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Chapter 1  

Introduction 

1.1 Background and Signification 

 A structural component which has been subjected to cyclic loads may 

experience damages that lead to fatigue. The crack size increases with the number of 

load cycles and the catastrophic failure will occurs if the crack size reaches the critical 

value. For example, the accidents of Aloha-airline’s plane in 1988 and the tanker 

Erika in 1999 were results of such damage [1]. 

 Repairing a cracked component is expensive and often unproductive [2]. 

Prediction of a component’s remaining service lifetime that the component can be 

safely used is a more economical approach. The service lifetime of a component is the 

time duration or the number of load cycles for the crack to grow from the initial size 

to the maximum allowable size which is then divided by a safety factor. The accuracy 

of service life prediction depends on the accuracy of the crack growth behavior 

determination. Thus, the monitoring of crack growth plays an important role in 

measuring the crack length and crack growth behavior of tested bodies or structures.  

 The monitoring of crack growth can be divided into two types, direct and 

indirect measurements. For the direct measurement, it is usually done by employing a 

traveling microscope. This technique requires manpower to examine crack length and 

the equipment must be able to access the structure during the testing. Therefore, it is 

not suitable for harsh environments, e.g. high-temperature and high-radiation, etc. In 

those cases, the indirect measurement has to be employed. The compliance method 

and the electric potential drop technique are popular indirect measurement types as 

they are reliable and stand the test of time. 

 The electric potential drop technique relies on the principle that the existence 

of crack or discontinuity in a conductive material causes the disturbance in the electric 

potential field. For a test specimen of width W, length L, and thickness t, the extension 

of crack disturbs the current flow across cross-sectional area A and causes the 

resistance R to increase. If the electric current I is constant throughout the test piece, 

the crack extension will raise the potential difference between two sides of the crack 

from the reference value V0 at initial crack size a0 to Va at the crack length a. By 

monitoring the relationship between Va and a, the calibration curve for this geometry 

can be established. 

 The reliability of both direct current (DC) and alternating current (AC) in the 

potential drop technique is equally accepted. The AC potential systems provide much 

greater sensitivity and better precision [3]. But the AC equipment is more specialized, 

relatively expensive and connecting wires must be carefully attached. Meanwhile, it 
may suffer the ‘skin effect’ problem, the non-uniformity of the current density 

through the thickness of a conducting material which affect the current’s flow area 

and resistance. The DC potential system is simpler and less expensive [4]. When the 

these techniques are compared in details, it can be concluded that the DC method is 
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more suitable to study crack growth, whereas the AC method is better for non-

destructive testing (NDT) tool [5]. 

 The calibration curve is the relationship between the normalized potential 

changed Va/V0 and the crack length to specimen width ratio a/W. Calibration curves 

can be determined experimentally, analytically or numerically. The experimental 

determination provides straightforward results for most problems but it requires 

equipment and complicated procedures for circuit setting. The analytical method can 

be employed for test pieces and cracks of simple geometries such as single edge 

cracked, central cracked and compact tension specimens [6] but cannot be applied for 

complex crack types or multi-physics problems. Thus, this analytical method is often 

used to verify a written computational program for basic cases. Lastly, although the 

numerical method is quite sophisticated and requires understanding of computer 

programming, this method has many distinctive advantages as it is inexpensive, quick 

and convenient for computing a reasonably accurate calibration curves. Thus, 

numerical procedure is utilized in this work. 

 In the past, researchers successfully employed the finite element method 

(FEM) to determine the calibration curves [7-14]. As this FEM was initially 

developed for structural analyses, it is certainly a very powerful tool. However, it was 

not as good as the finite volume method (FVM) in coping with extreme nonlinearities 

that are commonly found in thermos-fluid problems. Interestingly, the distribution of 

electric potential within conductive material in some operating situations should be 

considered nonlinear as the non-uniform temperature within a test specimen directly 

affects the changes of the electric resistivity  [15]. Although it is unclear whether the 

plastic deformation around a crack tip influences the changes of the electric 

resistivity, Ritchie & Bath [7] and Doremus et al. [12] concluded in their works that it 

might be able to disrupt the electric potential drop. 

 As the discretization process of the finite volume method ensures physical 

conservation of every control volume [16], this numerical technique is quite stable for 

nonlinear problems. Due to the similarity of governing equations of the electric 

potential distribution and heat conduction problems, the finite volume technique is an 

interesting alternative numerical method to solve the distribution of electric potential 

and is, thus, chosen for this thesis. 

 With the aim of obtaining refined and complex nonlinear electric potential 

distribution problems in the future, this work starts with utilizing the finite volume 

method with unstructured grids to solve basic crack problems, i.e. single edge cracked 

and central cracked specimens as well as a more complex cracked plane, the inclined 

edge cracked specimen. In the near future, the computer program will be further 

developed to solve the other complex crack types, surfaced cracks or multiple cracks 

with various specimen geometries. 

 

1.2 Objectives  

 This thesis aims to develop a finite volume C++ code with unstructured 

quadrilateral mesh to solve the equation of electric distribution in cracked specimens. 
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1.3 Scope of the Research 

 The determination of electric potential distribution of this thesis is limited to 

two dimensional rectangular plates with through-thickness cracks. The studied crack 

types are single edge crack, center crack and inclined edge crack. The position of 

crack mouth is assumed to be known before the potential drops across cracks are 

simulated to establish the calibration curve. 

 

1.4 Research Schedule 

 1) Study the principle and related theory of electric potential drop techniques 

for crack growth monitoring. 

 2) Study the finite volume technique for unstructured mesh and an existing 

unstructured quadrilateral grid generating program. 

 3) Write a C++ computer program for simulating the distribution of electric 

potential throughout uncrack plates and validate the results with analytical solution. 

 4) Write a C++ computer program for simulating the distribution of electric 

potential throughout basic cracked specimens. Then, plot the calibration curves and 

validate them with analytical solutions and existing experimental data. 

 5) Write a C++ computer program for simulating the distribution of electric 

potential throughout the inclined cracked specimen. Then, develop the methodology 

to characterize the inclined crack shape and validate it with case studies. 

 6) Conclude and discuss the obtained results. 

 

1.5 Expected Benefit 

 This work develops a computer program for simulating the potential drops in 

cracked specimens to generate calibration curves for the electric potential drop 

technique for crack monitoring in specimens with simple geometry. In the future, 

there will probably be a further development of this program to support more complex 

problems such as the multiple cracks problems, round-shaped crack problems or non-

linear materials. 
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Chapter 2 

Literature Review 

 Fracture mechanics always play an important role in an assessment of the 

failure of structural components. This chapter presents the importance of the crack 

monitoring techniques in lifetime assessment of structural components and the means 

to monitor cracks as well as the advantages and disadvantages of each method. The 

obtained information is used to make a decision in choosing the proper method for 

this thesis. 

 

2.1 Degradation of Structured Component 

 Unexpected loads and environmental conditions such as high temperature and 

corrosive etc., during operation are main factors that gradually destroy a component. 

Firstly, the damage causes a failure in microscopic scale. This failure would grow into 

a macroscopic flaw before becoming the catastrophic failure. The degradation of 

materials can affect directly the performance and lifetime of a structure component. 

 In the past, the degradation of materials might lead to catastrophic incidents. 

Vessels, pipelines, aircrafts, railway, ships and vehicles are some of structured 

components which always experience the degradation that might lead to the serious 

accidents [1, 17, 18]. The example of failures likes the Westland Lynx SH14D 

helicopter in 1998 [19], the tanker Erika in 1999 and Prestige in 2002 [1]. 

 

2.2 Service Life Time Assessment  

 Defected structures are expensive to repair and often unnecessary [2]; fracture 

mechanics play a role to provide a rational basis service life time assessment of 

components. Commonly, the objective of the service life time assessment is to 

provide the appropriate interval inspection, repair and maintenance as well as 

ensuring that the failure would not occur during the operating periods. 

 For cracked materials under cyclic loads, the service life time assessment is 

the determination of the time t which crack size propagates from cyclic loads from an 

initial a0 to the critical size ac which causes a catastrophic failure. Thus, to predict the 

remaining life of crack materials, it is unavoidable to determine the crack growth rate 

of the test specimen da/dt which can be calculated by employing crack monitoring 

technique. 

 

2.3 Crack Monitoring Technique 

 Crack monitoring techniques are utilized to investigate the crack growth 

information of test structures. It is often conducted in a laboratory under a real 

component’s operating conditions, i.e. environment, geometry and load etc. The 



 

 

5 

laboratory testing information can be used as reference for calculating the service life 

time assessment of a real structure. Crack monitoring techniques can be divided into 

direct and indirect measurements.  

 The direct measurements method relies on direct access of the crack. The 

crack growth is monitored by a travelling microscope with a magnification of 20-50x 

[4]. This method is simple, inexpensive and calibration is not required. However, this 

method required a lot of time, an automate system is expensive and the examined 

material must be able to access the structure during the test. Moreover, the measured 

crack length is usually underestimated because the sub-surface crack size is generally 

longer than the surface crack and a sub-surface crack length cannot be examined with 

this technique. 

 In a harsh environment, i.e. high temperature, high radiation, corrosive 

environment etc., the examiner cannot gain access to the test specimen. The indirect 

measurement techniques are developed to counter that problem. According to ASTM 

E647-08, there are 2 indirect measurement, compliance method and electric potential 

method [20]. 

 The compliance method relies on the changes of material compliance as crack 

grows. The gauge is used to measure the changes of strain or crack mount opening 

displacement under load. This method is simple, convenient to automate and can be 

used for various material geometry and in aggressive environment. However, this 

method is inappropriate for ductile materials because the occurrence of plastic zone 

during crack growth may decrease the accuracy of the prediction. [4, 11, 21]. 

 The electric potential drop technique uses the fact that a crack interrupts an 

electric potential field when a constant current passes through a body. The changing 

of electric potential around the crack used to interpret the geometry of the crack. This 

method is simple, inexpensive, stable, can be automated and amenable for long-term 

high-temperature testing [4]. The distinctive limitation for this method is the 

requirement of proper calibration curve in order to interpret the measured potential 

drop to crack size. In addition, the underestimation of the crack depth may occur if 

crack faces come into contact creating a short circuit situation [11]. 

 

2.4 Electric Potential Drop Technique 

 The chosen technique is the direct current potential drop method. This 

technique is widely used in fracture testing and can be used for any crack geometries.  

However, a proper calibration curve, required for each specimen geometry and crack 

types, are complicated to determine. 

 The electric potential drop technique relies on the principle that the existence 

of a crack or discontinuity in conductive material causes the disturbance in the electric 

potential field. Consider a cracked body in Fig. 2.1, the extension of the crack 

decreases the current flow across the cross-sectional area A which then causes the 

resistance R to increase. If the electric current I is constant throughout the test piece, 

the potential difference between two sides of crack Va rises. By monitoring the 



 

 

6 

relationship between the potential increase Va and the crack length a, the calibration 

curve for each geometry can be established. 

 

Iconstant

Va

a

W
IconstantA

 
Fig. 2.1 A cracked specimen in an electric potential drop testing 

 

 Typically, a calibration curve is the relationship between the ratio of potential 

change and a reference potential Va/V0 against the ratio of crack length to specimen 

width a/W (Fig. 2.2). This relationship can be calculated by analytical [6], 

experimental [6-12] and numerical methods [7-14]. 

 

a/W

0.0 0.2 0.4 0.6 0.8 1.0

V
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Fig. 2.2 An example of a calibration curve 

 

 The analytical method provides an convenient mean to generate a calibration 

curve. However, its application is limited only for basic cracked specimen, i.e. 

compact tension specimens, single edge crack specimens and central crack specimens 

[6]. Thus, this method is usually used to verify results from another method. 
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 The experimental method is used to determine calibration curves of specimens 

with more complex geometries. As the actual operating condition can be exactly 

duplicated with this method, the most straightforward results can be obtained. But this 

method requires experimental equipment, which certainly increases the expenses, and 

the circuit setting procedure is complicated and involves the difficulty of crack 

evolution measurement for the surface crack growth [12, 22]. 

