เป็นปัจจัยที่มีอิทธิพลต่อพิสัยเส้นผ่านศูนย์กลางมากที่สุด โดยพิสัย เส้นผ่านศูนย์กลางที่ดีนั้นได้มากจากการเพิ่มความเร็วตัด ลดอัตราการป้อน ลดความลึกตัด เพิ่ม ขนาดรัศมีจมูกมีด และใช้มุมคายเศษโลหะที่มีค่า สมการทำนายพิสัยเส้นผ่านศูนย์กลางที่ได้ดัง สมการที่ 2.2-2 มีความแม่นยำเท่ากับ 95.43%

 $R_0 = e^{2.35} \cdot V^{-0.0935} \cdot f^{0.163} \cdot D^{0.0681} \cdot R_n^{-0.0494} \cdot e^{-0.00393\gamma} \cdot \left(\frac{AVF_x}{AVF_y}\right)^{0.296} (2.2-2)$ อารารัตน์ ชาญสูงเนิน (2558)[9]

ได้ศึกษาความสัมพันธ์ระหว่างความตรงของชิ้นงานกับอัตราส่วนแรงตัดที่เกิดขึ้นใน กระบวนการกลึงซีเอ็นซี โดยใช้ไดนาโมมิเตอร์วัดแรงตัดที่เกิดขึ้นในขณะตัด เพื่อหาความสัมพันธ์ ระหว่างแรงตัดและความตรงของชิ้นงาน ภายใต้เงื่อนไขการตัดต่าง ๆ ประกอบด้วย ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด และมุมคายเศษโลหะ

จากการทดลองแสดงพบว่าความตรงของชิ้นงานมีแนวโน้มที่ดีขึ้นเมื่อใช้ ความเร็วตัด รัศมี จมูกมีด และมุมคายเศษโลหะมากขึ้น ความสัมพันธ์ระหว่างแรงตัดพลวัตและความตรงซึ่งได้จาก การพิจารณาในโดเมนความถี่ด้วยวิธีการแปลงฟูเรียร์อย่างเร็ว (Fast Fourier Transform) พบว่า ความถี่ของสัญญาณทั้งสองเกิดขึ้นที่ค่าเดียวกัน ดังนั้น อัตราส่วนแรงตัดจึงสามารถนำมาใช้ใน การทำนายความตรงของชิ้นงานได้ในขณะตัดแม้เงื่อนไขการตัดจะเปลี่ยนไป

อัตราส่วนแรงตัดถูกนำมาใช้เพื่อทำนายความตรงของชิ้นงานในระหว่างกระบวนการกลึง ในรูปของฟังก์ชันเอกซ์โพเนนเซียล การวิเคราะห์การถดถอยพหุคูณถูกนำมาใช้ในการคำนวณหา สัมประสิทธิ์การถดถอยพหุคูณของแบบจำลองที่ใช้ในการพยากรณ์ความตรงของชิ้นงานในขณะ ตัด ด้วยวิธีกาลังสองน้อยที่สุดที่ระดับความเชื่อมั่น 95% เพื่อทดสอบความแม่นยำของแบบจำลอง พบว่าแบบจำลองสามารถพยากรณ์ค่าความตรงได้อย่างแม่นยำภายใน ±10% ของค่าความตรงที่ วัดได้ โดยค่าความแม่นยำการทำนายความตรงชิ้นงานของสมการที่ 2.2-1 เท่ากับ 91.85 %

$$S_{t} = 91.84 \cdot V^{-0.202} \cdot f^{0.53} \cdot D^{0.133} \cdot R_{n}^{-0.355} \cdot e^{-0.00672} Y \cdot \left(\frac{F_{y(max)} - F_{y(min)}}{F_{y(s)}}\right)^{0.493}$$
(2.2-1)

กันยกานต์ สมานมิตร (2013)[10]

งานวิจัยนี้ได้ศึกษาความสัมพันธ์ของความขรุขระผิวชิ้นงานขณะตัดกับอัตราส่วนแรงตัด พลวัตบนเครื่องกลึงซีเอ็นซี เพื่อนำเสนอสมการทำนายความขรุขระผิวชิ้นงานในระหว่างการกลึง เหล็กกล้าคาร์บอนด้วยใบมีดคาร์ไบด์เคลือบผิว จากงานวิจัยพบว่าความขรุขระผิวชิ้นงานและแรง ตัดพลวัตจะแสดงความถี่ที่สัมพันธ์กันในโดเมนความถี่ พื้นที่ใต้กราฟของแรงป้อนตัดพลวัตต่อแรง ตัดหลักถูกใช้เพื่อสร้างสมการทำนายความขรุขระผิวขณะตัดที่สามารถทำนายได้แม้เงื่อนไขการตัด จะเปลี่ยนแปลงไป

ฟังก์ชันเอกโปเนนเซียลถูกนำมาใช้เพื่อพัฒนาสมการทำนายความขรุขระผิวชิ้นงานขณะ ตัดซึ่งสอดคล้องกับทฤษฎีความขรุขระผิว โดยมีพารามิเตอร์ ได้แก่ ความเร็วตัด100-260 เมตรต่อ นาที ความลึกตัด 0.2-0.8 มิลลิเมตร อัตราป้อนตัด 0.1-0.3 มิลลิเมตรต่อรอบ มุมคายเศษโลหะ -6 และ11 องศา รัศมีจมูกมีด 0.4-0.8 มิลลิเมตร และอัตราส่วนพื้นที่แรงตัดพลวัต จากนั้นทำการ วิเคราะห์หาค่าสัมประสิทธิ์ด้วยวิธีการกำลังสองน้อยที่สุดเพื่อสร้างสมการถดถอยพหุคูณ ที่ระดับ ความเชื่อมั่น 95% โดยสมการทำนายความขรุขระผิวเฉลี่ยมีค่าความแม่นยำ 91.89% และสมการ ทำนายความขรุขระผิวสูงสุดมีค่าความแม่นยำ 91.97%

W. Polini, U. Prisco (2003)[5]

ได้ศึกษาแบบจำลองแรงตัด (cutting force model) เพื่อใช้ในการพยากรณ์ค่าความ ผิดพลาดของขนาดเส้นผ่านศูนย์กลางของชิ้นงานจากกระบวนการกลึง โดยเปรียบเทียบ แบบจำลองซึ่งประกอบด้วย Kronenberg's model และ Amarego's model ผลที่ได้พบว่า Amarego's model ให้ผลที่มีค่าใกล้เคียงกับค่าการทดลองมากที่สุด จึงสรุปว่า Amarego's model เหมาะสมที่จะนำมาพยาการณ์ค่าความผิดพลาดของขนาดเส้นผ่านศูนย์กลางของชิ้นงานมาก ที่สุด

S. Tangitsitcharoen (2011)[14]

งานวิจัยนี้พิสูจน์ได้ว่าความขรุขระผิวของชิ้นงานมีความสัมพันธ์กับเงื่อนไขการตัด ได้แก่ ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด และอัตราส่วนแรงตัดสถิต โดยใช้ไดนาโม มิเตอร์ในการตรวจวัดแรงตัดที่เกิดขึ้นในขณะตัดจริงและใช้สมการถดถอยพหุคูณเพื่อแสดง ความสัมพันธ์ดังกล่าวที่ระดับความเชื่อมั่น 95% จากงานวิจัยนี้พบว่า เมื่อความลึกตัดและอัตราป้อนตัดมากขึ้น ค่าความขรุขระผิวขึ้นงาน จะมีค่าเพิ่มขึ้น เนื่องจากเกิดการสั่นสะเทือนของมีดตัดเพิ่มขึ้น เมื่อความเร็วตัด รัศมีจมูกมีดและ อัตราส่วนแรงตัดสูงขึ้น ค่าความขรุขระผิวขึ้นงานจะมีค่าลดลง เมื่อเปรียบเทียบค่าความขรุขระผิว จากสมการกับค่าความขรุขระผิวที่เกิดขึ้นจริง พบว่าค่าความขรุขระผิวสูงสุดและความขรุขระผิว เฉลี่ยมีความแม่นยำอยู่ที่ 86.5% และ 87.3% ตามลำดับ ซึ่งถือว่าสมการดังกล่าวมีความแม่นยำ ในระดับที่สามารถนำไปใช้งานได้จริง

นอกจากนี้ยังได้ทำการศึกษาอิทธิพลของความไม่เป็นเส้นตรง (out-of-straightness) ที่ ส่งผลกระทบต่อคุณภาพของชิ้นงาน เช่น อายุการใช้งานของชิ้นงาน การสึกหรอ รวมถึงประสิทธิ ภาพของการทำงานที่ด้อยลง และกล่าวถึงลักษณะของชิ้นงานที่ต้องการความละเอียดสูง เช่น ชิ้นส่วนฮาร์ดดิสที่มีขนาดเล็ก ซึ่งมีการระบุค่าความคลาดเคลื่อนในหน่วยไมโครเมตร (µm) ดังนั้น ความตรงจึงมีความสำคัญต่อคุณภาพของชิ้นงาน

S. Tangjitsitcharoen (2012)[15]

งานวิจัยนี้ได้ศึกษาความสัมพันธ์ระหว่างสัดส่วนแรงตัดพลวัตกับความขรุขระผิวขิ้นงานที่ เกิดขึ้นขณะตัดบนเครื่องกลึงซีเอ็นซี โดยค่าความขรุขระผิวจะถูกแสดงในรูปสมการถดถอยพหุคูณ เพื่อหาค่าสัมประสิทธิ์ด้วยวิธีกาลังสองน้อยที่สุดของสัดส่วนแรงตัดพลวัตร เงื่อนไขการตัด ได้แก่ ความเร็วตัด อัตราป้อนตัด ความลึกตัด และรัศมีจมูกมีด ด้วยระดับความเชื่อมั่น 95% จากการ ทดลองโดยใช้ไดนาโมมิเตอร์ในการวัดแรงตัดพลวัตรที่เกิดขึ้นจริงในขณะตัด และการวัดค่าความ ขรุขระผิวที่เกิดขึ้นจริงจากการตัด พบว่าค่าความถี่ทั้งสองมีความสอดคล้องใกล้เคียงกันในโดเมน ความถี่ จึงนำค่าความสัมพันธ์ในโดเมนเวลามาวิเคราะห์โดยใช้กฏสี่เหลี่ยมคางหมูคำนวณพื้นที่ แรงตัดพลวัตรและสร้างแบบจำลองทำนายค่าความขรุขระผิวชิ้นงานในขณะตัด แบบจำลองที่ได้นี้ มีค่าความแม่นยำ 90.3%

H. Saglam, F. Unsacar & Yaldiz[16]

งานวิจัยนี้มีวัตถุประสงค์ในการศึกษาความสัมพันธ์ระหว่างความกลมและความขรุขระ ของผิวชิ้นงานบนเครื่องเจียระไน (Grinding) กับพารามิเตอร์ที่ใช้ในกระบวนการกัดชิ้นงาน โดย กำหนดพารามิเตอร์ ได้แก่ ความลึกตัด ความเร็วตัด และอัตราการป้อน และแรงสถิต (Static force) ที่เกิดขึ้นจริงในขณะตัดบนเครื่องเจียระไนโดยใช้เซ็นเซอร์วัดแรงตัดวัดแรงที่แท้จริง โดยใช้ ตารางแนวฉาก (Orthogonal arrays : OAs) เพื่อหาอิทธิพลของปัจจัยหลายปัจจัย และใช้การ ออกแบบการทดลองเพื่อหาความสัมพันธ์ของความกลม และความขรุขระของผิวที่พารามิเตอร์ ต่างๆ จากการทำการทดลองพบว่า การควบคุมความกลมและความขรุขระผิวของชิ้นงานนั้นควร ทำการควบคุมที่ความเร็วตัด และความลึกตัด

Salah Hamed Ramadan Ali, Hassan Hassan Mohamad, Mohamed Kamal Bedewy[27]

งานวิจัยมีเป้าหมายในการนำเครื่องวัดจุดโคออร์ดิเนต (Coordinate Measurement Machines : CMM) ในการตรวจสอบความคลาดเคลื่อนของความกลม ความตรง และความร่วม ศูนย์ในรูกระบอกสูบเครื่องยนต์ดีเซล ชนิดระบายความร้อนด้วยอากาศ เพื่อหาความสัมพันธ์ ระหว่างรูปร่างชิ้นงาน ที่ไม่ตรงกับการออกแบบและส่งผลกระทบต่อการสึกหรอของการทำงาน ของเครื่องยนต์ เพื่อแสดงให้เห็นถึงการวัดขนาด และรูปทรงเลขาคณิตด้วยเครื่องมือที่มีความ แม่นยำ เพื่อตรวจสอบและติดตามความรุนแรงของการสึกหรอ จนทำให้เกิดการชำรุดในกระบอก สูบของเครื่องยนต์ อันเนื่องมาจากการเสียของรูปทรงเลขาคณิตของวงกลมในทิศทางตามขวาง และตามยาว

โดยการวัดความกลม ความตรง และความร่วมศูนย์ของชิ้นงานในระดับไมโครเมตร โดย ใช้เครื่องมือวัดที่มีความแม่นยำ ทำให้สามารถศึกษาการสึกหรอของชิ้นส่วนได้อย่างละเอียด เป็น แรงผลักดันเพื่อให้เกิดการเปลี่ยนแปลงนวัตกรรมเพื่อป้องกัน ลดความสูญเสียพลังงานอัน เนื่องมาจากแรงเสียดทาน และความสึกหรอในกระบอกสูบให้ลดลง เพื่อเพิ่มอายุการใช้งาน และ ลดค่าใช้จ่ายในการกบำรุงรักษา

Suleyman Yaldız, Faruk Unsaçar (2005)[28]

ได้ศึกษาแรงตัดที่เกิดจากการตัดโลหะที่มีอิทธิพลโดยตรงต่อการเกิดความร้อนในระหว่าง กระบวนการ การสึกหรอมีดตัด คุณภาพผิวชิ้นงาน และความแม่นยำของรูปร่างชิ้นงาน ใน การศึกษานี้ใช้ไดนาโมมิเตอร์สำหรับการกลึง ซึ่งสามารถวัดแรงตัดสถิต (static cutting force) และแรงตัดพลวัต (Dynamic cutting force) ได้ โดยใช้ Strain gauge และ Piezo-electric accelerometer ตามลำดับ นำสัญญาณแรงที่ถูกตรวจจับมาประมวลผลการใช้งานกับระบบการ จัดเก็บข้อมูล จากผลการทดลองแสดงให้เห็นว่าไดนาโมมิเตอร์สามารถใช้ในการวัดแรงตัดแบบ สถิตและพลวัตได้ โดย Strain gauge ถูกเชื่อมต่อกับข้อมูลของระบบที่ประกอบด้วยฮาร์ดแวร์และ ซอร์ฟแวร์ ไดนาโมมิเตอร์สามารถวัดองค์ประกอบแรงตัดได้ทั้ง 3 แกนที่ตั้งฉากกันในระหว่างที่ทา การตัด โดยวัดค่าเป็นข้อมูลเชิงตัวเลข และสามารถเก็บไว้ในคอมพิวเตอร์ ในกระบวนการกลึง ผลลัพธ์ที่เหมาะสมจะได้จากการวัดแรงตัด ซึ่งผลที่ได้รับจากการทดสอบเครื่องจักรที่การตัดที่ แตกต่างกันแสดงให้เห็นว่าไดนาโมมิเตอร์สามารถเชื่อถือได้สำหรับการวัดแรงตัด P. Venkataramaiah, K. DharmaReddy, P. Meramma (2014)[29]

ได้ทำการศึกษาอิทธิพลอัตราป้อนตัดและเรขาคณิตของมีดตัดต่อแรงตัดในระหว่าง กระบวนการกลึงโดยใช้ Taguchi Method ในการทดลองกลึงชิ้นงานอลูมิเนียมด้วยมีดตัด HSS ที่ มีองศาในทางเรขาคณิต และอัตราป้อนตัดที่แตกต่างกัน จากนั้นบันทึกผลตอบสนองนั่นคือ แรงตัด ส่วน Fuzzy Rule ถูกนำมาพัฒนาเพื่อทำนายแรงตัดสำหรับค่าที่เหมาะสมที่สุดที่ได้จาก Taguchi method และการยืนยันผลการทดลองโดยนำ Fuzzy logic ทำนายค่าของตัวแปรที่ดีที่สุดที่ใช้ใน การตัด และพบว่าค่าความผิดพลาดของการทำนายอยู่ที่ 4.56% และเปอร์เซ็นความแม่นยำอยู่ที่ 95.44 % ผลการวิเคราะห์ความแปรปรวน ANOVA ถูกใช้ในการตรวจสอบ และพิสูจน์ได้ว่า ปัจจัย ที่มีอิทธิพลต่อแรงป้อนตัด คือ มุมคายเศษโลหะ อัตราป้อนตัด และ แรงตัดหลัก และแรงในแนว รัศมี คือ มุมคายเศษโลหะ อัตราป้อนตัดและมุมของมีดตัด ตามลาดับ แรงตัดหลัก คือ อัตราป้อน ตัด มุมของมีดตัด และมุมคายเศษโลหะตามลาดับ และสำหรับแรงในแนวรัศมี คือ มุมของมีดตัด มุมคายเศษโลหะและอัตราป้อนตัดตามลำดับ

T. Moriwaki, T. Shibasaka, T. Somkiat (2004)[30]

งานวิจัยนี้พัฒนาขึ้นเพื่อตรวจติดตามการสึกหรอของมีดตัดในกระบวนการกลึงสำหรับ เครื่องซีเอ็นซี โดยการใช้สมการพังก์ชันเอ็กซ์โปเนนเซียลในการหาความสัมพันธ์ระหว่างความ ต้านทานการตัดเฉพาะและอัตราส่วนป้อนตัด โดยค่าดัชนี a ในพังก์ชันถูกกำหนดเป็นตัวซี้วัดการ สึกหรอของมีดตัด มีค่าเทียบเท่ากับอัตราส่วนความต้านทานการตัดเฉพาะที่อัตราการป้อนตัดศูนย์ และอนันต์ และได้ทำการแทรกคำสั่งตัดในกระบวนการตัดจริงเพื่อตรวจสอบหาขนาดความสึกหรอ ของมีดตัดจริง โดยเปลี่ยนอัตราการป้อนตัดในกระบวนการตัดปกติให้เป็นอัตราการป้อนตัดแบบ ขึ้นหรือลง ที่อัตราการป้อนตัดต่ำๆเพื่อวัดแรงตัด และใช้ไดนาโมมิเตอร์วัดแรงตัดในขณะกลึง ชิ้นงาน เพื่อระบุอัตราการเพิ่มขึ้นของความต้านทานการตัดเฉพาะ จากผลการทดลองการ ประมาณการสึกหรอของมีดตัดในระหว่างกระบวนการตัดจริง ได้พิสูจน์ว่าดัชนี a เป็นตัวชี้วัดที่ดี ในการประมาณขนาดของการสึกหรอของมีดตัด แม้ว่าเงื่อนไขการตัดจะแตกต่างกันออกไป

S. Tangjitisitcharoen, P. Tangpornprasert, Ch. Virulsri, N.Rojanarowan (2011)[31]

งานวิจัยนี้ได้ทำการพัฒนาระบบตรวจติดตาม ควบคุมตำแหน่งของเพลาและแหวนในการ ประกอบชิ้นส่วนของมอเตอร์ฮาร์ดดิสต์ ด้วยพิกัดความคลาดเคลื่อน 2.5 m โดยการสร้างเครื่อง ตรวจจับความชันที่ถูกออกแบบและพัฒนาเพื่อตรวจวัดและหาอนุพันธ์ของแรงกดในขณะทำงาน โดยการคำนวณค่าศักย์ไฟฟ้าอ้างอิงเป็นตัวชี้วัดในการควบคุมการทำงานของเครื่องจักร และเมื่อ ค่าศักย์ไฟฟ้าที่ได้มีค่าสูงกว่าค่าศักย์ไฟฟ้าอ้างอิง โดยการประยุกต์ใช้เซ็นเซอร์วัดแรงเพื่อทำการ ตรวจวัดแรงกดขณะทำการประกอบ ซึ่งเครื่องที่ได้รับการออกแบบพัฒนานี้สามารถช่วยลดปัญหา ในการผลิตเพลาสูงได้

Guo Jianliang, Han Rongdi (2006) [32]

งานวิจัยนี้ได้ศึกษาอิทธิพลของ follower rest ซึ่งเป็นส่วนประกอบสำคัญของการกลึงใน กระบวนการผลิตชื้นงานแท่งแบบเรียวยาว (slender bar) มีหน้าที่ป้องกันไม่ให้ชิ้นงานกลึงที่มี รูปร่างเป็นแท่งเรียวยาว เกิดการโก่งตัวหรือเสียรูปในกระบวนการกลึงกับเงื่อนไขการกลึงต่างๆ ต่อ ความผิดพลาดของเส้นผ่านศูนย์กลาง และพัฒนาแบบจำลองทำนายความผิดพลาดของเส้นผ่าน ศูนย์กลางของชิ้นงาน ซึ่งแบบจำลองที่นำเสนอ ประกอบไปด้วยองค์ประกอบ 3 อย่างคือ การ พิจารณาทางเรขาคณิตของความผิดพลาดเส้นผ่านศูนย์กลาง แบบจำลองระเบียบวิธีไฟไนต์เอลิ เมนต์ (finite element model) ของการเสียรูปของชิ้นงาน และแบบจำลองทางสถิติของแรงตัด พบว่าค่าการพยากรณ์และค่าจากการวัดจริงเป็นที่ยอมรับได้ และยังพบว่าความผิดพลาดของเส้น ผ่านศูนย์กลางของชิ้นงานแบบแท่งขึ้นอยู่กับการตั้ง follower rest ความลึกตัด และอัตราป้อนตัด ความเร็วตัดมีผลกระทบเพียงเล็กน้อย ข้อจำกัดของงานวิจัยนี้คือ แบบจำลองไม่เหมาะกับชิ้นงาน กลึงที่มีอัตราส่วนความยาวต่อเส้นผ่านศูนย์กลางมากกว่า 20

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 3 วิธีดำเนินการวิจัย

3.1 การออกแบบการทดลอง

งานวิจัยนี้ใช้การออกแบบการทดลองเชิงแฟคทอเรียล(Factorial Design) โดยนำข้อมูลที่ ได้จากการทดลองมาศึกษาความสัมพันธ์ระหว่างความตรงและความกลมของชิ้นงานกับอัตราส่วน แรงตัดพลวัตและแรงตัดสถิต รวมถึงเงื่อนไขการตัดต่าง ๆ เพื่อนำไปพัฒนาสมการเพื่อทำนาย ความตรงและความกลมของชิ้นงานในกระบวนการกลึง

3.2 การกำหนดปัจจัยที่ใช้ในการทดลอง

3.2.1 ปัจจัยที่มีอิทธิพลต่อความตรงและความกลมของชิ้นงาน

จากงานวิจัยที่ผ่านมา[5-13] ปัจจัยที่มีผลต่อลักษณะของชิ้นงาน เช่น ขนาดเส้นผ่าน ศูนย์กลางของชิ้นงาน ความตรง ความกลม ความเรียบผิว เป็นต้น ซึ่งก็คือเงื่อนไขการตัดต่าง ๆ เช่น ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด และมุมคายเศษโลหะของมีดตัด ดังนั้น เงื่อนไขการตัดจึงถูกเลือกมาเพื่อพิจารณาหาความสัมพันธ์กับความตรงและความกลมของชิ้นงาน เพื่อนำไปพัฒนาสมการการทำนายความตรงและความกลมของชิ้นงานในกระบวนการกลึงโดย ประยุกต์ใช้อัตราส่วนแรงป้อนตัด

3.2.2 การกำหนดระดับของปัจจัยที่ใช้ในการทดลอง

การกำหนดระดับของปัจจัย (Level) จะพิจารณาจากคู่มือการแนะนำของผู้ผลิตเครื่องมือ ตัด ประกอบกับพิจารณาให้เป็นเงื่อนไขการตัดที่ให้เศษโลหะเป็นแบบต่อเนื่องด้วย เพื่อให้ได้ คุณภาพผิวของชิ้นงานที่ดี ซึ่งสามารถแบ่งเป็นระดับต่างๆ ได้ดังนี้

ป้จจัย	ระดับ
ความเร็วตัด	100, 150 และ 200 เมตร/นาที
อัตราป้อน	0.15, 0.20 และ 0.25 มิลลิเมตร/รอบ
ความลึกตัด	0.4, 0.6 และ 0.8 มิลลิเมตร
รัศมีจมูก	0.4 และ 0.8 มิลลิเมตร
มุมคายเศษโลหะ	-6 และ 11 องศา

ตารางที่ 3.1 แสดงระดับปัจจัยของการทดลอง

- ความเร็วตัด ทำการกำหนดระดับปัจจัยความเร็วตัดเป็น 3 ระดับ คือ 100 150 และ 200 เมตร/นาที การกำหนด 3 ระดับ เนื่องจากมีความเป็นไปได้ว่าความสัมพันธ์อาจไม่เป็นเชิง เส้นตรง นอกจากนี้ยังเป็นความเร็วตัดที่นิยมใช้ในอุตสาหกรรม และเป็นความเร็วที่ เหมาะสมตามคู่มือแนะนำของผู้ผลิตเครื่องมือตัด
- อัตราการป้อนตัด เนื่องจากต้องการทราบแนวโน้มของความสัมพันธ์ที่เกิดขึ้น ซึ่งมีความ เป็นไปได้ว่าความสัมพันธ์อาจไม่เป็นเชิงเส้นตรง จึงทำการกำหนดระดับอัตราการป้อนตัด เป็น 3 ระดับ ได้แก่ 0.15 0.20 และ 0.25 มิลลิเมตร/รอบ
- ความลึกตัด เนื่องจากต้องการทราบแนวโน้มของความสัมพันธ์ที่เกิดขึ้น ซึ่งมีความเป็นไป ได้ว่าความสัมพันธ์อาจไม่เป็นเชิงเส้นตรง จึงทำการกำหนดระดับปัจจัยของความลึกตัด เป็น 3 ระดับ คือ 0.4 0.6 และ 0.8 มิลลิเมตร ทั้งนี้ตามปกตินั้น จะเลือกใช้ความลึกตัดที่ น้อยเพื่อให้ได้ผิวที่ดี แต่หากน้อยเกินไปจะถูกอิทธิพลของรัศมีจมูกมีดมาบดบัง

3.3 เครื่องมือและอุปกรณ์ที่ใช้ในการทดลอง

- ชิ้นงาน (Work piece material) เหล็กกล้าคาร์บอน S45C ทรงกระบอก เส้นผ่านศูนย์กลาง 30-40 มิลลิเมตร (ขนาดเส้นผ่านศูนย์กลางชิ้นงานในการทำวิจัยมีขนาดไม่เกิน 30-40 มิลลิเมตร และยาวไม่เกิน 300 มิลลิเมตร เนื่องจากข้อจำกัดของระยะการวัด และการ ติดตั้งชิ้นงานของเครื่องวัดความตรงและความกลม)
- เม็ดมีด (Insert) แบบคาร์ไบด์เคลือบผิวด้วยสารเคลือบไทเทเนียมคาร์บอนในไตรด์ (TiCN) ยี่ห้อ Kennametal มุมคายเศษโลหะ -6 องศา คาร์ไบด์เคลือบผิว เกรด KC9110 ยี่ห้อKENNAMETAL
 - รหัสเม็คมีด DNMG 150604 FN รัศมีจมูกมีด 0.4 มิลลิเมตร
 - รหัสเม็ดมีด DNMG 150608 FN รัศมีจมูกมีด 0.8 มิลลิเมตร
 - มุมคายเศษโลหะ +11 องศา คาร์ไบด์เคลือบผิว เกรด CA5525 ยี่ห้อ KYOCERA
 - รหัสเม็ดมีด DCMT 11T304 HQ รัศมีจมูกมีด 0.4 มิลลิเมตร
 - รหัสเม็ดมีด DCMT 11T308 HQ รัศมีจมูกมีด 0.8 มิลลิเมตร
- 3) ด้ามมีดกลึง เบอร์ SDJCR2525M-11 และ PDJNR2525M-15
 - รหัสด้ามมีด PDJNR2525M-15 ยี่ห้อ KENNAMETAL
 - รหัสด้ามมีด SDJCR2525M-11 ยี่ห้อ KYOCERA
- 4) เครื่องกลึงซีเอ็นซี (CNC turning machine) ยี่ห้อ Mazak รุ่น NEXUS 200MY/MSY

5) ใดนาโมมิเตอร์ (Dynamometer) ยี่ห้อ Kister รุ่น 9121 สำหรับวัดแรงตัด Fx, Fy และ Fz โดยมีค่าความไม่แน่นอนของการวัดแรงตัด Fx, Fy และ Fz เท่ากับ 1.00, 1.20 และ 2.20 เปอร์เซ็นต์ ตามลำดับ

รูปที่ 3.1 ไดนาโมมิเตอร์ (Dynamometer)

6) ออสซิลโลสโคป (Oscilloscope) ยี่ห้อ YOKOGAWA รุ่น DL750 ใช้สำหรับแสดงผลและ บันทึกค่าแรงตัดที่เกิดขึ้นระหว่างกระบวนการตัด

- รูปที่ 3.2 ออสซิลโลสโคป (Oscilloscope)
- 7) เครื่องขยายสัญญาณ (Charge Amplifier)

รูปที่ 3.3 เครื่องขยายสัญญาณ (Charge Amplifier)

8) เครื่องวัดความขรุขระผิว (Roughness tester) ยี่ห้อ MITUTOYO รุ่น SJ400 ใช้สำหรับวัด ค่าความตรงของชิ้นงาน ข้อกำหนดทางเทคนิคของเครื่องดังตารางที่ 3.2

รูปที่ 3.4 เครื่องวัดความขรุขระผิว (Roughness tester)

9) เครื่องวัดความกลม (Roundness Tester) ยี่ห้อ TOKYO SEIMITSU CO.,LTD รุ่น ROUNDCOM 43C ข้อกำหนดทางเทคนิคของเครื่องดังตารางที่ 3.3

รูปที่ 3.5 เครื่องวัดความกลม (Roundness Tester)

3.4 ขั้นตอนการดำเนินการวิจัย

งานวิจัยนี้เป็นกระบวนการกลึงแบบแห้งโดยมีขั้นตอนการทดลองในแต่ละเงื่อนไขการตัด ดัง แสดงในรูปที่ 3.4

- ติดตั้งใดนาโมมิเตอร์เข้ากับชุดป้อมมีด จากนั้นต่อสายสัญญาณวัดแรงตัดเข้าเครื่อง ขยายสัญญาณ แล้วทำการต่อเครื่องขยายสัญญาณเข้ากับออสซิลโลสโคป เพื่อใช้ แสดงผลและบันทึกค่าแรงตัดที่เกิดขึ้น
- 2) เตรียมชิ้นงานที่ใช้ในการตัด โดยการกลึงผิวของชิ้นงานให้เสมอกัน เนื่องจากความสูง ขอผิวชิ้นงานที่ไม่เท่ากัน จะทำให้ความลึกตัดที่ใช้ในการทดลองคลาดเคลื่อน ส่งผล โดยตรงต่อแรงตัดที่เกิดขึ้น และควบคุมตำแหน่งของชิ้นงานให้ขนานกับทิศทางการตัด เพื่อป้องกันความคลาดเคลื่อนของความกลมอันเนื่องมาจากการเยื้องศูนย์
- ทำการกลึงชิ้นงานด้วยเงื่อนไขการตัดต่างๆ ตามตารางที่ 3.4
- สัญญาณแรงตัดพลวัตที่วัดได้จากไดนาโมมิเตอร์ จะถูกขยายสัญญาณด้วยเครื่องขยาย สัญญาณ และถูกกรองสัญญาณความถี่ที่ 5,000 เฮิร์ทออก โดยเก็บข้อมูลที่อัตรา 10,000 ค่าต่อวินาที
- 5) เก็บเศษโลหะที่เกิดขึ้นในแต่ละเงื่อนไขการทดลอง
- 6) ทำการตรวจสภาพการสึกหรอของเม็ดมีด โดยความสึกหรอที่ใช้จะต้องไม่เกิน 0.1 มิลลิเมตร
- วัดค่าความตรงวัดค่าความตรงเบี่ยงศูนย์ของชิ้นงานด้วยเครื่องวัดความขรุขระผิวชิ้นงาน โดยใช้ความเร็วในการลากเข็มวัด 0.5 มิลลิเมตรต่อวินาทีและใช้อัตราการสุ่มเท่ากับ 400 ข้อมูลต่อวินาที โดยระยะที่ทาการวัดเท่ากับ 12.5 มิลลิเมตร
- 3) วัดค่าความกลมผิวชิ้นงานด้วยเครื่องวัดความกลมผิวชิ้นงาน โดยใช้เงื่อนไขการวัด ดังนี้คือ
 - Analysis item = Roundness
 - Measurement magnification=X2,000
 - Filter type=2RC filter
 - Measurement method=Manual
 - Speed=6 radius/min
 - Invalid angle=5.0 Degree
- 9) วิเคราะห์เงื่อนไขการตัด
- 10) พัฒนาสมการความตรงและความกลมของชิ้นงาน
- 11) ทำการทดสอบความแม่นยำสมการความตรงและความกลมที่ได้จากการทดลอง

ตารางที่ 3.2 เงื่อนไขการทดลอง

ลำดับ	ความเร็วตัด (ม./นาที)	อัตราป้อนตัด (มม./รอบ)	ความลึกตัด (มม.)	รัศมีจมูกมีด (มม.)	มุมคายเศษ โลหะ (องศา)
1	200	0.25	0.6	0.8	-6
2	100	0.20	0.4	0.8	11
3	150	0.15	0.4	0.8	11
4	100	0.20	0.6	0.8	11
5	100	0.15	0.6	0.8	-6
6	100	0.20	0.8	0.8	-6
7	100	0.25	0.8	0.8	-6
8	150	0.20	0.4	0.8	11
9	150	0.15	0.8	0.4	-6
10	100	0.15	0.8	0.8	11
11	150	0.25	0.8	0.4	11
12	200	0.25	0.8	0.8	-6
13	150	0.25	0.8	0.8	-6
14	150	0.25	0.4	0.8	11
15	100	0.20	0.4	UTY 0.8	-6
16	150	0.25	0.8	0.4	-6
17	100	0.15	0.6	0.8	11
18	150	0.25	0.6	0.8	-6
19	100	0.25	0.6	0.4	-6
20	200	0.20	0.8	0.8	11
21	100	0.15	0.8	0.4	11
22	200	0.25	0.4	0.8	-6
23	150	0.15	0.6	0.8	-6
24	150	0.15	0.8	0.4	11
25	150	0.25	0.8	0.8	11

ลำดับ	ความเร็วตัด (ม./นาที)	อัตราป้อนตัด (มม./รอบ)	ความลึกตัด (มม.)	รัศมีจมูกมีด (มม.)	มุมคายเศษ โลหะ (องศา)
26	150	0.25	0.4	0.4	-6
27	200	0.15	0.4	0.8	11
28	150	0.15	0.4	0.4	-6
29	150	0.20	0.6	0.4	11
30	200	0.25	0.4	0.4	-6
31	200	0.15	0.8	0.4	-6
32	100	0.25	0.4	0.4	11
33	200	0.20	0.6	0.4	11
34	100	0.15	0.4	0.4	11
35	200	0.15	0.6	0.4	11
36	100	0.20	0.8	0.4	11
37	200	0.15	0.8	0.4	11
38	100	0.20	0.4	0.4	-6
39	200	0.25	0.6	0.4	-6
40	200	0.15	0.8	0.8	11
41	200	0.15	0.4	0.4	11
42	200	0.25	0.4	0.8	11
43	100	0.20	0.6	0.4	-6
44	100	0.25	0.6	0.8	-6
45	150	0.20	0.4	0.4	11
46	150	0.15	0.8	0.8	11
47	100	0.20	0.6	0.4	11
48	100	0.25	0.4	0.8	11
49	150	0.25	0.4	0.4	11
50	200	0.20	0.6	0.8	11
51	100	0.15	0.8	0.8	-6

ลำดับ	ความเร็วตัด (ม./นาที)	อัตราป้อนตัด (มม./รอบ)	ความลึกตัด (มม.)	รัศมีจมูกมีด (มม.)	มุมคายเศษ โลหะ (องศา)
52	150	0.20	0.6	0.8	11
53	200	0.20	0.4	0.4	11
54	150	0.15	0.6	0.8	11
55	200	0.15	0.6	0.8	11
56	100	0.15	0.8	0.4	-6
57	200	0.25	0.6	0.8	11
58	200	0.20	0.8	0.4	11
59	150	0.15	0.8	0.8	-6
60	100	0.25	0.4	0.4	-6
61	150	0.15	0.4	0.8	-6
62	200	0.15	0.4	0.4	-6
63	100	0.25	0.6	0.8	11
64	150	0.15	0.4	0.4	11
65	200	0.25	0.6	0.4	11
66	200	0.15	0.8	0.8	-6
67	200	0.15	0.6	ITY 0.8	-6
68	150	0.25	0.6	0.8	11
69	200	0.25	0.8	0.8	11
70	100	0.20	0.4	0.4	11
71	100	0.25	0.8	0.4	11
72	150	0.20	0.6	0.8	-6
73	200	0.20	0.4	0.4	-6
74	150	0.20	0.8	0.4	-6
75	200	0.20	0.6	0.8	-6
76	150	0.20	0.8	0.8	11
77	200	0.15	0.4	0.8	-6

ลำดับ	ความเร็วตัด (ม./นาที)	อัตราป้อนตัด (มม./รอบ)	ความลึกตัด (มม.)	รัศมีจมูกมีด (มม.)	มุมคายเศษ โลหะ (องศา)
78	150	0.20	0.4	0.8	-6
79	200	0.25	0.8	0.4	-6
80	150	0.20	0.8	0.8	-6
81	200	0.20	0.8	0.4	-6
82	150	0.25	0.6	0.4	-6
83	200	0.20	0.4	0.8	11
84	100	0.15	0.4	0.8	11
85	100	0.20	0.8	0.8	11
86	150	0.15	0.6	0.4	11
87	150	0.15	0.6	0.4	-6
88	200	0.15	0.6	0.4	-6
89	150	0.20	0.6	0.4	-6
90	150	0.20	0.8	0.4	11
91	150	0.25	0.4	0.8	-6
92	150	0.20	0.4	0.4	-6
93	200	0.20	0.6	0.4	-6
94	100	0.25	0.8	0.4	-6
95	100	0.20	0.6	0.8	-6
96	200	0.20	0.8	0.8	-6
97	100	0.15	0.4	0.4	-6
98	200	0.20	0.4	0.8	-6
99	100	0.15	0.4	0.8	-6
100	100	0.20	0.8	0.4	-6
101	100	0.25	0.4	0.8	-6
102	150	0.25	0.6	0.4	11
103	100	0.15	0.6	0.4	-6

ลำดับ	ความเร็วตัด (ม./นาที)	อัตราป้อนตัด (มม./รอบ)	ความลึกตัด (มม.)	รัศมีจมูกมีด (มม.)	มุมคายเศษ โลหะ (องศา)
104	100	0.25	0.6	0.4	11
105	100	0.25	0.8	0.8	11
106	200	0.25	0.4	0.4	11
107	200	0.25	0.8	0.4	11
108	100	0.15	0.6	0.4	11

3.5 การพัฒนาสมการทำนายความตรงและความกลมของชิ้นงานขณะตัด

จากงานวิจัยที่ผ่านมาได้ทำการพัฒนาสมการทำนายตรงของชิ้นงานขณะตัด[8] และ งานวิจัยที่พัฒนาสมการทำนายกลมของชิ้นงานขณะตัด[9] โดยสมการที่ใช้อยู่ในรูปฟังก์ชันเอก โพเนนเชียล ซึ่งอ้างอิงตามทฤษฎีการหาค่าความขรุขระของผิวชิ้นงาน ดังนั้นงานวิจัยนี้จึงทำการ พัฒนาสมการทำนายความตรงและความกลมของชิ้นงานในขณะตัดโดยอ้างอิงจากงานวิจัยที่ผ่าน มา ซึ่งจะแสดงความสัมพันธ์ระหว่างอัตราส่วนแรงตัดพลวัตและแรงตัดสถิตในทิศทางป้อนตัด และเงื่อนไขการตัดต่างๆในรูปแบบสมการเอกซ์โปเนนเชียลดังนี้

$$R_{0} = C_{1} \cdot (V)^{a_{1}} \cdot (f)^{a_{2}} \cdot (D)^{a_{3}} \cdot (R_{n})^{a_{4}} \cdot (e)^{a_{5}\gamma} \cdot \left(\frac{AVF_{x}}{AVF_{y}}\right)^{a_{6}}$$
(3.4-1)

$$S_{t} = C_{2} \cdot (V)^{a_{7}} \cdot (f)^{a_{8}} \cdot (D)^{a_{9}} \cdot (R_{n})^{a_{10}} \cdot (e)^{a_{11}\gamma} \cdot \left(\frac{F_{y}(max) - F_{y}(min)}{F_{y}(s)}\right)^{a_{12}}$$
(3.4-2)

R_0	= ค่าพิสัยเส้นผ่านศูนย์กลาง (ไมโครเมตร)
S _t	= ความตรงเบี่ยงศูนย์ของชิ้นงาน (ไมโครเมตร)
V	= ความเร็วตัดชิ้นงาน (เมตรต่อนาที)
f	= อัตราการป้อน (มิลลิเมตรต่อรอบ)
D	= ความลึกตัด (มิลลิเมตร)
R_n	= รัศมีจมูกมีด (มิลลิเมตร)
γ	= มุมคายเศษโลหะ (องศา)
AVF_x	= ค่าเฉลี่ยความแปรปรวนแรงรัศมี (นิวตัน)

