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1. Introduction

1.1 Background and Research Motivation

Vehicular weight on a bridge deck is crucial information for bridge design and
maintenance. Bridge design is mainly dominated by heavy trucks, which produce large
impact loading and can cause serious structural damages. Even though the weight limit
regulations are specified, the truck overloading is becoming an increasing problem. To
enforce the weight limit requirements in the transportation network, weight stations have
been installed. Traditionally, the vehicle is measured directly, which is both time
consuming and expensive due to the price of weigh pad. The required stop of all heavy
truck on the highway can cause queuing and induce traffic congestion. A wide range of
alternative methods of indirect weight identification have been proposed in the last few
years. The most important objectives of these methods are to detect the vehicle weights
without disturbing the traffic flow and to decrease the cost of this process.

The first proposed methods are based on the estimating the vehicle axle weights
using strain response or bending moments of the bridge. The researches proved that
these methods provided high accuracy and efficiency and they were robust for force
identification in engineering practices. However due to the fact that the price of strain
gauges is high and they are difficult to install, the other type of bridge response was
proposed to be used in force identification.

The newest idea of force identification in the vehicle-bridge system is based on
dynamic response. Recently some research investigations have been conducted to
provide the method of force identification using acceleration response. The new method
explored by Ding et al. (2013) has attracted my attention. The research explores the
average acceleration discrete algorithm, which is very promising in the future
application. However the accuracy of the proposed algorithm relies only on the
numerical simulation and the simple experimental investigation. That is why there is a

need for continued research and application of this idea.



The objective of this dissertation is to extend the Ding’s algorithm. The force
identification technique is modified for different type of loading. The problem of moving
vehicle over the bridge is studied. The purpose is to calculate the weight of the moving
vehicle with high accuracy and the low cost of future application. Main advantage of
proposed method is that it requires only finite element model of the structure and
accelerometers. The axle sensors should be placed at the entry and exit of the bridge
deck to obtain required information about vehicle such as moving speed and axle
spacing. The numerical study on computer simulation will be provided to validate the

effectiveness of a proposed method.

1.2 Objectives

® To numerically model the vehicle-bridge interaction.

® To apply the average acceleration method to identify the dynamic axle loads

and weight of moving vehicle from bridge deck acceleration.

® To evaluate the performance and effectiveness of the adopted method.

1.3 Scope

® 2D linear bridges simplified as simply supported uniform beam.

® Single truck with two axles moving over the bridge deck with constant velocity.

1.4 Methodology

The purpose of this study is to estimate vehicular weight on a bridge deck. The force
identification method is proposed to estimate weight of a moving truck based on the
Ding’s research (2013). The average acceleration method which was found to be
effective to identify the dynamic loads on buildings is selected and extended to the case

of moving load identification of truck passing over a bridge. The algorithm for weight



estimation of moving vehicle is derived. The bridge acceleration is used as the input
data in the calculation. Computer simulation is conducted using MATLAB software in
order to validate the proposed method and investigate the effectiveness of weight
estimation. The proposed scheme of this study is presented in a flowchart.

In this study, the vehicle-bridge interaction is numerically simulated to obtain
acceleration response. The Newmark- method is proposed to solve coupled equation.
The obtained bridge acceleration is employed as the input for weight estimation of
passing truck.To address the accuracy of derived force identification method, four
numerical examples are investigated.

The study begins with the simplest system in which the bridge is modeled as single-
degree-of-freedom system (SDOF). The second numerical system is Multi Degree of
Freedom System with a non-moving load placed at the mid-span. The bridge structure is
modelled as single span simply supported beam and is discretized by finite element
method using beam elements. These two examples are studied to check the influence of
different time varying amplitude load functions on accuracy of dynamic force
identification. The third system is a moving point load over the bridge deck. In all above
cases, the accuracy of identified dynamic loads is investigated. The percentage error is
defined as the norm of difference between the real and the identified force to the norm
of the real one. Additionally, to address the accuracy of identified forces, reproduction of
responses from identified dynamic force is made using Newmark- f method. The
reproduced responses of the bridge, such as acceleration, velocity and displacement

are compared with the real ones.
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The last numerical system is a moving vehicle over the bridge. The vehicle is
simplified as a dynamic model with 4 degrees of freedom moving over the bridge deck
with the constant speed. The moving load is assumed to be always in contact with the
bridge surface throughout the duration of travel. The last numerical example addresses
not only accuracy of identified dynamic force but also weight estimation of the truck.
Three accelerometers are assumed to be installed beneath the bridge and are
employed in identification. The errors of dynamic load of front axle, rear axle and
summation of axles are calculated. The system of two dynamic forces moving over the
bridge is solved to reproduce the responses.