 Although the numerical method is sophisticated, however it is a convenient 

and inexpensive technique to determine the distribution of potential within cracked 

specimen and generate a calibration curve. It can simulate various complex geometry 

and environment duplicated from actual operating condition. Thus, with many 

attractive advantages, this method is chosen for this work. 

 

2.5 Inclined Crack Detection  

 Characterization of an inclined crack is more complicated than that of the 

basic cracks, i.e. compact tension, single edge crack and central crack. Not only the 

crack size but also inclination of the crack must be known. This crack type can be 

commonly found in railway track which is occurred by mixed mode loading such as 

rolling contact fatigue. 

 In the past, the researchers proposed many specific methods to detect the 

inclined crack. Some researchers applied the calibration curves technique and some of 

them created their specific ways to characterize the crack as follows. 

 

2.5.1 Calibration Curves Method 

 As described before, a single calibration curve across the crack is not enough 

to accurately determine this inclined crack type, especially the inclination angle of 

crack. The different inclination angle of crack disturbs the electric potential field over 

the specimen in different ways. Kornchamruskul (2005) [13] and Spitas et al. (2010) 

[14] proposed additional measured points in order to monitor the changes in electric 

potential drop due to crack shape, especially the inclination angle and, thus, 

establishing another calibration curve. By measuring the potential drops across 

monitoring point pairs, the inclined crack shape can be predicted.  

 

2.5.1.1 The Iy-Vy; Iy-Vx and Iy-Vy; Ix-Vx Method 

 Kornchamruskul [13] proposed two methodology for characterizing an 

inclined central crack. The first method is called the Iy-Vy; Iy-Vx method; the current is 

induced in y-direction, then, the potential across the crack is measured in y-axis and x-

axis as shown in Fig. 2.3(a). The second is called the Iy-Vy; Ix-Vx, which is similar to 

the first, except that the current is induced in the x-direction while the potential across 

the crack in the x-axis is being measured as shown in Fig. 2.3(b). Each method 

requires two calibration curves from their two specific cases. 
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 For example, the Iy-Vy; Iy-Vx method (Fig. 2.3(a)) requires the calibration 

curves from the Iy-Vy case and the Iy-Vx case. The calibration curves of the Iy-Vy case 

is the relationship between the ratio of potential change across the crack in y-axis and 

a reference potential Vy/V0 against the ratio of crack length to specimen width a/W at 

different inclined angle   as shown in Fig. 2.4(a). For the Iy-Vx case, the calibration 

curve is the relationship between the potential change across the crack in x-axis Vx 

against the ratio of crack length to specimen width a/W at different inclined angle  as 

shown in Fig. 2.4(b). The electric current is induced in y-direction for both cases. 

 

   

Iy
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ϴ
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      (a)          (b) 

Fig. 2.3 The method for characterizing an inclined central crack: 

(a) The Iy-Vy ; Iy-Vx method, (b) The Iy-Vy; Ix-Vx method [13] 
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V
x

 

           (a)        (b) 

Fig. 2.4 Two calibration curves from the Iy-Vy ; Iy-Vx method: 

(a) the Iy-Vy case and (b) the Iy-Vx case [13] 

 

 The procedure to characterizing an inclined crack begins with measuring the 

potential across the crack Vy and Vx. Then, the corresponding values of a/W and  are 

determined as points A1, A2 and A3 in Fig. 2.4(a) for the Iy-Vy case and points B1, B2 

and B3 in Fig. 2.4(b) for the Iy-Vx case. Finally, the corresponding values of a/W and  

from each case are plotted in the same graph and a best fit curve is determined as 
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shown in Fig. 2.5. The intersection from these two curves represents the information 

of inclined crack. 

 The limitation of this method is that the center of the inclined central crack 

must be known before measuring the potential difference. Thus, this methodology is 

hard to apply with real structures.  
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Fig. 2.5 Inclined crack characterizing from the intersection [13] 

 

2.5.1.2 A Three-Point Electrical Potential Difference Method 

 In 2010, Spitas et al. [14] presented a technique for assessment an inclined 

edge crack in a specially designed specimen as shown in Fig. 2.6 at crack length from 

1 to 6 mm at 1 mm intervals and the crack angles   of 0° to 40° at 10° intervals.  

 

M

BA
L

R

Inclined Crack

  

Fig. 2.6 The inclined edge crack in a designed specimen of Spitas et al. [14] 

 

 A constant current passes from point A to point B and creates a distribution of 

electrical potential within the specimen. By calibrating the normalized potential 

difference across the crack between points L and R, (V/V0) LR, where V0 is the initial 

measurement of the same points at zero crack length, with the calibration curve of the 

normalized potential difference across the crack as shown in Fig. 2.7, crack length is 

obtained. 
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 The measurement at point M in Fig. 2.6 is added in order to monitor a non-

symmetric potential field creating from the inclined crack in different degree levels. 

The inclination angle  can be found by determining the normalized potential drop 

between points L-M and R-M, (V/V0) LM and (V/V0) RM respectively, and then, 

calibrating with the plot of (V/V0) LM and (V/V0) RM in Fig. 2.8. The coordinates of 

(V/V0) LM and (V/V0) RM is represented by point A. The crack angle  can be determined 

by interpolating the inclination angle  at point A with two adjacent curves. 
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Fig. 2.7 Calibration curve of the normalized potential across the crack (V/V0) LR  

for all crack angle [14] 
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Fig. 2.8 The plot of (V/V0) LM and (V/V0) RM for different crack angle   [14] 

 

 The period of crack length in this work is quite shot at crack length to 

specimen width ratio less than 0.4 and the inclination angle is only up to 40° to the 

transverse axis of symmetry of the specimen. The orientation of crack within this 

range may not cause the obvious change in potential drop between points L and R 

such that the authors can calibrate the crack length by only measuring the potential 

drop between points L-R. However for longer cracks, the change in inclination angle 
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certainly affects the change in potential drops across the crack. Thus, this 

methodology may not extend to detect long inclined cracks. 

 

2.5.2 Back Wall Measurement Method 

 In 1990, Abe and Kanoh [23] presented a technique to determine the location, 

size and inclination of crack in the cracked infinite strip. The infinite strip of which 

both upper and lower surfaces are insulated except for the current input and current 

output positions is shown in Fig. 2.9. 

 

Crack

Sensor

Infinite Strip

Current 

Input 

Probe

Current 

Output 

Probe
Potential 

Probes  

Fig. 2.9 The inclined crack detection method of Abe and Kanoh [23] 

   

 Firstly, the sensor is moved to measure the electric potential along the 

measuring surface. The approximate crack position is estimated as the position of the 

maximum value of potential difference between two probes is detected. Then, the 

detailed measurements are conducted on a number of points on the surface near the 

approximate crack position. The location, size and inclination of crack are determined 

by means of the optimization procedure which is conducted by comparing the 

measurement values with the analytical results of the authors. 

 The limitation of this approach besides the complication of the mathematical 

process in finding the analytical equations is that the inclined crack detection is 

limited in infinite strip. Thus, it is difficult to apply this method for other finite 

cracked specimen. 

 

2.5.3 Defect Influence Factor Method 

 In 2002, Chen et al. [24] proposed a method to detect crack in a pipe by 

depicting the contour of defect influence factor which is the ratio of the electric 

potential of the defective pipe divided by that of the perfect one. By analyzing this 

contour, the position, shape and length of the crack can be predicted. However, the 

potential must be measured throughout the specimen and the accuracy of the predicted 

crack is constrained by the potential measured density. 
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Fig. 2.10 The inclined crack detection method in a pipe by Chen et al. [24] 

 

2.6 Numerical Method for Electric Potential Drop Technique 

 The numerical technique is a popular method for simulating the distribution of 

electric potential within specimens in order to establish a calibration curve for the 

crack monitoring by the electric potential drop technique. This method involves 

finding solutions of Laplace’s equation under boundary conditions of the test piece. 

The steady state electric potential equation is given by 

 2 0V   (2.1) 

where V represents the electric potential. 

As describe above, it is difficult and sometimes impossible to solve this 

Laplace’s equation under complex condition directly. So, numerical method comes to 

play a role in solving this equation. There are 2 popular numerical techniques, the 

finite element and the finite volume method that can be used to solve this Laplace’s 

equation. 

 

2.6.1 The Finite Element Method 

 In the past, the finite element method had been employed by many researchers 

to solve electric potential distribution problems. The various computer programs had 

been used such as ABAQUS [11, 12]. This technique had been utilized to generate the 

calibration curves in various geometry from the through-thickness crack problems [7-

11, 13, 14] to crack growth from surface flaw problems [12]. 

 For basic through-thickness crack problems, like compact tension specimens, 

single edge crack specimens and central crack specimens, the numerical calibration 

curves can be verified by comparing with both experiment and Johnson’s equations 

[7, 9, 10]. These basic 2D geometries can be applied for monitoring the crack growth 

of 3D hollow cylinder [11]. The numerical method, moreover, had been utilized to 

examine the optimum location of current input and potential measurement leads 

according to its accuracy, sensitivity, reproducibility and measurability. 

 For more complex crack geometries, Pulle [8] emloyed a finite element 

technique to study the influence of asymmetrical crack growth. His study revealed 



 

 

13 

that the underestimation of crack length prediction could occurr if electric potential 

probes were placed close to the asymmetrical crack. 

 Kornchamruskul [13] and Spitas et al. [14] both used the finite element 

method to establish 2 calibration curves in order to characterize the inclined crack of 

their works as described before in section 2.8.1. 
 Recently, Doremus et al. (2015) [12] used a finite element method to 

determine the calibration curve of crack growths from surface anomalies. This 

research tried to establish a calibration curve in terms of crack depth and potential 

drop measurement. However, the scatter of experimental measurement was large. The 

author concluded that errors occur from the complexity of crack propagation 

geometry and the effect of plastic deformation during the process. 

 The grid arrangement is a factor that affects the accuracy of results due to 

differences in discretized simultaneous algebraic equations. Therefore, the suitable 

grid would provide convenient determination procedure and acceptable results. In the 

finite element method, the grid within domain comprised of elements. Each of them is 

connected at nodal points and the values at the points are used to calculate the values 

within boundary. 

 For 2D problems, the triangular element has been usually employed because 

of the ease for generating and coping with complex geometry. Basically, there are 3 

nodes at 3 element vertices. The interpolation within an element is linear polynomial. 

However, this element type can be improved by placing more nodes at the edge of 

element sides to improve its approximation accuracy. The use of this grid type 

includes the work of Kornchamruskul (2005) which 3-noded linear elements as well 

as Pulle (1986) and Spitas 

 et al. (2010) in which 6-noded isoparametric triangular elements was employed. 

 The unstructured quadrilateral element has been used often. Normally, 4 nodes 

are placed at the vertices of each element. This element type uses nonlinear 

approximation within element. Therefore, at the same node numbers, the quadrilateral 

element can provide more complex interpolation, comparing with the triangular 

element. Similarly there are higher-order elements of 8-noded isoparametric 

quadrilateral element of Ritchie and Bathe (1979) and 4-noded linear element of 

Gandossi et al. (2001).   

 In 1983, Wilson [9] took the advantages of each element type and combined 

them together. The ordinary regions of specimen are modelled with quadrilateral 

elements while the near crack tip area is modelled with very fine triangles elements. 

This method helps to reduce time consumption in computation due to less nodal 

points and equations from using quadrilateral elements and, on the other hand, 

improves accuracy of the results because very fine meshes of triangular elements are 

used only in high gradient regions. 