โดยที่

AVF_y = ค่าเฉลี่ยความแปรปรวนแรงป้อนตัด (นิวตัน) $\frac{F_{y(max)} - F_{y(min)}}{F_{y(s)}} = อัตราส่วนระหว่างแรงป้อนตัดพลวัตและแรงป้อนตัดสถิต
a₁, a₂, a₃, a₄, a₅, a₆, a₇, a₈, a₉, a₁₀, a₁₁, a₁₂, C₁, C₂ = ค่าสัมประสิทธิ์การถดถอยของสมการ
จากสมการแบบไม่เชิงเส้นถูกแปลงและนำเสนอในรูปสมการถดถอยพหุคูณด้วยการใช้
การแปลงลอการิทึม ดังนี้$

$$\ln R_{0} = \ln C_{1} + a_{1} \ln V + a_{2} \ln f + a_{3} \ln D + a_{4} \ln R_{n} + a_{5} \gamma + a_{6} \ln \left(\frac{AVF_{\chi}}{AVF_{\chi}}\right)$$
(3.4-3)

$$\ln S_{t} = \ln C_{2} + a_{7} \ln V + a_{8} \ln f + a_{9} \ln D + a_{10} \ln R_{n} + a_{11} \gamma + a_{12} \ln \left(\frac{F_{y(max)} - F_{y(min)}}{F_{y(s)}} \right)$$
(3.4-4)

จากสมการถดถอยพหุคูณสามารถเขียนให้อยู่ในรูปอย่างง่ายได้ดังนี้

$$y_1 = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$
(3.4-5)

$$y_{2} = \beta_{7} + \beta_{8} x_{1} + \beta_{9} x_{2} + \beta_{10} x_{3} + \beta_{11} x_{4} + \beta_{12} x_{5} + \beta_{13} x_{7}$$
(3.4-6)

โดยที่

$$y_1$$
 แทนคา
 $ln R_0$
 y_2
 แทนค่า
 $ln S_t$
 x_1
 แทนค่า
 lnV
 x_2
 แทนค่า
 lnf
 x_3
 แทนค่า
 lnD
 x_4
 แทนค่า
 lnR_n
 x_5
 แทนค่า
 $ln\gamma$
 x_6
 แทนค่า
 $ln\left(\frac{AVF_x}{AVF_y}\right)$
 x_7
 แทนค่า
 $ln\left(\frac{F_y(max) - F_y(min)}{F_{y(s)}}\right)$

β₀, β₁, β₂, β₃, β₄, β₅, β₆, β₇, β₈, β₉, β₁₀, β₁₁, β₁₂ β₁₃ = ค่าสัมประสิทธิ์การถดถอย ของสมการซึ่งได้มาจากการวิเคราะห์แบบถดถอยพหุคูณ โดยใช้การประมาณค่าด้วยวิธีกำลังสอง น้อยที่สุด (least square method)

3.6 การวิเคราะห์ข้อมูล

 จากข้อมูลผลการทดลอง ได้แก่ เงื่อนไขการตัดต่างๆ ความตรงเบี่ยงศูนย์ของชิ้นงาน สัญญาณแรงตัด และเศษโลหะที่เกิดขึ้นภายใต้เงื่อนไขการตัดต่างๆ จากนั้นนำความตรงเบี่ยงศูนย์ ของชิ้นงานและสัญญาณแรงตัดพลวัตมาแปลงสัญญาณจากโดเมนเวลาเป็นโดเมนความถี่ โดยใช้ วิธีการแปลงเวฟเลท

 2) วิเคราะห์ความสัมพันธ์ระหว่างความตรงเบี่ยงศูนย์ของชิ้นงาน ความกลม และแรงตัด พลวัตในโดเมนความถี่ เมื่อพบว่ามีความสอดคล้องกัน จะนำผลการทดลองจากเงื่อนไขการตัดนั้น ๆ มาใช้วิเคราะห์ต่อไป

3) วิเคราะห์ความสัมพันธ์เงื่อนไขการตัดต่างๆ ในการทำวิจัย

4) คำนวณค่าอัตราส่วนของแรง ซึ่งแรงป้อนตัดพลวัตเป็นตัวแปรหนึ่งที่มีความสัมพันธ์กับ ความตรงเบี่ยงศูนย์และความกลมของชิ้นงาน สามารถคำนวณแรงตัดพลวัตได้จากค่าแอมพลิจูด ของสัญญาณแรงป้อนตัดในโดเมนเวลา เมื่อได้ค่าแรงตัดพลวัตแล้วจึงนำไปใช้ในการพัฒนา สมการความสัมพันธ์ โดยจะอยู่ในรูปของอัตราส่วนแรงป้อนตัดพลวัตต่อแรงป้อนตัดสถิต

5) ทดสอบการกระจายแบบปกติ (Normality) โดยการสร้าง Normal Probability Plot ของ ค่าคลาดเคลื่อน (Residual)

6) ทดสอบความเป็นอิสระของข้อมูล (Independent)

7) ทดสอบความมีเสถียรภาพของความแปรปรวน (Variance stability)

8) พัฒนาสมการทำนายความตรงและความกลม โดยวิเคราะห์การถดถอยแบบพหุคูณ (Multiple linear regression analysis) และใช้วิธีกำลังสองน้อยที่สุดในการประมาณค่า สัมประสิทธิ์ของการถดถอย

9) ทดสอบความแม่นย้ำของสมการ

บทที่ 4 การวิเคราะห์ผลการทดลอง

ในบทที่ 4 จะแสดงผลที่ได้จากการทดลองและทำการวิเคราะห์ผลการทดลอง เพื่อให้เห็น ถึงความสัมพันธ์ของสัญญาณแรงตัดกับความตรงและความกลม เพื่อนำไปสู่การพัฒนาสมการ ทำนายความตรงและความกลมของชิ้นงาน โดยประยุกต์ใช้การแปลงเวฟเลทชนิดดอเบซีส์ วิเคราะห์ความถี่ของสัญญาณแรงตัดพลวัตที่เกิดขึ้นขณะกลึงชิ้นงาน ซึ่งจะแยกสัญญาณแรงตัด พลวัตออกเป็นหลายๆระดับชั้น เพื่อให้สามารถแยกแยะได้ว่าระดับชั้นใดเป็นสัญญาณแรงตัด พลวัตซึ่งสอดคล้องกับความตรงและความกลม สัญญาณระดับชั้นใดเป็นสัญญาณแตกหักของ เศษโลหะ หรือสัญญาณรบกวนอื่นในเงื่อนไขการตัดต่างๆ โดยมีปัจจัยในการตัดซึ่งเป็นตัวแปร อิสระดังต่อไปนี้ คือ ความเร็วตัด (V) อัตราการป้อนตัด (F) ความลึกตัด (D) รัศมีจมูกมีด (Rn) มุม คายเศษโลหะ (Rake angle) โดยการวิเคราะห์จะแสดงให้เห็นในแต่ละหัวข้อดังต่อไปนี้

4.1 ผลการทดลอง

งานวิจัยนี้ได้ทำการทดลองโดยการกลึงชิ้นงานเหล็กกล้าคาร์บอน S45C จำนวนทั้งสิ้น 108 เงื่อนไข ซึ่งประกอบด้วยปัจจัย ดังนี้ ความเร็วตัด อัตราการป้อนตัด ความลึกตัด รัศมีจมูกมีด มุมคายเศษโลหะ ภายใต้เงื่อนไขต่างๆที่กำหนดไว้ตามตารางที่ 3.1 และทำการบันทึกผลที่ได้จาก การทดลองรวมถึงค่าความตรงและความกลมในแต่ละเงื่อนไข คำนวณหาอัตราส่วนแรงป้อนตัด พลวัตต่อแรงตัดสถิต (Fy_{max}- Fy_{min})/F_s และอัตราส่วนค่าเฉลี่ยความแปรปรวนของแรงตัด (AVF_x/AVF_y) ทั้งเงื่อนไขการตัดที่เกิดเศษโลหะแบบต่อเนื่องและเงื่อนไขการตัดที่เกิดเศษโลหะแบบ แตกหัก แสดงในตารางที่ 4.1 ดังนี้

ตารางที่ 4.1 ผลการทดลอง

ความกลม	(ในโครเมตร)	5.576	4.793	4.657	5.541	5.381	5.573	5.825	4.659	5.691	5.873	7.162	5.586	6.375	4.976	5.749
AVFx	$(\overline{AVF_y})$	1.247	1.329	1.204	1.590	1.402	1.467	1.639	1.216	1.233	2.361	2.522	1.373	2.026	1.298	1.399
ความตรง	(ในโครเมตร)	15.376	10.262	7.211	9.568	11.407	13.426	17.079	9.945	13.772	9.127	27.332	15.395	15.563	12.072	14.97
$F_{y(max)} - F_{y(min)}$	Fs /	0.112	0.166	0.257	0.147	0.100	0.051	0.096	0.299	0.102	0.141	0.147	0.206	0.229	0.262	0.091
มุมคายเศษโลหะ	(ยงศา)	ę	11	11	11	φ	ę	φ	11	ę	11	11	φ	φ	11	ę
รัศมีจมูกมีด	(มม.)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.4	0.8	0.4	0.8	0.8	0.8	0.8
ความลึกตัด	(มม.)	0.6	0.4	0.4	0.6	0.6	0.8	0.8	0.4	0.8	0.8	0.8	0.8	0.8	0.4	0.4
อัตราปอนตัด	(มม./รอบ)	0.25	0.20	0.15	0.20	0.15	0.20	0.25	0.20	0.15	0.15	0.25	0.25	0.25	0.25	0.20
ความเร็วตัด	(พ./นาที)	200	100	150	100	100	100	100	150	150	100	150	200	150	150	100
000 -000			2	3	4	5	9	7	8	6	10	<u>,</u>	12	13	14	15

ە 1900	ความเร็วตัด	อัตราปอนตัด	ความลึกต้ด	รัศมีจมูกมิด	มุมคายเศษโลหะ	$F_{y(max)} - F_{y(min)}$	ความตรง	AVFx	ความกลม
	(พักษ/.เเ)	(น.ศ.	(มม.)	(มม.)	(องศา)	Fs /	(ใมโครเมตร)	$(\overline{AVF_y})$	(ในโครเมตร)
16	150	0.25	0.8	0.4	φ	0.130	32.634	2.065	6.233
17	100	0.15	0.6	0.8	11	0.127	6.836	1.889	5.976
18	150	0.25	0.6	0.8	ę	0.157	16.952	1.369	5.814
19	100	0.25	0.6	0.4	ę	0.078	25.448	1.372	5.857
20	200	0.20	0.8	0.8	11	0.063	10.701	0.961	4.722
21	100	0.15	0.8	0.4	11	0.107	16.456	1.271	5.55
22	200	0.25	0.4	0.8	φ	0.108	14.54	1.049	4.606
23	150	0.15	9.0	0.8	9	0.113	12.967	1.112	5.297
24	150	0.15	0.8	0.4	11	0.153	15.658	2.316	6.119
25	150	0.25	0.8	0.8	11	0.140	13.837	1.779	5.85
26	150	0.25	0.4	0.4	-6	0.498	26.107	1.961	6.25
27	200	0.15	0.4	0.8	11	0.161	7.966	0.730	4.017
28	150	0.15	0.4	0.4	φ	0.334	10.724	1.612	5.873
29	150	0.20	0.6	0.4	11	0.080	19.097	1.823	5.59
30	200	0.25	0.4	0.4	-9	0.285	26.821	1.626	5.492
31	200	0.15	0.8	0.4	-9	0.080	13.541	1.276	5.057

ความกลม	(ใมโครเมตร)	5.375	4.991	5.736	4.781	5.719	4.231	6.449	5.998	3.944	4.047	4.17	5.502	6.234	4.788	4.894	4.602
AVFx	$(\overline{AVF_y})$	1.320	1.208	1.598	1.144	1.425	1.197	1.746	1.740	0.955	0.727	1.151	1.187	1.749	1.149	1.258	1.073
ความตรง	(ใมโครเมตร)	23.999	18.103	14.982	12.486	18.895	12.619	17.732	27.109	12.466	12.23	12.746	19.616	16.942	16.029	9.512	17.012
$F_{y(max)} - F_{y(min)}$	Fs	0.138	0.095	0.093	0.110	0.113	0.117	0.332	0.111	0.066	0.189	0.198	0.088	0.142	0.225	0.069	0.079
มุมคายเศษโลหะ	(องศา)	11	11	11	11	11	11	9-	9-	11	11	11	9	9-	11	11	11
รัศมีจมูกมีด	(มม.)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.8	0.4	0.8	0.4	0.8	0.4	0.8	0.4
ความลึกตัด	(มม.)	0.4	0.6	0.4	0.6	0.8	0.8	0.4	0.6	0.8	0.4	0.4	0.6	0.6	0.4	0.8	0.6
อัตราปอนตัด	(มม./รอบ)	0.25	0.20	0.15	0.15	0.20	0.15	0.20	0.25	0.15	0.15	0.25	0.20	0.25	0.20	0.15	0.20
ความเร็วตัด	(น./นาที)	100	200	100	200	100	200	100	200	200	200	200	100	100	150	150	100
°00	ПИI.8	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47

ความกลม	(ในโครเมตร)	5.154	5.246	4.55	5.395	5.23	4.057	4.759	4.768	5.976	4.567	5.011	5.358	6.01	5.019	4.635	5.608
AVE	$(\frac{AVF_X}{AVF_y})$	1.414	1.207	1.019	1.022	1.346	0.747	1.279	1.339	1.721	1.258	1.319	1.585	1.308	1.055	1.288	1.619
ษาามตรง	(ในโครเมตร)	11.908	26.991	8.234	12.106	8.564	16.916	7.314	6.645	14.201	12.175	21.252	9.2	24.738	10.416	11.216	14.077
ц. Ц	$\left(\frac{\Gamma_{y(max)} - \Gamma_{y(min)}}{F_{s}}\right)$	0.208	0.238	0.235	0.050	0.206	0.161	0.203	0.215	0.096	0.241	0.118	0.189	0.322	0.109	0.238	0.136
มุมคายเศษโลหะ	(องศา)	11	11	11	9-	11	11	11	11	9-	11	11	9-	9-	9-	9-	11
รัตมีจมูกมิด	" (אאו)	0.8	0.4	0.8	0.8	0.8	0.4	0.8	0.8	0.4	0.8	0.4	0.8	0.4	0.8	0.4	0.8
ความลึกตัด	(มม.)	0.4	0.4	0.6	0.8	0.6	0.4	0.6	0.6	0.8	0.6	0.8	0.8	0.4	0.4	0.4	0.6
อัตราป้อนตัด	(มม./รอบ)	0.25	0.25	0.20	0.15	0.20	0.20	0.15	0.15	0.15	0.25	0.20	0.15	0.25	0.15	0.15	0.25
ความเร็วตัด	(ม./นาที)	100	150	200	100	150	200	150	200	100	200	200	150	100	150	200	100
	ลำดับ	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
ความกลม	(ในโครเมตร)	4.686	5.194	5.428	5.181	5.608	4.754	4.837	5.962	5.661	5.107	6.13	5.397	5.112	4.099	5.122	6.101
---------------------------	----------------------	-------	--------	-------	-------	--------	--------	--------	--------	--------	--------	--------	--------	--------	-------	--------	--------
AVEx	$(\overline{AVF_y})$	1.139	1.219	1.322	1.069	1.508	1.270	1.159	1.495	1.301	1.365	1.494	1.089	1.480	0.873	1.083	1.892
ความตรง	(ใมโครเมตร)	12.11	26.069	9.121	9.624	11.443	14.066	18.009	24.947	14.203	17.245	18.724	12.549	11.786	9.462	14.985	30.941
$F_{y(max)} - F_{y(min)}$	Fs	0.211	0.133	0.174	0.063	0.214	0.072	0.098	0.106	0.132	0.272	0.092	0.077	0.083	0.088	0.113	0.111
มุมคายเศษโลหะ	(ยงศา)	11	11	9	9	11	11	11	11	ę	9	ę	ę	11	ę	9	φ
รัศมีจมูกมีด	(มม.)	0.4	0.4	0.8	0.8	0.8	0.8	0.4	0.4	0.8	0.4	0.4	0.8	0.8	0.8	0.8	0.4
ความลึกตัด	(มม.)	0.4	0.6	0.8	0.6	0.6	0.8	0.4	0.8	0.6	0.4	0.8	0.6	0.8	0.4	0.4	0.8
อัตราป้อนตัด	(มม./รอบ)	0.15	0.25	0.15	0.15	0.25	0.25	0.20	0.25	0.20	0.20	0.20	0.20	0.20	0.15	0.20	0.25
ความเร็วตัด	(ม./นาที)	150	200	200	200	150	200	100	100	150	200	150	200	150	200	150	200
ୁ ଜୁମ୍ଚ୍ଚୁ ଜୁମ୍ଚ୍ଚୁ		64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79

ความกลม	(ในโครเมตร)	5.667	6.018	6.725	4.047	4.674	6.147	5.249	5.67	5.644	6.291	6.578	5.621	6.174	5.749	6.519	6.102
AVFx	$(\overline{AVF_y})$	1.854	1.476	2.328	1.047	1.300	2.486	1.195	1.738	1.143	2.028	2.427	1.269	1.732	1.377	2.502	1.722
ความตรง	(ใมโครเมตร)	12.09	18.4	28.534	10.314	9.216	12.506	13.25	13.201	12.643	18.227	22.428	15.467	18.919	18.85	32.141	12.64
$F_{y(max)} - F_{y(min)}$	Fs	0.178	0.113	0.121	0.171	0.194	0.151	0.104	0.104	0.076	0.092	0.123	0.139	0.509	0.084	0.112	0.121
มุมคายเศษโลหะ	(ยงศา)	ę	φ	ę	11	11	1	11	ę	ę	ę	11	9	ę	ę	9	9-
รัศมีจมูกมิด	(มม.)	0.8	0.4	0.4	0.8	0.8	0.8	0.4	0.4	0.4	0.4	0.4	0.8	0.4	0.4	0.4	0.8
ความลึกตัด	(มม.)	0.8	0.8	0.6	0.4	0.4	0.8	0.6	0.6	0.6	0.6	0.8	0.4	0.4	0.6	0.8	0.6
อัตราปอนตัด	(มม./รอบ)	0.20	0.20	0.25	0.20	0.15	0.20	0.15	0.15	0.15	0.20	0.20	0.25	0.20	0.20	0.25	0.20
ความเร็วตัด	(พ./นาที)	150	200	150	200	100	100	150	150	200	150	150	150	150	200	100	100
ی م		80	81	82	83	84	85	86	87	88	89	06	91	92	93	94	95

ความกลม	(ในโครเมตร)	5.55	6.481	4.156	5.309	6.46	6.06	7.41	5.364	5.641	5.873	4.686	6.118	5.105
AVFx	$(\overline{AVF_y})$	1.369	2.009	0.950	1.299	2.158	1.523	2.851	1.172	1.551	2.388	0.978	1.492	1.438
ความตรง	(ใมโครเมตร)	11.41	14.438	10.918	9.793	20.58	19.305	13.931	13.646	23.592	13.916	23.259	28.063	27.235
$F_{y(max)} - F_{y(min)}$	Fs	0.196	0.300	0.097	0.087	0.126	0.111	0.142	0.113	0.084	0.102	0.191	0.116	0.094
มุมคายเศษโลหะ	(ธงศา)	φ	φ	9	φ	φ	φ	11	φ	11	11	11	11	11
รัศมีจมูกมีด	(มม.)	0.8	0.4	0.8	0.8	0.4	0.8	0.4	0.4	0.4	0.8	0.4	0.4	0.4
ความลึกตัด	(มม.)	0.8	0.4	0.4	0.4	0.8	0.4	0.6	0.6	0.6	0.8	0.4	0.8	0.6
อัตราปอนตัด	(มม./รอบ)	0.20	0.15	0.20	0.15	0.20	0.25	0.25	0.15	0.25	0.25	0.25	0.25	0.15
ความเร็วตัด	(พ./นาที)	200	100	200	100	100	100	150	100	100	100	200	200	100
2000 - 2000		96	97	98	66	100	101	102	103	104	105	106	107	108

4.2 การวิเคราะห์ความสัมพันธ์ระหว่างแรงตัดกับค่าความตรง

4.2.1 การวิเคราะห์ความสัมพันธ์ระหว่างแรงตัดพลวัตและความตรงในการตัดที่ เกิดเศษโลหะแบบต่อเนื่อง

จากการวิเคราะห์ผลการทดลองเพื่อหาความสัมพันธ์ระหว่างความตรงและแรงตัดพลวัต มีเงื่อนไขการตัดคือ ความเร็วตัด 200 เมตรต่อนาที อัตราป้อนตัด 0.15 มิลลิเมตรต่อรอบ ความลึก ในการตัด 0.4 มิลลิเมตร รัศมีจมูกมีด 0.4 มิลลิเมตรและมุมคายเศษโลหะ 11 ซึ่งเกิดเศษโลหะ แบบต่อเนื่องดังรูปที่ 4.1

U HALALIAA WARAAMMANNA VITTA	annan ann ann ann ann ann ann ann ann a
aller man and the many work where	*****
Lucuccian in many hard	www.
HEREAM HEREITHAN MANAGEMENT	www.www.committe
311 312 313 314 315 316 317 318 319	40 41 42 43 44 45 4

รูปที่ 4.1 ลักษณะเศษโลหะจากการตัดภายใต้เงื่อนไขการตัด ได้แก่ ความเร็วตัด 200 ม.ต่อนาที อัตราป้อนตัด 0.15 มม.ต่อรอบ ความลึกในการตัด 0.4 มม. รัศมีจมูกมีด 0.4 มม. และมุมคายเศษ

รูปที่ 4.2 สัญญาณความตรงชิ้นงานในโดเมนเวลาและความถี่โดยการแปลงฟูเรียร์แบบเร็ว

					Original Signal				
		the second second	Marca and Marca			anti-	A CONTRACTOR OF THE		Manager and Man
	and a state of the								
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D1	0.6	0.7	0.8	0.9
للبخيرية	and an a start work to be	An International State	A Strategy and the second	فيحد بدأكم وديساطاته	the where a structure gas	ورجال فالملاء أأوعر طاوقاتهم	شائر فلرجره واستخدم فالجام	فعدم فيافا ليعاد ومعاسماته	the street the bar bar be
		a non a la hand	the second of the	and it is house	And an edition	able field in	An order of the	and a second second second	denne an date offens de
	U.1	0.2	0.3	U.4	U.5 Detail Signal D2	U.6	U.7	U.8	0.9
asting and	hands and this	antiferent et antie	h les mais de la serie de la	te taffaffan en taffiffe	the property of				****
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D3	0.6	0.7	0.8	0.9
				He Hank Brann & Barbis					
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D4	0.6	0.7	0.8	0.9
	te de la c		ha d		Detail Digital Da				
19-1-14-14-14	- 174 design - Break 18 March -	Articles	ALL BOARD - SA ANIMO - A-	the production of the product of the	and the Barth and a second staticity	an finn ab initia ian ini	- With and a second for the		Als de die die ander ander the
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D5	0.6	0.7	0.8	0.9
energithe se	- Marchangel & march	forther things a marting	approved approved the	paper primery	nglomanticallinearton val	underson or provide	approximately	munquestim	upenforment properties
0	0.1	0.2	0.3	0.4	0.5 Detail Signal DB	0.6	0.7	0.8	0.9
-	the dames a turn	mineraus	manisandas	ranana	same and make	unassunsson	Manadanan	ressanciand	mannen
P 44 5				the start of the s					
U	0.1	0.2	0.3	U.4	U.5 Detail Signal D7	0.6	0.7	U.8	0.9
AU	mar	MAN	my	And	mm	MAN	man	MAN	man
Ō	0.1	0.2	0.3	0.4	0.5 Detail Signal D8	0.6	0.7	0.8	0.9
~	man	m	A	~dr	min	m	N	man	man
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D9	0.6	0.7	0.8	0.9
	la la com		_			and a second		and the second	Lange de la companya
	Ì		1			1000		1	
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D1	0.6 D	0.7	0.8	0.9
0	0.1	0.2	0.3	0.4	0.5 Time (s.)	0.6	0.7	0.8	0.9

รูปที่ 4.4 การแปลงเวฟเลทในโดเมนเวลาของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องแกน X

รูปที่ 4.5 การแปลงเวฟเลทในโดเมนความถี่ของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องแกน X

					Original Signal				
)	and a state of the second	من ومقدات محمد وعله	المريد والمريد وحاجب والم	Lundow Arthous	where all a start of the start	and a strate of the second	Landress States	سوريطة ويحدينهما	
	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER	A CONTRACTOR OF A CONTRACT	Construction of the local distribution of th	the second second	And the second se	and the second second second	and the second second	and the second s	and a second
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D1	0.6	0.7	0.8	0.9
	and a summer allows	- Internet and the second	Language and a state of the second	and the party of the party of the party	Hillness and descelling	وحياعيل السباحات	all and the second second	and a state of the	and the second s
	and the second second second				and a straight straig			and the second second	the state of the s
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D2	0.6	0.7	0.8	0.9
		a the second state of the					unia de la contecta		
)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
					Detail Signal D3				
the states of the	ter fill sitter frei her	att of the second se	the best of the state	the superior	astrona station and a substation of the	ter alt the state	-	-	the state of the state of the state
)	0.1	0.2	0.3	0.4	0.5 Detail Signal D4	0.6	0.7	0.8	0.9
	and the start of the start of the start	Manager and Manager and Party of Street of Str	thank will read with	a law list we plate to be	hilder terrer jølge state som at stør skille	Martin and States	at an		
		0.2			0.5		0.7		
,	U. I	0.2	0.3	0.4	Detail Signal D5	U.6	0.7	0.8	0.9
formalin	All for a faith and a star of the star of	strutter water	when when a manufacture	www.englineeron	water Andrew and	apple and the server	manapanapan	here and the state of the state	manphanaphin
)	0.1	0.2	0.3	0.4	0.5 Detail Signal D6	0.6	0.7	0.8	0.9
anna	man	rannand	Montesian	marmin	manne	marina	dumman	margan	mananda
	1	1 1 1	10 10 1			1 11 1			
)	0.1	0.2	0.3	0.4	0.5 Detail Signal D7	0.6	0.7	0.8	0.9
N	man	man	mm	And	man	New	man	win	man
)	0.1	0.2	0.3	0.4	0.5 Detail Signal D8	0.6	0.7	0.8	0.9
And	min	minin	min	min	minn	in	-	man	nam
)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	0.000		4104667	104200	Detail Signal D9	C 11 24 19 10		5. 90 MBM	10/21/N-10/20
1	0.1	0.2	0.2	0.4	0.5	0.0	0.7	0.0	0.0
	U. 1	U.Z	0.3	0.4	Detail Signal D10	0.6	U.7	U.O	0.9
	1			- I	!				
	i		1	j	1	i	1		
)	0.1	0.2	0.3	0.4	0.5 Time (s.)	0.6	0.7	0.8	0.9

รูปที่ 4.6 การแปลงเวฟเลทในโดเมนเวลาของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องในแกน Y

รูปที่ 4.7 การแปลงเวฟเลทในโดเมนความถี่ของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องแกน Y

					Original Signal				
all a state of	ويرجعهم بأجاد والم	Man Jahon Stately and	وبلي المتوادية المعربة	and the second large	aller and a start of the part	to different states	ورياس بالعيبية	and all the south the state	المراجع والمراجع والمراجع
1	0.1	0.2	0.3	0.4	0.5 Detail Signal D1	0.6	0.7	0.8	0.9
Auge Land	واستلاقته والمقر وماقع	and a state of the state	al man a black	ماسر المحاصر ورحاصا الأراب	والمراجع المروي الحواجفا	An and the starter		ويخار التبارج فالتوسيان	the second second in
	Harrison	In a second line of a	ad a distribution of	and a start of the	and the second s	the statement of the	and the second s	the second second second	and a standard to so the second stand
	0.1	0.2	0.3	0.4	0.5 Detail Signal D2	0.6	0.7	0.8	0.9
	and the second she has	and the product of	*++++	path -	and filling and and following			the states	population balling
	0.1	0.2	0.3	0.4	0.5 Detail Signal D3	0.6	0.7	0.8	0.9
Harles Harles			kalanta kata kata		1				ili a di anglan
	0.1	0.2	0.3	0.4	0.5 Detail Signal D4	0.6	0.7	0.8	0.9
	un part for man for an	-	Alles and freedom shows	- der 1942 - 10 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -					*****
	0.1	0.2	0.3	0.4	0.5 Detail Signal D5	0.6	0.7	0.8	0.9
p-Alexan	Anderstanser American	photom from a father	approximation and the	manageninger	erment afferly inversion of	replandenced	howenter	- quitrapportuni	have been provided on
	0.1	0.2	0.3	0.4	0.5 Detail Signal D6	0.6	0.7	0.8	0.9
ANAM	an man	havenapma	Manhapp	nauhund	W-MAggana	manual	Mangham	mandra	manharp
	0.1	0.2	0.3	0.4	0.5 Detail Signal D7	0.6	0.7	0.8	0.9
Aur	minn	minn	man	-	man	mon	m	man	mon
	0.1	0.2	0.3	0.4	0.5 Detail Signal D8	0.6	0.7	0.8	0.9
c.	him	m	AN	min	min	min	man	nn	nam
	0.1	0.2	0.3	0.4	0.5 Detail Signal D9	0.6	0.7	0.8	0.9
1073				1					
	0.1	0.2	0.3	0.4	0.5 Detail Signal D10	0.6	0.7	0.8	0.9
		1		1		1			
				i		1	1	1	1
I	0.1	0.2	0.3	0.4	0.5 Time (s.)	0.6	0.7	0.8	0.9

รูปที่ 4.8 การแปลงเวฟเลทในโดเมนเวลาของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องในแกน Z

รูปที่ 4.9 การแปลงเวฟเลทในโดเมนความถี่ของแรงตัดพลวัตที่เกิดเศษโลหะแบบต่อเนื่องแกน Z

จากผลการวัดค่าความตรงชิ้นงานเมื่อนำสัญญาณที่ได้ไปแปลงให้อยู่ในโดเมนความถี่โดย การแปลงฟูเรียร์แบบเร็ว พบว่ามีความถี่ความตรงที่ความถี่ 33 Hz ดังรูปที่ 4.2-4.3 เมื่อ เปรียบเทียบกับสัญญาณแรงตัดซึ่งถูกแปลงด้วยวิธีเวฟเลทของทั้ง 3 แกน ได้แก่ แกน Fx, Fy และ Fz โดยแยกสัญญาณของข้อมูลออกเป็น 10 ระดับดังแสดงในรูปที่ 4.4-4.9 เมื่อพิจารณาสัญญาณ แรงตัดที่โดเมนความถี่พบว่าค่าความถี่ของสัญญาณแรงตัดในระดับที่ 8 จากทั้ง 3 แกน มี ค่าความถี่ 33 Hz ซึ่งสอดคล้องกับค่าความถี่ที่ได้จากเครื่องวัดความตรงชิ้นงาน

4.2.2 การวิเคราะห์ความสัมพันธ์ระหว่างความตรงและแรงตัดพลวัตที่เกิดเศษ โลหะแบบแตกหัก

จากผลการทดลองหาความสัมพันธ์ระหว่างความตรงและแรงตัดพลวัตที่เกิดเศษโลหะ แบบแตกหัก โดยมีเงื่อนไขการตัด ดังนี้ ความเร็วตัด 100 เมตรต่อนาที อัตราป้อนตัด 0.25 มิลลิเมตรต่อรอบ ความลึกในการตัด 0.8 มิลลิเมตร รัศมีจมูกมีด 0.8 มิลลิเมตร และมุมคายเศษ โลหะ -6 องศา ซึ่งเกิดเศษโลหะแบบแตกหักดังแสดงในรูปที่ 4.10

รูปที่ 4.10 ลักษณะเศษโลหะจากการตัดภายใต้เงื่อนไขการตัด ได้แก่ ความเร็วตัด 100 ม.ต่อนาที อัตราป้อนตัด 0.25 มม.ต่อรอบ ความลึกในการตัด 0.8 มม. รัศมีจมูกมีด 0.8 มม. และมุมคายเศษ

จากการวิเคราะห์ผลการทดลองพบว่าในโดเมนความถี่สัญญาณความตรงที่ได้จาก เครื่องวัดความตรงมีความถี่เท่ากับ 18 Hz ดังรูปที่ 4.11 เมื่อพิจารณาสัญญาณแรงตัดที่ได้จากการ แปลงฟูเรียอย่างเร็ว (FFT) จะพบว่ามีการปะปนกันของความถี่ความตรงและความถี่ที่เกิดจากการ แตกหักดังรูปที่ 4.12 ซึ่งการแปลงฟูเรียอย่างเร็วไม่สามารถแยกสัญญาณความตรงออกจาก สัญญาณรบกวนอื่นๆได้

ดังนั้นจึงนำวิธีการแปลงเวฟเลทมาประยุกต์ใช้ โดยทำการแยกย่อยสัญญาณออกเป็น 10 ระดับ ซึ่งสัญญาณการแตกหักของเศษโลหะและสัญญาณรบกวนอื่นๆ จะถูกตรวจจับและแยก ออกจากสัญญาณแรงตัดพลวัตในชั้นที่แตกต่างกันของการแปลงเวฟเลท ทำให้สามารถแยก ความถี่ของความตรงออกจากความถี่ที่เกิดจากการแตกหักได้

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

50			25		Original Signal				3	
0	-	Company of Widow		-	ANA DALLA MARCHAR	+ Children and the second	-	-	Marting and the	-
-50 L	0.1	0.2	0.3	0.4	0.5 Detail Signal D1	0.6	0.7	0.8	0.9	
50										
-50	0.1	0.2	0.3	0.4	0.5 Detail Signal D2	0.6	0.7	0.8	0.9	
50										
-50 L0	0.1	0.2	0.3	0.4	0.5 Detail Signal D3	0.6	0.7	0.8	0.9	
10 0 4 mm d	-	Antigen to Mark of	Inter plantin in	the state of the state	والم المحمد الم	and the substant of	a data da a series	whether the standard	with the shall	(helines)
10 0	0.1	0.2	0.3	0.4	0.5 Detail Signal D4	0.6	0.7	0.8	0.9	Policine.
10	www.desderinsdart.wigdart	my alter marie for allele			Summer of the second	hours and an and	to also sately manying		and the second of the second o	
.10	0.1	0.2	0.3	0.4	0.5 Detail Signal D5	0.6	0.7	0.8	0.9	T. S.
5 myrung	procession and the second	waterwater	margh a source	An Manutan	manuspitasph	Mandelson	omlot a produced	manuntra	water out the state of the	whether
-5 [0.1	0.2	0.3	0.4	0.5 Detail Signal D6	0.6	0.7	0.8	0.9	
2 0 Andr	manna	Amar Mary	an planna	anthranthan	mminnm	manna	Mananina	manaphane	wandhim	Mar
-20	0.1	0.2	0.3	0.4	0.5 Detail Signal D7	0.6	0.7	0.8	0.9	
open	min	many	man	man	man	man	mm	min	nana	~~~~
-5 [0.1	0.2	0.3	0.4	0.5 Detail Signal D8	0.6	0.7	0.8	0.9	
10	~	1 m	-	in	- from	-	-	-	ma	~~~~
10	0.1	0.2	0.3	0.4	0.5 Detail Signal D9	0.6	0.7	0.8	0.9	
10							~	~~~~		
10	0.1	0.2	0.3	0.4	0.5 Detail Signal D10	0.6	0.7	0.8	0.9	
10			!	1	1					
100	i 0.1	0.2	0.3	i 0.4	0.5	0.6	0.7	0.8	0.9	

รูปที่ 4.13 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนเวลาที่เกิดเศษโลหะแบบแตกหักในแกน X

รูปที่ 4.14 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนความถี่ที่เกิดเศษโลหะแบบแตกหักในแกน X

0					Original Signal				
	and the state of the	The same the same		Maring Hotel	A STATE OF THE OWNER		-	with the second s	and the second little
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D1	0.6	0.7	0.8	0.9
	والمراجع والمراجع والمراجع	والمحالية والمحادثة والملاح	alines in all a series	and the second second second	ار از از مرجله و مرد و از	le des de la sur das des	وماد معر والمطلب المراجع	se il des a di se di la contra di se di la contra di se d	and the second filling
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D2	0.6	0.7	0.8	0.9
) 				Here and the second second	WHI I AND THE WHITE HALL	-	the later of the second		
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D3	0.6	0.7	0.8	0.9
)) - 11/1 /1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	i sugarum an afara		****			-	and William Strategy and a		
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D4	0.6	0.7	0.8	0.9
))	termine the streme to -		- diporte - partire dan marchi		alther the standards was a submath		-		
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D5	0.6	0.7	0.8	0.9
Alfenages	manauthahan	anappenentine Alent	home and an agency	whenter	managenetical	Anthennethente	a dance water dance	10mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	moundmanskank
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5					Detail Signal D6				
2 Harry	sourcestan	- Arman Arton	-washreda		- maria Mary		www.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D7	0.6	0.7	0.8	0.9
And	Aman	min	man	WWW	mon	Ampan	man	min	Man
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D8	0.6	0.7	0.8	0.9
	sources.	1 hr		-	~~~~	2 A	m	which is	1 mm
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D9	0.6	0.7	0.8	0.9
; ; ;								-	
0	0.1	0.2	0.3	0.4	l 0.5 Detail Signal D10	0.6	0.7	0.8	0.9
									<u>_</u>
	0.1	0.2	0.3	0.4	0.5 Time (s.)	0.6	0.7		0.9

รูปที่ 4.15 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนเวลาที่เกิดเศษโลหะแบบแตกหักในแกน Y

รูปที่ 4.16 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนความถี่ที่เกิดเศษโลหะแบบแตกหักในแกน Y