When the accuracy of identification of dynamic axle loads is addressed, the idea of
weight estimation is defined. The weight of each axle is assumed to be the average of
dynamic force. Time duration, in which the identification of dynamic force is the most
accurate, is taken as representative for the weight estimation of axles. Percentage errors
between real and identified axle weight are calculated. All simulations are conducted
with varying of parameters of passing truck such as speed, weight and axle spacing to
study accuracy and limits of the proposed method for future application.

The discussion and the suggestion for actual application are provided at the end of
the study based on the effectiveness of dynamic force identification and truck weight

estimation.



2. Literature review

2.1 General

The discussion will include a review of the relevant literature in order to provide a
broader understanding of vehicle-bridge interaction and different methods for force

identification used throughout the last few years.

2.2Vehicle-bridge interaction

The major objective of WIM system is to identify the axle loads of vehicle. That is
why a large body of research has been published on vehicle-bridge interaction to
investigate identification methods.

Fryba (1973) studied vibration of solids and structures under moving loads. The first
chapter is focused on one-dimensional solids subjected to loads that vary in both time
and space called moving loads. The book broadens knowledge about the dynamic
effects of different speed and weights of vehicle on the simply supported beam.

Henchi et al. (1998) proposed an efficient algorithm for dynamic analysis of bridges
under moving vehicles. A bridge is discretized by a three-dimensional finite element
model with dynamic system of vehicles running at a prescribed speed. Vehicle is
modeled as a linear discrete mass-spring-damper system. The two ways to simulate the
dynamic interaction are given. The first way is to solve the uncoupled iteration method,
in which bridge and vehicles systems are solved separately and then an iterative
process in each time step is performed to find the equilibrium between the bridge and
vehicle tires. The second idea is to simulate the dynamic interaction between bridge and
vehicle. The paper presented a way to find a solution of this coupled system based on
modal superposition method for the bridge structure and the physical components for
the vehicles using Lagrange’s formulation.

Green and Cebon (1997) explored the dynamic interaction between heavy vehicles

and highway bridges. The iterative method is presented for calculating the dynamic



response of bridges to dynamic wheel loads. A simply supported bridge is subjected to
a single degree of freedom vehicle model(lumped mass supported by spring and
damper).The method is validated by field tests on a highway bridge and concludes
whether the bridge-vehicle interaction is important or can be ignored and treated as
uncoupled.

Yang (1999) derived a versatile element for analyzing vehicle-bridge interaction
(VBI) response, in which Newmark finite difference scheme was used to discretize the
vehicle equations of motion. Through use of the no-jump condition for vehicles, the
contact forces can be related to the contact displacements of the bridge. The proposed
method is versatile because it allows us to deal with vehicle models of various
complexities. The paper focused on the problem of train-bridge interaction due to its
complexity. The effect of the suspension system of the vehicles should be considered if
the riding comfort is a concern. The other major problem of analyzing VBI response is an
unknown number of vehicles, which leads to the great range of sophisticated models
used in simulations. The first step in analyzing the vehicle-bridge interaction systems is
to write two equations of motion of the second order for the vehicles and the bridge.
Then the two subsystems are coupled based on the interaction forces existing at the
contact points. The matrices are time-dependent, therefore they have to be updated and
factorized at each time step in an incremental analysis.

The paper described different approaches to find a solution. The one way is to use
iteration method in which the vehicle equation is solved to obtain the interaction forces
and then proceed to solve the bridge equations for improved values of displacements
for the contact points. The poor convergence rate is the main drawback of this method
while solving a problem with a large number of vehicles. The other way to solve the VBI
problems is based on the condensation method. Some condensation methods relate the
vehicle (slave) DOFs to the bridge (master) DOFs. However these methods are efficient
only for computing the bridge response, not for computing the vehicle response. Instead

of accurate master-slave relations, the Newmark finite difference scheme has been



established in this research to discretize the vehicle equation, which contributes good
results and is suitable for handling both the vehicle and bridge responses.

Yang and Lin (2005) studied “Vehicle-bridge interaction dynamics and potential
applications”. Based on the method of modal superposition, closed-form solutions are
obtained for the vertical responses of both the bridge and moving vehicle, assuming the
vehicle-bridge mass ratio to be small. Method considering only first mode gives quite
good accuracy. The different types of vehicle models are explained such as moving
load, moving mass and sprung mass models. The paper studied a simply supported
beam subjected to a moving sprung mass. Two sets of second order differential
equations of motion have to be written. Thanks to contact force existing between the two
subsystems, the two sets of equations become nonlinear and coupled. The proposed
method was validated by field tests and compared with the results from another method.
The accuracy of this analytical method is better than the accuracy of solution obtained

based on finite element analysis.