 

2.6.2 The Finite Volume Method 

 This technique has never been employed to solve the steady state electric 

potential problems. Nevertheless, finite volume is one of a most widely used 
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technique to solve heat conduction problems of which the governing equation is 

similar to the electric potential problems. Because the heat conduction problem is held 

to be a simple heat transfer problem and typically, the analytical solution can be 

determined. Therefore, this problem has been always used to verify the quality of 

refined grids [25, 26] or approximation methods [27, 28]. 

 By applying the Fourier’s law of heat conduction for an isotropic material 

without internal heat source in thermal equilibrium, the governing equation is  

 2 0T   (2.2) 

where T is temperature. 

 The structured and unstructured control volumes have been both employed to 

represent the domain. For a structured control volume, the discretization procedure 

can be conducted conveniently. Because of the certain alignment of this grid type, 

more accurate results can be obtained if the grid is aligned with the predominant flow 

direction of that problem. The example of a use of structured control volumes likes 

Prapainop and Maneeratana [27] in simulating the formation of ice. 

 For complex geometries, the unstructured modelling is unavoidable. This 

control volume has a high flexibility to fit a complex geometry. It can reduce 

computational costs and increase accuracy because this grid type can be refined for 

particular area where finer meshes are needed. However, the grid generation and 

discretization procedure for the unstructured grids are quite complicated. 

Furthermore, the grid non-orthogonality would cause to the error of the results which 

is called the skewness error [29]. The example of unstructured control volumes use 

likes the use of Delaunay triangular control volumes of Lertsurayut and Maneeratana 

[25] and the refined rectangular control volumes of Wattananukulchai and 

Maneeratana [26]. 

 

2.7 Conclusion 

 This chapter points out the importance of remaining-life assessment 

procedure; determination of crack growth behavior within bodies is needed. To know 

crack growth behavior, a reliable technique for measuring crack size should be 

employed. For a test material which cannot be accessed by the examiner, the indirect 

method, such as the compliance method and the electric potential drop method, are 

better means to monitoring crack growth in material in that situation. 

 This thesis chooses the electric potential drop technique which required a 

proper calibration curve to predict crack size or crack angle. This technique can be 

applied to characterize the inclined crack which previous works are discussed in this 

chapter. 

 The numerical technique has always been employed to calculate the 

calibration curve. Previous researches reveal that the finite element technique is 

popular for determining a calibration curve with various crack shapes and geometries. 
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 Although the finite volume method has never been employ to solve the electric 

potential distribution problems but this method has been employed to solve heat 

conduction problems which the governing equation is similar to the potential 

distribution problems. 

 Thus, this thesis tries to introduce an alternative way by using the finite 

volume technique to solve the electric potential distribution problem and generate the 

calibration curves of cracked specimen with an unstructured quadrilateral grid. 

Although the discretization procedure with an unstructured quadrilateral grid is quite 

complicated, but this grid shape can be conveniently generated for complex geometry, 

such as the domain of inclined cracked specimens. 
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Chapter 3 

Basic Electrical Theory 

 To determine the crack size and crack growth rate in the specimen by the 

method of potential drop measurement, the main governing equation in this work is 

the partial differential equation for the steady electric potential. To deeply 

understanding this equation, this chapter describes equations about basic electrical 

theory [30] and conservation of charge [31]. In addition, this chapter gives a 

description of how the material geometry affects the resistance that causes the electric 

potential difference under a crack influence.  

 

3.1 Electric Potential 

 When a point charge q0 moves in the electric field with magnitude E from a 

point a to a point b (Fig. 3.1), the force F = q0E are exerted on the point charge. The 

work done from points a to b by that force, Wab, is given by a line integral  

 0

b

a b

a

W q d  E l

 
(3.1) 

where dl is infinitesimal displacement of the point charge’s motion. 

 

+

+a

b

E

q0

F

dl

 

Fig. 3.1 The movement of point charge 0q in the electric field E 

 

 This work done by the electric force F can be expressed in terms of a potential 

energy U. When Ua is potential energy of point charge at the point a and Ub is 

potential energy of point charge at the point b, the work done Wab by this force can 

be written as 

 a b a bW U U    (3.2) 
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 The potential energy U per unit charge is defined as a potential V which is a 

scalar quantity. The potential of point charge 0q  at a position of the potential energy U 

is 

 
0

U
V

q


 
(3.3) 

Eq.(3.3) can be substituted into Eq.(3.2) to find work done in terms of potential as
 

 0( )a b a bW q V V  
 (3.4) 

Va and Vb  are electric potential at point a and b respectively. The difference of 

potential Vab = Va – Vb  is the potential of a with respect to b. From Eq.(3.1) and (3.4)  

 

b b

a b

a a

V V dV d     E l

 
(3.5) 

From Eq.(3.5) 

 x y z-dV d E dx E dy E dz   E l=
 

(3.6) 

where Ex, Ey and Ez are the magnitude of electric field in x, y and z axis respectively 

while dx, dy and dz are the infinitesimal displacement in each axis x, y and z. Suppose 

that a charge moves parallel to x-axis, so dy = dz = 0, then dV = Exdx or Ex = 

(dV/dx)y,z constant or in partial derivative form Ex = V/x. Similarly, for a charge 

moving parallels to y-axis and z-axis. 

Thus, the E can be re-written in vector form 

 ˆ ˆ ˆV V V

x y z

   
    

   
E i j k

 
(3.7) 

or can write in the gradient form as 

 V E  (3.8) 

where the quantity V is called the potential gradient. 

 

3.2 Electric Current 

 If an electric field is present inside a conductor, a charge particle inside the 

material is forced to move with drift velocity, vd. Suppose during the small time dt, 

there is n moving charges per unit volume through the cross-sectional area A and each 

particle has a charge q (Fig. 3.2). The charge dQ which flows during the time dt is 

 ddQ= nqv Adt  (3.9) 

 



 

 

18 

A

dt

E

+q
vd

+q
vd

+q
vd

+q
vd

+q
vd

+q
vd

 

Fig. 3.2 Flow of the particle charges inside a conductor 

 

The definition of current is the net charge flowing through the area per unit time. 
Thus, current I can be written as 

 d

dQ
I nqv A

dt
   (3.10) 

The current per unit cross-sectional area is called the current density J which its 

direction is the same as electric field   

 ˆ
I

A
 EJ n  (3.11) 

where ˆ
En is the unit vector of electric field, ˆ

En = E/E, or the total current I through a 

surface A is 

 
A

I d  J A

 
(3.12) 

Due to the current density is a vector quantity, so the current density J can be 

expressed in term that include the direction of drift velocity vd as 

 dnqvJ  (3.13) 

 

3.3 Resistivity 

 The resistivity  depends upon the property of each material. In general, this 

variable could be calculated with complex equation, but for some type of materials, 

especially metals, at the constant temperature, the resistivity  can be defined by the 

ratio of the magnitude of electric field and current density 

 ρ=
E 

J
 (3.14) 

Due to the same direction of electric field E and current density J, the Eq.(3.14) can 

be written as  

 E J  (3.15) 
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 In practice, the potential difference V and total current I are of higher interest 

and much easier to measure than electric field E and current density J. Suppose the 

magnitude of electric field E and current density J are uniform throughout the 

conductor  with uniform cross-sectional area A and Length L, the potential difference 

V is given by Eq.(3.5) that is V = EL or E = V/L and the total current I is applied from 

Eq.(3.12) to be I = JA or J = I/A. Then, substitute these two results in Eq.(3.15), 

 or
V I ρL

V I
L A A

         (3.16) 

 From the Ohm’s law, the ratio of  potential difference V and total current I is 

called resistance R 

 R =
V

I  
(3.17) 

Comparing this equation with Eq.(3.16) , the relationship between resistance and 

resistivity is 

 
L

R = ρ
A  

(3.18) 

 

3.4 Conservation of Charge 

 If the net current I flowing out of volume V, which is enclosed by closed 

surface S, is non-zero as Fig. 3.3, the total charge Q should decrease in accordance 

with the  principles of conservation of charge , i.e., 

 
V

V

V V

dρdQ d
I = = ρ dV = dV

dt dt dt

 
 
 

   
 

(3.19) 

where
Vρ is the density of charge per volume. Consider Eq.(3.12), current I flowing 

thought the closed surface S is 

 
S

I d  J S

 
(3.20) 

With use of the divergence theorem, Eq.(3.20) becomes to
  

  
V

I dV  J

 
(3.21) 

Comparing Eq.(3.19) and (3.21) leads to 

 Vd

dt


 J =

 
(3.22) 

Combinating Eq.(3.8) and (3.15) to obtain current density J = V/ and substituting 

this into Eq.(3.22) 
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2

VdV

dt








 
(3.23) 

Under static condition, the charge density V  is independent of time or dV/dt = 0. 

Thus, the final equation is 

 
2

20 or ( ) 0
V

V



          (3.24) 

where  is the reciprocal of resistivity  or conductivity  = 1/. 
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Fig. 3.3 Net current I flowing out of volume V 

 

3.5 Conclusion 

 
This chapter gives descriptions of basic electrical theory. In the beginning, the 

necessary electrical variables are introduced, i.e. electric potential, electric current and 

resistivity. Then, the conservation of charge is employed to prove the Laplace’s 

equation is the governing equation for determining the distribution of potential within 

cracked specimens. 

 The electric resistance is also mentioned in this chapter. Consider Eq.(3.18), it 

is shown how cross-sectional area A affects the resistance of the specimen. Similarly 

to the occurrence of crack within specimen, it decreases the current flow cross-section 

area which causes the resistance increase. This also disturbs the distribution of electric 

potential field within defected material. 
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Chapter 4 

Finite Volume Method 

 To build a mathematical model to simulate the potential distribution in any 

cracked bodies by the finite volume method, the discretization of partial differential 

equations in the form of algebraic equations is the first procedure that is extremely 

important. Then, the discretized simultaneous equations had to be assembled, load and 

boundary condition set and solved. The type and size of grid influences the accuracy 

of obtained results. This chapter gives the description of the grid and discretized 

procedure of the governing equation and the solving procedures. 

 

4.1 Spatial Discretization 

 The shape of the employed grid is unstructured quadrilateral with node 

positioned at the centroid in the cell-centered grid arrangement as shown in Fig. 4.1 

[26]. There are also boundary nodes at external cell face for the specification of 

boundary conditions. The grids that are used in this study are generated conveniently 

by a free mesh generator program, Automesh2D [32]. 

 

P
Si Qi

di

finode

 boundary 

node

 

Fig. 4.1 Typical unstructured quadrilateral cells [26] 

 

 Consider a typical cell P in Fig. 4.1, a node P is located at the center of the 

cell. Subscript i = 1..4 represents the four sequence of adjacent cells. The Si are 

surface vectors which are perpendicular to faces fi and point toward the surrounded 

control volumes. The di are distance vectors from center, point P to points Qi at the 

center of adjacent cells. The boundary cell served as a dummy node for the 

specification of the boundary condition. 

 

4.2 Governing Equation 

 The main governing equation for this problem is the Laplace’s equation of 

electric potential that was described in Chapter 3. The basic principles of electricity 

and electric continuity equation in Eq.(3.24) is (
2
V) = 0. 
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 In the finite volume discretization procedure, this second order partial 

differential equation must be transformed into simultaneous algebraic equations to 

calculate the potential for every computational nodes. The procedure approximate the 

variables at cell faces so that the fluxes crossing the cells can be found for the 

conservation equation. The procedure follows the study by Muzaferija [33]. 

 

4.2.1 Spatial Distribution of Variables 

 For linear distribution problem, the value of assumed spatial variable r at 

position vector r can be determined by truncating the Taylor series. Given the value 

of variable at position vector rP is P, the spatial variable r is calculated according to 

 ( ) ( )r P P P      r r
 

(4.1) 

where ()P is the gradient of  at point P.  