					Original Signal				
	and a static but a start	And a state of the second	A States	and the second second	and the second second	and the second second second second	And the second s		والمعرود والمعادية
ult	0.1	0.0	0.0	Antili CARA		O.C.	O 7	0.0	0.0
U	U. 1	0.2	0.3	0.4	Detail Signal D	0.6	0.7	0.8	0.9
and the second s	the second second		and the second second	In Amburdadie Am	And the second se	and the second second	And a start of the	A STATE OF TAXABLE PARTY	
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
					Detail Signal D2	2			
-	a min and a man	to de la companya de la ferrarda	aldentin a see the	when the state	- the state day of the state	dista Cost Day of Autor	talling dian and second	L. d. arte day and the state	Hand and and and all
	0.4	0.0	0.0		0.5		0.7		
2	U.1	U.2	U.3	0.4	0.5 Detail Signal D3	U.6	0.7	0.8	0.9
								1	
-	and an an an an an an an an an	Mathia ang at at million of the			*****	A State of the little of the second	in all the state of the second	With the statestical	huldi ihres endedingen an
)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
					Detail Signal D4				
apel-anthread	an silar a liger and and	Phillipping and the second	In a standard	Hillig + June by Law	- your - sider and all an an in the	landi - a chand sta un ra		were in a fundation of the a	Weikland and the method with
		444							
J	U.1	0.2	0.3	U.4	U.5 Detail Signal D4	U.6	U.7	0.8	0.9
					Detail Olghar Do	,			
hornard	manufacture westing the	entrepresentation for	Attentioners	maliferent	relationship to the second s	formationshare	stration with stations	known and a state of the state	municipality
)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
					Detail Signal De	ò			
un.	monant	manina	andrana	martin	mananingao	maniplan	amanduan	Amananaah	manna
	× 4 11	, , , , , , , , , , , , , , , , , , , ,		,,,					
0	0.1	0.2	0.3	0.4	0.5 Detail Signal Di	, 0.6	0.7	0.8	0.9
					Detail Olgilai Di				~ 1
an	Anna	min	man	warrin	min	mar	min	min	Massa
)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
					Detail Signal D8	3			
1	mad	1 1 ~	n m	110	nh.	2 1	MIN	- 1	mina
~~~~		2.0	N		- 1 - 2		VY		
)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
					Detail Signal Ds	,			
			min			min	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	min	min
L	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	0.1	0.2	0.0	0.4	Detail Signal D1	0	0.7	0.0	0.5
		!	1	1		1			and the state
``				i i					
)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
					Time (s.)				

รูปที่ 4.17 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนเวลาที่เกิดเศษโลหะแบบแตกหักในแกน Z



รูปที่ 4.18 การแปลงเวฟเลทแรงตัดพลวัตในโดเมนความถี่ที่เกิดเศษโลหะแบบแตกหักในแกน Z

จากรูปที่ 4.13 -4.18 แสดงการแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษ โลหะแบบแตกหักโดยแบ่งออกเป็น 10 ระดับในแกน X,Y และ Z ในโดเมนเวลาจะพบว่าความ หนาแน่นของแรงในโดเมนเวลาที่ระดับชั้น (level) ที่ต่ำกว่านั้นมีความหนาแน่นของแรงสูงกว่าใน ระดับชั้น(level)ที่สูง ส่วนโดเมนความถี่จะเห็นได้ว่าสามารถแยกแรงตัดที่มีสัญญาณความถี่ตรง กับค่าที่ได้จากเครื่องวัดความตรงที่ความถี่ 18 Hz ในระดับที่ 8 ทั้งในแกน X, Y และ Z

จากการทดลองพบว่าในระดับชั้นที่ต่ำของการแปลงเวฟเลทสามารถตรวจจับความถี่ของ การแตกหักของเศษโลหะได้และในระดับชั้นที่ 8 ของการแปลงเวฟเลท สามารถตรวจสอบความถี่ ของความตรงชิ้นงานได้ซึ่งแสดงให้เห็นว่าการแปลงเวฟเลทเป็นเครื่องมือวิเคราะห์ที่สามารถแยก สัญญาณแรงพลวัตที่มีความสอดคล้องกับสัญญาณความตรง ออกจากสัญญาณรบกวนอื่นๆใน กระบวนการกลึงด้วยเครื่องซีเอ็นซีได้ทั้งในโดเมนเวลาและโดเมนความถี่ ไม่ว่าเงื่อนไขการตัดจะ เกิดเศษโลหะแบบต่อเนื่องหรือแตกหัก ดังนั้นการเลือกระดับชั้นสัญญาณเวฟเลทที่เหมาะสมมาทำ การแยกสัญญาณแรงตัดพลวัตซึ่งสอดคล้องกับสัญญาณความตรงออกจากสัญญาณรบกวน ต่างๆ จะทำให้ได้สมการทำนายค่าความตรงของชิ้นงานที่มีประสิทธิภาพมากขึ้น

#### 4.3 การวิเคราะห์ความสัมพันธ์ระหว่างความกลมและแรงตัด

จากการวิเคราะห์ผลการทดลองที่ได้จากกระบวนการกลึงพบว่า แรงตัดรัศมี (Fx) แรง ป้อนตัด (Fy) และแรงตัดหลัก (Fz) มีการเปลี่ยนแปลงตามเงื่อนไขการตัดที่เปลี่ยนแปลงไป ซึ่ง การเปลี่ยนแปลงแรงตัดพลวัตนี้ส่งผลต่อการเปลี่ยนแปลงพิสัยเส้นผ่านศูนย์กลางในลักษณะแปร ผันไปในทิศทางเดียวกัน เมื่อแอมพลิจูดแรงตัดพลวัตมีค่าสูงมากขึ้น ส่งผลต่อการสั่นสะเทือนของ เครื่องมือตัดและชิ้นงาน จึงส่งผลให้พิสัยเส้นผ่านศูนย์กลางที่ตรวจสอบได้ก็จะมีสูงมากขึ้นตามไป ด้วย แสดงดังรูปที่ 4.19

จากรูปที่ 4.19-4.20 พบว่า แรงตัดมีการเปลี่ยนแปลงตามเงื่อนไขการตัดที่เปลี่ยนไป ซึ่ง ในการตัดซึ่งเกิดโลหะแบบแตกหัก เศษโลหะที่เกิดขึ้นขณะตัดจะพุ่งชนมีดตัดและชิ้นงาน ส่งผลให้ แอมพลิจูดของแรงตัดพลวัตและค่าพิสัยเส้นผ่านศูนย์กลางมากขึ้นด้วย การเปลี่ยนแปลงแรงตัด พลวัตนี้ส่งผลต่อการเปลี่ยนแปลงความกลมในลักษณะแปรผันไปในทิศทางเดียวกันคือ เมื่อแอม พลิจูดแรงตัดพลวัตมีค่าสูงมากขึ้นเนื่องจากการสั่นสะเทือนของเครื่องมือตัดและชิ้นงาน ส่งผลให้ พิสัยเส้นผ่านศูนย์กลางที่ตรวจสอบได้ก็จะมีสูงมากขึ้นตามไปด้วย







รูปที่ 4.20 ลักษณะเศษโลหะ สัญญาณแรง ตัดพลวัตและสัญญาณความกลมที่ได้จาก การตัดที่ความเร็วตัด 150 ม/นาที อัตราป้อน ตัด 0.25 มม. ความลึกตัด 0.8 มม. รัศมีจมูก มีด 0.4 มม. มุมคายเศษโลหะ 11 องศา

## 4.4 การวิเคราะห์ความสัมพันธ์ระหว่างแรงตัดพลวัตกับค่าความกลมในการตัดที่เกิดเศษ โลหะแบบต่อเนื่องและแตกหัก

รูปที่ 4.21-4.24 แสดงการแปลงเวฟเลทในโดเมนเวลาของสัญญาณแรงตัดพลวัตที่มีการ เกิดเศษโลหะแบบต่อเนื่องและแตกหัก โดยแบ่งออกเป็น 8 ระดับในแกน X และ Y จะเห็นได้ว่ารูปที่ 4.21-4.22 ซึ่งเกิดเศษโลหะแบบต่อเนื่อง มีแอมปลิจูดสัญญาณแรงตัดที่ต่ำกว่ารูปที่ 4.23-4.24 ซึ่ง เกิดโลหะแบบแตกหัก สอดคล้องกับการเปรียบเทียบแอมปลิจูดสัญญาณความกลมชิ้นงาน ระหว่างเงื่อนไขการตัดที่เกิดเศษโลหะแบบต่อเนื่องกับเงื่อนไขการตัดที่เกิดเศษโลหะแบบแตกหัก ดังรูปที่ 4.19-4.20 และเมื่อวิเคราะห์ที่แรงในระดับชั้นต่างๆจากการแปลงเวฟเลท พบว่าความ หนาแน่นของแรงในโดเมนเวลาที่ระดับชั้น (level) ที่ต่ำกว่านั้นมีความหนาแน่นของแรงสูงกว่าใน ระดับชั้น(level)ที่สูง



รูปที่ 4.21 การแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษโลหะแบบต่อเนื่องในโดเมน เวลาของแกน X ซึ่งมีเงื่อนไขการตัดดังนี้ได้แก่ ความเร็วตัด 200 ม/นาที อัตราป้อนตัด 0.15 มม. ความลึกตัด 0.4 มม. รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.22 การแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษโลหะแบบต่อเนื่องในโดเมน เวลาของแกน Y ซึ่งมีเงื่อนไขการตัดดังนี้ได้แก่ ความเร็วตัด 200 ม/นาที อัตราป้อนตัด 0.15 มม. ความลึกตัด 0.4 มม. รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.23 การแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษโลหะแบบแตกหักในโดเมน เวลาของแกน X ซึ่งมีเงื่อนไขการตัดดังนี้ได้แก่ ความเร็วตัด 150ม/นาที อัตราป้อนตัด 0.25 มม. ความลึกตัด 0.8 มม. รัศมีจมูกมีด 0.4 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.24 การแปลงเวฟเลทของสัญญาณแรงตัดพลวัตที่มีการเกิดเศษโลหะแบบแตกหักในโดเมน เวลาของแกน Y ซึ่งมีเงื่อนไขการตัดดังนี้ได้แก่ ความเร็วตัด 150ม/นาที อัตราป้อนตัด 0.25 มม. ความลึกตัด 0.8 มม. รัศมีจมูกมีด 0.4 มม. มุมคายเศษโลหะ 11 องศา

จากผลการวิเคราะห์ความสัมพันธ์ระหว่างความตรงและแรงตัดพลวัตในหัวข้อที่ผ่านมา ได้พบว่าในระดับชั้นที่ต่ำของการแปลงเวฟเลทสามารถตรวจจับความถี่ของการแตกหักของเศษ โลหะได้ และความถี่ที่สอดคล้องกับความถี่ความตรงเกิดในระดับที่ 8 ดังนั้นในงานวิจัยนี้จึงได้นำ ค่าที่ได้จากการแยกความถี่ด้วยเวฟเลทในระดับที่ 8 ซึ่งได้ทำการแยกสัญญาณรบกวนจากการเกิด เศษโลหะแตกหักออกแล้วไปใช้วิเคราะห์ความสัมพันธ์ของแรงตัดพลวัตและความกลม เพื่อให้ สามารถทำนายค่าพิสัยเส้นผ่านศูนย์กลางขณะตัดได้แม่นยำมากยิ่งขึ้น

# 4.5 การวิเคราะห์ความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์ของชิ้นงานและอัตราส่วน แรงตัด

จากการวิเคราะห์ความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์ที่วัดได้จากผิวชิ้นงานและ อัตราส่วนแรงป้อนตัด พบว่าเมื่ออัตราส่วนแรงป้อนตัดเพิ่มขึ้น ค่าความตรงเบี่ยงศูนย์ของชิ้นงาน จะมีแนวโน้มเพิ่มขึ้นตามไปด้วย นั่นคือความตรงเบี่ยงศูนย์ชิ้นงานแปรผันตามอัตราส่วนแรงป้อน ตัดดังแสดงในรูปที่ 4.25 จากลักษณะดังกล่าวจึงทำการสรุปได้ว่า แม้เงื่อนไขการตัดจะ เปลี่ยนแปลงไปอย่างไรค่าอัตราส่วนแรงป้อนตัดก็จะมีอิทธิพลต่อความตรงของชิ้นงานและมี แนวโน้มไปในทิศทางเดียวกัน



รูปที่ 4.25 ความสัมพันธ์ระหว่างความตรงเบี่ยงศูนย์ของชิ้นงานและอัตราส่วนแรงป้อนตัด

4.6 การวิเคราะห์ความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางชิ้นงานและอัตราส่วน ค่าเฉลี่ยความแปรปรวนแรงตัดพลวัด



รูปที่ 4.26 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางของชิ้นงานและอัตราส่วน ค่าเฉลี่ยความแปรปรวนแรงพลวัต

จากรูปที่ 4.26 จะเห็นได้ว่าเมื่ออัตราส่วนค่าเฉลี่ยความแปรปรวนแรงตัดพลวัต (AVF_x/AVF_y) มีค่าสูงขึ้น ค่าพิสัยเส้นผ่านศูนย์กลางที่วัดได้ก็จะมีขนาดพิสัยเส้นผ่านศูนย์กลางมาก ขึ้นตามไปด้วย จากความสัมพันธ์ดังกล่าว สรุปได้ว่า อัตราส่วนค่าเฉลี่ยความแปรปรวนแรงพลวัต มีอิทธิพลต่อค่าพิสัยเส้นผ่านศูนย์กลางของชิ้นงานและมีแนวโน้มไปในทิศทางเดียวกันแม้ว่า เงื่อนไขการตัดจะเปลี่ยนแปลงไป

## 4.7 การวิเคราะห์ความสัมพันธ์ระหว่างเงื่อนไขการตัดต่าง ๆกับความตรงและความกลม ของชิ้นงานและการเกิดเศษโลหะ









รูปที่ 4.28 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับความเร็วตัดที่ 100, 150 และ 250 เมตรต่อนาที โดยมีความลึกตัด 0.4, 0.6 และ 0.8 มม. อัตราป้อนตัด 0.15 มม. และ รัศมี จมูกมีด 0.4 มม. มุมคายเศษโลหะ -6 องศา

จากรูปที่ 4.27 และ 4.28 แสดงความสัมพันธ์ระหว่างความตรงและความกลมของชิ้นงาน กับความเร็วตัดที่เงื่อนไขการตัดต่าง ๆ พบว่าค่าทั้งสองมีความสัมพันธ์ในทิศทางตรงกันข้าม กล่าวคือ เมื่อความเร็วตัดเพิ่มขึ้นความตรงเบี่ยงศูนย์และพิสัยเส้นผ่านศูนย์กลางของชิ้นงานจะ ลดลงดังแสดงในรูปที่ 4.29-4.30 แสดงว่าความตรงและความกลมของชิ้นงานมีลักษณะที่ดีขึ้น เนื่องจากความเร็วตัดที่เพิ่มมากขึ้น อุณหภูมิในขณะตัดจึงสูงขึ้น และทำให้ชิ้นงานมีลักษณะอ่อน นุ่มง่ายต่อการตัด แรงที่ใช้ในการตัดจึงน้อยลงดังรูปที่ 4.31-4.32 ซึ่งแสดงให้เห็นว่าเมื่อความเร็ว ตัดเพิ่มขึ้นแรงที่ใช้ในการตัดลดลง และยังสอดคล้องกับค่าความตรงเบี่ยงศูนย์และพิสัยเส้นผ่าน ศูนย์กลางของชิ้นงานที่ลดลงอีกด้วย



รูปที่ 4.29 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัด ที่อัตราป้อนตัด 0.15 มม. ความลึก ตัด 0.8 มม. รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.30 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ เงื่อนไขการตัด อัตราป้อนตัด 0.15 มม. ความ ลึกตัด 0.8 มม. รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.31 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่ความเร็วตัด 100 เมตรต่อนาที อัตราป้อนตัด 0.15 มิลลิเมตรต่อรอบ ความลึกตัด 0.8 มิลลิเมตร รัศมีจมูกมีด 0.8 และ คุมคายเศษโลหะ 11 องศา

					Original Signal				
Winter	alitication in the second	-	its to the state of the		uhdandar gan utiken	deline desidence	alail aiteadha	daharin bikarike.	abbitu pite o, ittle data par
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	1	1		1	Detail Signal D1	I	1	. 1	
Hole All Aller	diana inikilani	uniter de la contra de la contr	ala ala a ala a ala ala ala ala ala ala		i de la prese de la competencia de la c	<del>hin a dikini t</del>	an bien with stand of		and managing the property of t
,	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
		1			Detail Signal D2			tor to be	
it-++\$44	nasi panjapan kalada	er o lavel hand start	-			-	****	+ <del>XI4 II 4 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </del>	1949 - Weiter - Contraction -
D	0.1	0.2	0.3	0.4	0.5 Detail Signal D3	0.6	0.7	0.8	0.9
almak.	an antio participation	Lullas a diamilia	of dependent the second	Jan Juliaba	understaller and the stiller	and and a state of the state of	An ideal a himself	ورواليا المتحاولة المراجد	where where we have a
de alt	an one of the second	a dila bi na bi a la a a	II ibia minany ari ili	alter en altera d	alahistation name a singla	Confight of All Marks	a alanda ah	a dilling and an	akista alietade in cal. it
	0.1	0.2	0.3	0.4	Detail Signal D4	0.6	0.7	0.8	0.9
-	upe-spectrod-statistical	edited and the edited	ant had the life to be	(Hower the shirts	hall the processing the second s	anti-colo-lasticional	White for the man and an and the		devilences in the second second
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
-		11			Detail Signal D5			11 1	1 1 1
Harden	deriftighter the	nthatistication	reported for the services	raphicitizandra	eller and the state of the	haider der flefdeli	http://www.humility	ail alphases alphases	the second s
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D6	0.6	0.7	0.8	0.9
1. Au		a. he	A real of	al. his	und sheaked als	in Millel	Medala in	1. Anthony	h hach allow at all
A A AM	RemarkA AAAA	show show	-A hearth Jan	ann-ullin	nh haadaa han han dha	al-alkada di	Malian and	mappen	Charlen Maranald
0	0.1	0.2	0.3	0.4	0.5 Detail Signal D7	0.6	0.7	0.8	0.9
m	man	min	man	m	mana	Non	min	mm	mann
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	1	1		1	Detail Signal D8	1	4		
LA	m	MA	MA	m	MA	no	rom	M	mm
0	0.1	0.2	0.3	0.4	0.5 Datali Signal DB	0.6	0.7	0.8	0.9
		1		10.00			l.		
		-			-				
D	0.1	0.2	0.3	0.4	0.5 Detail Signal D10	0.6	0.7	0.8	0.9
	0.1	0.2	0.3	0.4	Time (s.)	0.6	0.7	0.6	0.9

รูปที่ 4.32 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่ความเร็วตัด 200 เมตรต่อนาที อัตราป้อนตัด 0.15 มิลลิเมตรต่อรอบ ความลึกตัด 0.8 มิลลิเมตร รัศมีจมูกมีด 0.8 และ คุมคายเศษโลหะ 11 องศา



ความเร็วตัด 100 ม./นาที ความเร็วตัด 150 ม./นาที ความเร็วตัด 200 ม./นาที รูปที่ 4.33 การเกิดเศษโลหะเงื่อนไขการตัด ความเร็วตัด 100, 150 และ 200 ม./นาที อัตราป้อนตัด 0.15 มม. ความลึกตัด 0.4 มม. รัศมีจมูกมีด 0.4 มม. และมุมคายเศษโลหะ -6 องศา

จากรูปที่ 4.33 ผลการวิเคราะห์เศษโลหะพบว่า เมื่อความเร็วตัดเพิ่มสูงขึ้น เศษโลหะจะมี ความยาวต่อเนื่องมากขึ้น เนื่อง จากเมื่อความเร็วตัดเพิ่มสูงขึ้นจะส่งผลให้อุณหภูมิการตัดสูงขึ้น เนื้อวัสดุอ่อนนุ่มมากขึ้น แรงตัดพลวัตลดลง จึงทำให้เศษวัสดุสามารถเคลื่อนตัวออกมาได้อย่าง ต่อเนื่อง





รูปที่ 4.34 กราฟแสดงความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์กับอัตราป้อนตัดที่ 0.15, 0.20 และ 0.25 มิลลิเมตรต่อรอบ โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.35 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับอัตราป้อนตัดที่ 0.15, 0.20 และ 0.25 มิลลิเมตรต่อรอบ โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา

จากรูปที่ 4.34-4.35 พบว่าที่อัตราการป้อนแปรผันตรงกับค่าความตรงและความกลมของ ชิ้นงาน กล่าวคือ เมื่ออัตราป้อนตัดเพิ่ม ความตรงเบี่ยงศูนย์และค่าพิสัยเส้นผ่านศูนย์กลางก็จะ เพิ่มขึ้นด้วย ดังรูปที่ 4.36-4.37 เนื่องจากอัตราการป้อนตัดที่เพิ่มมากขึ้น ทำให้พื้นที่การตัดเพิ่มขึ้น แรงที่ใช้ในการตัดจึงมากขึ้นตามไปด้วยดังแสดงในรูปที่ 4.38-4.39 แรงตัดที่สูงขึ้นนี้จะส่งผลให้ เครื่องมือตัด และชิ้นงานเกิดการสั่นสะเทือน จึงส่งผลให้ความตรงเบี่ยงศูนย์และค่าพิสัยเส้นผ่าน ศูนย์กลางมีค่าสูงมากขึ้นตามไป



รูปที่ 4.36 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัดที่อัตราป้อนตัดที่ 0.15 และ 0.25 มิลลิเมตรต่อรอบ ความเร็วตัด 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.37 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ เงื่อนไขการตัดที่อัตราป้อนตัดที่ 0.15 และ 0.25 มิลลิเมตรต่อรอบ ความเร็วตัด 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.38 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่อัตราป้อนตัดที่ 0.15 มิลลิเมตรต่อรอบ ความเร็วตัด 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.39 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่อัตราป้อนตัดที่ 0.25 มิลลิเมตรต่อรอบ ความเร็วตัด 200 เมตรต่อนาที ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



อัตราป้อนตัด 0.15 มม./รอบ

อัตราป้อนตัด 0.20 มม.ต่อรอบ

รูปที่ 4.40 การเกิดเศษโลหะเงื่อนไขการตัด อัตราป้อนตัด 0.15, 0.20 และ 0.25 มิลลิเมตรต่อรอบ ความเร็วตัด 200 ม./นาที ความลึกตัด 0.8 มม. รัศมีจมูกมีด 0.4 มม. และมุมคายเศษโลหะ 11

องศา

จากรูปที่ 4.40 พบว่า เมื่ออัตราการป้อนตัดสูงมากขึ้น ความยาวเศษโลหะที่เกิดขึ้นจะมี ขนาดสั้นกว่าอัตราการป้อนตัดที่ต่ำกว่า เนื่องจาก เมื่อใช้อัตราการป้อนตัดสูงมากขึ้น พื้นที่การตัด เพิ่มมากขึ้น ส่งผลให้เศษโลหะมีความหนามากขึ้น เกิดการโค้งงอส่งผลให้ความกว้างของเศษโลหะ เพิ่มขึ้น เกิดการโค้งงอ และเคลื่อนชนกับหน้าคายเศษโลหะของมีดตัด ทำให้เกิดการแตกหักของ เศษโลหะได้ง่ายกว่า



4.7.3 ความสัมพันธ์ระหว่างความลึกตัดกับความตรงและความกลมของชิ้นงาน



กราฟความสัมพันธ์ระหว่างความลึกตัดกับค่าพิสัยเส้นผ่านศูนย์กลาง 6 งิสัยเส้นผ่านศูนย์กลาง (ไมโครเมตร) 5 4 3 2 1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ความลึกตัด (มิลลิเมตร) ความเร็วตัด 100 เมตรต่อนาที 🗕 ความเร็วตัด 150 เมตรต่อนาที ---- ความเร็วตัด 200 เมตรต่อนาที

รูปที่ 4.42 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับความลึกตัดที่ 0.4, 0.6 และ 0.8 มิลลิเมตร โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.25 มม. ต่อรอบ และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.43 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัดที่ความลึกตัด 0.4 และ 0.8 มม. ความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัดที่ 0.20 มิลลิเมตรต่อรอบ และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.44 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ การเงื่อนไขการตัดที่ความลึกตัด 0.4 และ 0.8 มม. ความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัดที่ 0.20 มิลลิเมตรต่อรอบ และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา

จากรูป 4.41-4.44 แสดงให้เห็นถึง ความสัมพันธ์ระหว่างความลึกตัดในแต่ละกับความ ตรงเบี่ยงศูนย์และค่าพิสัยเส้นผ่านศูนย์กลาง พบว่าที่ค่าความลึกตัดที่สูงขึ้นนั้นจะให้ค่าความตรง เบี่ยงศูนย์และค่าพิสัยเส้นผ่านศูนย์กลางเพิ่มขึ้น เนื่องจากความลึกตัดที่สูงขึ้นนั้นจะให้ค่าความตรง ตัดมากขึ้น แรงที่ใช้ในการตัดจึงมากขึ้น ก่อให้เกิดการสั่นสะเทือนในกระบวนการตัดสูง ส่งผลให้ แรงตัดพลวัตมีค่าสูงมากขึ้นตามความลึกตัดด้วยดังแสดงในรูปที่ 4.45-4.46 และความเร็วตัดที่ เพิ่มมากขึ้นจะทำให้เกิดความขรุขระผิวสูงสุดที่ลดลงในแต่ละความลึกตัดที่เท่ากัน เนื่องจากการใช้ ความเร็วในการตัดที่สูงส่งผลให้อุณหภูมิในการตัดจึงสูงขึ้นส่งผลให้ผิววัสดุอ่อนนุ่มและการตัดโดย ใช้ความเร็วตัดที่สูงนั้นเป็นผลให้ใช้แรงในการตัดจึงสูงขึ้นส่งผลให้ผิววัสดุอ่อนนุ่มและการตัดโดย ใช้ความเร็วตัดที่สูงนั้นเป็นผลให้ใช้แรงในการตัดน้อยลงทำให้โอกาสที่ชิ้นงานจะเกิดการ สั่นสะเทือนต่ำจึงทำให้วัสดุมีความเรียบผิวสูง ดังนั้น การใช้ความลึกตัดที่ต่ำและความเร็วตัดที่สูง จะทำให้ได้ผิวของวัสดุที่มีความตรงและความกลมมากขึ้น



รูปที่ 4.45 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่ความลึกตัด 0.4 มม. ความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัดที่ 0.20 มิลลิเมตรต่อรอบ และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



รูปที่ 4.46 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่ความลึกตัด 0.8 มม. ความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัดที่ 0.20 มิลลิเมตรต่อรอบ และ รัศมีจมูกมีด 0.8 มม. มุมคายเศษโลหะ 11 องศา



ความลึกตัด 0.8 มม.

ความลึกตัด 0.6 มม.

รูปที่ 4.47 การเกิดเศษโลหะเงื่อนไขการตัด ได้แก่ ความลึกตัด 0.4, 0.6 และ 0.8 มม. ความเร็วตัด 200 ม./นาที่ อัตราป้อนตัด 0.2 มม. รัศมีจมูกมีด 0.8 มม. และมุมคายเศษโลหะ 11 องศา

จากรูปที่ 4.47 พบว่า เมื่อความลึกตัดสูงมากขึ้น ความยาวเศษโลหะมีขนาดสั้นลง เนื่องจากเมื่อความลึกตัดสูงมากขึ้น เศษโลหะจะมีความกว้าง และความหนามากขึ้น เมื่อเคลื่อนที่ ชนกับหน้าคายเศษโลหะ จึงเกิดการแตกหักได้ง่ายกว่าการใช้ความลึกตัดที่ต่ำกว่า

4.7.4 ความสัมพันธ์ระหว่างรัศมีจมูกมีดกับความตรงและความกลมของชิ้นงาน



รูปที่ 4.48 กราฟแสดงความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์กับรัศมีจมูกมีดที่ 0.4 และ 0.8 มม. โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.20 มิลลิเมตรต่อรอบ

ความลึกตัด 0.8 มม. และ มุมคายเศษโลหะ -6 องศา



รูปที่ 4.49 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับรัศมีจมูกมีดที่ 0.4 และ 0.8 มม. โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.20 มิลลิเมตรต่อรอบ ความลึกตัด 0.8 มม. และ มุมคายเศษโลหะ -6 องศา



รูปที่ 4.50 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัดที่รัศมีจมูกมีดที่ 0.4 และ 0.8 มม. โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.25 มิลลิเมตรต่อรอบ ความลึกตัด 0.4 มม. และ มุมคายเศษโลหะ -6 องศา







รูปที่ 4.52 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่รัศมีจมูกมีดที่ 0.4 มม. โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.25 มิลลิเมตรต่อรอบ ความลึกตัด 0.4 มม. และ มุมคายเศษโลหะ -6 องศา



รูปที่ 4.53 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่รัศมีจมูกมีดที่ 0.8 มม. โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.25 มิลลิเมตรต่อรอบ ความลึกตัด 0.4 มม. และ มุมคายเศษโลหะ -6 องศา

จากรูปที่ 4.48 - 4.51 แสดงความสัมพันธ์ของรัศมีจมูกมีดเงื่อนไขการตัดต่างๆกับความ ตรงเบี่ยงศูนย์และพิสัยเส้นผ่านศูนย์กลาง พบว่าเมื่อรัศมีจมูกมีดมีขนาดใหญ่มากขึ้น ค่าความตรง เบี่ยงศูนย์และพิสัยเส้นผ่านศูนย์กลางจะน้อยลง เนื่องจากการใช้รัศมีจมูกมีดที่มีขนาดใหญ่ขึ้น จะ ทำให้พื้นที่การตัดลดลง ส่งผลให้แรงตัดพลวัตมีค่าลดลงดังรูปที่ 4.52-4.53 การสั่นสะเทือนน้อยลง และการใช้รัศมีจมูกมีดที่มีขนาดใหญ่จะช่วยลบรอยตัดที่เกิดจากการป้อนตัดที่เกิดขึ้น จึงทาให้ผิว มีความเรียบมากขึ้น ส่งผลให้ความตรงเบี่ยงศูนย์และค่าพิสัยเส้นผ่านศูนย์กลางลดลง

	₩ 0  <del>₩</del> 6 E	818 218 918 <b>9</b> 18 <b>9</b> 18	SP PP SP 20 12 00 00 SE 22 SE 26 SE
Chapmanaa	INRANANAN	ALLER CO.	
anananan)	Mannan (	W MARTINES	
Chilhananan	www.	monday .	

รัศมีจมูกมีด 0.4 มม.

รัศมีจมูกมีด 0.8 มม.

รูปที่ 4.54 การเกิดเศษโลหะเงื่อนไขการตัด ได้แก่ รัศมีจมูกมีด 0.4 และ 0.8 มม. ความลึกตัด 0.6 มม. ความเร็วตัด 200 ม./นาที อัตราป้อนตัด 0.20 มม. และมุมคายเศษโลหะ 11 องศา

จากรูปที่ 4.54 พบว่า เมื่อรัศมีจมูกมีดมีขนาดใหญ่มากขึ้น เศษโลหะมีที่เกิดขึ้นจะมีความ ยาวต่อเนื่อง เนื่องจากการใช้รัศมีจมูกมีดที่มีขนาดเล็ก จะส่งผลให้เศษโลหะมีความหนา เมื่อ เคลื่อนที่ชนกับหน้าคายเศษโลหะ จึงทาให้เกิดการแตกหักได้ง่ายมากกว่า จึงส่งผลให้เศษโลหะเมื่อ รัศมีจมูกมีดมีขนาดเล็กจึงมีขนาดความยาวที่สั้นมากกว่า

#### 4.7.5 ความสัมพันธ์ระหว่างมุมคายเศษโลหะกับความตรงและความกลมของ ชิ้นงาน



รูปที่ 4.55 กราฟแสดงความสัมพันธ์ระหว่างค่าความตรงเบี่ยงศูนย์กับมุมคายเศษโลหะ -6 และ 11 องศา โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.15 มม.ต่อรอบ ความ ลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม.



รูปที่ 4.56 กราฟแสดงความสัมพันธ์ระหว่างค่าพิสัยเส้นผ่านศูนย์กลางกับมุมคายเศษโลหะ -6 และ 11 องศา โดยมีความเร็วตัด 100, 150 และ 200 เมตรต่อนาที อัตราป้อนตัด 0.15 มม.ต่อรอบ ความลึกตัด 0.4 มม. และ รัศมีจมูกมีด 0.8 มม.



รูปที่ 4.57 การวิเคราะห์ความตรงเบี่ยงศูนย์ ณ เงื่อนไขการตัดมุมคายเศษโลหะ -6 และ 11 องศา โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.20 มม.ต่อรอบ ความลึกตัด 0.8 มม. และ รัศมีจมูกมีด 0.4 มม.


รูปที่ 4.58 การวิเคราะห์พิสัยเส้นผ่านศูนย์กลาง ณ เงื่อนไขการตัดมุมคายเศษโลหะ -6 และ 11 องศา โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.20 มม.ต่อรอบ ความลึกตัด 0.8 มม. และ รัศมีจมูกมีด 0.4 มม.

จากรูป 4.55-4.56 แสดงความสัมพันธ์ระหว่างกับมุมคายเศษโลหะที่ค่าต่างๆกับค่าความ ตรงและความกลมของชิ้นงานตามลำดับ พบว่าเมื่อมุมคายเศษโลหะมีค่ามากขึ้น ค่าความตรง เบี่ยงศูนย์และค่าพิสัยเส้นผ่านศูนย์กลางจะลดลง เนื่องจากมุมคายเศษโลหะมีค่ามากขึ้นเศษโลหะ ที่เกิดในขณะตัดสามารถเคลื่อนที่ออกได้ง่ายขึ้น ความต้านทานการเคลื่อนที่ของมีดตัดจะน้อย ดังนั้น คุณภาพผิวชิ้นงาน ความตรงและความกลมของชิ้นงานที่ได้จะมีค่าที่ดีขึ้นดังรูปที่ 4.57-4.58 อีกทั้งแรงตัดที่เกิดขึ้นในขณะตัดก็จะน้อยลงไปด้วยดังแสดงในรูปที่ 4.59-4.60

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University



รูปที่ 4.59 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่เงื่อนไขการตัดมุม คายเศษโลหะ -6 องศา โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.20 มม.ต่อรอบ ความลึกตัด 0.8 มม. และ รัศมีจมูกมีด 0.4 มม.



รูปที่ 4.60 แสดงสัญญาณแรงตัดจากการแปลงเวฟเลทในกระบวนการกลึงที่เงื่อนไขการตัดมุม คายเศษโลหะ 11 องศา โดยมีความเร็วตัด 150 เมตรต่อนาที อัตราป้อนตัด 0.20 มม.ต่อรอบ ความลึกตัด 0.8 มม. และ รัศมีจมูกมีด 0.4 มม.

₩₩ 81₩ 31₩ 11₩ 01₩ 618 818 218 918 918 11₩10₩1₩1₩1₩1₩1₩1₩1₩1₩1₩1₩1₩1₩1₩1	4+ 9+ 90 ++ 50 17 11 01 00 80 12 90 22 16 50 70
where there were	
and when we are	BOBICKKCKCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
cooper norme convers	22220000000000000000000000000000000000

มุมคายเศษโลหะ -6 องศา

มุมคายเศษโลหะ 11 องศา

รูปที่ 4.61 การเกิดเศษโลหะเงื่อนไขการตัด ได้แก่ มุมคายเศษโลหะ -6 และ 11 องศา รัศมีจมูกมีด 0.8 มม.ความลึกตัด 0.6 มม. ความเร็วตัด 200 ม./นาที อัตราป้อนตัด 0.15 มม. จากการทดลองพบว่ามุมคายเศษโลหะที่มีค่ามาก ลักษณะเศษโลหะที่เกิดขึ้นจะมีความ ยาวต่อเนื่องมากกว่ามุมคายเศษโลหะที่มีค่าน้อยดังแสดงในรูปที่ 4.61 เนื่องจากมุมคายเศษโลหะ ที่มีค่าบวกเศษโลหะที่เกิดขึ้น สามารถเคลื่อนตัวผ่านหน้ามีดตัดออกไปได้ดีกว่ามุมคายเศษโลหะที่ มีค่าลบ เศษโลหะที่เกิดขึ้นจึงมีความยาวต่อเนื่อง

## 4.8 การวิเคราะห์ผลการทดลอง

การวิเคราะห์อันตรกิริยาระหว่างความตรงและความกลมชิ้นงานกับปัจจัยที่ใช้ในการ ทดลอง ที่ระดับของแต่ละปัจจัย วิเคราะห์โดยหากเส้นกราฟที่เกิดขึ้นมีลักษณะขนานกัน จะบ่งบอก ถึงการไม่มีอันตรกิริยา (Interaction) ต่อกันของแต่ละปัจจัย แต่หากเส้นกราฟที่เกิดขึ้นไม่ขนาน หรือเกิดจุดตัดกันจะบ่งบอกถึงการมีอันตรกิริยาต่อกันของแต่ละปัจจัย



รูปที่ 4.62 กราฟอันตรกิริยาระหว่างความตรงชิ้นงานและปัจจัยที่ใช้ในการทดลอง

จากรูปที่ 4.62 แสดงให้เห็นว่าแสดงให้เห็นว่าความตรงชิ้นงานที่เกิดในแต่ละความเร็วตัด มีค่าที่แตกต่างกันในแต่ละระดับปัจจัยต่างๆ โดยความเร็วตัดมีอันตรกิริยาระหว่างปัจจัยที่เกี่ยว ของ ได้แก่ อัตราการป้อน ความลึกตัด รัศมีจมูกมีด และมุมคายเศษโลหะ



รูปที่ 4.63 กราฟอันตรกิริยาระหว่างความกลมชิ้นงานและปัจจัยที่ใช้ในการทดลอง

จากรูปที่ 4.63 แสดงให้เห็นว่าความกลมชิ้นงานที่เกิดขึ้นบนระดับของความเร็วตัดมีค่าไม่ เท่ากันที่ระดับของปัจจัยอื่นๆ แสดงให้เห็นว่าความเร็วตัดมี อันตรกิริยาระหว่างปัจจัยที่เกี่ยวข้องใน การทดลอง ได้แก่ อัตราการป้อน ความลึกตัด รัศมีจมูกมีด และมุมคายเศษโลหะ แต่เมื่อกำหนดให้ ปัจจัยอื่นๆ คงเดิมและทำการเปลี่ยนแปลงความเร็วตัดก็จะพบว่า เมื่อความเร็วตัดที่เปลี่ยนแปลง ไปจะส่งผลต่อความกลมชิ้นงาน แสดงว่าความเร็วตัดมีผลอย่างมีนัยสำคัญ



รูปที่ 4.64 ผลหลัก (Main effect) ของความตรงและปัจจัยที่ใช้ในการทดลอง



รูปที่ 4.65 ผลหลัก (Main effect) ของความกลมและปัจจัยที่ใช้ในการทดลอง

จากรูปที่ 4.64-4.65 แสดงผลหลักของความตรงและความกลมชิ้นงานกับปัจจัยที่ใช้ใน การทดลอง สามารถสรุปได้ดังนี้คือ

ความเร็วตัดเพิ่มสูงมากขึ้นทำให้ความตรงและความกลมชิ้นงานลดลง เนื่องจากการ
 เพิ่มความเร็วตัดทำให้อุณหภูมิการตัดเพิ่มสูงมากขึ้น วัสดุจะอ่อนนุ่มลง แรงตัดจึงลดลง ส่งผลให้
 ความตรงและความกลมชิ้นงานมีค่าลดลง

- อัตราการป้อนตัดเพิ่มขึ้นทำให้ความตรงและความกลมชิ้นงานเพิ่มขึ้น เนื่องจากการการ
 เพิ่มอัตราการป้อนตัดทำให้พื้นที่การตัดเพิ่มขึ้น แรงตัดเพิ่มขึ้น เกิดการสั่นสะเทือนที่มีดตัดและ
 ชิ้นงาน นอกจากนี้ยังทำให้เกิดรอยป้อนตัดที่มีสันสูงขึ้น ความตรงและความกลมชิ้นงานจึงเพิ่มขึ้น

ความลึกตัดเพิ่มขึ้นทำให้ความตรงและความกลมชิ้นงานเพิ่มขึ้น เนื่องจากการการเพิ่ม
 ความลึกตัดทำให้พื้นที่การตัดเพิ่มขึ้น แรงตัดเพิ่มขึ้น เกิดการสั่นสะเทือนที่มีดตัดและชิ้นงาน

รัศมีจมูกมีดเพิ่มขึ้นทำให้ความตรงและความกลมชิ้นงานลดลง เนื่องจากการเพิ่มขนาด
 รัศมีจมูกมีดจะทำให้พื้นที่การตัดลดลง แรงตัดลดลง ความตรงและความกลมชิ้นงานจึงลดลง

- มุมคายเศษโลหะเพิ่มขึ้นทำให้ความตรงและความกลมชิ้นงานลดลง เนื่องจากการเพิ่ม มุมคายเศษโลหะจะช่วยลดการต้านทานการเคลื่อนที่ของเศษโลหะ ส่งผลให้แรงตัดลดลง ความ ตรงและความกลมชิ้นงานจึงลดลงไปด้วย

#### 4.9 การทดสอบการกระจายแบบปกติ

ทำการทดสอบการกระจายแบบปกติของค่าความคลาดเคลื่อน (Residual) ด้วย Normal Probability Plot โดยมีสมมติฐานของการทดสอบดังนี้

> H₀: ความคลาดเคลื่อนมีการแจกแจงแบบปกติ H₁: ความคลาดเคลื่อนไม่มีการแจกแจงแบบปกติ





จากรูปที่ 4.66 พบว่าความคลาดเคลื่อนของความตรงของชิ้นงาน การเรียงตัวมีแนวโน้ม เป็นแนวเส้นตรง และมีค่า P-Value = 0.121 ซึ่งมากกว่าระดับนัยสำคัญที่ **α** = 0.05 จึงยอมรับ สมมติฐานหลัก และสรุปได้ว่าข้อมูลมีการกระจายแบบปกติ



รูปที่ 4.67 Normal Probability Plot ข้อมูลความกลมชิ้นงาน

จากรูปที่ 4.67 พบว่าความคลาดเคลื่อนของความกลมของชิ้นงาน การเรียงตัวมีแนวโน้ม เป็นแนวเส้นตรง และมีค่า P-Value = 0.058 ซึ่งมากกว่าระดับนัยสำคัญที่ **α** = 0.05 จึงยอมรับ สมมติฐานหลัก และสรุปได้ว่าข้อมูลมีการกระจายแบบปกติ

## 4.10 การทดสอบความเป็นอิสระของข้อมูล

จากรูปที่ 4.68 แสดงความสัมพันธ์ระหว่างค่าคลาดเคลื่อนกับลำดับการเก็บข้อมูลความ ตรงชิ้นงาน พบว่าลักษณะของค่าความคลาดเคลื่อนมีการกระจายตัวรอบศูนย์ และไม่มีรูปแบบ เป็นอย่างใดอย่างหนึ่ง หรือเป็นวัฏจักร ดังนั้นจึงสามารถสรุปได้ว่าข้อมูลที่ได้จากการทดลองมี ความเป็นอิสระต่อกัน



รูปที่ 4.68 กราฟแสดงความสัมพันธ์ระหว่างค่าคลาดเคลื่อนกับลำดับการเก็บข้อมูลความตรง



รูปที่ 4.69 กราฟแสดงความสัมพันธ์ระหว่างค่าคลาดเคลื่อนกับลำดับการเก็บข้อมูลความกลม ชิ้นงาน

จากรูปที่ 4.69 แสดงความสัมพันธ์ระหว่างค่าคลาดเคลื่อนกับลำดับการเก็บข้อมูลความ ตรงชิ้นงาน พบว่าลักษณะของค่าความคลาดเคลื่อนมีการกระจายตัวรอบศูนย์ และไม่มีรูปแบบ เป็นอย่างใดอย่างหนึ่ง หรือเป็นวัฏจักร ดังนั้นจึงสามารถสรุปได้ว่าข้อมูลที่ได้จากการทดลองมี ความเป็นอิสระต่อกัน



4.11 การทดสอบความสม่ำเสมอของความแปรปรวน

รูปที่ 4.70 แสดงการทดสอบความสม่ำเสมอของความแปรปรวนความตรงของชิ้นงาน

จากรูปที่ 4.70 แสดงการทดสอบความสม่ำเสมอของความแปรปรวนความตรงของชิ้นงาน โดยการตรวจสอบความสม่ำเสมอของการกระจายตัวของข้อมูล พบว่าค่าความ คลาดเคลื่อนของ ข้อมูลมีการกระจายตัวอยู่รอบศูนย์ ไม่มีลักษณะเป็นรูปแบบใดแบบหนึ่ง ดังนั้นสามารถสรุปได้ว่า ความแปรปรวนของชุดข้อมูลมีค่าคงที่ค่าหนึ่ง



รูปที่ 4.71 แสดงการทดสอบความสม่ำเสมอของความแปรปรวนความกลมชิ้นงาน

จากรูปที่ 4.71 แสดงการทดสอบความสม่ำเสมอของความแปรปรวนความกลมชิ้นงาน โดยการตรวจสอบความสม่ำเสมอของการกระจายตัวของข้อมูล พบว่าค่าความคลาดเคลื่อนของ ข้อมูลมีการกระจายตัวอยู่รอบศูนย์ ไม่มีลักษณะเป็นรูปแบบใดแบบหนึ่ง ดังนั้นสามารถสรุปได้ว่า ความแปรปรวนของชุดข้อมูลมีค่าคงที่ค่าหนึ่ง

# 4.12 สมการทำนายความตรงของชิ้นงาน

จากผลการทดลองที่ได้ในตารางที่ 4.1 สามารถนำมาพัฒนาสมการทำนายความตรงและ ความตรงของชิ้นงานได้โดยนำเงื่อนไขการตัดต่าง ๆ ได้แก่ ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด และมุมคายเศษโลหะ รวมทั้งอัตราส่วนแรงป้อนตัดพลวัตกับแรงป้อนตัดสถิตและ อัตราส่วนค่าเฉลี่ยความแปรปรวนแรงตัดพลวัตมาทำการวิเคราะห์ด้วยการถดถอยแบบพหุคูณ (Multiple Linear Regression Analysis) และใช้วิธีกาลังสองน้อยที่สุดเพื่อประมาณค่าสัมประสิทธิ์ ของการถดถอยได้สมการทำนายความตรงและความกลมชิ้นงาน ดังสมการที่ 4.1 และ 4.2 ตา ลำดับ

$$lnS_{t} = 6.099 - 0.3303 lnV + 1.0736 lnf + 0.2380 lnD - 0.6270 lnR_{n} - 0.009586\gamma + 0.1021 ln(\frac{F_{y(max)} - F_{y(min)}}{F_{y(s)}})$$
(4.1)

$$lnR_{0} = 2.130 - 0.0819 lnV + 0.0846 lnf + 0.0541 lnD - 0.0632 lnR_{n} - 0.004763\gamma + 0.3036 ln(\frac{AVF_{x}}{AVF_{x}})$$
(4.2)

### 4.12.1 การทดสอบนัยสำคัญของการถดถอย

จากการวิเคราะห์ความแปรปรวนของการถดถอยเพื่อทำการทดสอบความสัมพันธ์ของตัว แปรตาม (พิสัยเส้นผ่านศูนย์กลาง) และตัวแปรอิสระ ซึ่งประกอบด้วย ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด มุมคายเศษโลหะ และแรงขณะตัด ที่ระดับการยอมรับความผิดพลาดที่ 5% (**α** = 0.05) มีสมมติฐานดังนี้

$$H_0:eta_1=eta_2=eta_3=eta_4=eta_5=eta_6=0$$
  
 $H_1:eta_j$ อย่างน้อย  $1$  ตัวไม่เท่ากับศูนย์

Analysis of Variance											
Source	DF	Adj SS	Adj MS	F-Value	P-Value						
Regression	6	15.0112	2.50187	214.37	0.000						
lnV	1	0.7142	0.71423	61.20	0.000						
lnf	1	2.4606	2.46060	210.83	0.000						
lnD	1	0.4479	0.44791	38.38	0.000						
lnRn	1	2.9120	2.91203	249.51	0.000						
Rake angle	1	0.5814	0.58144	49.82	0.000						
ln[Fy(max)-Fy(min)]/Fy(s)	1	0.0708	0.07079	6.07	0.016						
Error	96	1.1204	0.01167								
Total	102	16.1316									
Model Summary											
S R-sq R-sq(adj) R-sq(pred) 0.108032 93.05% 92.62% 91.98%											

รูปที่ 4.72 การวิเคราะห์ความแปรปรวนของการถดถอยของสมการความตรง

Analysis of Varian	ce				
Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	6	1.58830	0.264717	152.31	0.000
lnV	1	0.06133	0.061331	35.29	0.000
lnf	1	0.11318	0.113180	65.12	0.000
lnD	1	0.02348	0.023475	13.51	0.000
lnRn	1	0.01727	0.017272	9.94	0.002
Rake Angle	1	0.13992	0.139923	80.51	0.000
ln(AV Fx/AV Fy)	1	0.52610	0.526104	302.70	0.000
Error	100	0.17380	0.001738		
Total	106	1.76211			
Model Summary					
S R-sq	R-sq	(adj) R-	sq(pred)		
0.0416895 90.14%	8	9.54%	88.65%		

รูปที่ 4.73 การวิเคราะห์ความแปรปรวนของการถดถอยของสมการความกลม

จากผลการวิเคราะห์ความแปรปรวนของการถดถอยของสมการความตรงและความกลม ดังแสดงในรูปที่ 4.72 และ 4.73 พบว่าทั้ง 2 สมการมีค่า P-Value เท่ากับ 0.000 จึงทำการปฏิเสธ สมมติฐานหลัก (H₀) และสรุปได้ว่ามีตัวแปรอิสระอย่างน้อย 1 ตัว ที่มีผลต่อตัวแปรตอบสนอง หมายความว่าสมการถดถอยที่ได้จากการวิจัยนี้สามารถนำไปใช้ประมาณค่าความตรงที่เกิดขึ้นได้

# 4.12.2 การทดสอบสัมประสิทธิ์การถดถอยทีละตัว

การทดสอบสัมประสิทธิ์การถดถอยทำเพื่อทดสอบว่าตัวแปรอิสระมีความสามารถในการ อธิบายการเปลี่ยนแปลงค่าความตรงและความกลมได้หรือไม่ โดยมีสมมติฐานดังนี้คือ

$$H_0: \beta_j = 0$$
$$H_1: \beta_j \neq 0$$

Coefficients										
Term	Coef	SE Coei	T-Value	P-Value	VIF					
Constant	6.099	0.225	27.13	0.000						
lnV	-0.3303	0.0422	-7.82	0.000	1.29					
lnf	1.0736	0.0739	14.52	0.000	2.07					
lnD	0.2380	0.0384	6.20	0.000	1.04					
lnRn	-0.6270	0.0397	-15.80	0.000	1.67					
Rake angle	-0.00958	0.00136	-7.06	0.000	1.17					
ln[Fy(max)-Fy(min)]/Fy(s)	0.1021	0.0415	2.46	0.016	3.25					
Regression Equation										
lnSt = 6.099 - 0.3303 lnV	+ 1.0736 1	nf + 0.23	80 lnD -	0.6270 ln	Rn - 0.00958 R	ake angle				
+ 0.1021 ln[Fy(max)	-Fy(min)]/	Fy(s)								



Coefficients										
Term	Coef	SE Coef	T-Value	P-Value	VIF					
Constant	2.3410	0.0898	26.06	0.000						
lnV	-0.0937	0.0158	-5.94	0.000	1.20					
lnf	0.1589	0.0197	8.07	0.000	1.01					
lnD	0.0568	0.0155	3.68	0.000	1.21					
lnRn	-0.0395	0.0125	-3.15	0.002	1.14					
Rake Angle	-0.004420	0.000493	-8.97	0.000	1.08					
ln(AV Fx/AV Fy)	0.3040	0.0175	17.40	0.000	1.49					
Regression Equation										
lnRoundness = 2.3410 - 0.0937 lnV + 0.1589 lnf + 0.0568 lnD - 0.0395 lnRn - 0.004420 Rake Angle + 0.3040 ln(AV Fx/AV Fy)										

# รูปที่ 4.75 การทดสอบสัมประสิทธิ์การถดถอยของสมการความกลม

จากการวิเคราะห์การทดสอบสัมประสิทธิ์การถดถอยของสมการความตรงและความกลม ชิ้นงานดังรูปที่ 4.74 และ 4.75 ตามลำดับ พบว่าค่า P-Value ของตัวแปรอิสระในสมการ มีค่าน้อย กว่าระดับการยอมรับความผิดพลาดที่ 5% (**α**= 0.05) ทุกตัวแปรค่า จึงทำการปฏิเสธสมมติฐาน หลัก (H₀) และสรุปได้ว่าตัวแปรอิสระในสมการสามารถใช้ในการทำนายค่าความตรงและความ กลมได้ทุกตัวแปรอย่างมีนัยสำคัญ

# 4.12.3 การวิเคราะห์สัมประสิทธิ์การตัดสินใจของสมการทำนายความตรงชิ้นงาน

จากการวิเคราะห์การถดถอยตามรูปที่ 4.72 สมการทำนายความตรงชิ้นงานมีค่า R²= 93.05% และ R²_{adj} = 92.62% หมายความว่า ตัวแปรตอบสนองหรือค่าความตรงชิ้นงาน เปลี่ยนแปลงตามตัวแปรอิสระ (ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด มุมคายเศษ โลหะ และแรงขณะตัด) 93.05% และสัมประสิทธิ์การตัดสินใจที่ได้สามารถอธิบายตัวแปร ตอบสนองได้เป็นอย่างดี ดังนั้นจึงเสนอสมการทำนายความตรงในรูปแบบของสมการเอกซ์โปเนนเซียล ด้วยการ แปลงลอการิทึมธรรมชาติออกจากสมการ จะได้สมการความตรงดังนี้

$$S_{t} = e^{6.099} \cdot V^{-0.3303} \cdot f^{1.0736} \cdot D^{0.2380} \cdot R_{n}^{-0.6270} \cdot \gamma^{-0.00958} \cdot (\frac{F_{y(\max)} - F_{y(\min)}}{F_{y(s)}})^{0.1021}$$

จากการวิเคราะห์การถดถอยตามรูปที่ 4.73 สมการทำนายความกลมชิ้นงานมีค่า R²= 90.14% และ R²_{adj} = 89.54 % หมายความว่า ตัวแปรตอบสนองหรือค่าความตรงชิ้นงาน เปลี่ยนแปลงตามตัวแปรอิสระ (ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด มุมคายเศษ โลหะ และแรงขณะตัด) 90.14% และสัมประสิทธิ์การตัดสินใจที่ได้สามารถอธิบายตัวแปร ตอบสนองได้เป็นอย่างดี

ดังนั้นจึงนำเสนอสมการทำนายความกลมในรูปแบบของสมการเอกซ์โปเนนเซียล ด้วยการ แปลงลอการิทึมธรรมชาติออกจากสมการ จะได้สมการความกลมดังนี้

$$R_0 = e^{2.3410} \cdot V^{-0.0937} \cdot f^{0.1589} \cdot D^{0.0568} \cdot R_n^{-0.0395} \cdot \gamma^{-0.004420} \cdot (\frac{AVF_x}{AVF_y})^{0.3040}$$

### 4.13 การทดสอบความแม่นยำของสมการ

สมการทำนายความตรงและความกลมชิ้นงานที่ถูกพัฒนาขึ้นนี้ จะต้องมีการทดสอบความ แม่นยำโดยคาดหวังว่าสมการจะสามารถใช้ทำนายความตรงและความกลมชิ้นงานสำหรับงาน กลึงได้ดีภายใต้เงื่อนไขการตัดอื่นๆ โดยการทดสอบความแม่นยำแบ่งเป็น 2 การทดสอบ คือ การ ทดสอบที่อยู่ในขอบเขตเงื่อนไขการตัดเดิม และการทดสอบที่อยู่นอกขอบเขตเงื่อนไขการตัดเดิม การทดสอบความแม่นยำของสมการทำนายความตรงและความกลมที่ถูกพัฒนาขึ้นในงานวิจัยนี้ จะทำโดยการเปลี่ยนแปลงเงื่อนไขการตัดใหม่ ซึ่งการทดลองภายใต้ขอบเขตเงื่อนไขการตัดใหม่ที่ กำหนดขึ้นแสดงดังตารางที่ 4.2

	DNMG150604FN						
เน็คมีคอาร์ๆมด์	DNMG150608FN						
	DCMT11T304HQ						
	DCMT11T308HQ						
ความเร็วตัด (เมตร/นาที)	120, 250						
อัตราป้อน (มิลลิเมตร/รอบ)	0.18, 0.30						
ความลึกตัด (มิลลิเมตร)	0.2, 0.5						
รัศมีจมูก (มิลลิเมตร	0.4, 0.8						
มุมคายเศษโลหะ (องศา)	-6, 11						

ตารางที่ 4.2 เงื่อนไขการตัดเพื่อการทดสอบความแม่นยำสมการทำนายความตรงและความกลม

พิสัยเส้นผ่าน ศูนย์กลางจากสมการ	4.687	4.731	4.185	4.975	4.705	4.844	4.411	4.941	3.953	4.903	4.960	5.104	4.585	206'9	5.395	5.621
พิสัยเส้นผ่าน ศูนย์กลางจากการวัด	4.703	4.324	4.390	4.883	4.460	4.947	4.320	5.087	4.335	5.399	5.332	5.359	4.981	6.325	5.331	5.849
$\frac{AVF_x}{AVF_y}$	0.726	1.479	0.898	1.264	1.173	1.482	0.934	0.902	0.611	0.853	1.147	1.113	0.819	1.098	1.749	1.090
ความตรง จากสมการ	10.052	13.467	7.835	21.792	11.493	9.237	12.301	15.747	8.960	20.626	19.596	10.983	13.329	20.250	14.705	23.249
ความตรง จากการวัด	10.837	13.593	9.058	20.726	12.504	10.730	12.391	16.726	9.007	18.538	18.391	11.212	14.090	21.163	14.476	26.499
$\frac{F_{y(max)}-F_{y(min)}}{F_{y(s)}}$	0.12556	0.088044	0.078617	0.267795	0.074487	0.070099	0.036261	0.122395	0.251405	0.156063	0.293089	0.120355	0.128197	0.198881	0.218249	0.070963
7	ę	-	7	ę	<u> </u>	÷	1	1	ę	ę	5	÷	9	9-	÷	9
Rn	0.8	0.8	0.8	0.4	0.4	0.4	0.4	0.4	0.8	0.8	0.8	0.8	0.8	0.4	0.8	0.4
۵	0.5	0.2	0.5	0.2	0.5	0.2	0.2	0.5	0.2	0.5	0.5	0.2	0.2	0.5	0.5	0.2
۹.	0.18	0.3	0.18	0.3	0.18	0.18	0.18	0.18	0.18	0.3	0.3	0.3	0.3	0.18	0.3	0.3
>	250	120	250	250	250	250	120	120	250	120	120	250	250	120	250	120
ลำดับ	~	2	ю	4	5	9	7	8	6	10	11	12	13	14	15	16

ตารางที่ 4.3 ผลการทดลองเพื่อทดสอบความแม่นยำ

พิสัยเส้นผ่าน ศูนย์กลางจากสมการ	4.851	5.375	4.326	5.941	4.317	5.441	4.752	4.897	5.454	5.263	5.424	4.994	6.066	5.031	4.870	5.926
พิสัยเส้นผ่าน ศูนย์กลางจากการวัด	4.454	5.452	4.176	6.562	4.736	5.986	4.895	4.976	5.460	5.210	5.148	5.081	5.847	5.233	4.411	5.727
$\frac{AVF_x}{AVF_y}$	1.255	1.379	1.257	1.680	6/9.0	1.019	0.966	1.529	1.755	2.828	1.697	0.910	1.763	1.194	0.028	3.762
ความตรง จากสมการ	21.877	20.947	6.558	14.211	28.601	25.238	12.974	23.682	9.408	17.994	16.629	16.855	14.587	26.212	9.242	11.478
ความตรง จากการวัด	25.746	23.983	8.019	16.428	31.688	28.642	12.379	28.034	10.688	18.177	16.428	15.206	16.748	25.679	9.835	12.039
$\frac{F_{y(\max)}-F_{y(\min)}}{F_{y(s)}}$	0.099113	0.027251	0.099497	0.084753	0.03094	0.168612	0.120689	0.152105	0.049376	0.189091	0.143556	0.01855	0.109953	0.141631	0.052113	0.028108
٨	9-	11	11	11	9-	9-	9-	11	11	9-	11	9-	9-	11	9-	9-
Ru	0.8	0.4	0.8	0.8	0.4	0.4	0.4	0.4	0.8	0.8	0.4	0.4	0.4	0.4	0.8	0.8
۵	0.5	0.2	0.2	0.2	0.5	0.5	0.2	0.5	0.5	0.2	0.2	0.2	0.5	0.5	0.2	0.5
*	0.3	0.3	0.18	0.18	0.3	0.3	0.18	0.3	0.18	0.3	0.3	0.18	0.18	0.3	0.18	0.18
>	250	120	250	120	120	250	250	250	120	120	250	120	250	120	120	120
ลำดับ	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

-



รูปที่ 4.76 การทดสอบความแม่นย้าของสมการทำนายความตรง

ค่าเฉลี่ยเปอร์เซ็นต์ความคลาดเคลื่อน  $= \frac{100}{n} \sum_{t=1}^{n} \frac{|f_t - a_t|}{a_t}$ ค่าเฉลี่ยเปอร์เซ็นต์ความแม่นยำ = 100% – ค่าเฉลี่ยเปอร์เซ็นต์ความคลาดเคลื่อน เมื่อ  $f_t$  = ความกลมที่ได้จากการทำนาย  $a_t$  = ความกลมที่ได้จากการตรวจสอบจริง โดยที่ n = 1, 2, ...., t

จากการคำนวณค่าเฉลี่ยความคลาดเคลื่อนของสมการทำนายความตรงของชิ้นงานดังรูป ที่ 4.76 พบว่ามีค่าเท่ากับ 7.85% นั่นคือ สมการทำนายความตรงของชิ้นงานมีค่าความแม่นยา เท่ากับ 92.14% ซึ่งถือว่าสมการมีความแม่นยำสูงและสามารถทำนายความตรงของชิ้นงานใน ระดับที่ยอมรับได้



รูปที่ 4.77 การทดสอบความแม่นยำของสมการทำนายความกลมชิ้นงาน

จากการคำนวณค่าเฉลี่ยความคลาดเคลื่อนของสมการทำนายความกลมของชิ้นงานดังรูป ที่ 4.77 พบว่ามีค่าเท่ากับ 4.49% นั่นคือ สมการทำนายความตรงของชิ้นงานมีค่าความแม่นยำ เท่ากับ 95.51% ซึ่งถือว่าสมการมีความแม่นยำสูงและสามารถทำนายความกลมของชิ้นงานใน ระดับที่ยอมรับได้

งานวิจัยนี้ได้สมการทำนายค่าความตรงและความกลมของชิ้นงานซึ่งมีความแม่นยำที่สูง กว่าสมการที่ได้จากการวิเคราะห์โดยใช้การแปลงฟูเรียร์อย่างเร็ว โดยสมการทำนายความตรงมีค่า ความแม่นยำเท่ากับ 92.14% และสมการทำนายความกลมมีค่าความแม่นยำเท่ากับ 95.51% ดังนั้นการประยุกต์ใช้การแปลงเวฟเลทในการแยกสัญญาณสอดคล้องความตรงและความกลม ชิ้นงานนั้น นอกจากจะสามารถนำมาพัฒนาสมการทำนายความตรงและความกลมชิ้นงานได้ แม่นยำยิ่งขึ้นแล้ว ยังสามารถทำนายความตรงและความกลมชิ้นงานได้ เงื่อนไขการตัดนั้นจะเกิดเศษโลหะแบบต่อเนื่องหรือแตกหักก็ตาม ซึ่งสามารถนำไปประยุกต์ใช้ได้ จริงในภาคอุตสาหกรรม

# บทที่ 5 สรุปผลการวิจัย อภิปรายผล และข้อเสนอแนะ

งานวิจัยนี้มีวัตถุประสงค์เพื่อหาความสัมพันธ์ระหว่างค่าความตรงกับกับอัตราส่วนแรง ป้อนตัดพลวัตต่อแรงป้อนตัดสถิต และความกลมกับค่าพิสัยเส้นผ่านศูนย์กลาง ของชิ้นงานที่ เกิดขึ้นในขณะตัดภายใต้เงื่อนไขการตัดต่าง ๆ บนเครื่องกลึงซีเอ็นซี โดยการศึกษาความสัมพันธ์ ดังกล่าวนำไปสู่การพัฒนาเป็นสมการความสัมพันธ์เพื่อใช้ทำนายความตรงและความกลมของ ชิ้นงานในขณะตัดชิ้นงาน สำหรับชิ้นงานเหล็ก S45C ด้วยใบมีดคาร์ไบด์เคลือบผิว

#### 5.1 สรุปผลการวิจัย

สมการสำหรับทำนายความตรงและความกลมของชิ้นงานในขณะตัดนั้นได้ถูกพัฒนาขึ้น โดยอยู่ในรูปพังก์ชั่นของเงื่อนไขการตัด ได้แก่ ความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด มุมคายเศษโลหะ และอัตราส่วนแรงป้อนตัด ในขั้นตอนการดาเนินงานวิจัยได้มีการติดตั้งไดนาโม มิเตอร์เพื่อตรวจวัดสัญญาณแรงตัดพลวัตที่เกิดขึ้นในขณะตัดชิ้นงาน ซึ่งเป็นตัวแปรตัวหนึ่งในการ ทำนายความตรงโดยจะอยู่ในรูปของอัตราส่วนแรงป้อนตัดพลวัตต่อแรงป้อนตัดสถิต และอยู่ในรูป ของค่าเฉลี่ยความแปรปรวนแรงตัดพลวัตในการทำนายความกลมของชิ้นงาน

ความสัมพันธ์ระหว่างความตรงและความตรงของชิ้นงานกับแรงป้อนตัด และเงื่อนไขการ ตัดอื่น ๆได้ ถูกนำมาวิเคราะห์ด้วยการใช้สมการแบบฟังก์ชันเอกซ์โพเนนเชียล เนื่องจากข้อมูล ความตรงและความกลมมีลักษณะคล้ายกับความขรุขระผิวของชิ้นงาน จึงอาศัยทฤษฎี ความสัมพันธ์ของความขรุขระผิว ทั้งนี้การหาความสัมพันธ์แบบถดถอยพหุคูณถูกนำมาใช้ วิเคราะห์เพื่อหาค่าสัมประสิทธิ์การถดถอยของแบบจำลองความตรงและความกลมของชิ้นงาน ด้วยการใช้วิธีกาลังสองน้อยที่สุด

จากการวิจัยพบว่า อัตราการป้อนตัด และอัตราส่วนแรงตัดเป็นสองปัจจัยที่มีอิทธิพลต่อ ค่าความตรงของชิ้นงานมากที่สุด และสามารถอธิบายความตรงของชิ้นงานได้อย่างมีนัยสาคัญ โดยที่ความตรงของชิ้นงานจะมีแนวโน้มที่ดีขึ้นเมื่อใช้ความเร็วตัด รัศมีจมูกมีด และมุมคายเศษ โลหะที่มีค่ามาก ๆ ในขณะที่ใช้อัตราการป้อนตัด และความลึกตัดที่น้อย ๆ ดังแสดงให้เห็นถึง ความสัมพันธ์ในสมการทำนายความตรงของชิ้นงาน 4.7-1 จากการทดลองซ้าเพื่อตรวจสอบความ แม่นยาของสมการโดยเปลี่ยนเงื่อนไขการทดลอง พบว่าสมการทำนายความตรงของชิ้นงาน (St) มี ความแม่นยาเท่ากับ 92.14% ในส่วนของความกลมชิ้นงานอัตราส่วนค่าเฉลี่ยความแปรปรวนแรงตัดพลวัต (AVFx/AVFy) เป็นปัจจัยที่มีอิทธิพลต่อพิสัยเส้นผ่านศูนย์กลางมากที่สุด โดยพิสัยเส้นผ่าน ศูนย์กลางที่ดีนั้นได้มากจากการเพิ่มความเร็วตัด ลดอัตราการป้อน ลดความลึกตัด เพิ่มขนาด รัศมีจมูกมีด และใช้มุมคายเศษโลหะที่มีค่ามาก จากการทดสอบความแม่นยำของสมการด้วยการ ทดลองด้วยเงื่อนไขที่อยู่ภายใต้ของเขตของการทำวิจัย พบว่าสมการทำนายพิสัยเส้นผ่าน ศูนย์กลางมีความแม่นยำในระดับสูง (95.51%) เป็นที่ยอมรับได้ และสามารถนำไปใช้ในการ อธิบายพิสัยเส้นผ่านศูนย์กลางได้เป็นอย่างดี

### 5.2 อภิปรายผลการวิจัย

 ปัจจัยที่ใช้ในการพัฒนาสมการทำนายความตรงและความกลมชิ้นงาน ได้แก่ ความเร็ว ตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีด มุมคายเศษโลหะ อัตราส่วนค่าเฉลี่ยความ แปรปรวนแรงตัดพลวัต และอัตราส่วนแรงป้อนตัดพลวัตต่อแรงป้อนตัดสถิต สามารถอธิบายการ เปลี่ยนแปลงของความกลมและความตรงภายใต้เงื่อนไขการตัดที่เปลี่ยนแปลงไปได้อย่างมี นัยสำคัญ

2) จากการพัฒนาสมการพบว่า อัตราป้อนตัด มีอิทธิพลต่อการเปลี่ยนแปลงของความตรง เบี่ยงศูนย์มากที่สุด เนื่องจากรอยป้อนตัดที่เกิดขึ้นส่งผลต่อระยะความขรุขระผิวที่มากที่สุด (max) และน้อยที่สุด (min) นั่นคือข้อมูลของความตรงเบี่ยงศูนย์ของชิ้นงานนั่นเอง โดยความสัมพันธ์ของ ตัวแปรทั้งสองสามารถอธิบายได้ว่า เมื่อเพิ่มอัตราป้อนตัดพบว่าความตรงเบี่ยงศูนย์มีค่ามากขึ้น หมายความว่า ความตรงของชิ้นงานลดลง ในทางตรงกันข้าม เมื่อใช้อัตราป้อนตัดน้อย ๆ ความ ตรงของชิ้นงานจะมีแนวโน้มที่ดี

3) ปัจจัยที่มีอิทธิพลต่อพิสัยเส้นผ่านศูนย์กลางมากที่สุด คือ อัตราส่วนค่าเฉลี่ยความ แปรปรวนแรงตัดพลวัต เมื่อค่าเฉลี่ยความแปรปรวนแรงรัศมี (AVFx) เพิ่มขึ้นมากกว่าค่าเฉลี่ย ความแปรปรวนแรงป้อนตัด (AVFy) ส่งผลให้ความกลมที่ได้เพิ่มขึ้น เนื่องจากแรงรัศมีพลวัต (Fx) ส่งผลโดยตรงต่อรูปร่างความกลมของชิ้นงาน จากการทดลองแสดงให้เป็นว่าอัตราส่วนค่าความ แปรปรวนแรงตัดพลวัต สามารถนำมาใช้ในการทำนายพิสัยเส้นผ่านศูนย์กลางได้ภายใต้เงื่อนไข การตัดที่เปลี่ยนแปลงไปได้เป็นอย่างดี

4) การทำสอบความแม่นยำของสมการ ด้วยการทดลองตัดด้วยเงื่อนไขการตัดใหม่ พบว่า สมการทำนายความตรงเบี่ยงศูนย์และสมการทำนายพิสัยเส้นผ่านศูนย์กลางนี้ สามารถใช้ในการ อธิบายความตรงและความกลมได้ตามลำดับ เนื่องจากความสัมพันธ์ที่เกิดขึ้นจากผลการทดลอง ทดสอบความแม่นยำสมการ มีความสัมพันธ์ลักษณะเดียวกันแม้ว่าเงื่อนไขการตัดจะเปลี่ยนแปลง ไป แต่ยังพบว่ามีความคลาดเคลื่อนเกิดขึ้น ซึ่งอาจเกิดได้จากหลายสาเหตุ เช่น ความคลาด เคลื่อนที่เกิดจากการวัดผิวชิ้นงาน ตำแหน่งในการติดตั้งมีดตัดที่ต้องมีการติดตั้งใหม่ทุกครั้งที่ทำ การทดลอง และรวมไปถึงอิทธิพลของเศษโลหะที่มีผลต่อแรงตัดที่เกิดขึ้น โดยค่าความคลาด เคลื่อนที่เกิดขึ้น อาจเกิดจากปัจจัยอื่น ๆ ที่ไม่ได้นำมาวิเคราะห์ในการทดลอง

5) การผลิตชิ้นงานที่ต้องการความละเอียดสูงและความแม่นยำเป็นพิเศษ รวมถึงชิ้นงานที่ ต้องการความเรียบผิวสำเร็จสูง เป็นชิ้นงานที่มีราคาสูง การควบคุมคุณภาพของชิ้นงานเพื่อไม่ให้ เกิดการสูญเสียจากลักษณะชิ้นงานสำเร็จไม่ตรงตามมาตรฐานจึงมีความสำคัญมาก งานวิจัยนี้ ช่วยให้สามารถตรวจสอบคุณภาพชิ้นงานในขณะตัดได้ทุกชิ้นในระดับนาโนเมตรบนเครื่องกลึง ซีเอ็นซีปกติ สามารถช่วยลดโอกาสในการเกิดของเสียขณะตัด โดยไม่ต้องลงทุนซื้อเครื่องกลึงความ แม่นยำพิเศษ (High Precision Turning Machine) ซึ่งทำให้สามารถลดต้นทุนการผลิตและ ขั้นตอนในกระบวนการผลิตได้

### 5.3 ข้อจำกัดและอุปสรรคในงานวิจัย

 เนื่องจากต้องมีการติดตั้งไดนาโมมิเตอร์ใหม่ทุกครั้ง ในทุก ๆ การตัด ซึ่งใช้เวลาติดตั้ง ค่อนข้างนาน ทั้งนี้อาจส่งผลให้เกิดความคลาดเคลื่อนของตาแหน่งของมีดตัดที่ไม่เหมือนกันในแต่ ละครั้ง โดยมีผลกระทบต่อแรงตัดที่เกิดขึ้นจากการติดตั้งในแต่ละครั้ง

 เนื่องจากเครื่องวัดความขรุขระผิวที่ใช้สำหรับเก็บค่าความตรงของชิ้นงาน มีข้อจำกัดใน เรื่องของแท่นจับชิ้นงาน ซึ่งรูปร่างและชิ้นงานที่ถูกจับยึดในแต่ละครั้ง จะต้องมีการปรับแท่นจับยืด ใหม่ในทุก ๆ ครั้ง ซึ่งอาจส่งผลต่อค่าของชิ้นงานที่วัดในแต่ละครั้งอีกด้วย

3) สำหรับข้อจำกัดในเรื่องระยะการวัดผิวชิ้นงานของเครื่องวัดความขรุขระผิวมีมาตรฐาน อยู่ที่ 12.5 มิลลิเมตร ดังนั้น ในแต่ละเงื่อนไขการทดลองจึงใช้ระยะตัด 15 มิลลิเมตร ซึ่งสมการการ ทำนายความตรงเบี่ยงศูนย์ที่ได้นั้น อาจไม่แม่นยาเมื่อใช้กับชิ้นงานที่มีความยาวและเส้นผ่าน ศูนย์กลางเล็กมาก ๆ โดยชิ้นงานที่ใช้ควรมีอัตราส่วนระหว่างความยาวต่อเส้นผ่านศูนย์กลางของ ชิ้นงาน (length-to-diameter) ไม่เกิน 10

4) ข้อจำกัดของเครื่องมือวัดความกลมชิ้นงานมีข้อจำกัดคือ ขนาดของชิ้นงานในการทำ วิจัย ต้องกำหนดขนาดเส้นผ่านศูนย์กลางไม่เกิน 40 มิลลิเมตร และความยาวของชิ้นงานไม่เกิน 300 มิลลิเมตร ในการตรวจสอบพิสัยเส้นผ่านศูนย์กลางต้องทำการตั้งความร่วมศูนย์ระหว่าง ชิ้นงานและเครื่องวัดความกลมทุกครั้งก่อนการวัด ทำให้ใช้เวลาในการตรวจสอบพิสัยเส้นผ่าน ศูนย์กลางมาก 5) ข้อมูลพิสัยเส้นผ่านศูนย์กลางที่วัดได้ ไม่สามารถนำไปวิเคราะห์ในโดเมนความถี่ได้ เนื่องจากเป็นอัตราการเก็บข้อมูลของเครื่องวัดความกลม ถึงแม้ว่าเงื่อนไขการตัดและคุณภาพผิว ที่ตรวจสอบเปลี่ยนแปลง เมื่อนำไปวิเคราะห์ในโดเมนความถี่จะให้ความถี่เท่ากับอัตราการเก็บ ข้อมูลของเครื่องวัดความกลมเสมอ

### 5.4 ข้อเสนอแนะ

เพื่อให้สมการทำนายพิสัยเส้นผ่านศูนย์กลางมีความแม่นยำและประสิทธิภาพมาก
 ยิ่งขึ้น จึงควรพิจารณาปัจจัยดังต่อไปนี้ ได้แก่

 ขนาดของเส้นผ่านศูนย์กลาง และความยาวของชิ้นงาน เนื่องจากขนาดเส้นผ่าน ศูนย์กลางและความยาวนี้ส่งผลโดยตรงต่อการสั่นสะเทือนของเครื่องมือตัดและชิ้นงาน

- การสึกหรอของมีดตัด เนื่องจากส่งผลต่อแรงตัด

2) งานวิจัยนี้สมการทำนายความตรงและความกลมของชิ้นงาน สามรถใช้ได้กับชิ้นงาน เหล็กกล้า S45C เท่านั้น

3) การสั่นสะเทือน (Vibration) ในกระบวนการกลึงมีสาเหตุได้จากหลายกรณีเช่น ปัจจัยที่ ใช้ในการตัดไม่เหมาะสม ความไม่สมดุลหรือการหมุนไม่ได้ศูนย์ของเครื่อง การเสื่อมสภาพของ อุปกรณ์ภายในเครื่อง หรือการสั่นเนื่องมาจากตัวมอเตอร์เอง การสั่นสะเทือนเหล่าส่งผลต่ออายุ การใช้งานเม็ดมีด คุณภาพชิ้นงาน และส่งผลทำให้เกิดสัญญาณรบกวนปะปนไปกับข้อมูลที่ใช้ใน งานวิจัยได้

 เพื่อให้สมการมีความสามารถในการทำนายมากขึ้น ควรพิจารณาถึงรูปทรงของเม็ดมีด ตัดที่ต่างกัน เช่น มีดตัดรูปทรงเพชร (Diamond) และมีดตัดรูปทรงสามเหลี่ยม (Triangular) เนื่องจากรูปทรงของเม็ดมีดตัดที่แตกต่างกัน ส่งผลต่อค่าลักษณะผิวชิ้นงานที่ต่างกันด้วย

## รายการอ้างอิง

- สถาบันวิจัยเพื่อการพัฒนาประเทศไทย. ชุดโครงการวิจัยนโยบายสาธารณะเพื่อยกระดับ ไทยให้พ้นกับดักประเทศรายได้ปานกลาง. 2556 [cited 2558 24 สิงหาคม]; Available from: <u>http://tdri.or.th/wp-content/uploads/2014/02/MIT2-Innovation-Final-Fmt.pdf</u>.
- สำนักงานนโยบายและยุทธศาสตร์การค้ากระทรวงพาณิชย์. เอกสารผลการวิเคราะห์ ข้อมูลด้านเศรษฐกิจการค้าที่สำคัญปี 2555. 2555 [cited 2558 24 สิงหาคม]; Available from: <u>http://tpso.moc.go.th/web/tpso-preview-headonly-</u> <u>detail.php?groupnews_id=5&news_id=1022</u>.
- กระทรวงอุตสาหกรรม. แผนแม่บทพัฒนาอุตสาหกรรมไทย พ.ศ. 2555-2574. 2554
   [cited 2558 24 สิงหาคม]; Available from: <u>http://www.oie.go.th/sites/default/files/attachments/industry_plan/National_Indust</u> <u>rial_Development_Master_Plan.pdf</u>.
- Mechlook. Measurement of Circularity-Straightness, Flatness, Squareness, Parallelism, Circularity and Rotation. 2011 [cited 2015 26 August]; Available from: <u>http://www.mechlook.com/measurement-circularitystraightness-flatnesssquareness-parallelism-circularity-rotation/</u>.
- 5. Polini, W. and U. Prisco, The estimation of the diameter error in bar turning: a comparison among three cutting force models. The international Journal of advanced manufacturing technology, 2002. 22: p. 465-474.
- Tangjitsitcharoen, S. and S. Ratanakuakangwan, Monitoring of cutting conditions with dry cutting on CNC turning machine. Journal of Key Engineering Materials, 2010. 443: p. 382-387.
- สมเกียรติ ตั้งจิตสิตเจริญ, วิศวกรรมการผลิตขั้นสูง. 2555, กรุงเทพมหานคร: สำนักพิมพ์ แห่งจุฬาลงกรณ์มหาวิทยาลัย.
- เดือนพรรณ จันทนา, การศึกษาความสัมพันธ์ระหว่างความกลมของชิ้นงานใน กระบวนการกลึงกับแรงตัด, in สาขาวิชาวิศวกรรมอุตสาหการ ภาควิชาวิศวกรรมอุตสา หการ คณะวิศวกรรมศาสตร์. 2558, จุฬาลงกรณ์มหาวิทยาลัย.

- ๑ารารัตน์ ชาญสูงเนิน., การศึกษาความสัมพันธ์ระหว่างค่าความตรงของชิ้นงานกับแรง ตัดในกระบวนการกลึง, in สาขาวิชาวิศวกรรมอุตสาหการ ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์. 2558, จุฬาลงกรณ์มหาวิทยาลัย.
- กันยกานต์ สมานมิตร, การทำนายความขรุขระผิวชิ้นงานในกระบวนการโดยประยุกต์ใช้ แรงตัดพลวัตในการกลึงเหล็กกล้าคาร์บอนเกรด S45C โดยใบมีดคาร์ไบด์เคลือบผิว, in สาขาวิชาวิศวกรรมอุตสาหการ ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์. 2556, จุฬาลงกรณ์มหาวิทยาลัย.
- A., M., E. A.H., and A. M.A. Roundness Measurement of Cylindrical Part by Machine Vision. in International Conference on Electrical, Control and Computer Engineering. 2011. Malaysia.
- Fung, E.H.K. and C. J.C.K., ARX Modelling and Compensation of Roundness Errors in Taper Turning. The international Journal of advanced manufacturing technology, 2000. 2006: p. 402-404.
- Rico, L.e.a. Effect of cutting parameter on the roundness of cylindrical bars turned of 1018 steel. in the 15th annual international conference on Industrial Engineering Theory. 2010. Mexico: Applications and practice.
- Tangjitsitcharoen, S., In-process monitoring and prediction of surface roughness in CNC turning process. Advance Materials Research, 2011. 199-200: p. 1958-1966.
- Tangjitsitcharoen, S., Advanced prediction of surface roughness by monitoring of dynamic cutting forces in cnc turning process. Applied Mechanics and Materials, 2012. 239-240: p. 661-669.
- H., S., U. F., and Y. S., An experimental investigate as to the effect of cutting parameter on roundness error and surface roughness in cylindrical grinding. International Journal of Product Research, 2005. 43(11): p. 2309-2322.
- Sheng-bo, F., et al., Prediction of diameter errors compensation in bars turning.Journal of Central South University of Technology, 2005. 12(2): p. 264-268.
- วัชรินทร์ สามิตร. ความตรง. 2554 [cited 2558 26 สิงหาคม]; Available from: <u>http://www.nimt.or.th/nimt/upload/linkfile/sys-metrology-606-101.pdf</u>.

- Kim, S.-C. and S.-C. Chung, Synthesis of the multi-step straightness control system for shaft straightening processes. Mechatronics, 2002. 12(1): p. 139– 156.
- Saglam, H. Pneumatic non-contact data acquisition system for straightness measurement of cylindrical parts. in 6th International Advanced Technologies Symposium (IATS'11). 2011. Turkey.
- Benardos, P.G. and G.-C. Vosniakos, Predicting surface roughness in machining. International Journal of Machine Tools and Manufacture, 2003. 43: p. 833-844.
- Zhang, J.Z. and J.C. Chen, Neural networks-based in-process surface roughness adaptive control system in turning operation. International Symposium on Neural Networks, 2006: p. 970-975.
- 23. Seimitsu, T. Measuring Instruments Catalog : Roundness-Cylindrical Profile Measuring Instruments. 2013 [cited 2015 24 สิงหาคม]; Available from: <u>http://www.accretech.de/en/support/metrology/product-information-for-download/</u>.
- 24. Disk, E.O.A. Roundness Testing. 2010 [cited 2015 24 August]; Available from: http://engineeronadisk.com/notes_manufact/round.html.
- ปรเมศ ชุติมา, การออกแบบการทดลองทางวิศวกรรม. 2545, กรุงเทพมหานคร:
   สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.
- ประไพศรี สุทัศน์ ณ อยุธยา and พงศ์ชนัน เหลืองไพบูลย์, การออกแบบและวิเคราะห์การ ทดลอง. 2552, กรุงเทพมหานคร: บริษัท สำนักพิมพ์ท้อป จำกัด. 464.
- Ali, S.H.R., H.H. Mohamed, and M.K. Bedewy, Identifying cylinder liner wear using precise coordinate measurement. International Journal of Precision Engineering and Manufacturing, 2009. 10(5): p. 19-25.
- Yaldiz, S. and F. Unsacar, Design, development and testing of a turning dynamometer for cutting force measurement. Materials and Design, 2006. 27: p. 839-846.

- 29. Venkataramaiah, P., K. DharmaReddy, and P. Meramma, Analysis on influence of feed rate and tool geometry on cutting forces in turning using Taguchi method and Fuzzy logic. Procedia Materials Science, 2014. 5: p. 1692–1701.
- Moriwaki, T., T. Shibasaka, and S. Tangjitsitcharoen, Development of in-Process Tool Wear Monitoring System for CNC Turning. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2004. 47(3): p. 933-938.
- 31. Tangjitsitcharoen, S., C. Rungruang, and N. Pongsathornwiwat, Advanced monitoring of tool wear and cutting states in CNC turning process by utilizing sensor fusion. Advanced Materials Research, 2011. 189-193: p. 377-384.
- Jianliang, G. and H. Rongdi, A united model of diametral error in slender bar turning with a follower rest. International Journal of Machine Tools and Manufacture, 2006. 46: p. 1002-1012.





จุฬาสงกรณมหาวทยาลย Chulalongkorn University

ภาคผนวก ก โปรแกรมแปลงฟูเรียร์อย่างเร็วสำหรับวิเคราะห์สัญญาณแรงตัด



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

## โปรแกรมการแปลงฟูเรียร์อย่างเร็วสำหรับวิเคราะห์สัญญาณแรงตัด

clear;