 The gradient vector at any cell ()P can be calculated by ensuring a least 

square fit of  through node P and neighboring node Qi using the relationship between 

a matrix G and vector h as follow, 

 ( )P  G h
 

(4.2) 

where 

 3
1

nb
i i

i i




d d
G =

d
 

(4.3) 

and 

 3
1

.i

nb
P Q i

i i

( ) 






d
h =

d
 (4.4) 

 The value of face gradient ()fi  of control volume can be determined through 

Eq.(4.1). By averaging the gradients from node P and node Qi, the relationship is 

 
2 2( ) ( ) ( ) ( ) ( )

( ) .
2 2

i i i

i

P Q P i P Q i Q

f

   


        
  

r r r r
 (4.5) 

 

4.2.2 Equation Discretization 

 The governing equation is (
2
V) = 0 from which the discretization process 

transforms into algebraic equation with primary unknowns . Consider the node P 

which represents the control volume VP, the Eq.(3.24) is integrated over that control 

volume  

 
2

( ) 0.

PV

dV    (4.6) 

With the divergence theorem, Eq.(4.6) becomes 
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 ( ) 0.d  
S

S  (4.7) 

Eq.(4.7) can be approximated into a sum of integrals over all faces as, 

 
1

( ) 0
i

nb

f i

i




  S

 

(4.8) 

where nb is the number of total surfaces which adjacent to considered control volume 

VP  which is equal to 4 in this study. ()fi  stands for variable gradient of face fi . 

 If the surface vector, Si, and displacement vector from point P to Qi , di, are 

parallel (Fig. 4.2). The value of surface gradient ()fi in Eq.(4.8) could be 

approximated as 

 )( ) ( .
i i

i

f i f P

i

    
S

S
d

 (4.9) 

P Qi

fi

Si

di

 

Fig. 4.2 A control volume with parallel vector Si and di 

 

 However, for an unstructured quadrilateral mesh, the vector Si and 

displacement vector di in most control volumes are nonparallel (Fig. 4.3). To obtain 

more accurate result, the non-orthogonal correction is added [29]. The Eq.(4.9) 

becomes  

 ( )( ) ) ( .
i i

i i
f i Q P f i i

i i

     
 

      
 

S d
S S S

d d
 (4.10) 

P

Si Qi

di

fi

 

Fig. 4.3 A control volume with nonparallel vector Si and di  
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Substituting  Eq.(4.10) into Eq.(4.8), the discretized equation is 

 
1 1

( ) )( 0.
i i

nb nb
i i

Q P f i i

i ii i

  
 


 

     
 

 
S d

S S
d d

 (4.11) 

 

4.2.3 Simultaneous Algebraic Equation 

 To determine the value of the primary unknowns  at the central grid point, P, 

which is surrounded with neighbor control volume, Qi, the resulting algebraic 

equation is arranged into a new form 

 
1

i i

nb

P P Q Q

i

a a b 


 
 

(4.12) 

where aP and aQi are the coefficients of P and Qi respectively and b is the source 

term. By rearranging Eq.(4.11) into the form of Eq.(4.12), the coefficients definitions 

are  

 
1

nb
i

P

i i

a 



S

d
 

(4.13) 

 
i

i

Q

i

a 
S

d
 

(4.14) 

and 
1

)( .
i

nb
i

f i i

i i

b 



 

   
 


d

S S
d

 (4.15) 

 For each control volume, the values of aP, aQi and b of every individual cell 

are assembled into Eq.(4.12). Then, equations of all cells of domain form the system 

of algebraic equations which is used to determine and update the values of P. 

 Typically, the value at a node inside the domain is the unknown variable. A 

discretized equation (4.12) can be written for every control volume. For example, the 

obtained algebraic equation of a control volume P in Fig. 4.4(a) is 

 
1 1 2 2 3 3 4 4P P Q Q Q Q Q Q Q Qa a a a a b        

 
(4.16) 

where the coefficients can be determined from Eqs.(4.13) to (4.15). 

 

4.3 Implementation of Boundary Conditions 

 For some control volumes of which some faces coincide with the domain 

boundary or the crack such as the control volume in Fig. 4.4(b), the algebraic equation 

of such boundary node is slightly different from the interior cells and depends on the 

specified boundary condition. In general, there are 2 main types of boundary 

conditions, Dirichlet or fixed value boundary condition and Neumann or fixed 

gradient boundary condition. 
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(a)        (b) 

Fig. 4.4 Types of control volumes: (a) internal control volume and (b) boundary 

control volume 

 

4.3.1 Dirichlet Boundary Condition  

 This boundary condition prescribes the value of the unknown variable  on the 

boundary node. If the value of variable at face b is given as b, the algebraic equation 

of this control volume would be 

 
1 1 2 2 3 3P P Q Q Q Q Q Q b ba a a a a b        

 
(4.17) 

 

4.3.2 Neumann Boundary Condition 

 This boundary condition also known as the specified gradient boundary 

condition in which the gradient of variable, , is defined for boundary node. 

Regarding to Fig. 4.4(b) with the gradient of variable at face b is ()b, this gradient 

value should be transformed into the value of unknown variable at face b, b, by 

applying Eq.(4.1) as 

 )( ( )b P b P b     r r  (4.18) 

where rb is the position vector at point b. Then, this value is taken to the algebraic 

equation as same as Dirichlet boundary condition. 

 

4.4 Computational Procedure 

 To determine the distribution of electric potential, the domain of geometry and 

crack length must be defined. Then, the mesh for the studied domain is generated and 

the boundary condition, tolerance , and initial value of electric potential V are 

defined. With the discretized equation, the equations for every control volumes are set 

up. The Jacobi iteration method is utilized to solve the assembled equation system of 

the entire domain and after this process, a new value of V for every node is obtained. 
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These values are used to update the equation system for the calculation in the next 

iteration. This process continues until the percentage difference between the new 

value and the old value of V is less than the tolerance , which is equal to 0.000001% 

for this work, for every control volumes. The percentage difference is calculated by 

 Percentage difference =
 

NEW OLD

NEW OLD

100%
/ 2

V V

V V





 (4.19) 

where VOLD and VNEW are the potential value before update and after update 

respectively. The detail of this process is illustrated in Fig. 4.5. 
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Fig. 4.5 Flowchart of calculating process 
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4.5 Conclusion 

 This chapter explains the procedure that transforms the governing equation in 

the form of partial differential equation into sets of algebraic equations by the finite 

volume technique. Taylor’s series approximation method in Eq.(4.1), a least square fit 

method in Eq.(4.2) and non-orthogonal correction technique in Eq.(4.10) are used to 

discretize the governing equation. This chapter also shows how to set up the equation 

for boundary node which is slightly difference from typical node. The different types 

of boundary conditions, Dirichlet and Neumann boundary conditions, affect directly 

to the obtained equation for each node. The final form of discretized equation is 

shown with the coefficient definitions in Eq.(4.12). The iterated process of calculation 

is explained and illustrated in detail with flowchart in the last part of the chapter. 
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Chapter 5 

Program Verification 

 In general, a numerical computer program requires the verification procedure 

to check the accuracy of written code and quality of grid generating. Thus, the electric 

potential distribution problem within simple cracked plates, i.e. single edge cracked 

and central cracked specimens, are examined in this chapter. Then the calibration 

curves are calculated and compared against the analytical solutions and existing 

experimental data. Simulations with refining grids are also conducted in order to 

ensure that the obtained solution is grid independent.  

 

5.1 Single Edge Cracked Specimen 

 The single edge crack and central crack are one of the most common crack 

types in fracture mechanics [6]. The test specimen is made from AISI 304 stainless 

steel which electric conductivity   at 20°C is 1.39 10
6
 

-1
·m

-1
 [34] with width W = 

20 mm, length L = 100 mm and thickness t = 4 mm. The magnitude of electric current 

induced is constant throughout the specimen at 10 A. Fig. 5.1 shows the geometry of 

specimen with single edge crack type under constant electric current passing 

throughout the specimen where y represents the potential measured distance from 

crack. The boundary conditions are depicted in Fig. 5.2 which J represents the electric 

current density. 
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Fig. 5.1 Geometry of single edge cracked specimen under constant current 
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Fig. 5.2 Boundary conditions of single edge cracked specimen 

  



 

 

29 

 The analytical calibration curve for both single edge cracked and central 

cracked specimen can be obtained from Johnson’s equation [6]. 

 

1

1

0 0

cosh [cosh( / 2 ) / cos( / 2 )]

cosh [cosh( / 2 ) / cos( / 2 )]

V y W a W

V y W a W

 

 




  (5.1) 

where a0 is the reference crack size which equals to zero for this thesis and V0 

represents the measured voltage corresponding to a0. Eq.(5.1) can be used with any 

conductive materials if its electric resistivity is constant throughout the specimen. The 

magnitude of an electric current is independent from this analytical solution as well. 

 The process of grid independent test is shown in Appendix A. With the grid 

independent meshes, the results of electric potential V of every control volumes are 

used to draw the contour graph of electric potential distribution within cracked 

domain. The contour results of every crack length to specimen width ratio a/W are 

shown in Fig. 5.3 to Fig. 5.10. 

 

 

Fig. 5.3 The contour plot of potential distribution in the unit of millivolt (mV) in 

single edge cracked plane with crack length to specimen width ratio a/W = 0.1 

 

Fig. 5.4 The contour plot of potential distribution in the unit of millivolt (mV) in 

single edge cracked plane with crack length to specimen width ratio a/W = 0.2 

 

Fig. 5.5 The contour plot of potential distribution in the unit of millivolt (mV) in 

single edge cracked plane with crack length to specimen width ratio a/W = 0.3 
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Fig. 5.6 The contour plot of potential distribution in the unit of millivolt (mV) in 

single edge cracked plane with crack length to specimen width ratio a/W = 0.4 

 

Fig. 5.7 The contour plot of potential distribution in the unit of millivolt (mV) in 

single edge cracked plane with crack length to specimen width ratio a/W = 0.5 

 

Fig. 5.8 The contour plot of potential distribution in the unit of millivolt (mV) in 

single edge cracked plane with crack length to specimen width ratio a/W = 0.6 

 

Fig. 5.9 The contour plot of potential distribution in the unit of millivolt (mV) in 

single edge cracked plane with crack length to specimen width ratio a/W = 0.7 

 

Fig. 5.10 The contour plot of potential distribution in the unit of millivolt (mV) in 

single edge cracked plane with crack length to specimen width ratio a/W = 0.8 

 

 The numerical calibration curves are plotted and compared with the analytical 

solution in Fig. 5.11. The distance of potential calculated position from crack y, is 

varied from y = 5 mm to 25 mm in order to verify the calibration curves and examine 
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the changes of potential drop due to the extension of crack at different measured 

positions. The data of these calibration curves including to number of grids used are 

listed in Table A.1 to Table A.5 in Appendix A. The detail of percentage error for 

every potential calculated position at different crack size is illustrated in Fig. 5.12. 

 Fig. 5.11 shows that the slope of calibration curve is relatively high while the 

potential calculated point is near the crack, but it is flatter when the calculated 

position is farther apart. That is, the sensitivity, the ability to distinguish the small 

changes in crack length, is higher when the potential calculated points are closer to 

the crack. 
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Fig. 5.11 Calibration curve of single edge cracked specimen  

with various potential calculated position 

 

 There is another observation in terms of percentage error in Fig. 5.12. When 

the potential calculated position is nearer to the crack (e.g. y = 5 mm), the percentage 

error of the numerical results raise to 0.82 – 1.15%. If y increases, the percentage 

error obviously reduces. At y = 25 mm, for example, it remains just only 0.07 – 

0.62%. 
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Fig. 5.12 Percentage errors of numerical calibration curve of  

single edge cracked specimen compared to Johnson’s equation 

 

 The finite volume solutions compared to the other experimental solutions [6] 

are shown in Fig. 5.13. This experiment is conducted with 5 mm thickness and 50 mm 

width specimen. The initial value of crack length a0 is 10 mm. The potential measured 

probe distance from crack y is 10 mm. 