```
%Sampling Frequency
samp = 10000;
                            % สื่ค ไฟล์ที่ต้องการเปิด
fname1 = 'd001':
                      % ชื่อ สกุลไฟล์
ext1 = '.txt':
                             % รวมชื่อไฟล์กับสกุลไฟล์
filename = [fname1,ext1];
                         % เรียกไฟล์
load (filename);
eval(['data1=',[fname1],';']); %
                            % เก็บค่าขนาดของข้อมูล โดย N เป็นจำนวนแถว และ n เป็น
[N1,n1]=size(data1);
จำนวนคอลัมน์
                            % ชื่อ ไฟล์ที่ต้องการเปิด
fname2 = 'd100';
                      % ชื่อ สกุลไฟล์
ext_2 = '.txt':
                           % รวมชื่อไฟล์กับสกุลไฟล์
filename = [fname2,ext2];
                         % เรียกไฟล์
load (filename);
eval(['data2=',[fname2],';']); %
                            % เก็บค่าขนาดของข้อมูล โดย N เป็นจำนวนแถว และ n เป็น
[N2,n2]=size(data2);
จำนวนคอลัมน์
t=1/samp;
                        %Using plot graph __ time domain
tt=(0:t:t*(N2-1));
f=(0:N1-1)/N1*samp;
freq = f(1:N1/2);
                         %Using plot graph __ frequency domain
```

FX=fft(data1(:,1))/(N1*2); % column 1 _ take FFT of Fx

absFX=abs(FX(1:N1/2));

PabsFX=absFX.^2;

FY=fft(data1(:,2))/(N1*2); % column 2 _ take FFT of Fy

absFY=abs(FY(1:N1/2));

PabsFY=absFY.^2;

FZ=fft(data1(:,3))/(N1*2); % column 3 _ take FFT of Fz

absFZ=abs(FZ(1:N1/2));

PabsFZ=absFZ.^2;

figure(102);

```
subplot(3,1,1);plot(freq,PabsFX);grid;zoom on ;xlabel('Frequency (Hz)');ylabel('PSD of Fx (N^2)');
```

subplot(3,1,2);plot(freq,PabsFY);grid;zoom on ;xlabel('Frequency (Hz)');ylabel('PSD of Fy (N^2)');

axis([0 100 0*10^-3 3500*10^-3])

subplot(3,1,3);plot(freq,PabsFZ);grid;zoom on ;xlabel('Frequency (Hz)');ylabel('PSD of Fz (N^2)');

axis([0 100 0*10^-3 3500*10^-3])

figure(103);

subplot(3,1,1);plot(tt,data2(:,1));grid;zoom on ;xlabel('Time (sec)');ylabel('Fx
(N)');%'Dynamic radial force(N)');

axis([0 0.6 -40 40])

%set(subplot(3,1,1),'YLim',[0 250],'XLim',[0 1]);set(subplot(3,1,1),'YTick',[50 200]);

%set(subplot(3,1,1),'times','8','italic');

subplot(3,1,2);plot(tt,data2(:,2));grid;zoom on ;xlabel('Time (sec)');ylabel('Fy

(N)');%'Dynamic feed force(N)');

axis([0 0.6 -40 40])

%set(subplot(3,1,2),'YLim',[50 200],'XLim',[0 1]);set(subplot(3,1,2),'YTick',[100 150]);

subplot(3,1,3);plot(tt,data2(:,3));grid;zoom on ;xlabel('Time (sec)');ylabel('Fz

(N)');%'Dynamic main force(N)');

axis([0 0.6 -40 40])

%set(subplot(3,1,3),'YLim',[250 400],'XLim',[0 1]);set(subplot(3,1,3),'YTick',[300 350]);

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาคผนวก ข โปรแกรมแปลงเวฟเลทสำหรับวิเคราะห์สัญญาณแรงตัด



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

### โปรแกรมแปลงเวฟเลทสำหรับวิเคราะห์สัญญาณแรงตัด

Xdef3 = 'd001';

Xdef1 = [Xdef3 '.txt']

forceroughness = textread(Xdef1);

I_x1 = length(forceroughness);

fx = forceroughness(:,1); fy = forceroughness(:,2); fz = forceroughness(:,3);

[N,n]=size(forceroughness);

samp = 10000;

t=1/samp;

tt=(0:t:t*(N-1));

f=(0:N-1)/N*samp;

freq1 = f(1:N/2);

[cAx1,cDx1] = dwt(forceroughness(:,1),'db2'); [cAy1,cDy1] = dwt(forceroughness(:,2),'db2'); [cAz1,cDz1] = dwt(forceroughness(:,3),'db2');

[cAx2,cDx2] = dwt(cAx1,'db2');

[cAx3,cDx3] = dwt(cAx2,'db2');

[cAx4,cDx4] = dwt(cAx3,'db2');

[cAx5,cDx5] = dwt(cAx4,'db2');

[cAx6,cDx6] = dwt(cAx5,'db2');

[cAx7,cDx7] = dwt(cAx6,'db2');

[cAx8,cDx8] = dwt(cAx7,'db2');

[cAx9,cDx9] = dwt(cAx8,'db2');

[cAx10,cDx10] = dwt(cAx9,'db2');

[cAy2,cDy2] = dwt(cAy1,'db2'); [cAy3,cDy3] = dwt(cAy2,'db2'); [cAy4,cDy4] = dwt(cAy3,'db2'); [cAy5,cDy5] = dwt(cAy4,'db2'); [cAy6,cDy6] = dwt(cAy5,'db2'); [cAy7,cDy7] = dwt(cAy6,'db2'); [cAy8,cDy8] = dwt(cAy7,'db2'); [cAy9,cDy9] = dwt(cAy8,'db2'); [cAy10,cDy10] = dwt(cAy9,'db2');

[cAz2,cDz2] = dwt(cAz1,'db2'); [cAz3,cDz3] = dwt(cAz2,'db2'); [cAz4,cDz4] = dwt(cAz3,'db2'); [cAz5,cDz5] = dwt(cAz4,'db2'); [cAz6,cDz6] = dwt(cAz5,'db2'); [cAz7,cDz7] = dwt(cAz6,'db2'); [cAz8,cDz8] = dwt(cAz7,'db2'); [cAz9,cDz9] = dwt(cAz8,'db2');

ลงกรณ์มหาวิทยาลัย

 $Dx1 = upcoef('d',cDx1,'db2',1,l_x1);$   $Dx2 = upcoef('d',cDx2,'db2',2,l_x1);$   $Dx3 = upcoef('d',cDx3,'db2',3,l_x1);$   $Dx4 = upcoef('d',cDx4,'db2',4,l_x1);$   $Dx5 = upcoef('d',cDx5,'db2',5,l_x1);$   $Dx6 = upcoef('d',cDx6,'db2',6,l_x1);$   $Dx7 = upcoef('d',cDx7,'db2',7,l_x1);$   $Dx8 = upcoef('d',cDx8,'db2',8,l_x1);$  $Dx9 = upcoef('d',cDx9,'db2',9,l_x1);$ 

 $Dx10 = upcoef('d',cDx10,'db2',10,I_x1);$ 

Ax1 = upcoef('a',cAx1,'db2',1,I_x1);

 $Ax2 = upcoef('a',cAx2,'db2',2,l_x1);$  $Ax3 = upcoef('a',cAx3,'db2',3,l_x1);$ 

 $Ax4 = upcoef('a',cAx4,'db2',4,l_x1);$ 

 $Ax5 = upcoef('a', cAx5, 'db2', 5, I_x1);$ 

 $Ax6 = upcoef('a', cAx6, 'db2', 6, l_x1);$ 

Ax7 = upcoef('a',cAx7,'db2',7,I_x1);

 $Ax8 = upcoef('a', cAx8, 'db2', 8, I_x1);$ 

 $Ax9 = upcoef('a',cAx9,'db2',9,I_x1);$ 

 $Ax10 = upcoef('a', cAx10, 'db2', 10, I_x1);$ 

 $Dy1 = upcoef('d',cDy1,'db2',1,l_x1);$   $Dy2 = upcoef('d',cDy2,'db2',2,l_x1);$   $Dy3 = upcoef('d',cDy3,'db2',3,l_x1);$   $Dy4 = upcoef('d',cDy4,'db2',4,l_x1);$   $Dy5 = upcoef('d',cDy5,'db2',5,l_x1);$   $Dy6 = upcoef('d',cDy6,'db2',6,l_x1);$   $Dy7 = upcoef('d',cDy7,'db2',7,l_x1);$   $Dy8 = upcoef('d',cDy8,'db2',8,l_x1);$   $Dy9 = upcoef('d',cDy9,'db2',9,l_x1);$  $Dy10 = upcoef('d',cDy10,'db2',10,l_x1);$ 

Ay1 = upcoef('a',cAy1,'db2',1,I_x1); Ay2 = upcoef('a',cAy2,'db2',2,I_x1); Ay3 = upcoef('a',cAy3,'db2',3,I_x1); Ay4 = upcoef('a',cAy4,'db2',4,I_x1); Ay5 = upcoef('a',cAy5,'db2',5,I_x1); Ay6 = upcoef('a',cAy6,'db2',6,I_x1); Ay7 = upcoef('a',cAy7,'db2',7,I_x1); Ay8 = upcoef('a',cAy8,'db2',8,I_x1); Ay9 = upcoef('a',cAy9,'db2',9,I_x1); Ay10 = upcoef('a',cAy10,'db2',10,I_x1);

Dz1 = upcoef('d',cDz1,'db2',1,I_x1); Dz2 = upcoef('d',cDz2,'db2',2,I_x1); Dz3 = upcoef('d',cDz3,'db2',3,I_x1); Dz4 = upcoef('d',cDz4,'db2',4,I_x1);

 $Dz5 = upcoef('d',cDz5,'db2',5,l_x1);$ 

 $Dz6 = upcoef('d',cDz6,'db2',6,l_x1);$ 

Dz7 = upcoef('d',cDz7,'db2',7,I_x1);

Dz8 = upcoef('d',cDz8,'db2',8,I_x1);

 $Dz9 = upcoef('d',cDz9,'db2',9,I_x1);$ 

 $Dz10 = upcoef('d',cDz10,'db2',10,I_x1);$ 

 $Az1 = upcoef('a', cAz1, 'db2', 1, l_x1);$   $Az2 = upcoef('a', cAz2, 'db2', 2, l_x1);$   $Az3 = upcoef('a', cAz3, 'db2', 3, l_x1);$   $Az4 = upcoef('a', cAz4, 'db2', 4, l_x1);$   $Az5 = upcoef('a', cAz5, 'db2', 5, l_x1);$   $Az6 = upcoef('a', cAz6, 'db2', 6, l_x1);$   $Az7 = upcoef('a', cAz7, 'db2', 7, l_x1);$   $Az8 = upcoef('a', cAz8, 'db2', 8, l_x1);$   $Az9 = upcoef('a', cAz9, 'db2', 9, l_x1);$ 

Az10 = upcoef('a',cAz10,'db2',10,I_x1);

time =  $0.001:0.001:I_x1/1000;$ 

t = 1/samp;

time =  $(0:t:t^{*}(N-1));$ 

max_TD = 100; min_TD = -1*max_TD;

figure(1);

subplot(11,1,1);

plot(time,forceroughness(:,1));

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Original Signal');ylim('auto');%ปรับค่า แกน Y

subplot(11,1,2)

plot(time,Dx1)

grid;zoom on ;xlabel(");xlim([0 1]);ylabel(");title('Detail Signal D1'); ylim('auto');

subplot(11,1,3)

plot(time,Dx2)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D2'); ylim('auto');

subplot(11,1,4)

plot(time,Dx3)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D3'); ylim('auto');

subplot(11,1,5)

plot(time,Dx4)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D4');ylim('auto');

subplot(11,1,6)

plot(time,Dx5)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('Force x (N)');title('Detail Signal D5');ylim('auto');

subplot(11,1,7)

plot(time,Dx6)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D6');ylim('auto');

subplot(11,1,8)

plot(time,Dx7)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D7');ylim('auto');
subplot(11,1,9)

plot(time,Dx8)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D8');ylim('auto');

subplot(11,1,10)

plot(time,Dx9)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D9');ylim([-50 50]);

subplot(11,1,11)

plot(time,Dx10)

grid;zoom on ;xlabel('Time (s.)');xlim([0 1]);ylabel('');title('Detail Signal D10');ylim([-50 50]);

figure(2);

subplot(11,1,1);

plot(time,forceroughness(:,2));

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Original Signal');ylim('auto');

subplot(11,1,2)

plot(time,Dy1)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D1'); ylim('auto');

subplot(11,1,3) CHULALONGKORN UNIVERSITY

plot(time,Dy2)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D2'); ylim('auto');

subplot(11,1,4)

plot(time,Dy3)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D3'); ylim('auto');

subplot(11,1,5)

plot(time,Dy4)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D4');ylim('auto');

subplot(11,1,6)

plot(time,Dy5)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('Force y (N)');title('Detail Signal D5');ylim('auto'); subplot(11,1,7)

plot(time,Dy6)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D6');ylim('auto');

subplot(11,1,8)

plot(time,Dy7)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D7');ylim('auto');

subplot(11,1,9)

plot(time,Dy8)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D8');ylim('auto');

subplot(11,1,10)

plot(time,Dy9)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D9');ylim([-50 50]);

subplot(11,1,11)

plot(time,Dy10)

grid;zoom on ;xlabel('Time (s.)');xlim([0 1]);ylabel('');title('Detail Signal D10');ylim([-50 50]);

figure(3);

จุฬาสงกรณมหาวทยาลย

subplot(11,1,1);

plot(time,forceroughness(:,3));

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Original Signal'); ylim('auto');

subplot(11,1,2)

plot(time,Dz1)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D1'); ylim('auto');

subplot(11,1,3)

plot(time,Dz2)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D2'); ylim('auto'); subplot(11,1,4) plot(time,Dz3)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D3'); ylim('auto');

subplot(11,1,5)

plot(time,Dz4)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D4'); ylim('auto');

subplot(11,1,6)

plot(time,Dz5)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('Force x (N)');title('Detail Signal D5');

ylim('auto');

subplot(11,1,7)

plot(time,Dz6)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D6'); ylim('auto');

subplot(11,1,8)

plot(time,Dz7)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D7'); ylim('auto');

subplot(11,1,9)

plot(time,Dz8)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D8'); ylim('auto');

subplot(11,1,10)

plot(time,Dz9)

grid;zoom on ;xlabel('');xlim([0 1]);ylabel('');title('Detail Signal D9'); ylim([-50 50]);

subplot(11,1,11)

plot(time,Dz10)

grid;zoom on ;xlabel('Time (s.)');xlim([0 1]);ylabel('');title('Detail Signal D10'); ylim([-50 50]);

%Fourier Transform% [N1,M1] = size(Dx1); [N2,M2] = size(Dx2); [N3,M3] = size(Dx3); [N4,M4] = size(Dx4); [N5,M5] = size(Dx5); [N6,M6] = size(Dx6); [N7,M7] = size(Dx7); [N8,M8] = size(Dx8); [N9,M9] = size(Dx9);

[N10,M10] = size(Dx10);

sample = 10000; t = 1/sample; tt = (0:t:t*(N-1)); f = (0:N-1)/N*sample; freq = f(1:N/2);

fx0 = fft(forceroughness(:,1))/N*2; fx1 = fft(Dx1)/N*2; fx2 = fft(Dx2)/N*2; fx3 = fft(Dx3)/N*2; fx4 = fft(Dx4)/N*2; fx5 = fft(Dx5)/N*2; fx6 = fft(Dx6)/N*2; fx7 = fft(Dx7)/N*2; fx8 = fft(Dx8)/N*2;fx9 = fft(Dx9)/N*2;

 $fx10 = fft(Dx10)/N^{*}2;$ 

fx0abs = abs(fx0(1:N1/2));fx1abs = abs(fx1(1:N1/2));

จุฬาลงกรณ์มหาวิทยาลัย แแลเ ongkorn University fx2abs = abs(fx2(1:N2/2));

fx3abs = abs(fx3(1:N3/2)); fx4abs = abs(fx4(1:N4/2)); fx5abs = abs(fx5(1:N5/2)); fx6abs = abs(fx6(1:N6/2)); fx7abs = abs(fx7(1:N7/2)); fx8abs = abs(fx8(1:N8/2)); fx9abs = abs(fx9(1:N9/2)); fx10abs = abs(fx10(1:N10/2));

fx0abs2 = fx0abs.^2; fx1abs2 = fx1abs.^2; fx2abs2 = fx2abs.^2; fx3abs2 = fx3abs.^2; fx4abs2 = fx4abs.^2; fx5abs2 = fx5abs.^2; fx6abs2 = fx6abs.^2; fx7abs2 = fx7abs.^2; fx8abs2 = fx8abs.^2; fx9abs2 = fx9abs.^2; fx10abs2 = fx10abs.^2;



กลงกรณ์มหาวิทยาลัย LALONGKORN UNIVERSITY

$$\begin{split} &fy0 = fft(forceroughness(:,2))/N^*2; \\ &fy1 = fft(Dy1)/N^*2; \\ &fy2 = fft(Dy2)/N^*2; \\ &fy3 = fft(Dy3)/N^*2; \\ &fy4 = fft(Dy4)/N^*2; \end{split}$$

fy5 = fft(Dy5)/N*2;

 $fy6 = fft(Dy6)/N^{*}2;$ 

fy0abs = abs(fy0(1:N1/2)); fy1abs = abs(fy1(1:N1/2));

fy2abs = abs(fy2(1:N2/2));

fy3abs = abs(fy3(1:N3/2));

fy4abs = abs(fy4(1:N4/2));

fy5abs = abs(fy5(1:N5/2));

fy6abs = abs(fy6(1:N6/2));

fy7abs = abs(fy7(1:N7/2));

fy8abs = abs(fy8(1:N8/2));

fy9abs = abs(fy9(1:N9/2));

fy10abs = abs(fy10(1:N10/2));

- fy0abs2 = fy0abs.^2;
- fy1abs2 = fy1abs.^2;
- fy2abs2 = fy2abs.^2;
- fy3abs2 = fy3abs.^2;
- fy4abs2 = fy4abs.^2;
- fy5abs2 = fy5abs.^2;
- fy6abs2 = fy6abs.^2;
- fy7abs2 = fy7abs.^2;
- fy8abs2 = fy8abs.^2;
- fy9abs2 = fy9abs.^2;
- fy10abs2 = fy10abs.^2;

- fz0 = fft(forceroughness(:,3))/N*2;
- $fz1 = fft(Dz1)/N^{*}2;$
- $fz2 = fft(Dz2)/N^{*}2;$
- fz3 = fft(Dz3)/N*2;
- $fz4 = fft(Dz4)/N^{*}2;$
- fz5 = fft(Dz5)/N*2;
- fz6 = fft(Dz6)/N*2;
- fz7 = fft(Dz7)/N*2;
- fz8 = fft(Dz8)/N*2;
- $fz9 = fft(Dz9)/N^{*}2;$
- $fz10 = fft(Dz10)/N^{*}2;$

fz0abs = abs(fz0(1:N1/2)); fz1abs = abs(fz1(1:N1/2)); fz2abs = abs(fz2(1:N2/2)); fz3abs = abs(fz3(1:N3/2)); fz4abs = abs(fz4(1:N4/2)); fz5abs = abs(fz5(1:N5/2));

- fz6abs = abs(fz6(1:N6/2));
- fz7abs = abs(fz7(1:N7/2));
- fz8abs = abs(fz8(1:N8/2));
- fz9abs = abs(fz9(1:N9/2));
- fz10abs = abs(fz10(1:N10/2));
- fz0abs2 = fz0abs.^2;
- fz1abs2 = fz1abs.^2;
- $fz2abs2 = fz2abs.^2;$
- fz3abs2 = fz3abs.^2;
- fz4abs2 = fz4abs.^2;



กรณ์มหาวิทยาลัย NGKORN UNIVERSITY

fz5abs2 = fz5abs.^2;

 $fz6abs2 = fz6abs.^2;$ 

fz7abs2 = fz7abs.^2;

 $fz8abs2 = fz8abs.^2;$ 

fz9abs2 = fz9abs.^2;

 $fz10abs2 = fz10abs.^2;$ 

figure(4);

subplot(11,1,1);

plot(fx0abs2);xlabel('');ylabel('');title('Original Signal'); xlim([000 1000]); ylim('auto'); subplot(11,1,2);

plot(fx1abs2);xlabel('');ylabel('');title('Detail Signal D1'); xlim([000 1000]); ylim('auto'); subplot(11,1,3);

plot(fx2abs2);xlabel('');ylabel('');title('Detail Signal D2'); xlim([000 1000]); ylim('auto'); subplot(11,1,4);

plot(fx3abs2);xlabel('');ylabel('');title('Detail Signal D3'); xlim([000 1000]); ylim('auto'); subplot(11,1,5);

plot(fx4abs2);xlabel('');ylabel('');title('Detail Signal D4'); xlim([000 1000]); ylim('auto'); subplot(11,1,6);

plot(fx5abs2);xlabel(');ylabel('Power Spectrum x');title('Detail Signal D5'); xlim([000 1000]); ylim('auto');

subplot(11,1,7);

plot(fx6abs2);xlabel('');ylabel('');title('Detail Signal D6'); xlim([000 1000]); ylim('auto'); subplot(11,1,8);

plot(fx7abs2);xlabel('');ylabel('');title('Detail Signal D7'); xlim([000 1000]); ylim([0 30]); subplot(11,1,9);

plot(fx8abs2);xlabel('');ylabel('');title('Detail Signal D8'); xlim([000 1000]); ylim('auto'); subplot(11,1,10);

plot(fx9abs2);xlabel('');ylabel('');title('Detail Signal D9'); xlim([000 1000]); ylim([0 50]);

subplot(11,1,11);

plot(fx10abs2);xlabel('Frequency');ylabel('');title('Detail Signal D10'); xlim([000 1000]); ylim([0 20]);

figure(5);

subplot(11,1,1);

plot(fy0abs2);xlabel('');ylabel('');title('Original Signal'); xlim([000 1000]); ylim('auto'); subplot(11,1,2);

plot(fy1abs2);xlabel('');ylabel('');title('Detail Signal D1'); xlim([000 1000]); ylim('auto'); subplot(11,1,3);

plot(fy2abs2);xlabel('');ylabel('');title('Detail Signal D2'); xlim([000 1000]); ylim('auto'); subplot(11,1,4);

plot(fy3abs2);xlabel('');ylabel('');title('Detail Signal D3'); xlim([000 1000]); ylim('auto'); subplot(11,1,5);

plot(fy4abs2);xlabel('');ylabel('');title('Detail Signal D4'); xlim([000 1000]); ylim('auto'); subplot(11,1,6);

plot(fy5abs2);xlabel('');ylabel('Power Spectrum y');title('Detail Signal D5'); xlim([000 1000]); ylim('auto');

subplot(11,1,7);

plot(fy6abs2);xlabel('');ylabel('');title('Detail Signal D6'); xlim([000 1000]); ylim('auto'); subplot(11,1,8);

plot(fy7abs2);xlabel('');ylabel('');title('Detail Signal D7'); xlim([000 1000]); ylim('auto'); subplot(11,1,9);

plot(fy8abs2);xlabel('');ylabel('');title('Detail Signal D8'); xlim([000 1000]); ylim('auto'); subplot(11,1,10);

plot(fy9abs2);xlabel('');ylabel('');title('Detail Signal D9'); xlim([000 1000]); ylim('auto'); subplot(11,1,11);

plot(fy10abs2);xlabel('Frequency');ylabel('');title('Detail Signal D10'); xlim([000 1000]); ylim('auto');

figure(6);

subplot(11,1,1);

plot(fz0abs2);xlabel('');ylabel('');title('Original Signal'); xlim([000 1000]); ylim('auto'); subplot(11,1,2);

plot(fz1abs2);xlabel('');ylabel('');title('Detail Signal D1'); xlim([000 1000]); ylim('auto'); subplot(11,1,3);

plot(fz2abs2);xlabel('');ylabel('');title('Detail Signal D2'); xlim([000 1000]); ylim('auto'); subplot(11,1,4);

plot(fz3abs2);xlabel('');ylabel('');title('Detail Signal D3'); xlim([000 1000]); ylim('auto'); subplot(11,1,5);

plot(fz4abs2);xlabel('');ylabel('');title('Detail Signal D4'); xlim([000 1000]); ylim('auto'); subplot(11,1,6);

plot(fz5abs2);xlabel('');ylabel('Power Spectrum z');title('Detail Signal D5'); xlim([000 1000]); ylim('auto');

subplot(11,1,7);

plot(fz6abs2);xlabel('');ylabel('');title('Detail Signal D6'); xlim([000 1000]); ylim('auto'); subplot(11,1,8);

plot(fz7abs2);xlabel('');ylabel('');title('Detail Signal D7'); xlim([000 1000]); ylim([0 30]); subplot(11,1,9);

plot(fz8abs2);xlabel('');ylabel('');title('Detail Signal D8'); xlim([000 1000]); ylim('auto'); subplot(11,1,10);

plot(fz9abs2);xlabel('');ylabel('');title('Detail Signal D9'); xlim([000 1000]); ylim([0 20]); subplot(11,1,11);

plot(fz10abs2);xlabel('Frequency');ylabel('');title('Detail Signal D10'); xlim([000 1000]); ylim([0 20]);

set(figure(1),'PaperPosition',[0 0 20 22]);

t1 = [Xdef3 '-1'];

print(figure(1),'-djpeg',t1);

t2 = [Xdef3 '-2'];

set(figure(2),'PaperPosition',[0 0 20 22]);

print(figure(2),'-djpeg',t2);

t3 = [Xdef3 '-3'];

set(figure(3),'PaperPosition',[0 0 20 22]);

print(figure(3),'-djpeg',t3);

t4 = [Xdef3 '-4'];

set(figure(4),'PaperPosition',[0 0 20 22]);

print(figure(4),'-djpeg',t4);

t5 = [Xdef3 '-5'];

set(figure(5),'PaperPosition',[0 0 20 22]);

print(figure(5),'-djpeg',t5);

t6 = [Xdef3 '-6'];

set(figure(6),'PaperPosition',[0 0 20 22]);

print(figure(6),'-djpeg',t6);

จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาคผนวก ค

การวิเคราะห์ความตรงและแรงตัดโดยการแปลงเวฟเลทสำหรับเงื่อนไขการตัดต่างๆ



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University



No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.4	0.8	11	0.166	10.262	ต่อเนื่อง
2	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (see 0.2 0.4 Time (see 0.2 0.3 0.4 Deta Bout 01 0.2 0.3 0.4 Deta Bout 02 0.2 0.3 0.4 Deta Bout 01 0.2 0.3 0.4 Deta Bout 01 0.4 Deta Bout 01 0.4			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 30 40 0 20 40 0 20 40 0 100 20 30 40 0 100 20 50 50 50 50 50 50 50 50 50 50 50 50 50	A         60           uency (Hz)         1           Segural Signal         1           segural         1           segural         1           segural Signal         1           segural Signal         1           segural Signal         1           segural         1           segural         1           segural         1           segural         1	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.4	0.8	11	0.257	7.211	ต่อเนื่อง
3	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (sec 0.2 0.4 Time (sec 0.4 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			PSD of Straightness (micrometer ² )	2 1 3 6 4 2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 4 0 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Original Signal	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)}-F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.6	0.8	11	0.147	9.568	ต่อเนื่อง
	20 (i) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (sec	0.6 0.8	1	PSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² ) 10.0 0 0	0 20 40 Free	60 juency (Hz)	80 100
4		Coper Spread 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1         100         200         300         400           0         109         200         300         400           0         100         200         300         400           1         0         100         200         300         400           1         0         100         200         300         400           1         0         200         300         400           0         100         200         300         400           0         100         200         300         400           1         0         200         300         400           1         0         200         300         400           1         0         200         300         400           1         0         200         300         400           1         0         200         300         400           1         0         200         300         400           1         0         200         300         400           1         0         200         300         400           1         0         200	Original Signal	800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.6	0.8	-6	0.100	11.407	ต่อเนื่อง
5	20 10 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (sec			0.2 bSD of Straightness (micrometer ² )	0 20 40 Freque	60 Jency (Hz)	80 100
		2         0.3         0.4         Des Boyne D         0.4           2         0.3         0.4         Des Boyne D         0.4           4         0.4         Des Boyne D         0.4           2         0.3         0.4         Des Boyne D         0.4           2         0.3	0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1		a 0 do a 00 do a 00 do anon	0         100         200         300         400         Der           0         100         200         300         400         Der           1         100         200         300         400         Der           1         100         200         300         400         Der           0         10	41 2000 10 20 00 700 41 2000 10 00 700 700 41 2000 1000 1000 700 700 41 2000 1000 1000 1000 1000 10000 100000 10000 1000000	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.8	0.8	-6	0.051	13.426	แตกหัก
6		0.2 0.4 Cright Spall 0.2 0.4 Time (s 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.6 0.5 0.6 0.5 0.5		PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 50 0 50	egrad Styrad egrad Styrad negrad S	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.8	0.8	-6	0.096	17.079	แตกหัก
	20 10 -10 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	0.2 0.4 Time (s	0.6 0.8 ec)		PSD of Straightness (micrometer ² ) 00.0 of Straightness (micrometer ² ) 00.0 0	20 40 Frequ	60 Jency (Hz)	80 100
7		2 0.3 0.4 Orta 2594 D1 0 44 D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0         0.2         0.8         0.8           0         0.7         0.8         0.8         0.9           5         0.7         0.8         0.8         0.9           5         0.7         0.8         0.8         0.9           6         0.7         0.8         0.8         0.8           4         0.7         0.8         0.8         0.8           4         0.7         0.8         0.8         0.8           6         0.7         0.8         0.8         0.7           6         0.7         0.8         0.8         0.7           6         0.7         0.8         0.8         0.7           6         0.7         0.8         0.8         0.7           6         0.7         0.8         0.8         0.7           8         0.7         0.8         0.8         0.8           9         0.7         0.8         0.8         0.8           9         0.7         0.8         0.8         0.9           9         0.7         0.8         0.9         0.9           9         0.7         0.8         0.9         0.9			0         100         200         300         400         permission           0         100         200         300         400         permission           0         100         200         300         400         permission           1         0         200         300         400         permission           2         0         0         200         300         400         permission           2         1         100         200         300         400         permission           1         100         200         300         400         permission         permission           0         100         200         300         400         permission         permission           0         100         200         300         400         permission         permission           0         100         200         300         400         permissi	Bogur D1         693         100           Bogur D2         693         100           Bogur D2         693         100           Bogur D2         693         100           Bogur D2         693         100           Bogur D3         690         100           Bogur D4         690         100           Bogur D5         690         100           Bogur D6         690         100           Bogur D7         690         100           Bogur D7	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.4	0.8	11	0.299	9.945	ต่อเนื่อง
8		0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 0.2 0.4 0.4 004 8000 0.4 0.4 004 8000	0.6 0.8 ec) 0.6 0.8 0.6 0.8 0.7 0.8 0.9 0.7 0.8 0.9 0.9 0.7 0.8 0.9 0.9 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		0.06 a (Straightness (micrometer ² ) PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 100 20 300 400 per 100 20 300	60 uency (Hz) spars topus at Spars Dr. 600 700 topus topus 1 topus 1 topus topus 1 topus 1 t	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.8	0.4	-6	0.102	13.772	ต่อเนื่อง
9		0.2 0.4 0.2 0.4 Time (s 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.6 0.8 0.6 0.8 0.6 0.8 0.7 0.8 0.9 0.7 0.8 0.9 0.8 0.9 0.7 0.8 0.9 0.9 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		PSD of Straightness (micrometer ² )	20 20 20 40 Freque 20 40 50 50 50 50 50 50 50 50 50 5	60 Jency (H2) gend Signal 10 10 10 10 10 10 10 10 10 10	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.8	0.8	11	0.141	9.127	แตกหัก
10	20 10 10 -20 -20 -20 -20 -20 -20 -20 -2	0,2 0,4 Time (s 0,2 0,4 Time (s 0,2 0,4 Time (s 0,2 0,4 0,2 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	0.6 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		PSD of Straightness (micrometer ² )	2 2 4 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	60 uency (Hz) grad Spain al Synar D1 600 700 	

UHULALUNGKUKN UNIVEKSIIY



UMULALUNGKUKN UNIVEKSITY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.8	0.8	-6	0.206	15.395	แตกหัก
12	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 0.2 0.4 0.4	0.6 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.7 0.8 0.8		D of Straightness (micrometer ² )	0 20 40 Freq	60 uency (Hz)	
		the officer and the relation of the rel	0.7         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8 <td></td> <td>, rankang ang</td> <td>1</td> <td>Loss Reductions of the second /td> <td></td>		, rankang ang	1	Loss Reductions of the second	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.25	0.8	0.8	-6	0.229	15.563	แตกหัก
13		0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.6 0.8 ec) 0.6 0.8 ec) 0.6 0.8 ec] 0		0.14 0.12 0.02 of Straightness (micrometer ² ) 0.00 0 0 0 0 0 0 0 0 0 0 0 0	0 20 40 Frequencies of the second se	60 Jency (Hz)	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.25	0.4	0.8	11	0.262	12.072	ต่อเนื่อง
14	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Digwi Signi 0.2 0.4 Time (s Digwi Signi 0.2 0.4 Time (s Digwi Signi 0.2 0.4 Digwi Signi 0.4 Digwi Signi 0.			PSD of Straightness (micrometer ² )	0 20 40 Freq	GO     uency (Hz)     figure togen     figure     figure togen     figure     figure	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.4	0.8	-6	0.091	14.97	ต่อเนื่อง
15	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 0.4 Time (s 0.4 0.4 594 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )		60           juency (Hz)           Signal Bigwil Di	

UHULALUNGKUKN UNIVEKSIIY



UHULALUNGKUKN UNIVEKSIIY



GHULALONGKORN UNIVERSITY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.25	0.6	0.8	-6	0.157	16.952	ต่อเนื่อง
18	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (s 0.2 0.4 Time (s 0.4 000 Spect 0.4 00	0.6 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		PSD of Straightness (micrometer ² )	0 20 40 Frec 0 20 40 Frec 0 20 40 0 20 40 0 20 40 0 100 20 20 40 0 100 20 20 40 0 100 20 20 40 0 100 20 20 40 0 100 20 50 40 0 100 50 50 40 0 100 50 50 50 50 50 50 50 50 50 50 50 50 5	A 60     uency (Hz)     mgrad 50put     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t     t	

UHULALUNGKUKN UNIVEKSIIY



จุหาลงกรณมหาวทยาลัย

Chulalongkorn University

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.8	0.8	11	0.063	10.701	แตกหัก
20	Land the second	0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 0.2 0.4 0.4 000 500 50 0.4 000 50 0.4 000 500 50 0.4 000 50 0.4 000 500 50 0.4 000 50 0.4 000 500 50 0.4 000 500 50 0.4 000 500 50 0.4 000 500 50 0.4 000  50 0.4 0000 50 0.4 0000 50 0.4 000000000000000000	0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6		PSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² )	0 20 40 Frequencies of the second se	ginal Signal         60           Jency (Hz)         100           all Signal D1         100           all Signal D2         100           all Signal D3         100           all Signal D4         100           all Signal D5         100           all Signal D5         100           all Signal D5         100           all Signal D6         100           all Signal D6         100           all Signal D6         100           all Signal D6         100           all Signal D7         100           100         100	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.8	0.4	11	0.107	16.456	ต่อเนื่อง
21		0.2 0.4 Time (sr 0.2 0.4 Time (sr 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	20 40 0 20 40 Freq 0 20 40 0 20 40	60 uency (Hz) ngrat tigeat as Signat 01 00 100 to 100 100 100 as Signat 02 00 100 to 100 100 100 to 100 100 100 to 100 100 100 100 to 100 100 100 100 to 100 100 100 100 to 100	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.4	0.8	-6	0.108	14.54	ต่อเนื่อง
22	20 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.3 0.4 0.2 0.5 0.4 0			(0.35 0.35 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20 0 20 40 Frequ 0 20 40 0 20 40 0 20 40 0 20 50 50 400 cm 10 50 50 50 50 50 50 50 50 50 50 50 50 50	A 60 iency (Hz) shart Bigwal 500 iency (Hz) 500 iency (Hz) 500 ien	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.6	0.8	-6	0.113	12.967	ต่อเนื่อง
23	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 0.4 0000 0000 0.4 000000 0.4 0000 0000 0.4 00000 0.4 000000 0.4 0000000 0.4 00000000 0.4 0000000000 0.4 00000000000000000000000000000000000			PSD of Straightness (micrometer ² )	$\begin{bmatrix} 0 & 20 & 400 \\ 0 & 20 & 400 \\ 0 & 0 & 20 & 500 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 400 \\ 0 & 0 & 20 & 500 & 500 & 400 \\ 0 & 0 & 20 & 500 & 500 & 400 \\ 0 & 0 & 20 & 500 & 500 & 400 \\ 0 & 0 & 20 & 500 & 500 & 400 \\ 0 & 0 & 0 & 200 & 500 & 400 \\ 0 & 0 & 200 & 500 & 500 & 400 \\ 0 & 0 & 200 & 500 & 500 & 400 \\ 0 & 0 & 0 & 200 & 500 & 400 \\ 0 & 0 & 0 & 200 & 500 & 400 \\ 0 & 0 & 0 & 200 & 500 & 400 \\ 0 & 0 & 0 & 200 & 500 & 400 \\ 0 & 0 & 0 & 200 & 500 & 400 \\ 0 & 0 & 0 & 0 & 500 & 500 & 400 \\ 0 & 0 & 0 & 0 & 500 & 500 & 400 \\ 0 & 0 & 0 & 0 & 500 & 500 & 400 \\ 0 & 0 & 0 & 0 & 0 & 500 & 400 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	Chiganet Signal           Chiganet Signal           Detail Signal Of Engl           Detai	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.8	0.4	11	0.153	15.658	แตกหัก
24	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 Time (s 0.2 0.4 0.0			PSD of Straightness (micrometer ² )	20 20 40 50 20 40 Frec 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 20 40 50 20 20 20 40 50 20 20 40 50 20 20 40 50 20 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 40 50 20 20 20 40 50 20 20 20 20 40 50 20 20 20 20 40 50 20 20 20 20 20 40 50 20 20 20 20 20 20 20 40 50 20 20 20 20 40 50 20 20 20 20 20 20 20 20 40 50 20 20 20 20 20 40 50 20 20 20 20 20 40 50 20 20 20 40 50 20 40 50 20 20 40 50 50 50 50 50 50 50 50 50 5	Animal Bigent         Animal Bigent           Animal Bigent         Animal Bigent <t< td=""><td></td></t<>	
No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
-----	---------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------	------------------------	--------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------
	150	0.25	0.8	0.8	11	0.140	13.837	แตกหัก
25	20 10 10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.3 0.4 Desire 5 or 100 0.2 0.3 0.4 Desire 5 or 1			PSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 Freq 0 20 40 0 10 20 30 40 pr 10 20	60 uency (Hz) sprat loguit al Spear D1 sprat loguit al Spear D2 sprat loguit sprat	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.25	0.4	0.4	-6	0.498	26.107	แตกหัก
	20 10 0 0 -20 0 -20 0	0.2 0.4 Time (se	0.6 0.8 c)	1	PSD of Straightness (micrometer ² ) 10 C C C C C C C C C C C C C C C C C C C	0 20 40 Freq	60 uency (Hz)	80 100
26		Original Sparint           12         0.3         0.4         Dealt Signar D1           12         0.3         0.4         Dealt Signar D2           12         0.3			a Construction of the second o	0         100         200         300         400         0           4         100         200         300         400         0           4         1         1         1         1         1           6         100         200         300         400         0           1         1         1         1         1         1           1         1         1         1         1         0           1         1         1         1         1         0           1         1         1         1         1         0           1         1         1         1         1         0           1         1         1         1         1         0           1         1         1         1         1         0         0           1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>ngat Bigat at Spat () at Spa</td> <td>900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         900           900         1000</td>	ngat Bigat at Spat () at Spa	900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         900           900         1000

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.4	0.8	11	0.161	7.966	ต่อเนื่อง
27		0,2 0,4 Time (s 0,2 0,4 Time (s 0,2 0,4 0,2 0,4 0,4	0.6 0.8 0.6 0.8 0.7 0.8 0 0.7 0.8 0 0.8 0 0		PSD of Straightness (micrometer ² )	1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 uency (Hz) grind Signal al Signal D1 600 700 al Signal D2 600 700 al Signal D3 6	



No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.6	0.4	11	0.080	19.097	ต่อเนื่อง
	$\begin{bmatrix} 20 \\ 10 \\ 0 \\ -20 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $					0 20 40 Freq	60 uency (Hz)	80 100
29		Oxford Spat           12         33         04         Devid Spat D1           12         33         04         Devid Spat D1           12         04         04         Devid Spat D1           12         03         0.4         Devid Spat D1           12         0.3         0.4         Devid Spat D1           14         Devid Spat D1         Devid Spat D1         Devid Spat D1           12         0.3         0.4         Devi	An of the second seco		e Prestationers e e e e e e e e e e e e e e e e e e	$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1$	Agrinal Signal D 400 700 700 100 100 100 100 100 100 100 1	

uhulalungkukn univeksiit

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.4	0.4	-6	0.285	26.821	ต่อเนื่อง
	20 10 0 Unicometer 0 -20 -20 0	0.2 0.4 Time (se	0.6 0.8 pc)	PSD of Straightness (micrometer ² ) 0 10 57 50 60	0 20 40 Freq	60 uency (Hz)	80 100	
30		Original Signal           2         0.4         Dect Signal           2         0.4         Dect Signal         0           2         0.4         Dect Signal         0           2         0.4         Dect Signal         0           2         0.3         0.4         Dect Signal         0           1         Dect Signal         0         Dect Signal         0           2         0.3         0.4         Dect Signal         0           2         0.3         0.4         Dect Signal         0           2         0.3         0.4         Dect Signal         Dect Signal           2         0.3         0.4         Dect Signal	0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.2           0         0.7         0.8         0.1           0 </td <td></td> <td>And the second s</td> <td>00 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>spiral Bignet all Bignet D1 000 700 all Bignet D2 000 700 all Big</td> <td></td>		And the second s	00 0 0 0 0 0 0 0 0 0 0 0 0	spiral Bignet all Bignet D1 000 700 all Bignet D2 000 700 all Big	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.8	0.4	-6	0.080	13.541	แตกหัก
31	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 20 50 50 60 50 10 50 50 50 50 60 50 10 50 50 50 50 50 50 10 50 50 50 50 50 50 10 50 50 50 50 50 50 50 50 50 50 50 50 50	60 uency (Hz) signal Bigail as Sout 0: 400 100 to 500 100 100 100 100 to 500 100 100 100 100 to 500 100 100 100 100 100 to 500 100 100 100 100 100 100 100 100 100	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.4	0.4	11	0.138	23.999	ต่อเนื่อง
	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0					0 20 40 Freq	60 uency (Hz)	80 100
32		Organização         Organização           10.1         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4	0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0 </td <td></td> <td></td> <td>40         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td> <td>rightal Elignal all Signal () 199 700 all S</td> <td>800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900</td>			40         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	rightal Elignal all Signal () 199 700 all S	800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900

GHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.6	0.4	11	0.095	18.103	ต่อเนื่อง
33	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			0.35 0.25 0.25 0.15 0.15 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.0	0 20 40 Freq 0 20 40 Freq 0 20 50 50 400 cr 0 50 50 50 400 cr 0 50 50 50 400 cr 0 50 50 50 400 cr 10 50 50 50 50 50 50 50 50 50 50 50 50 50	60 Lency (Hz) ignal Bigard al Bigard D 100 100 100 100 100 100 100 10	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.4	0.4	11	0.093	14.982	ต่อเนื่อง
34	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² )	0 20 40 Frequencies of the second se	60 Jency (Hz)	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.6	0.4	11	0.110	12.486	ต่อเนื่อง
35	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 0.4 000 000 0.2 0.3 0.4 000 000 0.2 0.3 0.4 000 000 0.2 0.3 0.4 000 000 0.4 0000 000 0.4 0000 000 0.4 0000 000 0.4 0000000 0.4 000000000000000000000000000000000			PSD of Straightness (micrometer ² )	2 0 20 40 Freq 0 20 40 7 10 10 20 40 7 10 10 20 40 7 10 10 20 40 7 10 10 20 40 7 10 10 20 40 7 10 10 20 40 7 10 10 20 40 10 10 10 10 10 10 10 10 10 1	A           eigent Bigent           nam Signal D1           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100 </td <td>80 100 500 1000 500 10000 500 1000 500 1000 500 1000 500 1000 500 1000 500 100</td>	80 100 500 1000 500 10000 500 1000 500 1000 500 1000 500 1000 500 1000 500 100

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.8	0.4	11	0.113	18.895	ต่อเนื่อง
36	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 0.4 000 0000 0.2 0.3 0.4 000 0000 0.2 0.3 0.4 000 0000 0.4 0000 0.4 000 0000 0.4 00000 0.4 00000 0.4 0000			0.35 0.2 0.2 0.2 0.0 0 0 0 0 0 0 0 0 0 0 0 0	0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 100 20 50 40 0 100 40 0 100 20 50 50 40 0 100 20 50 50 40 0 100 20 50 50 50 50 50 50 50 50 50 50 50 50 50	60 uency (Hz) ngini Signi an Spart D1 500 100 100 10	

UHULALUNGKUKN UNIVEKSIIT

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.8	0.4	11	0.117	12.619	ต่อเนื่อง
37		0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			900 PSD of Straightness (micrometer ³ ) 0 PSD of Straightness (micrometer ³ )	0 20 40 Freq	All Signal D2 400 700 All Signal D2 400 700	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.4	0.4	-6	0.332	17.732	ต่อเนื่อง
38	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.3 0.4 Desi 50put 0.2 0.3 0.4 Desi 50put 0.2 0.3 0.4 Desi 50put 0.2 0.3 0.4 Desi 50put 0.9 0.2 0.3 0.4 Desi 50put 0.9 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 10 20 50 50 50 50 50 50 50 50 50 50 50 50 50	Image: second control of the second control	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.6	0.4	-6	0.111	27.109	ต่อเนื่อง
	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se	0.6 0.8 c)	PSD of Straightness (micrometer ² ) 0 PSD of Straightness (micrometer ² )	0 20 40 Freq	60 uency (Hz)	80 100	
39		12         6.3         0.4         Dest Biggin (C)         0           12         0.3         0.4         Dest Biggin (C)         0           12         0.3	B         6.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1		e e e e e e e e e e e e e e e e e e e	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ability         100         100           ability         100 <td< td=""><td></td></td<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.8	0.8	11	0.066	12.466	ต่อเนื่อง
40	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Cognet Signal 0.2 0.4 Time (see Cognet Signal 0.2 0.4 Time (see 0.2 0.4 Cognet Signal 0.2 0.4 Cognet Signal 0.2 0.4 Cognet Signal 0.2 0.4 Cognet Signal 0.2 0.4 Cognet Signal 0.4 Cognet Signal 0.4 Co	0.6 0.8 0.6 0.8 0.6 0.8 0.7 0.8 0.9 0.7 0.8 0.9 0.8 0.9 0.7 0.8 0.9 0.7 0.9 0.9 0.9 0.7 0.9 0.9 0.9 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 Freq 10 20 30 40 c 10 20	60 Jency (Hz)	

Na	Speed	Feed	Depth	R _n			$S_t$	สถานะ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\frac{I_{y(max)} - I_{y(min)}}{F_{s}}\right)$	(µm)	เศษโลหะ
	200	0.15	0.4	0.4	11	0.189	12.23	ต่อเนื่อง
41		0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.4 0.2 0.4 Time (set 0.2 0.3 0.4 0ext 8pel 0.2 0.3 0.4 0ext 8pel 0.4 0ext 8pe			PSD of Straightness (micrometer ² )	20 40 Frequencies of the second secon	60 Jency (H2) white Signal all Signal Di all	

จุฬาสงกรณมหาวทยาลย

Chulalongkorn University

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.4	0.8	11	0.198	12.746	ต่อเนื่อง
42		0.2 0.4 Time (se 0.2 0.4 Time (se 0.4 0.4 000 000 00 0.4 000 00			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 20 50 50 60 0 10 50 50 50 50 50 0 10 50 50 50 50 50 50 50 50 50 50 50 50 50	60 uency (Hz) ingent liped and liped b intel li	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.6	0.4	-6	0.088	19.616	ต่อเนื่อง
	20 (tajutitues (unicrometer) 0 -20 -20 0	0.2 0.4 Time (set	0.6 0.8	1	PSD of Straightness (micrometer ² ) 0 10 50 07 Straightness (micrometer ² )	0 20 40 Freq	60 uency (Hz)	80 100
43		Criginal Signal 2 0 3 0.4 Dest Signar D 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0         0         0         0         0         0           4         0         0         0         0         0           4         0         0         0         0         0           5         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         7         0         0         0           6         0         0         0         0         0           6         0		e paraticipanta o	00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00<	Signal Signal as 300 01 09 00 700 as 300 01 09 00 700 as 300 01 09 00 700 as 300 01 00 00 700 as 300 000 700 as 300 000 700 as 3000	800         1000           800         1000           800         1000           800         1000           800         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000           900         1000

UHULALUNGKUKN UNIVERSIIT

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	) <b>S</b> _t (µm)	สถานะ เศษโลหะ
	100	0.25	0.6	0.8	-6	0.142	16.942	ต่อเนื่อง
	$\begin{array}{c} 20\\ 0\\ 0\\ -20\\ 0\\ -20\\ 0\\ 0.2\\ 0.4\\ 0.4\\ 0.6\\ 0.8\\ 1\end{array}$					0 20 40 Fre	A for a constraint of the cons	80 100
44		Original Signal           2         0.3         0.4         Dett Bignal D1         0.           2         0.3         0.4         Dett Bignal D2         0.           2         0.3         0.4         Dett Bignal D2         0.           4         0.3         0.4         Dett Bignal D2         0.           4         0.4         Dett Bignal D2         0.         0.           2         0.3         0.4         Dett Bignal D2         0.	0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.9           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0 </td <td></td> <td></td> <td></td> <td>Chigheit Signal</td> <td></td>				Chigheit Signal	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.4	0.4	11	0.225	16.029	ต่อเนื่อง
45	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.3 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.4 0.2 0.5 0.4 0.4 0.2 0.5 0.4 0.4 0.2 0.5 0.4 0.4 0.2 0.5 0.4 0.4 0.2 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	40         0         20         40           6         0         20         40           6         0         20         40           6         0         20         40           6         0         20         40           7         0         20         300         60           6         100         200         300         600           6         100         200         300         600           6         100         200         300         600         60           6         100         200         300         600         60           6         100         200         300         600         60           6         100         200         300         600         60           6         100         200         300         600         60           6         100         200         300         600         60           6         100         200         300         600         60           6         100         200         300         600         60           6         100 <td< td=""><td>GO     GO     GO</td><td></td></td<>	GO     GO	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.8	0.8	11	0.069	9.512	แตกหัก
46	20 10 10 10 10 10 10 10 10 10 1	0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.3 0.4 Deat 50 or 0.9 0.2 0.3 0.4 Deat 50 or 0.9 0.4 Deat			PSD of Straightness (micrometer ² )	4 4 4 4 4 4 4 4 4 4 4 4 4 4	60 uency (Hz) giral ligned al ligned D1 60 700 al ligned D2 60 700	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.6	0.4	11	0.079	17.012	ต่อเนื่อง
	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0					0 20 40 Freq	60 uency (Hz)	80 100
47		Organit Sprill           12         0.3         0.4         Dest Sprill           12         0.3         0.4         Dest Sprill         Dest Sprill           12         0.3         0.4	4         0.7         0.8         0.1           b         0.7         0.8         0.1           0.9         0.7         0.8         0.1           0.9         0.7         0.8         0.1           0.9         0.7         0.8         0.1           0.9         0.7         0.8         0.1           0.9         0.7         0.8         0.1           0.9         0.7         0.8         0.1           0.9         0.7         0.8         0.1           0.0         0.7         0.8         0.1           0.0         0.8         0.2         0.8         0.2           0.0         0.8         0.7         0.8         0.2           0.0         0.7         0.8         0.2         0.8           0.0         0.7         0.8         0.2         0.2           0.0         0.7         0.8         0.2         0.2           0.0         0.7         0.8         0.2         0.2           0.0         0.7         0.8         0.1         0.1           0.0         0.7         0.8         0.1         0.1		Sport Land Contract Contract	20         300         300         400         24           4         300         300         300         400         24           4         300         300         300         400         24           4         300         300         300         400         24           6         100         200         300         400         24           6         100         200         300         400         24           1         100         200         300         400         24           1         100         200         300         400         24           1         100         200         300         400         24           1         100         200         300         400         24           1         100         200         300         400         24           1         100         200         300         400         24           1         100         200         300         400         24           1         100         200         300         400         24           1         100         200	spend bigwal al Signal D 400 700 al Signal D 400	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.4	0.8	11	0.208	11.908	ต่อเนื่อง
48	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Consider Signal Consideration of the second signal Consideration of the secon			0.07 0.06 DSD of Straightness (micrometer ² ) 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0	0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 10 20 30 40 20 10	60 Lency (Hz) sprat liquel al Speat D1 al Speat D2 biol al Speat D2 biol al Speat D2 biol al Speat D2 biol biol al Speat D2 biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol	

UMULALUNGKUKN UNIVERSIIY



No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.6	0.8	11	0.235	8.234	ต่อเนื่อง
50	20 -20 -20 -20 -20 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	0.2 0.4 Time (se 0.2 0.4 Time (se 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	0 20 40 Free 0 20 40 0 20 40 0 20 40 0 10 20 30 40 0 10 20 50 50 40 0 10 10 10 10 10 10 10 10 10 10 10 10 10	A         60           uency (Hz)         100           stat Spat D1         100           stat Spat D2         100           stat Spat D1         100           stat Spat D2         100           stat Spat D1         100           stat Spat D2         100           stat Sp	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.8	0.8	-6	0.050	12.106	แตกหัก
51	20 10 10 10 10 10 10 10 10 10 1	0.2 0.4 Time (se 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	$10 \\ 0 \\ 20 \\ 40 \\ Frec$	A Control Street Control Contr	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.6	0.8	11	0.206	8.564	ต่อเนื่อง
52	20 10 0 -20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (set 0.2 0.4 0.4 0th Bigut 0.9 0.4 0th Bigut			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 100 20 300 400 pc 100 20 300	60 Jency (Hz) signal tignal al Signal D1 600 700 al Signal D2	

JHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.4	0.4	11	0.161	16.916	ต่อเนื่อง
53	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (see 0.2 0.4 Time (see 0.2 0.4 0.2 0.4 Time (see 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.6 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		0.35 0.25 0.25 0.15 0.15 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 20 40 Frec 0 20 30 40 0 20 50 50 40 0 50 50 50 50 50 50 0 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50 50 50 50 50 50	A         60           juency (Hz)         500           Signal Bignal         700           etal Signal 01         600         700           etal Signal 05         600         700 </td <td></td>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.6	0.8	11	0.203	7.314	ต่อเนื่อง
54	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	4 4 4 4 4 4 4 4 4 4 4 4 4 4	60 uency (Hz) spiral Spiral () spiral ()	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.6	0.8	11	0.215	6.645	ต่อเนื่อง
55	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Conjust Signed 0.2 0.4 Time (Se 0.2 0.4 Time (Se 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.3 0.4 0.2 0.5 0.4 0.2 0.3 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	4 2 4 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2	Original Signal           Original Signal Original           Original Signal Original	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.8	0.4	-6	0.096	14.201	แตกหัก
56	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.3 0.4 0.4 0est 56 yes 0.9 0.4 0est 56 ye			PSD of Straightness (micrometer ² )	20 0 20 40 Freq 0 20 40 0 20 50 50 400 20 0 20 40 20 20 0 20 40 20 0 20 40 20 20 0 20 40 20 20 0 20 40 20 20 0 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	A 60 uency (Hz) highed Eigned and Signed D1 600 700 and Signed D2 600 700 and Signed D	

No	Speed	Feed	Depth	R _n			$S_t$	สถานะ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	(µm)	เศษโลหะ
	200	0.25	0.6	0.8	11	0.241	12.175	ต่อเนื่อง
57	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.3 0.4 Dear 80 per 10 0.2 0.3 0.4 Dear 80 per 10 0.4 Dear			PSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² )	0 20 40 0 20 40 Frec 0 20 50 50 50 50 50 50 50 50 50 50 50 50 50	60 uency (Hz) http://www.inter.org/100/100/100/100/100/100/100/100/100/10	

จุฬาสงกรณมหาวิทยาลย

Chulalongkorn University

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.8	0.4	11	0.118	21.252	ต่อเนื่อง
	20 (i) 10 0 0 -20 0 0	0.2 0.4 Time (se	0.6 0.8 bc)	BSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² ) 1.0 0 0	0 20 40 Freq	60 uency (Hz)	80 100	
58		Organi Spail           92         3.3         4.4         Devel 5 grad 0           92         3.3         4.4         Devel 5 grad 0           92         4.3         4.4         Devel 5 grad 0           92         6.3         6.4         Devel 5 grad 0           92         6.3         6.4	0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0 </td <td></td> <td></td> <td>0         -         -         -         0           0         100         200         200         400         0           1         -         -         -         -         -           0         100         200         200         400         0           10         200         200         200         400         0           10         200         200         200         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         200         200         0           0         500         200         200</td> <td>Spinel Signed</td> <td>800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000</td>			0         -         -         -         0           0         100         200         200         400         0           1         -         -         -         -         -           0         100         200         200         400         0           10         200         200         200         400         0           10         200         200         200         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         300         400         0           0         500         200         200         200         0           0         500         200         200	Spinel Signed	800         900         1000           800         900         1000           800         900         1000           800         900         1000           800         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	) <b>S_t</b> (µm)	สถานะ เศษโลหะ
	150	0.15	0.8	0.8	-6	0.189	9.2	ต่อเนื่อง
59	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.3 0.4 Det 5 pril 0.2 0.5 0.4 D			PSD of Straightness (micrometer ² )	$\begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	State         60           Quency (Hz)         700           State         500           State         700           State         700           State         700           St	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.4	0.4	-6	0.322	24.738	ต่อเนื่อง
	20 10 0 0 -20 -20 0	0.2 0.4 Time (se	0.6 0.8 rc)		PSD of Straightness (micrometer ² ) 0 10 50 70 00 10 10 10 10 10 10 10 10 10 10 10 10	0 20 40 Freq	60 uency (Hz)	80 100
60		Original Signal           12         0.3         0.4         Description D1           12         0.3         0.4         Description D2           12         0.3         0.4         Description D3           12         0.3         0.4         Description D3           12         0.3         0.4         Description D4           12         0.3         0.4	0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0         0.7         0.8         0.1           0 </td <td></td> <td>Aministrand</td> <td>00 01 02 01 02 02 02 02 02 02 02 02 02 02</td> <td>Signal Signal 19741 Signal D1 950 700 1974 D1 950 700 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975</td> <td>500         1000           500         1000           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500</td>		Aministrand	00 01 02 01 02 02 02 02 02 02 02 02 02 02	Signal Signal 19741 Signal D1 950 700 1974 D1 950 700 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975	500         1000           500         1000           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500         500           500

GHULALUNGKUKN UNIVEKSIIY
No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.4	0.8	-6	0.109	10.416	ต่อเนื่อง