 The calibration curve in Fig. 5.13 shows that the finite volume solution 

conforms very well with the analytical solution and lies consistently below the 

experimental normalized potential. The difference between numerical and 

experimental result grows with the increasing of crack length. 
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Fig. 5.13 The numerical calibration curve for single edge cracked specimens 

compared with the experiments [6] 

 

5.2 Central Cracked Specimen 

 The central crack type is another common type of fracture appearance. The 

geometry and boundary conditions of central cracked specimen with the uniform 

current introduced at two ends is shown in Fig. 5.14 and Fig. 5.15, respectively. The 

studied specimen’s size is W = 20 mm and L = 80 mm with the same thickness and 

material as the studied single edge crack specimen. The analytical calibration curve 

also can be calculated by Johnson’s equation. 
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Fig. 5.14 The geometry of central cracked specimen under constant current 
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Fig. 5.15 Boundary conditions of central cracked specimen 

 

 After the process of grid independent test which is shown in Appendix A, the 

obtain contour results of electric potential distribution within central cracked domain 

for every crack length to specimen width ratio a/W are shown in Fig. 5.16 to Fig. 

5.23. 

 

 

Fig. 5.16 The contour plot of potential distribution in the unit of millivolt (mV) in 

central cracked plane with crack length to specimen width ratio a/W = 0.1 

 

 

Fig. 5.17 The contour plot of potential distribution in the unit of millivolt (mV) in 

central cracked plane with crack length to specimen width ratio a/W = 0.2 

 

Fig. 5.18 The contour plot of potential distribution in the unit of millivolt (mV) in 

central cracked plane with crack length to specimen width ratio a/W = 0.3 
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Fig. 5.19 The contour plot of potential distribution in the unit of millivolt (mV) in 

central cracked plane with crack length to specimen width ratio a/W = 0.4 

 

Fig. 5.20 The contour plot of potential distribution in the unit of millivolt (mV) in 

central cracked plane with crack length to specimen width ratio a/W = 0.5 

 

 

Fig. 5.21 The contour plot of potential distribution in the unit of millivolt (mV) in 

central cracked plane with crack length to specimen width ratio a/W = 0.6 

 

Fig. 5.22 The contour plot of potential distribution in the unit of millivolt (mV) in 

central cracked plane with crack length to specimen width ratio a/W = 0.7 
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Fig. 5.23 The contour plot of potential distribution in the unit of millivolt (mV) in 

central cracked plane with crack length to specimen width ratio a/W = 0.8 

  

 The numerical calibration curves at calculated distance from crack y = 4 mm 

to y = 20 mm compared with Johnson’s equation are shown in Fig. 5.24 while the 

percentage error is illustrated in Fig. 5.25. The data of calibration curve is concluded 

in Table A.6 to Table A.10. 

  Similarly to the single edge crack results, the finite volume method also 

provides the consistent prediction for this crack type. The percentage error is highest 

when y = 4 mm, the closest potential calculated position to the crack origin. The error 

at this calculated point is 0.60 – 1.69%. When the potential calculated points move 

away from crack, especially at y = 20 mm which is the farthest potential calculated 

distance, more accuracy results are obtain with the percentage error of 0.07 – 0.77%. 

However, there is minimum sensitivity at this measured point as well.  
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Fig. 5.24 Calibration curves of central cracked specimens  

with various distance of potential calculated position 
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Fig. 5.25 Percentage errors of numerical calibration curve of  

central cracked specimen compared to Johnson’s equation 

  

 Comparison of finite volume solution with the experimental solution [6] is 

displayed in Fig. 5.26. This experiment is conducted with 2 mm thickness and 300 

mm width specimen. The initial value of central crack length 2a0 is 30 mm. The 

potential measured probe distance from crack y is 9 mm. 

 There is slight error between numerical and analytical solution because the 

potential calculated position is very near to the crack compared with specimen’s size. 

However, there is more difference between numerical or analytical solution and the 

experimental solution. This gap is larger while crack size increases. 
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Fig. 5.26 The numerical calibration curves for central cracked specimens compared 

with the experiments  [6] 

  

5.3 Discussion 

 The finite volume results obtained in this chapter proves that the finite volume 

method is a convenient, inexpensive and reliable way to solve the distribution of 

electric potential in basic cracked plane problems. Finite volume also can establish a 

reasonable calibration curve for basic crack compared with the analytical calibration 

curve. 

 However, there are same differences between the numerical calibration curve 

and experimental data as shown in Fig. 5.13 and Fig. 5.26. For the experiment, the 

plastic deformation occurs around crack tip in specimen under load. The crack tip 

plasticity affects locally to the change of electric resistivity and hence alters the 

potential drop across the crack. 

 The study the effect of the plastic deformation on the calibration curves is the 

interesting topic for the future work. The electric distribution problem within the 

material which the electric resistivity is not constant throughout specimen should be 

considered as nonlinear problems. By developing this program to solve nonlinear 

problems, the effect of plasticity on the change of calibration curve can be achieved.  

 

5.4 Conclusions 

 This chapter defined the basic crack problems to verify the written program. 

The distribution of electric potential within single edge cracked and central cracked 
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specimens are examined and, then, used to calculate the calibration curves compared 

with the analytical calibration curves. The other experimental solutions are also used 

to verify the numerical results. 

 With the grid independent meshes, the calibration curve is generated. The 

numerical results are compared with the analytical solution. With crack length to 

specimen width ratio a/W from 0.1 to 0.8 intervals, the numerical calibration curves 

are very close to the analytical results with the error of 0.82 – 1.15% for the nearest 

potential measured position to crack y = 5 mm in the single edge cracked specimen 

and with the error of 0.60 – 1.69% for the nearest potential measured position to crack 

y = 4 mm in the central cracked specimen. 

 The finite volume solution also conforms well with the other experimental 

solution although there is slight difference due to the plastic deformation in 

experiment process. Thus, it can be concluded that the finite volume method can be 

utilized to calculate the reliable calibration curve for basic cracked specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

40 

Chapter 6 

Inclined Edge Crack Characterization 

 Characterization of an inclined edge crack is more complicate than the crack 

problem discussed in chapter 5 because not only the length but also its inclination 

angle must be found. This chapter presents the methodology to identify the 

characteristic of this crack type. The finite volume method is employed to simulate 

the electric potential distribution within a single edged inclined cracked specimen 

with different inclination angle and length. Then, the calibration curves, based on the 

proposed methodology, are established. Finally, two case studies of inclined edge 

crack characterization are presented in order to verify the proposed characterization 

methodology. 

 

6.1 Concept of Inclined Crack Calibration 

 Fig. 6.1 shows an inclined edge cracked plate with a crack length a 

and angle of inclination  to the vertical line. The positive angle of  is measured 

clockwise. The boundary conditions are depicted in Fig. 6.2 in which the normal 

potential gradient on inclined crack faces is zero. 

Ө
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Fig. 6.1 Inclined edge cracked specimen under constant current 
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Fig. 6.2 Boundary conditions of inclined edge cracked specimen 

 

 The crack angle  affects the change of electric potential drop across the crack 

resulting in the calibration curve as shown in Fig. 6.3. At the same crack size, the 

potential difference across the crack is lower while the inclination angle  becomes 

larger. However, this single set of calibration curve is insufficient to find 2 unknowns, 
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i.e. length a and inclination angle . Thus, an additional set of calibration curve is 

needed. 
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Fig. 6.3 The effect of inclined angle   on the calibration curve 

 

 In order to find the additional potential measured positions, the potential at 

different positions within the uncracked, single edge cracked and inclined cracked 

specimens were examined first. 

 Within an uncracked plate, the potential ratio at any positions, V/V0 is equal to 

1. Fig. 6.4 illustrates this behavior. The potential V1 to V7 are measured at the average 

potential probes positions 𝑋̅1 to 𝑋̅7 respectively. The ratios of V1/V0 to V7/V0 are equal 

to 1 along this boundary. 
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Fig. 6.4 Examination of potential different along  

lower boundary of an uncracked body 

  

 Fig. 6.5 shows the case of single edge cracked specimen with a crack size a1. 

In this figure, the potential ratio gradually decreases from 1 as the probe approaches a 

crack, then suddenly increases and reaches the maximum value as the probe 

symmetrically across the crack position. After that, the potential ratio suddenly drops 

and gradually increases to unity as the probe moves away from the crack. 
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Fig. 6.5 Examination of potential different along  

lower boundary of single edge cracked material 

  

 The behavior of a potential ratio for an inclined edge cracked specimen is 

illustrated in Fig. 6.6. The normalized potential across the crack mouth, V4/V0, is 

lower than that in the case of a single edge crack having the same crack length. It is 

interesting to note that the normalized potential at the positions adjacent to that 

symmetrically across the crack mouth, i.e. V3/V0 and V5/V0, are unsymmetrical. 

Therefore, it is worth to observe the effect of crack length and inclination angle on the 

potential ratio at these adjacent positions, i.e. V3/V5.  If correlation does exist, it will 

be an additional set of calibration curve.  
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Fig. 6.6 Examination of potential different along  

lower boundary of inclined edge cracked material 

  

 For convenience, the potential across the crack V4 is replaced by VC. The 

potential difference next to VC on the left (V3) and right (V5) are represented as VL and 

VR, respectively. It will be shown later that the adjacent potential ratio VL/VR 

correlates with the crack length a and inclination angle   as schematically shown in 

Fig. 6.7. When a crack angle  is zero, this ratio is equal to 1 for any crack sizes. 

Thus, by employing the calibration curve of the normalized potential across the crack 
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VC/V0 at different inclination angles  in Fig. 6.3 and the calibration curve of the 

adjacent potential ratio VL/VR at various crack angle  in Fig. 6.7, the crack size a and 

the inclination angle  of inclined edge crack can be determined. 
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Fig. 6.7 The relationship between the adjacent potential ratio VL/VR  

and crack length to width ratio a/W at different inclined angle   

  

 The procedure to characterize an inclined edge crack begins with measuring 

the potential difference VC, VL and VR as shown in Fig. 6.8. Next, VC/V0 and VL/VR are 

computed and determined the corresponding values of a/W and , i.e. intersection 

points, from calibration curves in Fig. 6.3 and Fig. 6.7, respectively. Then, the 

corresponding values of a/W and   from each curve are plotted on the same graph 

and a best fit curve is determined. Finally, the intersection of best fit curves is 

obtained. This point represents the information of an inclined edge crack. This 

procedure is concluded in Fig. 6.9. 
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Fig. 6.8 Potential measured positions for inclined edge cracked identification 
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        (c) 

Fig. 6.9 Methodology to identify inclined crack a/W and  from  

(a) VC/V0 and (b) VL/VR and (c) the intersection finding process 

 

6.2 Numerical Result 

 The test specimen is made from AISI 304 stainless steel with specimen’s 

width W = 20 mm, length L = 100 mm and thickness t = 4 mm same as the studied 

single edge cracked specimen in chapter 5 including to the magnitude of electric 

current. The finite volume method is employed to determine the potential distribution 

within inclined edge cracked specimen with crack length to specimen width ratio a/W 

from 0.1 to 0.8 at 0.1 intervals and cracked angle  from 7.5° to 45° at 7.5° intervals.  

 The calibration curves of the normalized potential across the crack VC/V0 and 

the calibration curves of the adjacent potential ratio VL/VR are calculated. The 

potential measured distance from the crack, y, used to calculate those curves is 5 mm 
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according to the results of the sensitivity of single edge crack calibration curve from 

the last chapter. 

 

6.2.1 Potential Distribution 

 Examples of electric distribution within inclined edge cracked specimen with 

crack length to specimen width ratio a/W 0.8 at various inclined angles are shown as 

contour plots in Fig. 6.10. These contours show the effect of crack angle  on the 

potential distribution within a specimen. 

 

(a)  = 0° 

 

(b)  = 15° 

 

(c)  = 30° 

 

(d)  = 45° 

Fig. 6.10 The potential distribution in the unit of millivolt (mV)  

in inclined edge cracked plane with a/W = 0.8 and  from 0 to 45° 
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6.2.2 Calibration Curve 

 The calibration curves of the normalized potential across the crack VC/V0 and 

the adjacent potential ratio VL/VR are shown in Fig. 6.11 and Fig. 6.12 respectively 

while the details data from the finite volume simulation is shown in Appendix B. 

According to ASTM E647-08 [20], the relationship between of the normalized 

potential across the crack VC/V0 and the crack length to specimen width ratio a/W can 

be established by polynomial interpolation. Thus, the calibration curve of each case is 

represented by fourth-order polynomial equations. The calibration curves of 

normalized potential across the crack VC/V0 is shown in Eq.(6.1) while the curves of 

the adjacent potential ratio VL/VR is given in Eq.(6.2). The coefficients for those 

equations at different crack angles  are shown in Table 6.1 and Table 6.2. 

 According to the research by Spitas et al. [14] which the authors considered a 

short crack, it was concluded that the potential drop across the crack between point L 

and R in their specific specimen (Fig. 2.6) depends only from the crack size and not 

the orientation of the crack. However the numerical calibration curves of the 

normalized potential across the inclined crack VC/V0 at different degree levels in Fig. 

6.11 indicates that the orientation of the crack also effects the potential drop across 

the crack, especially for longer crack length to specimen width ratio a/W more than 

0.4. 
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Fig. 6.11 Calibration curves of inclined cracked specimens of the normalized potential 

across the crack VC/ V0 
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Table 6.1 Coefficients of the calibration curve of the normalized potential across the 

crack VC/V0  in Eq.(6.1) at various crack angles . 

 C4 C3 C2 C1 C0 

7.5° 12.971 -18.381 13.299 -0.725 1.045 

15° 12.443 -18.167 13.282 -0.791 1.054 

22.5° 10.608 -16.252 12.485 -0.705 1.040 

30° 8.104 -13.278 11.145 -0.578 1.036 

37.5° 7.450 -13.330 11.389 -0.755 1.037 

45° 6.145 -12.319 11.215 -0.950 1.049 
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Fig. 6.12 Calibration curves of inclined cracked specimens of the adjacent potential 

ratio VL/VR 
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Table 6.2 Coefficient of the calibration curves of the adjacent potential ratio VL/VR in 

Eq.(6.2) at various crack angles . 

 D4 D3 D2 D1 D0 

7.5° 0.260 -0.989 1.096 -0.114 1.005 

15° 0.408 -1.758 2.204 -0.252 1.011 

22.5° 0.098 -1.574 2.925 -0.335 1.014 

30° -0.593 -0.292 3.175 -0.373 1.017 

37.5° 0.127 -0.289 4.092 -0.569 1.027 

45° 0.784 2.061 3.463 -0.485 1.021 

 

6.3 Validation of Crack Characterization Methodology 

 In this section, case studies are presented to show the applicability of a 

methodology described in a section 6.1. The specimen is made from AISI 304 

stainless steel with width W = 20 mm, length L = 100 mm and thickness t = 4 mm  

with 10A constant current induced throughout the specimen.  

 For the first case, the specimen has an inclined crack with length to specimen 

width ratio a/W = 0.55 and inclined angle  = 40°. With finite volume method, the 

potential distribution is obtained as shown in Fig. 6.13. The potential differences VC, 

VL and VR with a distance 2y of 10 mm are calculated. The VC/V0 and VL/VR from the 

computational results are 2.492 and 2.007 respectively.  

 

 

Fig. 6.13 The potential distribution in the unit of millivolt (mV)  

in inclined edge cracked plane with a/W = 0.55 and  = 40° 

 

 The values of VC/V0 and VL/VR are used to characterize the crack using the 

calibration curves in as shown Fig. 6.11 and Fig. 6.12, respectively. The obtained 

coordinate of a/W and  are listed in Table 6.3.  
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Table 6.3 The obtained coordinates of crack length to specimen width ratio a/W and 

cracked angle  from the calibration curves of VC/V0 and VL/VR for first case study 
 

 
a/W 

VC/V0 VL/VR 

7.5° 0.4946 - 

15.0° 0.5011 - 

22.5° 0.5103 - 

30.0° 0.5236 0.6778 

37.5° 0.5415 0.5740 

45.0° 0.5638 0.5114 

 

The value of a/W and   from the calibration curve of VC/V0 can be fitted to fourth-

order polynomial equation as  

8 4 6 3 5 2 41.119 10 1.386 10 2.253 10 8.969 10 4.886
a

W
                 (6.3) 

At the value of VL/VR = 2.007, only 3 coordinates of a/W and  can be found out by 

the calibration curves in Fig. 6.12. Thus, the curve of VL/VR is represented by second-

order polynomial equation as 

 4 2 23.660 10 3.854 10 1.505
a

W
        (6.4) 

By solving Eq.(6.3) and Eq.(6.4), the intersection in Fig.6.14 is obtained at a/W = 

0.5486 and  = 40.04°. That is, the percentage error of the obtained a/W and   are 

0.11 and 0.25 respectively. 
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Fig.6.14 The relationship between a/W and   from the calibration curve of  

VC/V0 and VL/VR for first case study 

  

 For the second case study, the inclined crack with crack size to specimen 

width ratio a/W = 0.35 and inclined angle  = 10°. The numerical potential 

distribution result is shown in Fig.6.15. The calculated VC/V0 and VL/VR are 1.818 and 

1.081 respectively. 

 

 

Fig.6.15 The potential distribution in the unit of millivolt (mV)  

in inclined edge cracked plane with a/W = 0.35 and  = 10° 

  

 The obtained coordinates of a/W and  are listed in Table 6.4 after the 

calibrating process with their calibration curves in Fig. 6.11 and Fig. 6.12.  
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Table 6.4 The obtained coordinates of crack length to specimen width ratio a/W and 

cracked angle  from the calibration curves of VC/V0 and VL/VR for second case study 
 

 
a/W 

VC/V0 VL/VR 

7.5° 0.3479 0.4097 

15.0° 0.3515 0.2861 

22.5° 0.3583 0.2404 

30.0° 0.3677 0.2162 

37.5° 0.3799 0.2063 

45.0° 0.3961 0.2010 

 

The value of a/W and   from the calibration curve of VC/V0 can be fitted to fourth-

order polynomial equation as 

8 4 6 3 5 2 41.165 10 1.129 10 6.310 10 5.704 10 0.349
a

W
                (6.5) 

while the relationship between a/W and   from the calibration curve of VL/VR can be 

represented as 

7 4 5 3 3 2 23.086 10 4.093 10 2.063 10 4.857 10 0.674
a

W
                (6.6) 

Solving Eq.(6.5) and Eq.(6.6) to find the intersection in Fig.6.16, the obtained a/W = 

0.3488 and  = 10.45° which the percentage error of the obtained a/W and   are 0.34 

and 4.5 respectively. 
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Fig.6.16 The relationship between a/W and   from the calibration curve of  

VC/V0 and VL/VR for second case study 

 

6.4 Conclusions 

 This chapter presents the application of the finite volume method for more 

complicate crack problems, i.e. the inclined edge crack. The simulation was done and 

calibration curve was constructed for a crack having its length to specimen width a/W 

equal to 0.1 to 0.8 at 0.1 intervals and inclination angle  equal to 7.5° to 45° at 7.5° 

intervals. 

 Next, a proposed methodology for characterizing an inclined edge crack was 

described. The position of crack mouth is assumed to be known before measuring the 

potential. The method requires the potential difference at the position symmetrically 

to a crack mouth and two adjacent positions. 

 The last part shows the 2 case studies of inclined edge cracked specimen in 

order to verify the described method. There is slight error of the obtained result for the 

first case study at 0.11% of crack length to specimen width ratio a/W and 0.25% of 

cracked angle . The percentage error for second case study is 0.34% for crack length 

to specimen width ratio a/W and 4.50% for cracked angle . 
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Chapter 7 

Conclusions and Suggestions 

 After presenting the electric potential drop method, the basic electrical 

theorem, the finite volume theorem, the studied basic cracked specimen and the case 

study of a more complex cracked specimen, i.e. inclined edge cracked specimen, this 

chapter summarizes the previous chapters and gives the suggestions for further work. 

 

7.1 Conclusions 

 The objective of this thesis is to develop and utilize a finite volume method 

with C++ code to simulate the electric potential distribution within through-thickness 

cracked plates. Then, the calibration curve is generated to identify crack length and 

the angle of crack in cases of inclined cracks. 

 This work employs the cell-centered unstructured quadrilateral grid to 

discretize the problem domain into a partitioning set of control volumes. This grid 

type is flexible enough to fit the complex model and can be generated conveniently by 

a free mesh generator software, Automesh2D [32]. By applying the least square fit 

method [33] and truncating the Taylor series, the steady state electric potential 

equation in the partial differential form can be approximated into simultaneous 

algebraic equation. Moreover, due to the unstructured quadrilateral cell shape, the 

orthogonal correction approach [29] is also employed to improve the accuracy of the 

solution. 

 To verify the written C++ program, the distributions of electric potential 

within 2 basic cracked planes, i.e. single edge cracked plane and central cracked plane 

with crack length to specimen width ratio a/W from 0.1 to 0.8 at 0.1 intervals, are 

simulated. Then, with the grid independent solutions - the numerical calibration 

curves, the relationship between the potential difference across the crack and crack 

size - are established and compared with the analytical solutions. The maximum 

percentage error of the numerical results is 1.15% for the single edge crack case at 

a/W = 0.4 and 1.69% for central crack case at a/W = 0.8. 

 This thesis also simulates the distribution of potential within inclined edge 

cracked planes at crack length to specimen width ratio a/W from 0.1 to 0.8 at 0.1 

intervals and the crack angles of 7.5° to 45° at 7.5° intervals and presents the method 

to calibrate the inclined edge crack shape in terms of crack length a and 

the angle of inclination . The adjacent potential differences VL and VR are added to 

calculate the another calibration curve in addition to the curve of potential different 

across the crack Vc. The adjacent potential differences ratio VL/VR at different crack 

length a and angle  are monitored in order to build the calibration curve. 

 To examine a test body, the measured potential different across the crack Vc 

and the adjacent potential differences ratio VL/VR are used to find the coordinate of 

a/W and  from the calibration curves of each case. Then, the relationship between 
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a/W and  of both cases are plotted in the same graph. The intersection of two curves 

represents the appearance of inclined crack within the test specimen. To verify this 

method, two case studies are simulated, the inclined edge cracked specimens with 

crack length to specimen width ratio a/W = 0.55 and cracked angle  = 40° and the 

specimens with crack length to specimen width ratio a/W = 0.35 and cracked angle  

= 10°. The percentage error of the numerical result of a/W is 0.11% while that of   is 

0.25% for the first case while the percentage error of a/W is 0.34% and that of   is 

4.5% for the second. 

 The proposed inclined edge crack characterizing method can predict a crack 

size and inclination angle by measuring the potential difference at only three position 

pairs, i.e. the potential difference across the crack Vc, the adjacent potential 

differences VL and VR. 

 The method was accurate when compared with the previous method of Spitas 

et al. [14] which studied crack length to specimen width ratio a/W up to 0.4 in which 

the effect of orientations. However the proposed method considers the effect of crack 

orientation on the potential drop across the crack while the work of Spitas et al. did 

not. Nonetheless, the limitation of this method is that the position of crack mount 

must be known before measuring the potential. 

   

7.2 Suggestions 

 The mesh generating process in this thesis simply utilizes a free license 

computer software, Automesh2D. The grid independency is ensured by increasing 

control volume (CV) number with some restrictions due to the limitation of the grid 

generator. The grid shapes and alignment are difficult to control. By developing C++ 

computer codes, the adaptive mesh refinement would provide more accurate results 

with less CV numbers and computational cost. 