61	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	0 20 40 Free 0 20 40 Free 10 10 20 30 40 10 40 40 40 40 10 40 40 40 40 40 10 40 40 40 40 40 10 40 40 40 40 40 40 40 40 40 40 40 40 40	Solid Project         60           Jugend Tilged	



No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.6	0.8	11	0.136	14.077	ต่อเนื่อง
63	20 Classified in the second s	0.2 0.4 Time (se 0.2 0.3 0.4 0.2 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			0.07 PSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² ) PSD of Straightness (micrometer ² )	0 20 40 Frec 0 20 50 50 50 50 50 50 50 50 50 50 50 50 50	60 auency (Hz) Signal Signal stati Signal 02 stati Si	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.4	0.4	11	0.211	12.11	ต่อเนื่อง
64	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Digital Signal 0.2 0.4 Time (see 0.2 0.3 0.4 Digital Signal 0.2 0.3 0.4 Digital Signal 0.2 0.3 0.4 Digital Signal D 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 100 200 200 400 p 100 200 400	60           uency (Hz)           statilized by all           statilized by all	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.6	0.4	11	0.133	26.069	ต่อเนื่อง
	20 10 0 0 -20 -20 -20 -20 -20 -20 -20	0.2 0.4 Time (se	0.6 0.8 c)	1	PSD of Straightness (micrometer ² ) 0 10 50 50 PSD 10 10 10 10 10 10 10 10 10 10 10 10 10	0 20 40	60 uency (Hz)	80 100
65		Original Signal           12         0.3         0.4         Desti Signal         Desti Signal           14         Desti Signal         Desti Signal         Desti Signal         Desti Signal           14         Desti Signal         Desti Signal         Desti Signal         Desti Signal           12         0.3         0.4         Desti Signal         Desti Signal         Desti Signal           12         0.3         0.4         Desti Signal         Desti Signal         Desti Signal           14         Desti Signal         Desti Signal         Desti Signal         Desti Signal         Desti Signal           12         0.3         0.4         Desti Signal         Desti Signal         Desti Signal<	1         0         1         0         0           5         0         7         0.8         0           6         0         7         0.8         0           6         0         7         0.8         0           6         0         7         0.8         0           6         0         7         0.8         0           6         0         7         0.8         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7         0.8         0         0           6         0.7		Section 200 00 100 000 000 000 000 000 000 000	20 	nginal Signal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         100           00         00         1000           00         00         1000           00         00         1000           00         00         1000           00         00         1000           00         00         1000           00         00         1000           00         000         1000           00         000         1000           00         000         1000

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.8	0.8	-6	0.174	9.121	ต่อเนื่อง
66	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2         0.4           0.2         0.4           Time (se           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.4           0.2         0.3           0.4         Dest Spart 0           0.4         D			PSD of Straightness (micrometer [*] )	3 5 6 6 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9	All Signal D1 600 700 700 700 700 700 700 700 700 700	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.6	0.8	-6	0.063	9.624	ต่อเนื่อง
67	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 0.4 0rest Spect D 0.2 0.4 0.4 0rest Spect D 0.4 0rest Spec			PSD of Straightness (micrometer ² )	0 20 40 0 20 40 Free 0 100 200 300 400 10 10 100 200 300 400 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Chipmel Bigwal         60           Chipmel Bigwal         60           State Bigwal D1         600         700           State Bigwal D2         600         700           State Bigwal D3         600         700           State Bigwal D4	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.25	0.6	0.8	11	0.214	11.443	ต่อเนื่อง
68	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (see 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 10 20 30 40 0 10 20 3	60 uency (Hz) ngrat ligad at Spart D1 400 700 at Spart D2 400 700 a	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.8	0.8	11	0.072	14.066	แตกหัก
	20 10 0 0 -0 -0 -0 -0 -0 -0 -0	0.2 0.4 Time (se	0.6 0.8 c)	1	PSD of Straightness (micrometer ² ) 500 of Straightness (micrometer ² ) 1000 0 0	0 20 40 Freq	60 uency (Hz)	80 100
69		Original Digut           Provide Strate S			forest beneficiary of the second s	0 10 10 10 10 10 10 10 10 10 1	regent Bigent has a Signal D + 900 1000 has	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.4	0.4	11	0.098	18.009	ต่อเนื่อง
70	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.4 0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			0.35 0.25 0.25 0.25 0.0 0.25 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 100 20 300 400 pr 100 pr 100 20 300 400 pr 100 pr	60 Lency (Hz) sprat liquel 1 000 100 100 1 000 1000 1	

UMULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.8	0.4	11	0.106	24.947	แตกหัก
	20 10 0 -20 -20 0 -20 0	0.2 0.4 Time (se	0.6 0.8 ic)	1	PSD of Straightness (micrometer ² ) 0 10 craightness (micrometer ² )	0 20 40 Freq	60 uency (Hz)	80 100
71		Cignel Signal Network and a second s	Here         Here <td></td> <td>Averaging and</td> <td>00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00&lt;</td> <td>Signal Signal as 30000 (1) 400 100 as 30000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 400000 (1) 40000 (1) 40000 (1) 400000 (1) 40000 (1) 40000</td> <td></td>		Averaging and	00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00<	Signal Signal as 30000 (1) 400 100 as 30000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 40000 (1) 400000 (1) 40000 (1) 40000 (1) 400000 (1) 40000 (1) 40000	

GHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.6	0.8	-6	0.132	14.203	ต่อเนื่อง
72	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.3 0.4 0.2 0.4 Time (se 0.2 0.3 0.4 0.4 0000 0000 0000 0.4 00000 0000 0.4 0000 000 0.4 00000000000000000000000000000000000			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 20 50 50 50 50 50 50 50 50 50 50 50 50 50	60 uency (Hz) ngrat ligat at Spart D1 tat Spart D2 tat Spart D2 ta	

UMULALUNGKUKN UNIVERSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.4	0.4	-6	0.272	17.245	ต่อเนื่อง
73	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (see 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.3 0.4 0.2 0.5 0.2 0.5 0.4 0.2 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			0.35 0.25 0.25 0.10 0.55 0.10 0.55 0.0 0 0 0 0	0 20 40 Freq 0 20 40 Freq 0 20 50 50 400 pr 10 20 50 50 400 pr 10 20 50 50 400 pr 10 50 50 50 50 400 pr 10 50 50 50 50 400 pr 10 50 50 50 50 50 50 50 50 50 50 50 50 50	60 Lency (Hz) sgrat bigwi al Signat D1 800 700 al Signat D2 900 700 al Signat D3 9000 700 al Signat D3 900 700 al Signat D3 900 700 al Signat D3 9	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.8	0.4	-6	0.092	18.724	แตกหัก
	20 10 0 0 -20 0 0.2 0.4 0.6 0.8 1 Time (sec)					0 20 40	60 uency (Hz)	80 100
74		Original Signal           12         0.3         0.4         Dotal Signal D1           12         0.3         0.4         Dotal Signal D2           12         0.3				20         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Highed Eligned         400         100           Hat Stored D1         600         100           Hat Stored D2         600         100           Hat Stored D3         600         100           Hat Stored D3         600         100           Hat Stored D4         600         100           Hat Stored D5         600         100           Hat Stored D4         900         100 <t< td=""><td></td></t<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.6	0.8	-6	0.077	12.549	ต่อเนื่อง
75	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.4 0 0.4 0			PSD of Straightness (micrometer ² )	0 20 40 Frec 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 100 20 30 40 0 100 20 50 50 50 50 50 50 50 50 50 50 50 50 50	60 uency (Hz) Highel Bigel 1 1 1 1 1 1 1 1 1 1 1 1 1	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.8	0.8	11	0.083	11.786	แตกหัก
76	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.3 0.4 Det 5 grad 0.2 0.5 0.4			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 Freq 0 20 40 0 10 20 30 40 pr 10 20	A         60           uency (Hz)         31           spiral tignel	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.15	0.4	0.8	-6	0.088	9.462	ต่อเนื่อง
77	20 10 -20 -20 -20 -20 -20 -20 -20 -2	0.2 0.4 Time (se 0.2 0.4 0.4 0000 0000 0000 0.2 0.3 0.4 0000 0000 0.4 0000 0000 0000 0.4 0000 0000 0000 0.4 0000 0000 0000 0.4 00000 0000 0.4 00000 0000 0.4 0000000000 0.4 00000000000000000000000000000000000			PSD of Straightness (micrometer ² )	3 2 4 4 5 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	60           auency (Hz)           signal lignal           atal Spart D1           signal D2           signal D3           signal D4           signal D5           signal D5	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.4	0.8	-6	0.113	14.985	ต่อเนื่อง
78	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (see 0.2 0.4 0.2 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	20 0 20 40 0 20 40 Freq 0 20 40 20 40 20 40 40 40 40 40 40 40 40 40 4	60           uency (Hz)           statilized to the statilized	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.8	0.4	-6	0.111	30.941	แตกหัก
	20 10 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	0.2 0.4 Time (se	0.6 0.8 rc)	1	PSD of Straightness (micrometer ² ) 10 50 50 50 50 50 50 50 50 50 50 50 50 50	0 20 40 Frec	60 uency (Hz)	80 100
79		Original Separt           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	a         a         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b		Powerskinsky 0 0	40         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Stighted Eligned         100         700           state Signal ()         600         700           state Signal ()         600	400         400         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500           400         1500         1500

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.8	0.8	-6	0.178	12.09	แตกหัก
80	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.3 0.4 0.2 0.5 0.4 0.4 0.4 0.4			PossD of Straightness (micrometer ² )	0 20 40 0 20 40 Frequ 0 20 40 Frequ 0 20 40 Frequ 0 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 40 50 50 40 50 50 50 40 50 50 50 50 50 50 50 50 50 5	60 Jency (Hz) sine Signed al Signed D1 sing Signed D1 sing Signed D1 sing Signed D2 sing Signed D2 sin	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.8	0.4	-6	0.113	18.4	แตกหัก
	$\begin{bmatrix} 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.8 \\ 1 \end{bmatrix}$					0 20 40 Freq	60 uency (Hz)	80 100
81		Original Signal           Original Signal	0         0         0         0         0         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0         0           0         0         0         0         0         0         0         0         0           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0			65	Ingenet Bigment and Signed Da 1000 and Signed Da 10000 and Signed Da 1000 and Signed Da 10000 and Signed Da 10000 and Signed Da 10000 and S	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.25	0.6	0.4	-6	0.121	28.534	ต่อเนื่อง+ แตกหัก
	20 10 0 -20 -20 0	0.2 0.4 Time (se	0.6 0.8 rc)	PSD of Straightness (micrometer ² )	0 20 40 Free	60 uency (Hz)	80 100	
82		Original Biguel         Original Biguel           12         0.3         0.4         Openal Biguel         0.4           22         0.3         0.4         Openal Biguel         0.4         Openal Biguel         0.4           22         0.3         0.4         Openal Biguel         0.4         Openal Biguel         0.4           22         0.3         0.4         Openal Biguel         0.4         Openal Biguel         0.4           41         0.4         Openal Biguel         0.4         Openal Biguel         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4	A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A		Post Standard Andread Andre		Registal Edgewal 1 Registal Edgewal 102 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S_t</b> (µm)	สถานะ เศษโลหะ
	200	0.20	0.4	0.8	11	0.171	10.314	ต่อเนื่อง
83	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 0.4 Dest 5gut 0.9 0.4			PSD of Straightness (micrometer ² )	0 20 40 Frequencies of the second se	60 Jency (Hz)	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.4	0.8	11	0.194	9.216	ต่อเนื่อง
84	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.3 0.4 0.4 0ers 5grup 0.9 0.4 0ers 5grup 0.9			PSD of Straightness (micrometer ² )	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	60 uency (Hz) spini lignel al Spini D1 600 700 al Spini D2 600 700	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.8	0.8	11	0.151	12.506	แตกหัก
	20 10 0 0 -20 0 0 0 0	0.2 0.4 Time (se	0.6 0.8 c)	1	PSD of Straightness (micrometer ² ) 1000 of Straightness (micrometer ² ) 1000 of Straightness (micrometer ² )	0 20 40 Freq	60 uency (Hz)	80 100
85	200 000 000 000 000 000 000 000	Control Biguel           12         6.3         0.4         Dest Signer (1)           12         6.3         0.4         Dest Signer (1)           12         6.3         0.4         Dest Signer (1)           12         6.3         0.4         Dest Signer (2)           12         6.3         0.4         Dest Signer (2)           14         Dest Signer (2)         0.4         Dest Signer (2)           14         Dest Signer (2)         0.4         Dest Signer (2)           14         Dest Signer (2)         0.4         Dest Signer (2)           15         0.4         Dest Signer (2)         0.4           15         0.4         Dest Signer (2)         0.4           15         0.4         Dest Signer (2)         0.4           16         0.4         Dest Signer (2)         0.4           16         0.4         Dest Signer (2)         0.4           16         0.4         Dest Signer (2)         0.4           17         0.4         Dest Signer (2)         0.4           16         0.4         Dest Signer (2)         0.4           17         0.4         Dest Signer (2)         0.4 <t< td=""><td>6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.</td><td></td><td></td><td>0        </td><td>Ingent Dignet Ins Separt D1 00 00 100 100 100 100 100 100 100 10</td><td></td></t<>	6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.           6         0.7         0.8         0.			0	Ingent Dignet Ins Separt D1 00 00 100 100 100 100 100 100 100 10	

UMULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.6	0.4	11	0.104	13.25	ต่อเนื่อง
86	20 0 -20 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 -21 0 0 -21 0 0 -21 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 0.2 0.4 Time (se 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 000 5000 0.4 0000 0.4 000 5000 0.4 0000 0000 0.4 00000000000000000000000000000000000	0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.7 0.8 0 0.6 0.8 0.8 0 0.8 0		0.00 PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 10 20 30 40 20 10 20 30 40	60 Lency (H2) sprat liquei al Signal D1 al Signal D2 al Signal D2	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.15	0.6	0.4	-6	0.104	13.201	แตกหัก
87	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.4 Dest Spect 0.4 0.4 Dest Spect 0.4 0.4 Dest Spect 0.4	0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.7 0.8 0 0.6 0 0.6 0.8 0 0.6		PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 Freq 10 20 20 40 10	60 uency (Hz) nai Spat 01 600 700 nai Spat 02 600 700	





No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.6	0.4	-6	0.092	18.227	ต่อเนื่อง+ แตกหัก
89	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.4 0 0 0 0 0 0 0.4 0 0 0 0.4 0 0 0 0.4 0 0 0 0.4			PSD of Straightness (micrometer ² )	0 20 40 Frec	A         60           juency (Hz)         500           xight Biged         700           etal Biged (D1         500           your (Mz)         700           etal Biged (D1         500           your (Mz)         700           etal Biged (D2         500           your (Mz)         700           etal Biged (D2         500           your (Mz)         700           etal Biged (D2         700	80 100 500 1000 500 1000
		02 63 04 Detail Sport D8 02 63 04 Detail Sport D8 02 63 04 Detail Sport D8 02 63 04 Detail Sport D9 02 63 04 65 0 Time (s) 0				9 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	500 000 700 tal Signal D9 000 700 tal Signal D9 000 700 tal Signal D10 000 700 500 000 700 Frequency	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.20	0.8	0.4	11	0.123	22.428	แตกหัก
	20					0 20 40 Freq		80 100
90		Oxford Spart           22         0.3         0.4         Deals Spart D           400         0.000         Deals Spart D         Deals Spart D           400         Deals Spart D         Deals Spart D         Deals Spart D           400         Deals Spart D         Deals Spart D         Deals Spart D           400         Deals Spart D         Deals Spart D         Deals Spart D           400         Deals Spart D         Deals Spart D         Deals Spart D           400         Deals Spart D         Deals Spart D         Deals Spart D           400         Deals Spart D         Deals Spart D         Deals Spart D           400         Deals Spart D         Deals Spart				20 4 4 4 4 4 4 4 4 4 4 4 4 4	Higher Elignet Higher Elignet D2 600 700 Higher Elignet D2 600 700 Higher Elignet D2 600 700 Higher Elignet D4 600 700 Highe	800         900         1500           800         900         1500           900         1500         900           900         900         1500           900         900         1500           900         900         1500           900         900         1500           900         900         1500           900         900         1500           900         900         1500           900         900         1500           900         900         1500           900         1500         1500           900         1500         1500           900         1500         1500           900         1500         1500           900         1500         1500           900         1500         1500

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.25	0.4	0.8	-6	0.139	15.467	ต่อเนื่อง
91	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.3 0.4 0.2 0.4 Time (se 0.2 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			PSD of Straightness (micrometer ² )	0 20 40 Free 0 20 40 0 20 40 0 20 40 0 100 20 300 400 10 400 10 400 400 400 400 10 400 400 400 400 400 400 400 400 400 4	A         60           puency (Hz)         500           Statuti Bigwal         500           Hatal Bigwal (D)         600         700           Hatal Bigwal (D) <th></th>	



จุฬาลงกรณมหาวิทยาลย

Chulalongkorn University

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.6	0.4	-6	0.084	18.85	ต่อเนื่อง
	20 (a) 10 0 0 0 -20 0.2 0.4 0.6 0.8 1				PSD of Straightness (micrometer ² ) 10 50 70 50 10 10 10 10 10 10 10 10 10 10 10 10 10	0 20 40 Freq	60 uency (Hz)	80 100
93		Depart Spart Part of the off of the difference of the off Part of the off of the difference of the off Part of the off of the off of the off off off Part of the off of the off off off off off off off off off of	145         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		e constant and con	10	Spinst Signal 0, 500 700 700 700 700 700 700 700 700 700	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.8	0.4	-6	0.112	32.141	แตกหัก
	$\begin{array}{c} 20\\ 10\\ 10\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$				PSD of Straightness (micrometer ² ) 10 50 70 50 10 10 10 10 10 10 10 10 10 10 10 10 10	0 20 40 Freq	60 uency (Hz)	80 100
94		Original Signal           1.2.         4.3.         4.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.         1.4.			namitai na seconda na s	00 01 01 02 02 03 04 05 04 05 05 04 05 05 05 05 05 05 05 05 05 05	Agent Signal 5	800         900         1000           800         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000           900         900         1000

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.6	0.8	-6	0.121	12.64	ต่อเนื่อง
95	20 10 0 -20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (see Dignet Spall 0.2 0.4 Time (see Dignet Spall 0.2 0.4 Time (see Dignet Spall 0.2 0.4 Time (see 0.2 0.4 0.4 0000 0000 0.4 00000000 0.4 0000 0000 0.4 000000000 0.4 00000000000000000000000000000000000			0.02 0(Straighthress (micrometer))	0 20 40 Frequ 0 20 40 Frequ 0 20 300 400 0 20 300 400 04 0 0 20 300 400 04 0 0 0 0 0 0 0 0 0 0 0 0 00 400 04 0 0 0 0 0 0 0 0 0 0 0 00 400 04 0 0 0 0 0 0 0 0 0 0 0 00 400 04 0 0 0 0 0 0 0 0 0 0 0 0 0 00 400 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00 0 0 0 0	60 Jency (H2) at 50 at 5	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.8	0.8	-6	0.196	11.41	แตกหัก
96	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.3 0.4 0.2 0.4 Time (se 0.2 0.3 0.4 0.4 0000 000 0.4 0000 0000 0.4 00000000000000000000000000000000000			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 10 20 20 0 0 0 10 0 0 0 0 0 0	60 uency (Hz) ngrad tiguel all Signal D1 600 700 all Signal D2 6	
No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
-----	----------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------	------------------------	------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
	100	0.15	0.4	0.4	-6	0.300	14.438	ต่อเนื่อง
97	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.4 Time (se) 0.4 Time (se 0.4 Time (se) 0.4 Time (se 0.4 Time (se 0.4 Time (se 0.4 Time (se 0.4 Time (se) 0.4 Time (se 0.4 Time (se 0.4 Time (se) 0.4 Time (se) 0.4 Time (se 0.4 Time (se) 0.4 Time (se) 0.4 Time (se 0.4 Time (se) 0.4 Time (se) 0.4 Time (se 0.4 Time (se) 0.4 Time (se) 0.4 T			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 100 20 30 40 pr 1 100 20 20 40 pr 1 100 20 20 40 pr 1 100 20 2	60 uency (Hz) signal bigail al Signal D1 600 700 al Signal D2 600 700 al Signal D3 600 700 al	80 100 50 100

UHULALUNGKUKN UNIVERSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.20	0.4	0.8	-6	0.097	10.918	ต่อเนื่อง
98	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 Freq 10 20 30 40 pr 10 20 30 40 pr	Image: second	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.4	0.8	-6	0.087	9.793	ต่อเนื่อง
99	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 Time (se 0.2 0.4 0.4 000 5000 0 0.4 0000 5000 0 0.4 0000 0 0.4 0000 0 0.4 0000 0 0.4 0000 0 0.			PSD of Straightness (micrometer ² )	0 20 40 Frec 0 20 40 0 20 40 0 100 20 30 40 0 100 20 30 4	60 uency (Hz) Highel Bigel 10 10 10 10 10 10 10 10 10 10	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.20	0.8	0.4	-6	0.126	20.58	แตกหัก
100	20 10 0 -20 -20 -20 -20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Cogets Spat 0.2 0.4 Time (se 0.2 0.4 Cogets Spat 0.2 0.4 Cogets Spat 0.2 0.4 Cogets Spat 0.2 0.4 Cogets Spat 0.2 0.4 Cogets Spat 0.2 0.4 Cogets Spat 0.2 0.4 Cogets Spat 0.4 0000 0.4 00000 0.4 0000 0.4 00000 0.4 00000 0.4 00000 0.4 000000 0.4 00000000000			0.35 0.25 0.25 0.25 0.0 0.05 0.05 0.05 0.05	0 20 40 Freq 0 20 40 0 20 40 0 20 50 50 40 50 0 50 50 50 50 40 50 0 50 50 50 50 50 40 50 0 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 0 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50 50 50 50 50 50	60 Lency (Hz) sprat liquel al Speat D1 60 700 al Speat D2 600 700 al Speat D	

UHULALUNGKUKN UNIVERSITT

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.4	0.8	-6	0.111	19.305	ต่อเนื่อง
101		0.2 0.4 Time (set 0.2 0.4 Time (set 0.2 0.4 0.2 0.4 Time (set 0.2 0.3 0.4 0.4 0000 0000 00 0.4 0000 00000 00 0.4 0000 0000 0000 00 0.4 0000 0000 0000000000000000000000000			PSD of Straightness (micrometer ² )	0 20 40 Frec 0 20 40 0 20 40 0 20 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 uency (Hz) signal tignal tasi signal 02 tasi signal 02	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	150	0.25	0.6	0.4	11	0.142	13.931	ต่อเนื่อง
102	20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Chipine Signal 0.2 0.4 Time (se Chipine Signal 0.2 0.4 Time (se Chipine Signal 0.2 0.4 Time (se 0.2 0.4 Chipine Signal 0.2 0.3 0.4 Chipine Signal 0.2 0.4 Chipine Signal 0.4 Chipine Signa			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 20 40 0 20 50 50 50 50 10 50 50 50 60 50 10 50 50 50 50 60 50 10 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	60 uency (Hz) ngrat light at Spart D1 to 0 to 0 t	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.6	0.4	-6	0.113	13.646	แตกหัก
103	20 10 0 -20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (sec 0.2 0.4 Time (sec 0.2 0.4 Time (sec 0.2 0.4 Time (sec 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			<ul> <li>PSD of Straightness (micrometer²)</li> <li>PsD of Straightness (micrometer²)</li> </ul>	0 20 40 Freq 0 20 40 0 10 20 30 40 p 10 10 10 10 10 p 10 10 10 p 10 10 10 p 10 10 10 10 p 10 10 10 p 10 10 10 10 p 10 10 p 1	60 uency (Hz) highed Eigned and Eigned D1 600 700 team Eigned D2 600 700 and Eigned D2 600 700 team Eigned D2 600 700 t	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.6	0.4	11	0.084	23.592	ต่อเนื่อง
	20 10 -traidituess 0 -20 -20 0	0.2 0.4 Time (se	0.6 0.8 c)	1	PSD of Straightness (micrometer ² ) 0 10 50 50 90 10 10 10 10 10 10 10 10 10 10 10 10 10	0 20 40 Freq	60 uency (Hz)	80 100
104		Object Spatial         Object Spatial           12         33         0.4           12         33         0.4           12         33         0.4           12         33         0.4           14         Devid Spat D1         0           15         Devid Spat D1         0           16         Devid Spat D1         0           17         Devid Spat D1         0           16         Devid Spat D1         0           17         Devid Spat D1         0           16         Devid Spat D1         0           17 <t< td=""><td>A         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<></td><td></td><td>o para transmission o</td><td>0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td><td>Stant Signal 1 al Signal D1 600 700 700 700 700 700 700 700 700 700</td><td></td></t<>	A         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>		o para transmission o	0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Stant Signal 1 al Signal D1 600 700 700 700 700 700 700 700 700 700	

UHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.25	0.8	0.8	11	0.102	13.916	แตกหัก
105	20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 Time (see 0.2 0.4 Time (see 0.2 0.4 0.2 0.4 Time (see 0.2 0.4 0.2 0.4 0.4 0.2 0.4 0.			PSD of Straightness (micrometer ² )	0 20 40 Freq 0 20 40 Freq 0 20 40 0 20 40 0 20 40 0 50 20 30 40 0 100 0 100 20 30 40 0 100 0 100 20 30 40 0 100 0 1	60 uency (Hz) sprat loguit al Spart D1 al Spart D2 al Spart D2 al Spart D4 al Spart D5 al Spart D5 a	

GHULALUNGKUKN UNIVEKSIIY



JHULALUNGKUKN UNIVERSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	200	0.25	0.8	0.4	11	0.116	28.063	แตกหัก
	20 (a) 10 0 -20 -20 0	0.2 0.4 Time (se	0.6 0.8 c)	1	PSD of Straightness (micrometer ² ) 0 10 20 PSD of Straightness (micrometer ² )	0 20 40	60 juency (H2)	80 100
107		Original Spati           2         0.3         0.4         Delli Spati           2         0.3         0.4         Delli Spati         Delli Spati           2         0.3         0.4         Delli Spati         Delli Spati         Delli Spati           2         0.3         0.4         Delli Spati         Delli Spati         Delli Spati         Delli Spati           2         0.3         0.4         Delli Spati         Delli Spati	0         0         0         0         0         0           1         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         7         0.8         0         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0           0         0         0         0         0		Powerskiewary on one of the second seco	40         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Highel Bigwel 40	500         500         500           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500

GHULALUNGKUKN UNIVEKSIIY

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{F_{y(max)} - F_{y(min)}}{F_s}\right)$	<b>S</b> _t (μm)	สถานะ เศษโลหะ
	100	0.15	0.6	0.4	11	0.094	27.235	ต่อเนื่อง
	20 10 10 10 -20 0.2 0.4 0.6 0.8 1 Time (sec)					0 20 40 Freq	60 uency (Hz)	80 100
108		Diginal Signal 2 0-3 0-4 Dest Signal 0 2 0-3 0-4 Dest Signal 0 3 0-4 Dest Signal	a         b         b         b         b         b         b         b         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c		© o °unanti sana o °	20 19 ¹⁰ 100 200 300 400 Ce 19 ¹⁰ 100 200 300 400 Ce 100 200 200 200 200 200 200 200 200 200	Ingraef Signal and Signal D2 400 100 and Si	500         500         500           500         500         500           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000           500         500         1000

GHULALUNGKUKN UNIVEKSIIY

ภาคผนวก ง

การวิเคราะห์ความกลมและแรงตัดโดยการแปลงเวฟเลทสำหรับเงื่อนไขการตัดต่างๆ



No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
	200	0.25	0.6	0.8	-6	1.247	5.576	ต่อเนื่อง
1	Thering Assists frames	Weight of the second	MMM         MMM         MMM           150         300           MMM         MMM         MMM           150         300           MMM         MMM         MMM           250         300           MMM         MMM         MMM           250         300           MMM         MMM         MMM           250         300           52         300           53         300           54         300           54         300           54         300           54         300           54         300           54         300           54         300           54         300           54         300           54         300           56         300           56         300           56         300	350 350 350 350 350 350 350 350 350 350	entrum interest inter		Operatings           Op	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
	100	0.20	0.4	0.8	11	1.329	4.793	ต่อเนื่อง
2	transis formation from the state fro	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	300         300           250         300           250         300           250         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300         300           300	250 350 350 350 350 350 350 350 3	en e		Operating and Congret Bigari         20         20           180         20         20           190         20         20           190         20         20           190         20         20           190         20         20           190         20         20           190         20         20           190         20         20           190         20         20           190         20         20           190         20         20           190         20         20           191         20         20           192         20         20           193         20         20           194         20         20           195         20         20           196         20         20           197         20         20           198         20         20           199         20         20           190         20         20           190         20         20           190         20         20 <t< th=""><th></th></t<>	

งุพาสงบ

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
	150	0.15	0.4	0.8	11	1.204	4.657	ต่อเนื่อง
3	reactive frames	WM/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/	250 300 250	320 320 320 320 320 320 320 320	and the state of t	50 100 50 100 50 500 50	Organ Speit           Organ Speit           Data Speit	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
	100	0.20	0.6	0.8	11	1.590	5.541	ต่อเนื่อง
4	All and the second seco	MMWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		320 320 320 320 320 320 320 320	and a state of the		13         20         20           13         Days B         20           14         Days B         20           15         Days B         20           16         Days B         20           17         Days B         20           18         Days B         20           19         Days B         20           10         Days B         20           Days B         20         Days B           19         Days B         20           Days B         Days B         20           Days B<	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
	100	0.15	0.6	0.8	-6	1.402	5.381	ต่อเนื่อง
5	Partiti france and	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		320 320 320 320 320 320 320 320 320 320	المَاسِينَ المَاسِينَ اللَّذِي مَعْمَدُ اللَّذِي مُعَمَدًا عَمَدُ اللَّذِي عَمَدُ اللَّذِي عَمَدُ اللَّذِي عَمَد الارتحام المراسم br>المراسم المراسم		100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201           100         200         201	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
	100	0.20	0.8	0.8	-6	1.467	5.573	แตกหัก
6	Participanti francis f	100         150         200           100         150         Degree           100         Degree         Degree		350 350 350 350 350 350 350 350 350 350	internal interna Internal internal interna internal internal internal internal internal internal inte		130         200         20           130         200         20           130         200         20           130         200         20           130         200         20           130         200         20           130         200         20           130         200         20           130         200         20           130         200         20           130         200         20           130         200         20           140         200         20           150         200         20           150         200         20           150         200         20           150         200         20           150         200         20           150         200         20           150         200         20           150         200         20           150         200         20           150         200         20           150         200         20	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
	100	0.25	0.8	0.8	-6	1.639	5.825	แตกหัก
			MMMM MMJ soc scc MMMM MMJ soc scc mm MMMMM soc scc	Martin Ma				
7		Operation         Operation           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100	20 20 20 20 20 20 20 20 20 20 20 20 20 2	#1. #	કોરે છે. હેરે છે. કોર્ડ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્રે કોર્ડ્સ્ટ્રે કોર્ડ્સ્ટ્રે કોર્ડ્સ્ટ્રે કોર્ડ્સ્ટ્રે કોર્ડ્સ્ટ્રે કોર્ડ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્રે કોર્ડ્સ્ટ્સ્ટ્સ્ટ્સ્ટ્સ્ટ્સ્ટ્સ્ટ્સ્ટ્સ્ટ્સ		Depart loyel         20         20         20           Date Spect 1         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20 </td <td></td>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
	150	0.20	0.4	0.8	11	1.216	4.659	ต่อเนื่อง
8	Particle frames	100 150 Degree 100 Degree 10			The state and th		Open if Byold           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
9	150	0.15	0.8	0.4	-6	1.233	5.691	ต่อเนื่อง
	Parts Manu And Manu A	100         150         200           100         150         Degree           100         150         Degree <tr< th=""><th></th><th></th><th>الم الم الم الم الم الم الم الم الم الم</th><th></th><th>100         Corpore         200           1100         S00         S00           1100         S00         S00           1100         S00         S00           1100         S00         S00           1100         S00</th><th></th></tr<>			الم		100         Corpore         200           1100         S00         S00           1100         S00         S00           1100         S00         S00           1100         S00         S00           1100         S00	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
10	100	0.15	0.8	0.8	11	2.361	5.873	แตกหัก
	antime intervent frame intervent int	100 122 Degree 100 122 Degree 100 122 Degree 100 120 Degree		359 359 360 360 360 360 360 360 360 360 360 360	المعامل المحالية ال محالية المحالية المحال		160 Degree 20 20 Degree 20 20 Degree 20 20 Degree 20 20 Degree 20 20 Degree 20 20 Degree 20 20 Degree 20 20 20 20 20 20 20 20 20 20	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	R ₀	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
11	150	0.25	0.8	0.4	11	2.522	7.162	แตกหัก
	tearm mann mann mann mann mann mann mann m	100 150 Degree 100 150 Degree		329 329 329 329 329 329 329 329	الم المالية الم مالية المالية ا مالية المالية ا		100         200         20           000+15pcl         20         20           00+15pcl         20         20 </th <th></th>	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	R ₀	สถานะเศษ
NO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
12	200	0.25	0.8	0.8	-6	1.373	5.586	แตกหัก
	NU     <	100 150 Degree 100 00 150 Degree 100 Degree 100 00 Degree 100 Degree		350 350 350 350 350 350 350 350	는 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		190         200         21           190         200         22           190         200         22           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20 <t< th=""><th></th></t<>	

No	Speed	Feed	Depth	R _n		$\left(\frac{AVF_x}{x}\right)$	R ₀	สถานะเศษ
110.	(m/min)	(mm/rev)	(mm)	(mm)	Y	$(AVF_y)$	(µm)	โลหะ
13	150	0.25	0.8	0.8	-6	2.026	6.375	แตกหัก
	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	4444 100 156 Degree 44444 100 156 Degree 444444 100 156 Degree 444444 100 156 Degree 444444 100 156 Degree 444444 100 150 Degree 4444444 100 150 Degree 4444444 100 150 Degree 4444444 100 150 Degree 4444444 100 150 Degree 4444444 100 150 Degree 44444444 100 150 Degree 44444444 100 150 Degree 44444444 100 150 Degree 44444444444444444444444444444444444		259 359 359 359 359 359 359 359 359 359 3	ទី ភ្នំ ភ្នំ ភ្នំ ភ្នំ ភ្នំ ភ្នំ ភ្លុំ ភ្លាំ ភ្លាំ ភ្លុំ ភ្លុំ ភ្លុំ ភ្លុំ ភ្លាំ ភ្លាំ ភ្លុំ ភ្លាំ ភ្លាំ ភ្លាំ ភ្លុំ ភ្លាំ ភ្លំ ភ្លាំ ភាំ ភាំ ភាំ ភាំ ភាំ ភាំ ភាំ ភាំ ភាំ ភ		130         Dayse 200         20           Dayse 500         20         20           00         Dayse 200         20           00         Dayse 20 <t< th=""><th></th></t<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
14	150	0.25	0.4	0.8	11	1.298	4.976	ต่อเนื่อง
	Particle fraction fra	WMW         WMW         WMW         200           100         150         Degree           100         50         Degree	AM         Market         Market           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500           250         500      <	40 Mun 320 320 40 Mun 320 320 40 Mun 320 320 320 320 320 320 320 320	高いない。 		10         200         20           10         Degree 20         20           Degree 20         20	



No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
16	150	0.25	0.8	0.4	-6	2.065	6.233	แตกหัก
	Autors fraction fract	100 190 Degree 100 Degree 100 190 Degree 100 Degree 100 190 Degree 100 Degree 100 190 Degree 100 190 Degree 100 Degree 100 190 Degree 100 De			යා පත්තිය කරන		With Market Bigel         Market Bigel           Output Bigel         Market Bigel           130         Dagree 300         250           131         Dagree 300         250           131         Dagree 300         250	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
17	100	0.15	0.6	0.8	11	1.889	5.976	ต่อเนื่อง+
								แตกหัก
	territer feature france	100         190         200           100         190         Degree           100         190         Degree <tr< th=""><th></th><th>359 359 359 359 359 359 359 359</th><th>enter destre /th><th></th><th>Open Bage         Open Bage           Open Bage         Open Bage</th><th></th></tr<>		359 359 359 359 359 359 359 359	enter destre		Open Bage         Open Bage           Open Bage         Open Bage	

จุฬาลงกรณมหาวทยาลย

No	Speed	Feed	Depth	R _n		$\left(\frac{AVF_x}{x}\right)$	R ₀	สถานะเศษ
110.	(m/min)	(mm/rev)	(mm)	(mm)	Y	$(AVF_y)$	(µm)	โลหะ
18	150	0.25	0.6	0.8	-6	1.369	5.814	ต่อเนื่อง
	Particle france	100         150         200           100         150         Degree           100         150         Degree <tr< th=""><th></th><th>350 350 350 350 350 350 350 350</th><th>entropy of the second s</th><th></th><th>139         Drugse         20           139         Drugse         20           120         Drugse         20           120<th></th></th></tr<>		350 350 350 350 350 350 350 350	entropy of the second s		139         Drugse         20           139         Drugse         20           120         Drugse         20           120 <th></th>	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	$R_0$	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
19	100	0.25	0.6	0.4	-6	1.372	5.857	ต่อเนื่อง
	Param framm fram	WMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		320 320 320 320 320 320 320 320	ទួំ		Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Organization Or	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
20	200	0.20	0.8	0.8	11	0.961	4.722	แตกหัก
	HALINI MALINI MALIN MALINI MALINI MAL	WMW         WMW <td>Wyn Hyw Wwy Arwydd Wyn         250         300           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90</td> <td>330 330 330 330 330 330 330 330</td> <td>a a b b b b a b a b a b a b a b a b a b</td> <td></td> <td>100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200</td> <td></td>	Wyn Hyw Wwy Arwydd Wyn         250         300           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90           250         300         90	330 330 330 330 330 330 330 330	a a b b b b a b a b a b a b a b a b a b		100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200           100         200         200	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
21	100	0.15	0.8	0.4	11	1.271	5.55	ต่อเนื่อง
	HAUNI WAIN FRAM MANN MANN MANN MANN MANN MANN MANN M	100 130 Degree 100 130 Degree 100 130 Degree 100 135 Degree			<u>م م م م م م م م م</u> مراجع من مرا مراجع من مراجع من مرا		W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
22	200	0.25	0.4	0.8	-6	1.049	4.606	ต่อเนื่อง
	Among frames	WHWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	250 500 250 500 WMMMM/v TA 250 500 WMMMM/v TA 250 500 250 50		<u>المعامل المعامل /u>		39         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20           100         20      <	

No	Speed	Feed	Depth	R _n	•	$\left(\frac{AVF_x}{2}\right)$	$R_0$	สถานะเศษ
NO.	(m/min)	(mm/rev)	(mm)	(mm)	Ŷ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
23	150	0.15	0.6	0.8	-6	1.112	5.297	ต่อเนื่อง
	The second secon	Minimum         Minimum <t< th=""><th>300         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150</th><th></th><th>enter die die eine die eine die eine die eine die eine die die die die die die die die die di</th><th></th><th>200         Degree 50         20           100         D</th><th></th></t<>	300         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150         300           150		enter die die eine die eine die eine die eine die eine die die die die die die die die die di		200         Degree 50         20           100         D	
No.	Speed	Feed	Depth	R _n	v	$\left(\frac{AVF_x}{AVF_x}\right)$		สถานะเศษ
-----	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------	-------	------------------------------------------------------	---------------------------------------------	------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------
	(m/min)	(mm/rev)	(mm)	(mm)	8	$(AVF_y)$	(µm)	โลหะ
24	150	0.15	0.8	0.4	11	2.316	6.119	แตกหัก
	France fr			329 329 329 329 329 329 329 329	eren er		Output         20           190         Dagram           200         Dagram <th></th>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
25	150	0.25	0.8	0.8	11	1.779	5.85	แตกหัก
	яния мини мини мини мини мини мини мини	WM-WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		350 350 350 350 350 350 350 350 350 350	<u>수 수 가 수 수 주</u> 있는 것을 해외하는 것을 통해 있는 것을 통해 수 있는 것을 수 있다. 것을 것 같은 것을 통해 수 있는 것을 수 있는 것을 것 같이 않는 것을 못했다. 것 같이 않는 것 않는 것 같이 않는 것 같이 않는 것 않는 것 같이 않는 것 같이 않는 것 같이 없다. 것 같이 않는 것		110         200         20           Origit Bigel         20         20           Origet Bigel         20         20	

No.	Speed	Feed	Depth	R _n	v	$\left(\frac{AVF_x}{AVF_x}\right)$		สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	1	$(AVF_y)$	(µm)	ไลหะ
26	150	0.25	0.4	0.4	-6	1.961	6.25	แตกหัก
		100 190 09000 00 090000 00 09000 00 090000 00 090000 00 090000000 00 090000000000	When we	300 300 300 300 300 300 300 300	និងក្រុមស្រុកស្រុកស្រុកស្រុកស្រុកស្រុកស្រុកស្រុក		110         Copyre 800         20           110         Copyre 800         20           120         Copyre 800         20           130         Copyre 90         20           131         Copyre 90         20           131         Copyre 90         20           131         Copyre 90         20           131         Copyre 90         20	

No	Speed	Feed	Depth	R _n	~	$\left(\frac{AVF_x}{2}\right)$	$R_0$	สถานะเศษ
110.	(m/min)	(mm/rev)	(mm)	(mm)	Y	$(AVF_y)$	(µm)	โลหะ
27	200	0.15	0.4	0.8	11	0.730	4.017	ต่อเนื่อง
	50				10 -			
	S opposition of the	man man purport man		NMMMM	8- 6-			
	-50 o 50	100 150 200 Degree	250 300	350	4- 12 2-		4.0	
	E own White	MMMMurmurmun	and a superior and a	v v-ma	andres(Maar	MMM	m	mm
	-50 0 50	100 150 200 Degree	250 300	350	æ			
	E o-marm	man	manna	v unu	-6-			
	-500 50	100 150 200 Degree	250 300	350	-10	SC 100	150 200 25 Degree	0 300 350
	81 X	Dignel Signel		augustus.]	200		Original Signal	
		100 150 230 Degree Detail 3 gnal D1	259 300	200 200	200 000 200 000 200 000	50 109	150 280 28 Degree Detail Signal D1	
	22 0 00 10 00 10 00 10 00 00 00 00 00 00 00 00 00 00	100 150 Degree Detail Signal D2 100 150 Degree 200	259 300	300 	foreyrt fe	50 100 	150 200 2 Degree Detail Signal D2 150 280 2	200 200 360 [
		Degree Deel 8 grad D3 100 150 200 Degree Deel 3 grad D4	200 300	300	10 10 10 10 10 10 10 10 10 10 10 10 10 1	50 100	Defail Sepre D3 155 280 21 Degree Degree Degree D6	200 200 200
	10) forest ()	100 150 200 Degree Detail 8 gnal D5	250 300		still finanyh	50 100	150 200 21 Degree Detail Signal D5	50 200 360
	to a	100 150 200 Degree Dots I Signal DS	280 900	380	esyldi Face	50 100	150 280 2 Degree Detail Signal De	50 300 350
	to solution to the solution of	190 190 Degree Deteil Signal 07 100 150 Degree Deteil Signal 07	290 900	366	Facey(h) Fr	50 108 	150 240 2 Degree Detail Signal 07 150 240 20 2	50 200 560
	6 Fores (20)	Detail Bignal D6 150 159 200 Degree Degree Degree	289 300		6 forey(h)	i 50 109	Detail Signal D8	50 200 360
	100 Ferres (N	100 150 Depen Depen Signal D10	250 500	300	(0) Farey(X	90 109	150 200 27 Degres Ontel Signal D10	50 200 300
	8 1 1 8 2 2 0 50	100 150 200 Degree	259 300	369	fores,	50 109	150 200 20 Degree	60 200 360
	<u> </u>							

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
28	150	0.15	0.4	0.4	-6	1.612	5.873	ต่อเนื่อง
	manin mani	M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/		350 350 350 350 350 350 350 350	Terrardo mentos mentos mentos mentos mentos mentos terrar a secon terrar e e consecuencientemente Terrardo mentos mentos mentos mentos mentos terrar de Sesta Sesta Sesta Sesta de Consecuentementes de Sesta Sesta Sesta Asta de Sesta		99         209         209           99         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209           90         209         209 <t< td=""><td></td></t<>	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	$R_0$	สถานะเศษ
NO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
29	150	0.20	0.6	0.4	11	1.823	5.59	ต่อเนื่อง
	Second frame	100         130         200           100         130         Degree           100         130         Degree <tr< th=""><th>250 300 WMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</th><th></th><th>entropy and the second se</th><th></th><th>130         Degré 392         20           130         Degré 392         20           140         Degré 392         20           150         D</th><th></th></tr<>	250 300 WMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		entropy and the second se		130         Degré 392         20           140         Degré 392         20           150         D	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
30	200	0.25	0.4	0.4	-6	1.626	5.492	ต่อเนื่อง
		100 132 200 100 132 200 100 132 200 100 132 200 100 132 200 100 120 200 100 100 100 100 100 1000 100 100 100 100 1000 100 100 1	Image: New York         Image: New York           250         300           Image: New York         300	359 359 359 359 359 359 359 359 359 359	<u>য় ব ব ব ব ব ব</u> ব (mmunghemeny) (atala) মানবাৰ (cone atras) মানবাৰ (cone atras) মানবাৰ (cone atras)	50 160 50 br>50 160 50 50 50 160 50 50 50 50 50 50 50 50 50 50 50 50 50	100         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20           000         200         20 <t< td=""><td></td></t<>	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	R ₀	สถานะเศษ
NO.	(m/min)	(mm/rev)	(mm)	(mm)	Ŷ	$(AVF_y)$	(µm)	โลหะ
31	200	0.15	0.8	0.4	-6	1.276	5.057	แตกหัก
	Protein mann mann mann mann mann mann mann ma	100 150 Degree 100 Degree 100 Degree 100 Degree 100 Degree 100 Degree 10		320 320 320 320 320 320 320 320	ទឹក កំ កំ កំ ភំ ភំ ភំ ភំ ភ្លំ manadatarabati និភូនិទី ទីភូនី ភ្លំនឹង		Support         200         200         200           Support         200         200         200	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
32	100	0.25	0.4	0.4	11	1.320	5.375	ต่อเนื่อง
	And the second frame in th	WMMMMMMMMMM           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100 <td>Www.Www.Www.Www.Www.Www.Www.Www.Www.Www</td> <td>3200 y///y/ 3200 y///y/ 3200 y///y/ 3200 y///y/ 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 320</td> <td><u>ې مې دې /u></td> <td>20 (10) 20 /td> <td>100         Days         200         20           100         Days         20         2           100         Days         20         2</td> <td></td>	Www.Www.Www.Www.Www.Www.Www.Www.Www.Www	3200 y///y/ 3200 y///y/ 3200 y///y/ 3200 y///y/ 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 320	<u>ې مې دې /u>	20 (10) 20	100         Days         200         20           100         Days         20         2           100         Days         20         2	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
33	200	0.20	0.6	0.4	11	1.208	4.991	ต่อเนื่อง
	therms forces fo	MMM         MMM <th></th> <th>350 350 350 350 350 350 350 350</th> <th>الم محمد المحمد المحم</th> <th></th> <th>June         June         <td< th=""><th></th></td<></th>		350 350 350 350 350 350 350 350	الم محمد المحمد المحم		June         June <td< th=""><th></th></td<>	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	$R_0$	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
34	100	0.15	0.4	0.4	11	1.598	5.736	ต่อเนื่อง
	Factor for the second formation form	WMWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		359 359 359 359 359 359 359 359	a a a a a a a a a a a a a a a a a a a	50 50 50 50 50	Joint Start         Joint Start           Joint Start	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
35	200	0.15	0.6	0.4	11	1.144	4.781	ต่อเนื่อง
	there is the second term of term o	Mutham		359 359 359 359 359 359 359 359 359 359	م م م م م م م م م م م م م م م م م م م		110         Degree 300         3           Object Spat         3	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
36	100	0.20	0.8	0.4	11	1.425	5.719	ต่อเนื่อง
	$\left[ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	100 156 Degree 100 15			<u>α α ν ν ν ν ν ν ν ν ν</u> ο ν ν ο ν ο ν ο ν ο		All         All <th></th>	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	<b>R</b> ₀	สถานะเศษ
	(m/mm)	(mm/rev)	(mm)	(mm)	•	(y)	(μ)	66N 1/1 c
37	200	0.15	0.8	0.4	11	1.197	4.231	ต่อเนื่อง
	Period mana mana mana mana mana mana mana man	Will Will Will Will Will Will Will Will		350 350 350 350 350 350 350 350	າ ເຊິ່ມເຊິ່ມເຊິ່ມເຊິ່ມເຊິ່ມເຊິ່ມເຊິ່ມເຊິ່ມ		392         300         20           392         Dages         20           393         Dages         20           393         Dages         20           393         Dages         20           393         Dages         20           394         Dages         20           395         Dages         20           396         Dages         20           397         Dages         20           398         Dages         20           399         Dages         20           391         Dages         20           392         Dages         20           393         Dages         30           394         Dages         30           395         Dages         30           396         Dages         30           393         Dages	



No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
39	200	0.25	0.6	0.4	-6	1.740	5.998	ต่อเนื่อง
	territori manta fantan manta	100 100 00000 100 100 00000 100 100 00000 100 100 00000 00 100 00000 00 100 00000 00 00 0000 00 0000000 00 0000000 00 00000000	1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		eren de la constantination d		190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20 <t< th=""><th></th></t<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
40	200	0.15	0.8	0.8	11	0.955	3.944	ต่อเนื่อง
	The second learning l	MMM         100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150	WMW         XMW           250         300           VMMW         Mmm           250         300           VMMW         Mmm           250         300           VMMW         Mmm           250         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300		ange and a second secon		100         Congress         200           Congress         Congress         Congress           Congress         Congress         Congress           Congress         Congress         Congress           Congress         Congress         Co	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
41	200	0.15	0.4	0.4	11	0.727	4.047	ต่อเนื่อง
	Provide Rescription Rescripting Rescripting Rescripting Rescripting Rescripting Rescriptio	400 119 Degree 100 Degree 100 00 Degree 100 D			n no	50 50 500 50	399         Dogen 203         20           390         Dogen 203         20           393         Dogen 203         20           394         Dogen 203         20           395         D	

No.	Speed	Feed	Depth	R _n	2	$\left(\frac{AVF_x}{x}\right)$		สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	*	$(AVF_y)$	(µm)	โลหะ
42	200	0.25	0.4	0.8	11	1.151	4.17	ต่อเนื่อง
	50				10 -			
	S ownerway	Manamanana	Monument	when	8-			
	-50 0 50	100 150 200 Degree	250 300	350	4-			
	E on Minimum	helimentering	Mummuh	making	ess/Arroneter	mmm	M	mm
	-50_050	100 150 200 Degree	250 300	350	tung 2-		VINV	
	50		Acarba		6 -			
	50 MANNY	Notwork when when we want	MM MARIEV V. MA		-8- -10 ₀	59 100	150 200 25	0 310 350
	0 50	100 150 200 Degree	250 300	350	_		Degree	
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Criginal Signal	a	marke	50 50 D		Criginal Signal	and the transmission of the second
	2.00 in	100 150 200 Degree Detail Signal D1	256 359		60 0 60 1 60 1 60 1 60 1 60 1 60 1 60 1	so nos	150 280 25 Degree Detail Signal D1	o 300 350
	2 "0 52	100 150 200 Degree Detail Signal D2	259 330	369	000 100 100 100 100 100 100 100 100 100	50 108	150 200 25 Degree Detail Segree 02	0 300 350
	N 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Degree Detail Signar 03	250 330		00 Å 00 10 00 Å 00 10 00 Å 00 10		Degree Detail Signer 03	9 309 310
	10 100	100 150 Degree		359	Forcy N	50 100	Detail Signer C4 100 280 28 Degree 280 28 Degree 280 28	0 300 320
	Percentities	100 150 200 Deter Signa Do 100 150 200 Degree Deter Signa Do	250 350	300	Di Forey 00	50 100	Detail Signel D5 110 280 28 Depart Detail Signer D6	9 300 350
	31 10 00 00 00 00 00 00 00 00 00 00 00 00	100 150 200 Depre Detail Signa D7	259 230	350	00 Forceyo	50 150	1 150 200 22 Degree Defail Signer 07	0 300 350
	X 800 J	100 150 200 Degree Detail Signal De	259 230	360	A PU Forcey	50 106	150 280 28 Degree Detail Signer D8	0 500 350
	200-200 50	100 150 200 Degree Detail Signer D9	250 330	360	0000 0000 0000 00000 00000 00000 000000	50 000	150 280 28 Degree Detail Signal D9	0 300 320
	2 0 10 50	100 150 200 Degree Cotel Signed D19	290 393	360	100 Loo	50 100	150 280 28 Degree Ortol Signal D10	0 300 300
	¥ 0 50	500 150 200 Degree	250 330	360	2 %	50 108	150 280 28 Degree	0 300 358
		00			10			

No	Speed	Feed	Depth	R _n	•	$(AVF_x)$	R ₀	สถานะเศษ
NO.	(m/min)	(mm/rev)	(mm)	(mm)	Ŷ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
43	100	0.20	0.6	0.4	-6	1.187	5.502	ต่อเนื่อง
	Hanning Hannin	Ministry         100         150         Degree           Ministry         100         100         Degree           Ministry <td< th=""><th></th><th>329 329 329 329 329 329 329 329</th><th>Single Single /th><th>6 19 5 19 19 19 19 19 19 19 19 19 19 19 19 19 1</th><th>Open Biged         200         20           100         Organi Biged         20         20           1010         Organi Biged         20</th><th></th></td<>		329 329 329 329 329 329 329 329	Single	6 19 5 19 19 19 19 19 19 19 19 19 19 19 19 19 1	Open Biged         200         20           100         Organi Biged         20         20           1010         Organi Biged         20	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	$R_0$	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
44	100	0.25	0.6	0.8	-6	1.749	6.234	ต่อเนื่อง
		Image: Section of the sectio		350 350 350 350 350 350 350 350	er en		Open ingue         20           190         Degree         20	

No.	Speed	Feed	Depth	R _n	Ŷ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	1	$(AVF_y)$	(µm)	เลหะ
45	150	0.20	0.4	0.4	11	1.149	4.788	ต่อเนื่อง
		Winkey         Winkey<			المالى مى	60 100 60 100	Operatingen         20           Operatingen         20	
		- (11)			(11)			

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (um)	สถานะเศษ โจหะ
46	150	(IIIII/IEV)	0.8		11	1 258	4 804	แต่อาร์อ
40	150	0.15	0.8	0.0		1.200	4.094	UNITINTI
	50 MAR AAAAA	intermed additional advised advis	Mar.Martine and an		8-			
	-50 50	100 150 200	250 300	350	4-			
	50	Degree			2 [18]9-10		AAA	online .
	\$ on white	Layung Marana Malana Ma	Manmunanan	whole	Foundress(Mo	NWWW	MANNAN	N. MANN
	50 50	100 150 200 Degree	250 300	350	4-		v	
	\$ opposited	WWWWWWWWWWWWWWW	Manumenta	n-Maria	-0-			
	-50 0 50	100 150 200 Degree	250 300	350	-8 ¹ 0	50 100	150 200 25 Degrae	9 300 350
		Criginal Signal			5 10.		Criginal Signal	
	10 50 50 50 50 50 50 50 50 50 50 50 50 50	108 156 290 Degree Detail Ognal D1	290 300	210 V	Vill Fores	50 930	150 200 259 Degree Deal ligned D1	300 360
	E 490 50	108 156 209 Degree Deard Signel 02	280 360	350	rey #0 for	so 199 www.ch.www.ch.www.	156 200 258 Degree Deni I Signi D2	300 300
		100 150 200 Degree Dent 12gmil 03 	200 300 	350	01 00 A 000	00 100 	150 300 259 Degree Detex (Signal C3 150 300 250	100 300
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Degree Deta l Signal D4 108 152 200 Degree	290 300	350	Lace yild	So 100	Degre Des I Signal D4 150 2009 259 Degree	200 380
	been the second b	Detail Signal DS 108 156 200 Degree Detail Signal Di	289 300	350	0 Focky Pl	50 900	Deta I Signal Dd 	700 360
		100 150 200 Degree Data 156 proc	250 360	320	Noney (N)	50 800	150 300 200 Degrae Data I Signal D?	100 300
	000 000 000 000 000 000 000 000 000 00	100 150 200 Degree Deta 1 Signal Di	290 360	350	and Para	50 \$30	150 200 250 Degree Deta I Signal Dit	200 300
	8-100 50	100 15C 200 Degree Detail Signal D9	280 380	350	00-10-0 00 00 00 00 00 00 00 00 00 00 00 00 00	sio 900	150 200 259 Degree Des 1 Signal Di	300 580
	Ference 10 %	Detrail Signal Dro	250 300	350	feesey (1)	50 930	Degree 200 200 Delaid Sgrei D10 150 200 250	100 300 
		Jague						
L	<u> </u>							

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	•		(μπ)	เลหะ
47	100	0.20	0.6	0.4	11	1.073	4.602	ต่อเนื่อง
47		U.2U			And a second sec		4.6002	

No	Speed	Feed	Depth	R _n	~	$\left(\frac{AVF_x}{x}\right)$	$R_0$	สถานะเศษ
110.	(m/min)	(mm/rev)	(mm)	(mm)	Y	$(AVF_y)$	(µm)	โลหะ
48	100	0.25	0.4	0.8	11	1.414	5.154	ต่อเนื่อง
	50	hu. Matherin	MARIN MARCINE A.		8			
	E • WWWW	WMM WWWWWWW	ologia (halifi alifi an anif	ana hata	6-			
	50 50	100 150 200 Degree	250 300	350	(in 1970) 2 -	. Nati	mA	M
	\$ www.www	Muranallanan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www	and est Mirror	M Jun which	MALLANNA YY	MARINA
	-50 50	100 150 200 Degree	250 300	350	ä .2-		ψ×ŲΫ	y r y
	ิ≣ •~~√www	manu wantana	www.www.	man	-a			
	-500 50	100 150 200 Degree	250 300	350	-a_0	50 100	150 200 25 Degree	0 300 350
	 2	Criginal Signal			-		Orginal Signal	
	80 minut	100 150 200 Degree Detail Spel Ot	259 300	350 /	2010 Forey #	50 100	150 200 23 Degree Detail Signal D1	0 300 350
	2 -90 0 50	100 150 200 Degree Deta 15 gral 02	250 300		0 0 00 0000	53 100	150 200 25 Degree Detail Signal D2	0 300 300
		100 150 200 Degree Detail Bigsel 03	200 300	300	arey 10	52 100	150 200 25 Degree Detail Signal C0	0 300 300 0 300 500
	tu surge	Degree Denti 3 gral D4	200 000 200 200		Int Sector	53 100	Degree Detail Signal D4 	0 200 560
	10	100 150 Degree Degree 200 Degree 200	250 300	360	Forey 30	53 100	Detail Signal D3	0 200 360
	all frees if	100 150 230 Degree Detail Signal 07	250 300	300	Al Faceyld	1 52 100	150 200 25 Degree Detail Signal 07	0 200 355
	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 150 200 Degree Detroi 10 grad DS	200 0.00	360	eyiki farey	50 100	150 200 25 Degree Detail Signal Da	0 200 200
	8-100 50	100 150 200 Degree Certei 2 grei Ob	250 300	360	00,100 00,000 00,000	50 100	150 200 25 Degree Deteil Signel D3	0 200 360
	2 0 50	100 110 Degree Detret Signet 010 100 110	289 350	300	Forey (N) P	52 100	200 28 Degree Detail Bayred D10 150 200 26	v 200 300         0 200 360
		Ubgree					Degree	
L		-00-			101			

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
49	150	0.25	0.4	0.4	11	1.207	5.246	ต่อเนื่อง
	Paratity basis for the first formation from the first formation for ation for the first formation formation formation formatio	WMWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	WMI         300           250         300           WMI         WMI           250         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300           30         300		erenten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bereiten Bere		500         Dagwei flowi           500         Dagwei flowi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
50	200	0.20	0.6	0.8	11	1.019	4.55	ต่อเนื่อง
	All and the second seco	MVMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	Yu         Yu<		er e		Organization         Sector           Organization         Sector           Organization         Sector           Sector         Sector	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
51	100	0.15	0.8	0.8	-6	1.022	5.395	แตกหัก
	Provide frames f	100 150 Degree 100 De		350 350 350 350 350 350 350 350	는 것 것 것 것 것 것 것 것 것 것 것 것 것 것 것 것 것 것 것	60 50 500 50	360         Oppret Signal           370         Oppret Signal           380         Oppret Signal           390         Oppret Signal<	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
52	150	0.20	0.6	0.8	11	1.346	5.23	ต่อเนื่อง
	HALMA NALLIA FRAMA FRAM	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	350 350 350 350 350 350 350 350	n n n n n n n n n n n n n n n n n n n	5 19 5 19 5 19 5 19 5 19 5 19 5 19 5 19	Open Bigel         20           Open Bigel <th></th>	

No.	Speed	Feed	Depth	R _n	v	$\left(\frac{AVF_x}{2}\right)$	R ₀	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	X	$(AVF_y)$	(µm)	โลหะ
53	200	0.20	0.4	0.4	11	0.747	4.057	ต่อเนื่อง
	50				a			
	Se ommunially	anaran Manan Manah	Massaman	MVM-VF	6-			-
	-50 50	100 150 200 Degree	250 300	350	5 ²			
	€ •YNWWWWW	www.www.www.Wmer.WWWWww	numation with the second	runn	direct Mccomet	VMM MMM	MAMM	m Mm MA
	-50 50	100 150 200 Degree	250 300	350	88 .2-	• • V		
	\$ ohnowhy	www.www.shummun	No-wannyn yn m	maket	æ			
	-50 0 50	100 150 200 Degree	250 300	350	-a.	50 100	150 200 25 Degree	0 300 350
	_	~~~~~		_	_		~~~~	-
	S and	100 150 Expre Detail Signal D1	250 300	300	66.00 S	50 100	150 230 255 Degree Detail Signel D1	14/1/2014/2014/2014 300 300
	8 20 50 50	100 150 200 Depre Detail Signel D2	0-260 900 250 900	380	and freeze	50 100	150 230 250 Degree Detail Signel D2	300 360
		100 150 230 Degree Detail Signal 03	280 300	350	000 0000 0000 00000 000000000000000000	50 100	150 233 250 Degree Detail Signel 03	300 380
	Le solo	100 100 Degree Detail Signel D4	250 300	300	forsy pli	50 100 50 100	190 Degree Detail Signal D4 190 270 280	300 300
	ti sage	100 150 200 Degree Detail Signal 05 100 150 200 Degree Detail Stored 06	250 200	300	i faray(0	50 100	Detail Signal DS 150 200 250 Degree Detail Scorel D6	1 1 200 260
	10 Farma (1)	100 150 230 Degree Detail Signal D?	250 300	380	YAD Remay?	50 100	150 230 250 Degree Detail Signal D7	350 380
	60 00 00000000000000000000000000000000	100 150 250 Degree Detail Signal D6	250 300	350	avia fore	00 100	190 200 200 Degree Detail Dignal D6	300 350
	en e	100 150 Degree Detail Signal D5 100 150 200	250 300 	380	Forey 00 Fo	50 100	190 200 200 200 Detreil Signet D9 190 200 200 200	300 330
	Lass 00	Degree Detail Signal D10	290 900	350	Forey 00	50 160	Degree Detail Signal D10 	300 380

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	•	$(AVF_y)$	(μπ)	เลหะ
54	150	0.15	0.6	0.8	11	1.279	4.759	ต่อเนื่อง
	50				a			
	₹ •AMMMMM	Mannanananananananananana	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	nWilw:	6-			
	-50 i 50	100 150 200 Degree	250 300	350	4- 0.2			
	\$ onymanym	mannantantanta	www.www.www.	munda	o o	MMAAMAM	MAMMARA	MAAAA
	-5050	100 150 200	250 300	350	formation 42	V VV .	vvw · vv	AMAR 1
	50	Degree			34- -			
	E ornManna	www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.ww	mannana	municip	ه. د			
	-50 50	100 150 200 Degree	250 300	350	-0	50 150	150 200 25 Degree	0 300 350
	8	Criginal Signal					Crighted Signal	
	0 50 0	160 150 200 Degree Detail Signal D1	250 300	310	10 Pares 10	20 100	150 200 250 Degree Deta I Signal Dt	300 310
	夏·2000 50	000 150 200 000 150 Cegnie Des 1 Servi D2	280 300	350	100 00 00 00 00 00 00 00 00 00 00 00 00	50 100	ng bullow A A Anna Anna Anna Anna Anna Anna Anna	300 350
	8 3	100 150 200 Degree Dets I Signel D3	200 300	330	1000 1000 1000	50 750	150 200 280 Degree Deta I fignei D3	300 310
	1	100 150 200 Depre Det l Opped D	250 200	350	100 100 100 100	50 100	150 200 250 Degree Dols ( Signal D4	300 320
	40 50 50 50 50 50 50 50 50 50 50 50 50 50	100 150 200 Degree Deta I Bignal DS	280 300	350	004 00455	do to	150 200 250 Degree Deta I Degnal D5	300 350
	2 - 20 so	100 150 200 Degree Deniri Signer Di	280 300	350	ary R	50 100	150 200 250 Degrae Defail Gignel Di	300 320
	2 °0 00	100 150 200 Degree Dets I Signel D7	250 500	330	10 50 50 50 50 50 50 50 50 50 50 50 50 50	50 100	150 200 250 Degree Deta I Signal D7	300 350
	2 0 50 6 10	100 150 Degree Detail Ognal Di	20 300	350	0 00 10		150 200 260 Degree Deta I Gignal D0	300 310
		Degree Des 1 Bignai Da		30	(iii) Asso		Degree Deta l Dignei Da	
	E 0.4	Degree Detiel Signal D10 100 150 200	252 300	559	00/Xeorg	50 100	Degree Deteil Signel D10 150 200 250	500 320
		Degree					Degree	
L		60						

No	Speed	Feed	Depth	R _n		$(AVF_x)$	R ₀	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
55	200	0.15	0.6	0.8	11	1.339	4.768	ต่อเนื่อง
	Rance Rance Party Lands And Rance Ra	000         120         200           1000         120         Degree           0/000         150         Degree           0/000         150 </th <th>259 300 MMMMMMMMM 259 300 MMMMMMMMMMM 259 300 MMMMMMMMMMMM 259 300 MMMMMMMMMMMM 259 300 MMMMMMMMMMMM 259 300 MMMMMMMMMMMMM 259 300 MMMMMMMMMMMMMMM 259 300 MMMMMMMMMMMMMMMMM 259 300 MMMMMMMMMMMMMMMMMMMMMM 259 300 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</th> <th></th> <th>a o o o o o o o o o o o o o o o o o o o</th> <th></th> <th>Control of the control of the c</th> <th></th>	259 300 MMMMMMMMM 259 300 MMMMMMMMMMM 259 300 MMMMMMMMMMMM 259 300 MMMMMMMMMMMM 259 300 MMMMMMMMMMMM 259 300 MMMMMMMMMMMMM 259 300 MMMMMMMMMMMMMMM 259 300 MMMMMMMMMMMMMMMMM 259 300 MMMMMMMMMMMMMMMMMMMMMM 259 300 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		a o o o o o o o o o o o o o o o o o o o		Control of the c	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
56	100	0.15	0.8	0.4	-6	1.721	5.976	แตกหัก
	the state of the s	00         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200     <		350 350 350 350 350 350 350 350	<u>p a a a c c c c c c c c c c c c c c c c </u>		192         2000           192         2000           192         2000           193         2000           194         200           195         2000           196         2000           197         2000           198         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000           199         2000	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF_x}\right)$		สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	1	$(AVF_y)$	(µm)	ไลหะ
57	200	0.25	0.6	0.8	11	1.258	4.567	ต่อเนื่อง
	reacted fraction frac	WMM         MMM         MMM <th>MMWMMMMMMM 250 300 MMMMMMMMMM 250 300 MMMMMMMMMMM 250 300 250 300 200 300 20</th> <th>339       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329   <!--</th--><th>and a set of the set o</th><th></th><th>100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           <t< th=""><th></th></t<></th></th>	MMWMMMMMMM 250 300 MMMMMMMMMM 250 300 MMMMMMMMMMM 250 300 250 300 200 300 20	339       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329       329 </th <th>and a set of the set o</th> <th></th> <th>100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           <t< th=""><th></th></t<></th>	and a set of the set o		100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20           100         200         20 <t< th=""><th></th></t<>	

No.	Speed	Feed	Depth	R _n	v	$\left(\frac{AVF_x}{x}\right)$		สถานะเศษ
58	(m/min)	(mm/rev)	(mm)	(mm)	7	$(AVF_y)$	(µm)	โลหะ
58	200	0.20	0.8	0.4	11	1.319	5.011	ต่อเนื่อง
	There is a series and the series and	100 150 Degree 100 150 Degree		350 350 350 350 350 350 350 350	enter al a second and a second as		190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20           190         200         20 <t< th=""><th></th></t<>	

No.	Speed	Feed	Depth	R _n	v	$\left(\frac{AVF_x}{WF_x}\right)$		สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	1	$(AVF_y)$	(µm)	โลหะ
59	150	0.15	0.8	0.8	-6	1.585	5.358	ต่อเนื่อง
	Pertors from the stant from the stan	100 190 200 100 190 000 100 190 000 100 190 000 100 190 000 100 0000000000		320 320 320 320 320 320 320 320	(manufication) (ma		130         Degree         200         20           130         Degree         200         20           200         Stage         20         20           130         Degree         20         20           131         Degree         20         20           130         Degree         20         20           131         Degree         20         20           130         Degree         2	
No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
-----	-----------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------	---------------------------------------	------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------
60	100	0.25	0.4	0.4	-6	1.308	6.01	ต่อเนื่อง
	Martin Ware man	Multimum     Multimum     Multimum     Multimum       100     150     200       Multimum     100     150     Degree       Multimum     100     100     200       Multimum     100     100     200 <th>Mpuh MMA M 259 369 259 369</th> <th>350 350 350 350 350 350 350 350</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th>Orgen Spatt Orgen Spa</th> <th></th>	Mpuh MMA M 259 369 259 369	350 350 350 350 350 350 350 350	· · · · · · · · · · · · · · · · · · ·		Orgen Spatt Orgen Spa	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
61	150	0.15	0.4	0.8	-6	1.055	5.019	ต่อเนื่อง
	And a match state and state st	MMM     MMM <td>MARA     MARA     <td< td=""><td></td><td><u>مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ </u></td><td></td><td>199     Degree     20     21       Operatinguel       The page 20     22       The page 20     22       The page 20     22       The page 20     23       The page 20     24       The page 20     25       The page 20     25       The page 20     25       The page 20     25       The page 20     26       The page 20     26  The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20</td><td></td></td<></td>	MARA     MARA <td< td=""><td></td><td><u>مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ </u></td><td></td><td>199     Degree     20     21       Operatinguel       The page 20     22       The page 20     22       The page 20     22       The page 20     23       The page 20     24       The page 20     25       The page 20     25       The page 20     25       The page 20     25       The page 20     26       The page 20     26  The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20</td><td></td></td<>		<u>مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ </u>		199     Degree     20     21       Operatinguel       The page 20     22       The page 20     22       The page 20     22       The page 20     23       The page 20     24       The page 20     25       The page 20     25       The page 20     25       The page 20     25       The page 20     26       The page 20     26  The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20     26       The page 20	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
62	200	0.15	0.4	0.4	-6	1.288	4.635	ต่อเนื่อง
	And frame fr	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		329 329 329 329 329 329 329 329 329 329	and the second s		Vigo regres 200     50       Opprint Bigst     50       Opprit Bigst     50	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
63	100	0.25	0.6	0.8	11	1.619	5.608	ต่อเนื่อง
	Provide fraction frac	Image: second	MMM     150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300       150     300		a a a a a a a a a a a a a a a a a a a		132     200     200       132     200     200       133     200     200       134     200     200       135     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       136     200     200       137     200     200       138     200     200       139     200     200       130     200     200       130     200     200       130     200     200	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	•	$(AVF_y)$	(µm)	เลหะ
64	150	0.15	0.4	0.4	11	1.139	4.686	ต่อเนื่อง
	50				ð			
	a o Althoughon	annung man Martin	man management	mand	6-			
	50	Degree			1 spanoo	10 A A	ANA. A	ANNA
	E of White adjunct	100 150 200	10m/m/m/m/m/m/m/W	350	Rorrotessi V	and how	(W	WW
	50	Degree			4			
	-500 50	100 150 200	250 300	350	*	50 100	150 200 25 Decree	0 300 350
	_	Degree			_		67 <b>8</b> 75.	
	00 and 00	Organal Signal	200 300	~~~\/\/\/=] 389	Busy 10 2000	01010-01100-01100-0110010-0110410-0100 50 100	Criginal Signal And Annual Mathematical 150 200 250 Degree Deal Small D	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		100 150 200 Degree Deta 1 Signal D2	259 100	300	200 500070	50 100	150 XX0 250 Degree Detail 8 gnal 02	1 300 380
		150 150 2009 Degree Deal Right D3	259 200 	360	Freeyed Fore	50 100	150 200 250 Degree Deteil Bignel 00 150 200 250	300 300
	been 1(b)	Degree Deter 1 Signer D4 500 150 2009 Degree Dent 1 Signer D5	250 100	340	Ferry (1)	50 100	Degree Detail Bignal D4	200 300
	free control of the c	920 150 200 Digree Defini Signel Di	259 109	300	eyllo farayt	50 100	150 200 250 Degree Date 1 Signet D0	300 330
	fame (h) for	500 150 200 Degrae Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desise Desi	250 200	350	Forey (I) Fac	50 100	150 200 250 Degree Dete 1 Signal D7 150 200 250	300 350
	Lecan all	begier Deni Spni Di 100 150 200 Denis Spni Di Denis Spni Di	200 200	300	facey(K)	j j 50 100	Degree Defail Signet Do 1 150 Xeo 250 Degree Defail Signal Do	300 330
	10 0 0 50	100 150 200 Droree Detail Signal D10	259 100	360	oreya 6000	50 100	150 200 250 Degree Detail Signal D10	300 300
	5 % s	500 556 200 Dugree	259 209	360	Teres 1	50 100	150 200 250 Degree	300 350
<u> </u>								-

No	Speed	Feed	Depth	R _n		$(AVF_x)$	R ₀	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
65	200	0.25	0.6	0.4	11	1.219	5.194	ต่อเนื่อง
	Amazia mana mana mana mana mana mana mana ma	400     100     150     Dagree       100     150     Dagree     200       400     150     Dagree     200       400		359 359 359 359 359 359 359 359	the state of the s		10     Degree 300     20       10     De	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
66	200	0.15	0.8	0.8	-6	1.322	5.428	ต่อเนื่อง
	A D D D D D D D D D D D D D D D D D D D	100 130 Degree 30 100 130 Degre		359 359 359 359 359 359 359 359 359 359			Operatingel     200     200       Operatingel     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     200       100     200     <	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
67	200	0.15	0.6	0.8	-6	1.069	5.181	ต่อเนื่อง
	WALLAN FRALEN FRAL FRALEN FRALEN FRAL	Mum     Mum <th></th> <th>329 329 329 329 329 329 329 329</th> <th>er en /th> <th></th> <th>100     Degree 32     24       100     Degree 32     26       Degree 32     Degree 32     26       Degree 32     Degree 32     26       Degree 32     Degree 32     Degree 32       Dear 100     Degree 32     Degree 32       Dear 10</th> <th></th>		329 329 329 329 329 329 329 329	er en		100     Degree 32     24       100     Degree 32     26       Degree 32     Degree 32     26       Degree 32     Degree 32     26       Degree 32     Degree 32     Degree 32       Dear 100     Degree 32     Degree 32       Dear 10	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
68	150	0.25	0.6	0.8	11	1.508	5.608	ต่อเนื่อง
	House marks franks franks marks mar Marks marks mar	100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200	250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       250     300       350     300       350     300       350     300       350     300       350     300       350     300       350     300       350     300       350     300       350     300       350     300       350	350	unanashkanakan Ramashkanakan Ramas		199     pages     20       199     pages     20       199     pages     20       100     pages     20	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
69	200	0.25	0.8	0.8	11	1.270	4.754	แตกหัก
	Reasons from the first frame from the first frame fram	Weight Mark Mark Mark Mark Mark Mark Mark Mark		329 329 329 329 329 329 329 329	n n n n n n n n n n n n n n n n n n n		338     Dright Taylet       338     Dright Taylet       20gent Taylet     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200     20       100     200	

No	Speed	Feed	Depth	R _n	•	$(AVF_x)$	R ₀	สถานะเศษ
NO.	(m/min)	(mm/rev)	(mm)	(mm)	Ŷ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
70	100	0.20	0.4	0.4	11	1.159	4.837	ต่อเนื่อง
	50		day the star		ő			
	2 · · · · · · · · · · · · · · · · · · ·	100 150 200	250 300	359				
	50	Degree			Acconetis:)	h. mah	Any NAMA, I	warman .
	E OWWWWW	100 150 200	250 300	350	Rontress)	Ama Mama .	WW Why w	NA
	50		uillunghtur ourse	AMLARA!	-4			
	-500 50	100 150 200 Depres	250 300	350	-sL o	50 100	150 200 27 Degree	0 310 250
	_							
	8 43 8 48 48 68 69 50 50	Crighel Rignel 100 150 200 Detail Signal D1	210 300	250	1000 Factor	a9 100	Original Signal 199 200 280 Degree Detail Signal D1	300 350
		100 150 200 Degree Detail Signal 02	210 300	390	0000 100000000000000000000000000000000	69 102	159 250 250 Degree Denii Signi D2	
		100 100 Degree Data Egui D3 100 100 Degree Degree D4	250 300	330	ferey M. F	50 103	Degree Detail Signal DS 159 200 200 Degree Degree	300 330
	states and second	100 160 200 Degree Detail Signal D5	200 300	250	tyde feerydd	50 100	159 200 250 Degree Detail Signed D5	200 250
	00 4 (f) 100 4 (	100 150 200 Degree Detail Signal D6 100 150 200	250 300	350	Fuery 90, Fare	59 103 59 103	150 200 250 Degree Detail Signel D0 159 200 250	300 250
	4 .	Degree Detail Signal 07 160 160 Degree Detail Signal D8	250 200	310	10 Fore 2 00	59 103	Degree Detail Signal D7 150 200 250 Degree Detail Signal D6	300 310
	faces	160 150 Dagwe Datail Signal Da	250 300	350	aya) focey	59 103	150 200 250 Degree Detail Signal D0	300 350
	82.5 c c c c c c c c c c c c c c c c c c c	100 100 Degree Degree Dates Signel D10 100 100 200	250 300	350	Parts of the second sec	50 100 1 1 50 100	100 200 200 Degree Dealer Digree Dit 150 200 200 200	300 350
		- vojes					array and	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	•	(AV I y)	(μπ)	เลหะ
71	100	0.25	0.8	0.4	11	1.495	5.962	แตกหัก
		100 156 Degree 100 156 Degree 100 156 Degree 100 150 Degree			<u>য় বি                                   </u>		100     200     200     200       100     Degree 200     2	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
72	150	0.20	0.6	0.8	-6	1.301	5.661	ต่อเนื่อง
	Previous Manuel Previous Manuel Previo	400     150     200       100     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200       400     150     200			enter all and the second		199     200     20       199     200     20       199     200     20       199     200     20       199     200     20       199     200     20       199     200     20       199     200     20       199     200     20       199     200     20       190     200     20       191     200     20       192     200     20       193     200     20       194     200     20       195     200     20       196     200     20       197     200     20       198     200     20       199     200     20       199     200     20       199     200     20       199     200     20       199     200     20       199     200     20 <t< th=""><th></th></t<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
73	200	0.20	0.4	0.4	-6	1.365	5.107	ต่อเนื่อง
		MMM     100     132     200       100     132     200       MMM     MMM     MMM     MMM       100     132     200       MMM     MMM     MMM     MMM       100     120     Degree       MMM     100     120     Degree       100     120     Degree     200       100     120     Degree     200	44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44     44<		eren de la compansion de l La compansion de la compa		Viger Bigel     Viger Bigel       Viger Bigel	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
74	150	0.20	0.8	0.4	-6	1.494	6.13	แตกหัก
	Provide the state of the state	100 130 Degree 100 00 Degree 100 00 Degree 100 00 Degree 100 00 Degree 100 00 Degree 100 Degree 100 00 Degree 100		359 359 359 359 359 359 359 359 359 359	<u>الم م م م م م م</u> Unreally Martin Article Article State Article Article State State State Article Art		Operation     20       Operation     20 <th></th>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
75	200	0.20	0.6	0.8	-6	1.089	5.397	ต่อเนื่อง
	Previous Natural	Multiple     100     150     200       Multiple     100     100     200       Multiple     100     100     200       Multiple     100     100     200       Multiple     100     100     200       Multiple     100     200     200	250 300 400 40 40 40 40 40 40 40 40 40 40 40 40	AMA       350       350	en e		Organization of the second sec	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
76	150	0.20	0.8	0.8	11	1.480	5.112	แตกหัก
	Markon formal fo	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		359 359 359 359 359 359 359 359	stand strand		300     Copyre     200       100     Copyre     200       Constrained     Copyre     200       Copyre     200     Copyre     200       Copyre     Copyre     200     Copyre       Copyre     Copyre     200     Copyre       Copyre     Copyre     Copyre     200       Copyre </th <th></th>	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	•	$(AVF_y)$	(μπ)	เลหะ
77	200	0.15	0.4	0.8	-6	0.873	4.099	ต่อเนื่อง
	Maxini Ma	Multiplication     100     150     200       100     150     Degree     200       Multiplication     100     150     Degree       100     150     Degree     200       Multiplication     150     Degree     200       100     100     Degree     200       100     100     Degree     200	120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120     300       120	<u>19</u> <u>19</u> <u>19</u> <u>19</u> <u>19</u> <u>19</u> <u>19</u> <u>19</u>	and the second s		10     000     200       10     000     200       10     000     200       10     000     200       10     000     200       10     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200       100     000     200	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
78	150	0.20	0.4	0.8	-6	1.083	5.122	ต่อเนื่อง
	The state is a state in the state is a state	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	WMW     MMW     MMW <th></th> <th>the state of the s</th> <th></th> <th>30     Organization     20       100     Dragonization     20       100     Dr</th> <th></th>		the state of the s		30     Organization     20       100     Dragonization     20       100     Dr	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
79	200	0.25	0.8	0.4	-6	1.892	6.101	แตกหัก
	State in the state	300     150     200       100     150     200       4000     150     200       4000     150     200       4000     150     200       4000     150     200       4000     150     200       4000     150     200       4000     150     200       50     150     200       50     150     200       50     150     200       50     150     200       50     150     200       50     150     150       50     150     150       50     150     150       50     150     150       50     150     150       50     150     150       50     150     150       50     150     150       50     150     150       50     150     150       50     150     150	250 300 (WWWWWWWW 250 300 (WWWWWWWW 250 300 (WWWWWWWWW 250 300 30 300 30 300 30 300 30 300 30 40 30 40	359 359 359 359 359 359 359 359 359 359	المعامل br>الماريس المعامل المعامل المعامل المعامل الماريس الماريس الماريس الماريس الماريس الماريس الماريس الماريس الماريس المعامل المعامل		Vid     Cogene 800     50       Vid     Cogene 800     50 <td< th=""><th></th></td<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
80	150	0.20	0.8	0.8	-6	1.854	5.667	แตกหัก
	The state of the state s	Image: Section of the sectio	Image: New York of the second secon	350 350 350 350 350 350 350 350	international and the second	50 500 50	10     Degree 200     20       100     Degree 200     20	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
81	200	0.20	0.8	0.4	-6	1.476	6.018	แตกหัก
	Harris Marrier Mar Marrier Marrier Ma	100 120 Degree 100 Degree 100 120 Degree 100 Degree 100 120 Degree 100 De			<u>الم من /u>		110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200       110     200     200	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	•	(III y)	(μ)	เพทอ
82	150	0.25	0.6	0.4	-6	2.328	6.725	ต่อเนื่อง+
								แตกหัก
	And a man a man and a man br>Man a man a m	100 150 Degree 100 150 Degree			<u>৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ </u> Internal States (1996) প্রতি, ৫৫৫, ৫৫৫, ৫৫৫, ৫৫৫, ৫৫৫, ৫৫৫, ৫৫৫, ৫		30     Degra 100     30       30     Degra 200     30       30     Degra 200 <t< th=""><th></th></t<>	

จุฬาลงกรณ์มหาวิทยาลย

Chulalongkorn University

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
83	200	0.20	0.4	0.8	11	1.047	4.047	ต่อเนื่อง
	Provide factors for the second factor for th	24     100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150	VUU-UU     VUU-UU<		日本	50 100 50  500 500 500 500 500 500 500 500	August Hand     200     200       11.9     Exgres 200     200       300     Exgres 200     200 <	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	$R_0$	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
84	100	0.15	0.4	0.8	11	1.300	4.674	ต่อเนื่อง
	50				å			
	2 0 Nr. 10 M	Marrison Marken Marken	Manado Managora	MMM	6-			
	50	Degree			0.2	an and		mm
	E MMM	100 150 200	250 300	350	Rondress)	WWW & W.	MANN N	
	50 8 0 A A A A		maamma	MAG	-4- G-			
	-500 50	100 150 200 Degree	250 300	350	-80	50 100	150 200 21 Degree	0 300 250
	_	Original Signal					Original Signal	-
	11 ready 10	100 150 280 Degree Detail Spine D1	250 200	350	ay 00 Farey (	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	150 200 200 Degree Deteil Bignel D1	399 320
	100 mm	100 150 Degree Detail Signal 02 000 150 280 100 150 Degree	250 200 ///////////////////////////////////	350	60,000 100,000 100,000 100,000	50 100	150 200 254 Degree Detail Tignal D2 150 200 254 Degree	200 500
	100 feet 00	Detail Signer (2) 102 150 200 Degree Octail Signer De	250 200	359	Bob Corey	50 100	Dear opini D3	332 320
	Concrete Fore	100 150 200 Degree Detail Signel D5 100 150 200	250 300	350	Forey Bill Nero	80 100 50 100	150 200 250 Degree Detail Bignal D5 150 200 250	303 3do 309 389
	00 Fores.00	Degree Detail Signel De 100 150 Degree Detail Signel D7	220 300	350	(N) Surry(0)	50 100	Detei 1 Signet DB 150 200 230 Degree Detei 1 Signet D7	200 300
	March and	100 150 200 Degree Detail Spine De	250 350	350	focusyld free	50 160	150 200 250 Degree Deta1 Signal De	230 350
	4 9011400	100 Degree 200 Delate Signe Do 100 150 Degree Degree Degree Degree Degree	200 200 1 250 300	350	M Farmy NV	50 100	Degree Defail Signal D0 150 200 250 Degree Detail Signal D10	230 380
	10 T PADO	100 150 2300 Degree	250 300	350	Pote 9	50 100	150 280 280 Degree	9 999 360
L		(1)						

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	•	(110 I y)	(μπ)	เสทธ
85	100	0.20	0.8	0.8	11	2.486	6.147	แตกหัก
	The second means many many means many many many many many many many many	100 190 0000000000000000000000000000000		3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 320 32	entrol e		With the second secon	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
86	150	0.15	0.6	0.4	11	1.195	5.249	ต่อเนื่อง
	Version fracts f	W//W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W	250 300 150	3280 3280 3280 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200	eren and the second	MMM     MMM       50     500       80     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500       90     500	100     Cogere 200     250       100     Cogere 200     250 <th></th>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
87	150	0.15	0.6	0.4	-6	1.738	5.67	แตกหัก
	Manual function for the state of the state o	Image: Section of the sectio	259 309 (M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-		tern die		103     Lagere     200       104     Lagere     200       105     Lagere     200       106     Lagere     200       107     Lagere     200       108     Lagere     200       109     Lagere     200       100     Lagere     200	

No	Speed	Feed	Depth	R _n		$\left(\frac{AVF_x}{2}\right)$	$R_0$	สถานะเศษ
NO.	(m/min)	(mm/rev)	(mm)	(mm)	Ŷ	$(AVF_y)$	(µm)	โลหะ
88	200	0.15	0.6	0.4	-6	1.143	5.644	แตกหัก
	ternan para baran	Weight of the second		350 350 350 350 350 350 350 350	en e		30     Source 20     Source 20       30     Source 20     Source 20	

Na	Speed	Feed	Depth	R _n		$(AVF_x)$	$R_0$	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
89	150	0.20	0.6	0.4	-6	2.028	6.291	ต่อเนื่อง+
								แตกหัก
	Annow Markin mana mana mana mana mana mana mana ma	100 1-00 Degree 100 0-00 Degree 100 0-			Submaniformania Submaniformania Strange Strange br>Strange Strange		Image: second	

จุฬาลงกรณิมหาวิทยาลย

Chulalongkorn University

No	Speed	Feed	Depth	R _n		$(AVF_x)$	$R_0$	สถานะเศษ
NO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
90	150	0.20	0.8	0.4	11	2.427	6.578	แตกหัก
	Note Note Note Note Note Note Note   Note Note Note Note Note Note Note	100 190 0900 100 190 0900 100 195 09000 100 195 09000 100 195 09000 100 195 09000 100 195 0900			entropy of the state of the sta		130     Dage: 200     200       131     Dage: 200     200       131     Dage: 200     200       131     Dage: 200     200       131     Dage: 200     200 <td< th=""><th></th></td<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
91	150	0.25	0.4	0.8	-6	1.269	5.621	ต่อเนื่อง
	Autuan Benerati Pancita Manata Ma	W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/		350 350 350 350 350 350 350 350	<u>المَانْ مَانْ مَ</u>	60 500 50 500	100     Jagger 500     50       100     Jagger 50     20       100	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> ₀ (um)	สถานะเศษ โจนะ
	(111/11111)	(IIIII/Iev)	(11111)	(11111)		(y)	(	661 110
92	150	0.20	0.4	0.4	-6	1.732	6.174	ต่อเนื่อง
	weaking features manual features featur	WMWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	250 300 250 300 000 250 300 000 250 300 000 250 300 000 250 300 000 250 300 000 250 300 100 100 100 100 100 100 100 100 100		11 - 11 - 11 - 11 - 11 - 11 - 11 - 11		193     Copyre Byrel     200     20       193     Copyre Byrel     20     20       194     Copyre Byrel     20     20       195     Copyre Byrel     20     20       196     Copyre Byrel     20     20       197     Copyre Byrel     20     20       198     Copyre Byrel     20     20       199     Copyre Byrel     20     20       199     Copyre Byrel     20     20       199     Copyre Byrel     20     20       190     Copyre Byrel     20     20       191     Copyre Byrel     20     20       191     Copyre Byrel     20     20       191     Copyre Byrel     20     20       192     Copyre Byrel     20     20       Copyre Byrel     20	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
93	200	0.20	0.6	0.4	-6	1.377	5.749	ต่อเนื่อง
	Image: space of the space o	300     150     200       100     150     200       MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	250 300 WWWWWWWWW 250 300 WWWWWWWWW 250 300 WWWWWWWWW 250 300 300 300 300 300 300 300 300	359 359 359 359 359 359 359 359	ទ្ឋានទំនាំ ទំនាំទំនាំទំនាំទំនាំទំនាំទំនាំទំ		10     Lagree     20     20       Operating all       Operating all <t< th=""><th></th></t<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (µm)	สถานะเศษ โลหะ
94	100	0.25	0.8	0.4	-6	2.502	6.519	แตกหัก
	tourn many more many many many many many many many many	100 150 2900 100 150 2900 10	250 500 MMMMMM 250 500 MMMMMMM 250 500 MMMMMMM 250 500 MMMMMMM 250 500 MMMMMMMM 250 500 MMMMMMMM 250 500 MMMMMMMMM 250 500 MMMMMMMMMM 250 500 MMMMMMMMMMM 250 500 MMMMMMMMMMMM 250 500 MMMMMMMMMMMM 250 500 MMMMMMMMMMMMM 250 500 MMMMMMMMMMMMMMMM 250 500 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		<u>৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ ৫ </u>		139     Dage 200     20       139     Dage 200     20       139     Dage 200     20       130     Dage 200     20       131     Dage 200     20       132     Dage 200     20       133     Dage 200     20       134     Dage 200     20       135     Dage 200     20       136     Dage 200     20       135     Dage 200     20       136     Dage 200     20       137     Dage 200 <t< th=""><th></th></t<>	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF_x}\right)$		สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	1	$(AVF_y)$	(µm)	เลหะ
95	100	0.20	0.6	0.8	-6	1.722	6.102	ต่อเนื่อง
	Harana ferenti mante terrato ferente f	100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     150     200       100     100     200       100     100     200       100     100     200       100     100     200       100     100     200       100     100     200       100     100     200       100     100     200       100     100     200       100     100     200		329 329 329 329 329 329 329 329	المتعلم المحمد الله المحمد الله المحمد		Signed Strate     200     200       100     Cagarte 200	
No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
-----	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------	------------------------	----------------------------------------------------------------	------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------
96	200	0.20	0.8	0.8	-6	1.369	5.55	แตกหัก
	Hauting Waith Manth Author Manth Man	100 130 Degree 100 130 Degree			中国の日本では、日本の日本では、日本の日本での日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の		120         Dog et 00         20           Operat Biget         20         20           300         Dog et 00         20           301         Dog et 00         20           302         Dog et 00         20           303         Dog et 00         20           304         Dog et 00         20           305         Dog et 00         20           303         Dog et 00         20           304         Dog et 00         20           305         Dog et 00         20           303         Dog et 00         20           304         Dog et 00         20           305         Dog et 00         20           306         Dog et 00         20           304         Dog et 00         20           305         Dog et 00         20           306         Dog et 00         20           304         Dog et 00         20           305         Dog et 00         20           306         Dog et 00         20           307         Dog et 00         20           308         Dog et 00         20           309 <td< th=""><th></th></td<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
97	100	0.15	0.4	0.4	-6	2.009	6.481	ต่อเนื่อง
	Bill and the second sec	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	250 500 500		and the state of t		Operating all           110         Congres           Operating all           110         Congres           111         Congres           112         Congres           113         Congres           114         Congres           115         Congres           116         Congres           117         Congres           118         Congres           119         Congres           110         Congres           111         Congres	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
98	200	0.20	0.4	0.8	-6	0.950	4.156	ต่อเนื่อง
	America formation formation formation formation for the second formation for the second formation formation for the second formation for the second formation formation for the second formation for the second formation formation for the second formation formation formation formation formation formation for the second formation formatio	Muse MMMMMMMMM           100         150         200           100         150         200           MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		359 359 359 359 359 359 359 359 359 359	en e	60 100 100	103         Degree         20           Opport ligget           Topport ligget           Opport ligget	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	1	$(AVF_y)$	(µm)	เลหะ
99	100	0.15	0.4	0.8	-6	1.299	5.309	ต่อเนื่อง
	40				ő			
	20 MMWAWA	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	ANNNAMMANA NA	With	4			
	40	100 150 200 Degree	250 300	350	2 - Septure	a man la	And to 1	
	\$ • MMA/MM -20	ann man was a manuf	www.www.www.www.	www	RanchessMa	MANANAN	MANAMAAN	MA MANA
	40 20	100 150 200 Degree	250 300	350	-2-			1 1
	爱。 20 -40	mmmmmmmm	MMMMM	WW	-E	50 100	150 200 25	0 300 350
		100 150 200 Degree	250 300	350	_		Degree	
	81 30 30 30 30 30 50	Criginal Signal	MMMMMMMMMM 250 200	350	Fore yild 8.0 g	1000 - 200 - 200 50 - 500	Orgine Signal	100 300
	10 20 20 20 20 20 20 20 20 20 20 20 20 20	Degree Detail Signer D1 000 150 280 Degree Detail Signer D2	M4MM	350	00 5000 8 000 8 000 0 000	50 900	Degrae Dels i Signal Di 100 200 200 Degrae Dels i Signal Di	200 220
	1000 10000 100000 1000000 1000000 1000000	100 150 Degree Detail Segnal (3	250 300	350	ay (h) Fatery	50 900	150 200 259 Degree Detal Signal D3	1000 380
	Looper (1)	102 110 280 Degree Dital Signal D4 105 150 280	250 300	350	Manay (4) For	50 990 	100 2000 2000 Degree Date 10 gree D4 150 2000 259	200 380
	4 5000 50	Degree Detail Signal CS 100 150 280 Degree Detail Signal CS		350	force (i)	50 930	Dirgite Defail Signal DS 106 200 200 Dirgite Defail Signal DS	300 350
	beer 6	100 150 200 Degree Detail Signel 07	250 200	359	A POR PORY	50 900	150 200 250 Degree Dets I Signal D7	200 300
	Freez (3) Free 	102 150 280 Degree Detail Esperi De 102 159 280	250 300	350	foceyed for	50 900 50 900	150 200 250 Degree Defait Signal Di 150 200 250	200 360
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Degree Detail Signal Da 100 150 200 Degree Data	250 200	350	(N) A source (I)	50 900	Degree Deta Signal D9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 320
	Forex KN	100 150 Degree	250 200	350	feeny (	sO 900	150 200 250 Digree	200 300
		(mb)			(Ind)			

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
100	100	0.20	0.8	0.4	-6	2.158	6.46	แตกหัก
		MMMMMMMMM         100         150         200           MMMMMMMMM         MMMMMMMM         MMMMMMM         MMMMMMM           100         150         Degree           MMMMMMMMM         MMMMMMMMM         MMMMMMMM         MMMMMMMM           100         150         Degree           MMMMMMMMMMMMMMMMM         MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		350 350 350 350 350 350 350 350	2	60 100 10 100	100         Ligger 200         201           100         Ligger 200         201 <td></td>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
101	100	0.25	0.4	0.8	-6	1.523	6.06	ต่อเนื่อง
	Periodo fencios fencio	Image: Section of the sectio	WMWWWWWWWWW           250         500           WMWWWWWWWW         250         500           WMWWWWWWWWW         250         500           250         500         300           WWWWWWWWWWW         250         500           250         500         300           250         500         300           250         500         300           250         500         300           250         500         300           250         500         300           250         500         300           250         500         300           250         500         300           250         500         300           350         300         300           350         300         300           350         300         300           350         300         300           350         300         300           350         300         300           350         300         300           350         300         300           350         300         300           350 </td <td>350 350 350 350 350 350 350 350</td> <td>الم المالية الم</td> <td></td> <td>Organización de la construcción /td> <td></td>	350 350 350 350 350 350 350 350	الم المالية الم		Organización de la construcción	

No	Speed	Feed	Depth	R _n	$\sim$	$(AVF_x)$	R ₀	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_{y}}\right)$	(µm)	โลหะ
102	150	0.25	0.6	0.4	11	2.851	7.41	ต่อเนื่อง
	A     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B <td>100 150 Degree 100 Degree 100 150 Degree 100 De</td> <td>250 300 250 300 444 44 44 44 44 44 44 44 44 44 44 44 44</td> <td>350 350 350 350 350 350 350 350 350 350</td> <td>المعاملة المحمد ا المحمد المحمد ا</td> <td></td> <td>130         Days 300         20           130         Days 300         20           140         Days 300         20           150         Days 300         <t< td=""><td></td></t<></td>	100 150 Degree 100 Degree 100 150 Degree 100 De	250 300 250 300 444 44 44 44 44 44 44 44 44 44 44 44 44	350 350 350 350 350 350 350 350 350 350	المعاملة المحمد ا المحمد المحمد ا		130         Days 300         20           140         Days 300         20           150         Days 300 <t< td=""><td></td></t<>	

No	Speed	Feed	Depth	R _n		$(AVF_x)$	$R_0$	สถานะเศษ
INO.	(m/min)	(mm/rev)	(mm)	(mm)	γ	$\left(\overline{AVF_y}\right)$	(µm)	โลหะ
103	100	0.15	0.6	0.4	-6	1.172	5.364	แตกหัก
	Particle Martin Restor Re Total Restor Resto	Mudd         Mudd <td< td=""><td>250 300 250 /td><td>359 359 359 359 359 359 359 359</td><td>numunikummentu numunikummentu numu numunikummentu numu numunikummentu numu numu numu numu numu numu numu num</td><td></td><td>190         208         20           190         208         20           190         208         20           190         208         20           190         208         20           190         208         20           190         208         20           190         200         20           190         200         20           190         200         20           190         20         20           190         20         20           190         20         20           191         20         20           192         20         20           193         20         20           194         20         20           195         20         20           196         20         20           197         20         20           198         20         20           199         20         20           190         20         20           191         20         20           192         20         20           193</td><td></td></td<>	250 300 250	359 359 359 359 359 359 359 359	numunikummentu numunikummentu numu numunikummentu numu numunikummentu numu numu numu numu numu numu numu num		190         208         20           190         208         20           190         208         20           190         208         20           190         208         20           190         208         20           190         208         20           190         200         20           190         200         20           190         200         20           190         20         20           190         20         20           190         20         20           191         20         20           192         20         20           193         20         20           194         20         20           195         20         20           196         20         20           197         20         20           198         20         20           199         20         20           190         20         20           191         20         20           192         20         20           193	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
104	100	0.25	0.6	0.4	11	1.551	5.641	ต่อเนื่อง
	transiti francis franc	100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200           100         150         200			ر المالية ال مالية المالية ال مالية المالية		109         300         300           Digete         300         300           109         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           100         300         300           300         300         300	

No	Speed	Feed	Depth	R _n		$\left(\frac{AVF_x}{x}\right)$	R ₀	สถานะเศษ
140.	(m/min)	(mm/rev)	(mm)	(mm)	Y	$(AVF_y)$	(µm)	โลหะ
105	100	0.25	0.8	0.8	11	2.388	5.873	แตกหัก
	winn brann frank winn brann frank mena		MMM         MMM <th>350 350 350 350 350 350 350 350</th> <th>ອົງຊີ້ ເຊິ່ງຊີ້ /th> <th></th> <th>Mu         Mu         Mu         Mu           100         Degram         208         20           100         Degram         208         20           000         Degram         20         20           000         Degram         20<th></th></th>	350 350 350 350 350 350 350 350	ອົງຊີ້ ເຊິ່ງຊີ້		Mu         Mu         Mu         Mu           100         Degram         208         20           100         Degram         208         20           000         Degram         20         20           000         Degram         20 <th></th>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
106	200	0.25	0.4	0.4	11	0.978	4.686	ต่อเนื่อง
	Pressant menant me	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	250 300 250 30	359 359 359 359 359 359 359 359	<u>រំ បំ រំ ំ បំ ប៉ុ ប៉ុ ប៉ុ ប៉ុ</u> ប្រិស្ត្រ ដូចិស្ត្រ ដូចិស្		199         200         200           199         200         200           199         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200           190         200         200	

No.	Speed	Feed	Depth	R _n	γ	$\left(\frac{AVF_x}{AVF}\right)$	$R_0$	สถานะเศษ
	(m/min)	(mm/rev)	(mm)	(mm)	•	$(AVF_y)$	(μπ)	เลหะ
107	200	0.25	0.8	0.4	11	1.492	6.118	แตกหัก
	PROLING NALLING MALING MA	Weight of the second		359 359 359 359 359 359 359 359	the state st		100         Dagree 300         50           100         Dagree 300         20           100         Dagree 300         20 <td< th=""><th></th></td<>	

No.	Speed (m/min)	Feed (mm/rev)	Depth (mm)	R _n (mm)	γ	$\left(\frac{AVF_x}{AVF_y}\right)$	<b>R</b> 0 (μm)	สถานะเศษ โลหะ
108	100	0.15	0.6	0.4	11	1.438	5.105	ต่อเนื่อง
	Horner wave wave wave wave wave wave wave wave	Image: Section of the sectio	100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100           100         100         100	359 359 359 359 359 359 359 359	<u>مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ </u>		Visit         Deprest Stort           Visit         Deprest Stort	

ภาคผนวก จ ข้อกำหนดทางเทคนิคเครื่องมือวัด

CHULALONGKORN UNIVERSITY

item	Descriptions			
Measured profile	P, R, W, DIN4776, MOTIF.R, MOTIF.W			
	Ra, Ry, Rz, Rq, Rt, Rp, Rv, Sm, S, Pc, mr, R3z, δc, HSC, mrd,			
Parameter	Δa, Lo, Ppi, Sk, Ku, Δq, Rx, Rpk, Rvk, Rk, Mr1, Mr2, A1, A2,			
	Vo, R, AR, W, AW, Wx, Wte, Rz1max, Rmax*1			
Filter	2RC, PC75, GUASS			
Cutoff legth	0.08, 0.25, 0.8, 2.5, 8mm (.003, .01, .03, .1, .3 in)			
Number of sampling length	1, 3, 5, and L (arbitrary length)			
Resolution	0.000125µm/.00492µin (16 bits)			
	Mean, Maximum, Minimum, Standard deviation (one			
Statistical data item	parameter per profile), GO/NG judgement (UL/LL, three			
	parameters per profile)			
Internal memory capacity	Up to 5 measurement condition files			
External I/O	RS-232C, SPC, Memory card (option)			
Power supply	AC adapter, Buit-in battery pack (nikel-hydrogen)			

ตาราง จ.1 ข้อกำหนดทางเทคนิคเครื่องวัดความตรงยี่ห้อ MITUTOYO รุ่น SJ400



ตาราง จ.2 ข้อกำหนดทางเทคนิคเครื่องวัดความกลม TOKYO SEIMITSU CO.,LTD

## ROUNDCOM 43C

item		Descriptions				
	Max. measuring diameter	Ø 250 mm				
	Left/right feed (R axis)	125 mm				
Measuring range	Up/down feed (Z axis)	300 mm				
	Max. load diameter	Ø 400 mm				
	Max. measuring height	OD: 520mm / ID: 300mm				
Rotation accuracy	(ISO 4291/ JIS B7451)	(0.02 + 6H / 10000) μm				
Straightness accur	асу	0.25 μm /100mm, 0.8 μm /300mm				
Parallelness accura	ю	1.5 μm /300mm				
Rotation speed (θ	axis)	6/min				
Up/down speed (Z	axis)	Measuring 0.6 – 6 mm/s, Movement 15 mm/s				
Radius speed (R ax	is)	5 mm/s				
Detector	///////////////////////////////////////	Linearity range $\pm 400 \ \mu$ m, Measuring force 70 mN, Stylus shape Ø 1.6mm carbide ball.				
Roundness evaluat	ion of profile error	MZC (min. range center line method), LSC (min. square center line method), MIC (max. inscribed circle center line method), MCC (min. circumscribed circle center line method), N.C. (no correction)				
	Straightness	± 0.015 μm.				
Uncertainties of	Cylindricity	± 0.026 μm.				
measurement	Roundness	± 0.050 μm.				
	Detetion direction (0)	Roundness, flatness, parallelness, concentricity, coaxiality,				
Measuring items	KOLATION DIRECTION (U)	cylindricity, diameter deviation, squareness, non-uniformity, run-out				
	Rectilinear direction up/ down direction (Z)	Straightness, taper, cylindricity, squareness, parallelness				

## ประวัติผู้เขียนวิทยานิพนธ์

นายมุอ์มิน ศาสน์สันติวงศ์ เกิดเมื่อ 12 สิงหาคม 2529 ที่กรุงเทพมหานคร สำเร็จ การศึกษาระดับประกาศนียบัตรวิชาชีพ สาขาช่างอิเล็กทรอนิกส์ จากโรงเรียนพระรามหก เทคโนโลยี กรุงเทพมหานคร ต่อมาเข้าศึกษาในหลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชา เทคโนโลยีอุตสาหกรรมเกษตร มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ กรุงเทพมหานคร และสำเร็จการศึกษาในปีการศึกษา 2553 จากนั้นได้เข้าศึกษาต่อในหลักสูตร วิศวกรรมศาสตรมหาบัณฑิต คณะวิศวกรรมศาสตร์ ภาควิชาวิศวกรรมอุตสาหการ จุฬาลงกรณ์ มหาวิทยาลัย ในปีการศึกษา 2555