 The numerical calibration curves for basic cracked planes are established with 

the range of crack length to specimen width ratio a/W from 0.1 to 0.8 and agree well 

with the analytical calibration curves. However, the extreme value of crack length to 

specimen width ratio a/W less than 0.1 and more than 0.8 are also interesting to 

calculate especially in terms of the sensitivity of the small crack size calibration. 

 Similarly, for inclined crack case, this work only calculates the calibration 

curve for crack degree angle 7.5° to 45°. The sensitivity of this method for small 

angle and the calibration curve for high degree angle especially for almost 90° should 

be studied. The negative crack angle is of concern values about the difference of 

calibration curve compared with the positive angle. 

 The distance from inclined edge crack for potential measurement used in this 

work is equal to 5 mm. This value should be optimized to find the best positions of 

potential probes which provide the best calibration curves in terms of accuracy, 

sensibility, reproducibility and measurability. 

 The electric current input in this numerical process is assumed to be constant 

along the specimen boundary. For real inspection tools, the electric current input 
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should be considered as a point source. Thus, the numerical current input should be 

adjusted to be coping with real equipment.  

 The obtained calibration of inclined edge crack from the method presented in 

this thesis is conducted by numerical techniques only. In order to ensure the validity 

of numerical solutions, experiments should be done to compare the results. 

 The most interesting and challenge target is to improve the ability of this 

presented program to solve nonlinear problems because in real situations, the non-

uniform temperature distributed within the component directly affects the changes of 

the electric conductivity within the specimen, the obtained results are probably more 

similar to the real operating component. 

 This work presents the alternative method for characterizing inclined crack 

which there are another methods as described in Chapter 2. This method still should 

be developed and studied in details in many aspects such as the grid generating 

process, the wider range of the characterizing crack length and inclination angle, the 

proper potential measurement position and the validation process etc., moreover, it 

should be improved to be coping with real equipment and operating component, 

especially, in terms of current input and the effect of the non-uniform temperature 

distribution. 
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Appendix A 

Grid Independent Test 

 This appendix shows the process of grid independent test to find the grid 

independent solutions in order to generate the calibration curves of single edge and 

central cracked specimens in Chapter 5.  

 Firstly, the coarse meshes are used to solve a problem. Then, finer meshes 

would be generated to determine the solution of the same problem. If there is no 

significant differences between the solutions from the coarse meshes and the finer 

meshes, it can be supposed that the coarse meshes can provide the grid independent 

solution. 

 For this potential distribution problem, the grid modeling is conducted in 

various numbers of grids containing approximately 1000 to 12000 cells. The solutions 

of electric potential at measured positions of each grid model are compared with the 

solution of the finest grid model. The percentage difference is calculated by  

 Percentage difference =
 

1 2

1 2

100%
/ 2

V V

V V





 (A.1)  

where V1 is the potential solution from the first grid model and V2 is from the second 

which is the finest grid model. In this work, the grid independence is achieved if the 

percentage difference of the solutions from the coarse meshes compared with those of 

the finest meshes is less than 0.5%. 

 This appendix shows the various grid models for grid independent testing for 

each cracked specimen and crack size in Chapter 5. The obtained grid independent 

solutions of the normalized potential drop across the crack are also compared with the 

Johnson’s solution. 

 

A.1 Single Edge Cracked Specimen 

 In this case, the grid independence is checked from the potential results along 

Y = 0 mm. Because the potential results at the right side of crack (X > 50 mm) do not 

significantly change following the addition of control volume (CV) number; thus, this 

appendix shows the grid independency checking only in the left side of crack within 

the range of 25 mm < X < 50 mm. 

 For the single edge cracked specimen’s domain with a/W = 0.1, the mesh 

number used is 1044, 2054, 4046, 8201 and 12055 as shown in Fig. A.1. The potential 

results along Y = 0 mm of each grid model are also displayed in Fig. A.2. By 

comparing these values of each grid model, the grid model of 4046 CVs can provide 

the grid independent solution.   
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(a) 1044 CVs 

 

(b) 2054 CVs 

 

(c) 4046 CVs 

 

(d) 8201 CVs 

 

(e) 12055 CVs 

Fig. A.1 Different number of control volume generating used of single edge cracked 

specimen with crack length to specimen width ratio a/W = 0.1 
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Fig. A.2 Potential results along Y = 0 mm in single edge cracked plane with a/W = 0.1 

 

 For a/W = 0.2, the CV number used is consisted of 1041, 2082, 4062, 8061 

and 12146 as shown in Fig. A.3. The potential results along Y = 0 mm are also shown 

in Fig. A.4. By comparing these values of each grid model, the grid model of 4062 

CVs can provide the grid independent solution.   
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(a) 1041 CVs 

 

(b) 2082 CVs 

 

(c) 4062 CVs 

 

(d) 8061 CVs 

 

(e) 12146 CVs 

Fig. A.3 Different number of control volume generating used of single edge cracked 

specimen with crack length to specimen width ratio a/W = 0.2 
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Fig. A.4 Potential results along Y = 0 mm in single edge cracked plane with a/W = 0.2 

 

 For a/W = 0.3, the cell number used is consisted of 1051, 2059, 4088, 8091 

and 12106 as shown in Fig. A.5. The potential results along Y = 0 mm are also shown 

in Fig. A.6. By comparing these values of each grid model, the grid model of 8091 

CVs can provide the grid independent solution.   
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(a) 1051 CVs 

 

(b) 2059 CVs 

 

(c) 4088 CVs 

 

(d) 8091 CVs 

 

(e) 12106 grids 

Fig. A.5 Different number of control volume generating used of single edge cracked 

specimen with crack length to specimen width ratio a/W = 0.3 
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Fig. A.6 Potential results along Y = 0 mm in single edge cracked plane with a/W = 0.3 

 

 For a/W = 0.4, the CV number used is consisted of 1050, 2066, 4075, 8085 

and 11970 as shown in Fig. A.7. The potential results along Y = 0 mm are also shown 

in Fig. A.8. By comparing these values of each grid model, the grid model of 4075 

CVs can provide the grid independent solution. 
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(a) 1061 CVs 

 

(b) 2067 CVs 

 

(c) 4054 CVs 

 

(d) 8113 CVs 

 

(e) 11942 CVs 

Fig. A.7 Different number of control volume generating used of single edge cracked 

specimen with crack length to specimen width ratio a/W = 0.4 
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Fig. A.8 Potential results along Y = 0 mm in single edge cracked plane with a/W = 0.4 

 

 For a/W = 0.5, the CV number used is consisteded of 1050, 2066, 4075, 8085 

and 11970 as shown in Fig. A.9. The potential results along Y = 0 mm are also shown 

in Fig. A.10. By comparing these values of each grid model, the grid model of 4075 

CVs can provide the grid independent solution. 
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(a) 1050 CVs 

 

(b) 2066 CVs 

 

(c) 4075 CVs 

 

(d) 8085 CVs 

 

(e) 11970 CVs 

Fig. A.9 Different number of control volume generating used of single edge cracked 

specimen with crack length to specimen width ratio a/W = 0.5 
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Fig. A.10 Potential results along Y = 0 mm in single edge cracked plane  

with a/W = 0.5 

 

 For a/W = 0.6, the CV number used is consisteded of 1057, 2080, 4055, 8113 

and 12059 as shown in Fig. A.11. The potential results along Y = 0 mm are also 

shown in Fig. A.12. By comparing these values of each grid model, the grid model of 

4055 CVs can provide the grid independent solution. 
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(a) 1057 CVs 

 

(b) 2080 CVs 

 

(c) 4055 CVs 

 

(d) 8113 CVs 

 

(e) 12059 CVs 

Fig. A.11 Different number of control volume generating used of single edge cracked 

specimen with crack length to specimen width ratio a/W = 0.6 
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Fig. A.12 Potential results along Y = 0 mm in single edge cracked plane  

with a/W = 0.6 

 

 For a/W = 0.7, the CV number used is consisteded of 1042, 2112, 4085, 8145 

and 12037 as shown in Fig. A.13. The potential results along Y = 0 mm are also 

shown in Fig. A.14. By comparing these values of each grid model, the grid model of 

8145 CVs can provide the grid independent solution. 
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(a) 1042 CVs 

 

(b) 2112 CVs 

 

(c) 4085 CVs 

 

(d) 8145 CVs 

 

(e) 12037 CVs 

Fig. A.13 Different number of control volume generating used of single edge cracked 

specimen with crack length to specimen width ratio a/W = 0.7 
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Fig. A.14 Potential results along Y = 0 mm in single edge cracked plane  

with a/W = 0.7 

 

 For a/W = 0.8, the CV number used is consisted of 1061, 2064, 4072, 7874 

and 12106 as shown in Fig. A.15. The potential results along Y = 0 mm are also 

shown in Fig. A.16. By comparing these values of each grid model, the grid model of 

7874 CVs can provide the grid independent solution.  
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(a) 1061 CVs 

 

(b) 2064 CVs 

 

(c) 4072 CVs 

 

(d) 7874 CVs 

 

(e) 12106 grids 

Fig. A.15 Different number of control volume generating used of single edge cracked 

specimen with crack length to specimen width ratio a/W = 0.8 
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Fig. A.16 Potential results along Y = 0 mm in single edge cracked plane  

with a/W = 0.8 

 

 The number of CV used for single edged cracked specimen with different 

crack length to specimen width ratio a/W is concluded in Table A.1 to Table A.5. 

These tables also compare the numerical normalized potential different across the 

crack V/V0 at various measured distance from y = 5 to 25 mm with Johnson’s solution 

in Eq.(5.1). 
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Table A.1 The normalized potential drop (V/V0) across the single edged crack 

compared with analytical solution at potential probe y = 5 mm 

a/W No. of CV 
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4046 1.090 1.081 0.815 

0.2 4062 1.316 1.302 1.103 

0.3 8091 1.636 1.623 0.822 

0.4 4054 2.046 2.023 1.142 

0.5 4075 2.533 2.506 1.055 

0.6 4055 3.129 3.095 1.101 

0.7 8145 3.881 3.846 0.908 

0.8 7874 4.945 4.893 1.060 

 

Table A.2 The normalized potential drop (V/V0) across the single edged crack 

compared with analytical solution at potential probe y = 10 mm 

a/W No. of CV 
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4046 1.026 1.024 0.257 

0.2 4062 1.099 1.094 0.453 

0.3 8091 1.215 1.210 0.423 

0.4 4054 1.380 1.370 0.723 

0.5 4075 1.591 1.579 0.757 

0.6 4055 1.866 1.849 0.888 

0.7 8145 2.224 2.207 0.761 

0.8 7874 2.744 2.718 0.944 
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Table A.3 The normalized potential drop (V/V0) across the single edged crack 

compared with analytical solution at potential probe y = 15 mm 

a/W No. of CV 
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4046 1.014 1.013 0.136 

0.2 4062 1.054 1.051 0.254 

0.3 8091 1.119 1.116 0.260 

0.4 4054 1.215 1.209 0.477 

0.5 4075 1.343 1.335 0.541 

0.6 4055 1.514 1.504 0.691 

0.7 8145 1.744 1.733 0.624 

0.8 7874 2.084 2.067 0.816 

 

Table A.4 The normalized potential drop (V/V0) across the single edged crack 

compared with analytical solution at potential probe y = 20 mm 

a/W No. of CV 
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4046 1.010 1.009 0.092 

0.2 4062 1.037 1.035 0.177 

0.3 8091 1.081 1.079 0.186 

0.4 4054 1.149 1.145 0.359 

0.5 4075 1.240 1.235 0.425 

0.6 4055 1.364 1.356 0.574 

0.7 8145 1.532 1.524 0.525 

0.8 7874 1.785 1.772 0.710 
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Table A.5 The normalized potential drop (V/V0) across the single edged crack 

compared with analytical solution at potential probe y = 25 mm 

a/W No. of CV 
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4046 1.007 1.007 0.069 

0.2 4062 1.028 1.027 0.136 

0.3 8091 1.062 1.061 0.146 

0.4 4054 1.115 1.111 0.287 

0.5 4075 1.186 1.182 0.347 

0.6 4055 1.283 1.277 0.489 

0.7 8145 1.416 1.410 0.449 

0.8 7874 1.617 1.607 0.624 

 

A.2 Central Cracked Specimen 

 Due to the symmetrical potential distribution, the numerical simulation is 

conducted only the upper half of the domain including to grid generating process. The 

grid independence is checked from the potential results along Y = W in the left side of 

crack within the range of potential measured location, 20 mm < X < 36 mm, where 

there is the obvious difference between potential result of coarse and fine grid model. 

 For the central cracked specimen’s domain with a/W = 0.1, the CV number is 

1038, 2009, 4024, 8031 and 11864 as shown in Fig. A.17. The potential results along 

Y = W of each grid model are also displayed in Fig. A.18. By comparing these values 

of each grid model, the grid model of 4024 CVs can provide the grid independent 

solution.   

 

 

(a) 1038 CVs 

 

(b) 2009 CVs 

 

(c) 4024 CVs 

 

(d) 8031 CVs 

 

(e) 11864 CVs 

Fig. A.17 Different number of control volume generating used of central cracked 

specimen with crack length to specimen width ratio a/W = 0.1 
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Fig. A.18 Potential results along Y = W in central cracked plane with a/W = 0.1 

 

 For a/W = 0.2, the CV number used is consisted of 1034, 2009, 4024, 8019 

and 11980 as shown in Fig. A.19. The potential results along Y = W are also shown in 

Fig. A.20. By comparing these values of each grid model, the grid model of 4024 CVs 

can provide the grid independent solution. 

 

 

(a) 1034 CVs 

 

(b) 2009 CVs 

 

(c) 4024 CVs 

 

(d) 8019 CVs 

 

(e) 11980 CVs 

Fig. A.19 Different number of control volume generating used of central cracked 

specimen with crack length to specimen width ratio a/W = 0.2 
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Fig. A.20 Potential results along Y = W in central cracked plane with a/W = 0.2 

 

 For a/W = 0.3, the CV number used is consisted of 1033, 2004, 4024, 8018 

and 11953 as shown in Fig. A.21. The potential results along Y = W are also shown in 

Fig. A.22. By comparing these values of each grid model, the grid model of 8018 CVs 

can provide the grid independent solution. 

 

 

(a) 1033 CVs 

 

(b) 2004 CVs 

 

(c) 4024 CVs 

 

(d) 8018 CVs 

 

(e) 11953 CVs 

Fig. A.21 Different number of control volume generating used of central cracked 

specimen with crack length to specimen width ratio a/W = 0.3 
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Fig. A.22 Potential results along Y = W in central cracked plane with a/W = 0.3 

 

 For a/W = 0.4, the CV number used is consisted of 1034, 2014, 4024, 7990 

and 11953 as shown in Fig. A.23. The potential results along Y = W are also shown in 

Fig. A.24. By comparing these values of each grid model, the grid model of 7990 CVs 

can provide the grid independent solution. 

 

 

(a) 1034 CVs 

 

(b) 2014 CVs 

 

(c) 4024 CVs 

 

(d) 7990 CVs 

 

(e) 11953 CVs 

Fig. A.23 Different number of control volume generating used of central cracked 

specimen with crack length to specimen width ratio a/W = 0.4 
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Fig. A.24 Potential results along Y = W in central cracked plane with a/W = 0.4 

 

 For a/W = 0.5, the CV number used is consisted of 1038, 2019, 4024, 8031 

and 11897 as shown in Fig. A.25. The potential results along Y = W are also shown in 

Fig. A.26. By comparing these values of each grid model, the grid model of 8031 CVs 

can provide the grid independent solution. 

 

 

(a) 1038 CVs 

 

(b) 2019 CVs 

 

(c) 4024 CVs 

 

(d) 8031 CVs 

 

(e) 11897 CVs 

Fig. A.25 Different number of control volume generating used of central cracked 

specimen with crack length to specimen width ratio a/W = 0.5 
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Fig. A.26 Potential results along Y = W in central cracked plane with a/W = 0.5 

 

 For a/W = 0.6, the CV number used is consisted of 1029, 2027, 4024, 8036 

and 11897 as shown in Fig. A.27. The potential results along Y = W are also shown in 

Fig. A.28. By comparing these values of each grid model, the grid model of 8036 CVs 

can provide the grid independent solution. 

 

 

(a) 1029 CVs 

 

(b) 2027 CVs 

 

(c) 4024 CVs 

 

(d) 8036 CVs 

 

(e) 11897 CVs 

Fig. A.27 Different number of control volume generating used of central cracked 

specimen with crack length to specimen width ratio a/W = 0.6 

 



 

 

77 

X (mm)

18 20 22 24 26 28 30 32 34 36 38

V
 (

m
V

)

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

1029 CVs

2027 CVs

4024 CVs

8036 CVs

11897 CVs

X

Y

Y = W

 

Fig. A.28 Potential results along Y = W in central cracked plane with a/W = 0.6 

 

 For a/W = 0.7, the CV number used is consisted of 1041, 2027, 3984, 7985 

and 11962 as shown in Fig. A.29. The potential results along Y = W are also shown in 

Fig. A.30. By comparing these values of each grid model, the grid model of 7985 CVs 

can provide the grid independent solution. 

 

 

(a) 1041 CVs 

 

(b) 2027 CVs 

 

(c) 3984 CVs 

 

(d) 7985 CVs 

 

(e) 11962 CVs 

Fig. A.29 Different number of control volume generating used of central cracked 

specimen with crack length to specimen width ratio a/W = 0.7 
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Fig. A.30 Potential results along Y = W in central cracked plane with a/W = 0.7 

 

 For a/W = 0.8, the CV number used is consisted of 1037, 2027, 3976, 7958 

and 12018 as shown in Fig. A.31. The potential results along Y = W are also shown in 

Fig. A.32. By comparing these values of each grid model, the grid model of 7958 CVs 

can provide the grid independent solution. 

 

 

(a) 1037 CVs 

 

(b) 2027 CVs 

 

(c) 3976 CVs 

 

(d) 7958 CVs 

 

(e) 12018 grids 

Fig. A.31 Different number of control volume generating used of central cracked 

specimen with crack length to specimen width ratio a/W = 0.8 
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Fig. A.32 Potential results along Y = W in central cracked plane with a/W = 0.8 

 

 The number of CV used for central cracked specimen with different crack 

length to specimen width ratio a/W is concluded in Table A.6 to Table A.10. These 

tables also compare the numerical normalized potential drop across the crack V/V0 at 

various calculated position from y = 4 to 20 mm with Johnson’s solution. 

 

Table A.6 The normalized potential drop (V/V0) across the central crack compared 

with analytical solution at potential probe y = 4 mm 

a/W No. of CV  
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4024 1.035 1.041 0.603 

0.2 4024 1.136 1.148 1.042 

0.3 8018 1.298 1.310 0.924 

0.4 7990 1.515 1.530 1.012 

0.5 8031 1.791 1.810 1.079 

0.6 8036 2.140 2.163 1.111 

0.7 7985 2.596 2.629 1.299 

0.8 7958 3.241 3.296 1.693 
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Table A.7 The normalized potential drop (V/V0) across the central crack compared 

with analytical solution at potential probe y = 8 mm 

a/W No. of CV  
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4024 1.012 1.014 0.205 

0.2 4024 1.047 1.051 0.399 

0.3 8018 1.106 1.110 0.413 

0.4 7990 1.192 1.198 0.525 

0.5 8031 1.309 1.317 0.643 

0.6 8036 1.465 1.476 0.743 

0.7 7985 1.679 1.695 0.953 

0.8 7958 1.991 2.018 1.349 

 

Table A.8 The normalized potential drop (V/V0) across the central crack compared 

with analytical solution at potential probe y = 12 mm 

a/W No. of CV  
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4024 1.007 1.008 0.123 

0.2 4024 1.028 1.030 0.244 

0.3 8018 1.064 1.067 0.262 

0.4 7990 1.117 1.121 0.349 

0.5 8031 1.190 1.195 0.448 

0.6 8036 1.290 1.297 0.543 

0.7 7985 1.429 1.439 0.728 

0.8 7958 1.634 1.652 1.085 
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Table A.9 The normalized potential drop (V/V0) across the central crack compared 

with analytical solution at potential probe y = 16 mm 

a/W No. of CV  
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4024 1.005 1.006 0.089 

0.2 4024 1.020 1.022 0.179 

0.3 8018 1.046 1.049 0.196 

0.4 7990 1.085 1.088 0.264 

0.5 8031 1.139 1.143 0.346 

0.6 8036 1.213 1.218 0.429 

0.7 7985 1.316 1.324 0.586 

0.8 7958 1.470 1.483 0.902 

 

Table A.10 The normalized potential drop (V/V0) across the central crack compared 

with analytical solution at potential probe y = 20 mm 

a/W No. of CV  
V/V0 Percentage 

Error Johnson Eq. FVM 

0.1 4024 1.004 1.005 0.071 

0.2 4024 1.016 1.017 0.143 

0.3 8018 1.037 1.038 0.157 

0.4 7990 1.068 1.070 0.213 

0.5 8031 1.111 1.114 0.283 

0.6 8036 1.170 1.174 0.354 

0.7 7985 1.252 1.258 0.489 

0.8 7958 1.374 1.385 0.770 
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Appendix B 

Data of Normalized Potential Across the Crack  

and the Adjacent Potential Ratio 

 This appendix shows the data of normalized potential across the crack VC/V0 

and the adjacent potential ratio VL/VR for the inclined edge crack calibration curves in 

Chapter 6.  

 The potential measured distance from crack y is 5 mm. Thus, the distance 

between 2 potential measured probes of VC, VL and VR equals to 2y = 10 mm. The data 

of normalized potential across the crack VC/V0 at the potential measured distance 

between 2 measured probes 2y = 10 mm is shown in Table B.1 while the data of the 

adjacent potential ratio VL/VR at the same potential measured distance is in Table B.2. 

 

Table B.1 The normalized potential drop V/V0 across the inclined edge crack at 

potential measured probes distance 2y = 10 mm 

a/W 
VC/V0 

° ° 22° ° ° °

0.1 1.0863 1.0903 1.0789 1.0773 1.0628 1.0551 

0.2 1.3098 1.3037 1.2879 1.2721 1.2465 1.2174 

0.3 1.6316 1.6208 1.5994 1.5718 1.5338 1.4910 

0.4 2.0343 2.0182 1.9837 1.9482 1.8987 1.8342 

0.5 2.5151 2.4866 2.4438 2.3785 2.3040 2.2231 

0.6 3.1252 3.0515 2.9783 2.8814 2.7681 2.6470 

0.7 3.8501 3.7632 3.6343 3.4858 3.3077 3.1339 

0.8 4.8815 4.7179 4.4917 4.2266 3.9476 3.6755 

 

 

 

 

 

 

 

 

 



 

 

83 

Table B.2 The adjacent potential ratio VL/VR of the inclined edge crack specimen at 

potential measured probes distance 2y = 10 mm 

a/W 
VL/VR 

° ° 22° ° ° °

0.1 1.0032 1.0064 1.0081 1.0117 1.0106 1.0094 

0.2 1.0179 1.0353 1.0513 1.0661 1.0733 1.0779 

0.3 1.0444 1.0897 1.1357 1.1782 1.2171 1.2502 

0.4 1.0777 1.1614 1.2488 1.3442 1.4416 1.5344 

0.5 1.1136 1.2412 1.3882 1.5500 1.7333 1.9483 

0.6 1.1506 1.3266 1.5385 1.7961 2.1134 2.5229 

0.7 1.1846 1.4096 1.6969 2.0708 2.5654 3.2747 

0.8 1.2144 1.4869 1.8528 2.3585 3.0942 4.2251 
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