2.3 Vehicle Force identification

2.3.1  Strain or displacement based identification

The conventional WIM (Weigh-in-motion) systems have been explored in a
considerable amount of researches for many years. The accuracy of estimation of static
load from the measurements of dynamic impact forces has been improved greatly
through new approaches and more sophisticated numerical models. The robustness of
a wide range of algorithms of force prediction has been proved by both numerical
simulations and field tests.

Law et al. (1997) explored the time-domain identification method for axle loads on
the bridge. The paper contained the analytical solution derivation and the test. Bridge is
modeled as a simply supported beam. The modal superposition principle is used in the
method. The procedure is shown for both a single force identification and two moving

forces identification. Both the simulations and laboratory experiments show that data



from bending moment and acceleration measurements can be used to obtain axle
forces accurately and effectively. However, the large error occurs at the time when axles
approach and leave the bridge.

Chan et al. (1999) proposed a closed-form solution method for moving force
identification. The method is an inverse study in which the Euler beam associated with
modal analysis is used to identify moving loads from bridge responses. The paper
contained also recommended number of strain gauges.

Chan et al. (2000) theoretically and experimentally conducted the comparative
studies on moving force identification from bridge strains. A theoretical study of force
identification using prestressed concrete bridges was conducted. Moving forces across
a prestressing bridge are identified from strain gauge measurements. The accuracy of
those identified forces is significantly affected by noise. The method is applied to a field
test on an existing prestressed concrete bridge in Hong Kong. In other paper, the
comparative studies on moving force identification were conducted in laboratory. The
moving forces were identified from the bridge strains using the four methods. It was
proved that the Time-domain method (TDM) had the best accuracy and was highly
recommended.

What is more, Chan et al. (2000) also studied moving force identification using an
existing prestressed concrete bridge. The field measurements were conducted of a two-
axle heavy vehicle over real bridge. The forces are identified based on the above time-
domain method. Clearly, this shows that the method is robust for force identification in
engineering practices.

European Commission DG VII — Transport: WAVE (2001) developed another
identification technique for moving loads on bridge using least-square method with
optimization technique. Since the axle loads are assumed to be constants on the bridge,
the parameters in the optimization become velocity, number of axles, axle spacing and
total weight. Two-dimensional bridge model is used to study the effect of eccentricity of
the bridge. The field test was investigated to verify the accuracy of identification. The

results show that the static load of vehicle has error in the range of £10 %.
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Zhu and Law (2002) proposed a new method to identify moving loads on the bridge
taking into account road surface roughness and incomplete vehicle speed. Validation of
the given method is proved by not only numerical studies a single and multiple-span
bridges but also the experiment using only strain gauges. Furthermore in numerical
studies, the force identification conducted from accelerations gives better results than
from strains. The acceleration is less sensitive to the noise level however a bigger
number of modes is required. The proposed method with the assumption of average
speed is also accurate with the vehicle which is braking on the bridge.

Yu and Chan (2004) applied the frequency-time domain method to identify the
multi-axle vehicle loads from the measured bending moment response. The method was
tested in laboratory by fabricated bridge-vehicle system model.

Law et al. (2004) proposed vehicle axle loads identification method based on finite
element method and condensation technique using strain measurements. The
measured displacements are expressed as the shape functions without the modal
coordinate transformation. Numerical simulations and experimental results show the
efficiency and accuracy of the method to identify moving loads.

Zhu and Law (2005) developed a moving load identification algorithm for multi-span
continuous bridge with elastic supports. In the paper the effects of the wide variety of
parameters are studied such as the measuring noise, sampling rate, vertical and
rotational stiffness. The method based on modal superposition and regularization
technique is adopted. The vertical translation and rotational springs are included in the
model to simulate the elastic bearings and support fixity conditions of the bridge. It is
shown that identified forces are more accurate when measured acceleration is used in
calculation. For high frequency of the excitation forces the greater number of vibration
modes is required to obtain an accurate solution. The paper proved that the proposed
method can be used to solve problems with elastic restraints.

Pinkaew (2006) established updated static component technique for identification
of vehicle axle loads. The main objective of the new method is to calculate the vehicle

weight from the bridge strain responses without any disturbance due to the vehicle’s
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traveling speed. Instead of the least-squares method, the updated static component
(USC) technique is proposed, which is not sensitive to an assigned regularization
parameter. The numerical examples of a two-axle vehicle moving on a simply-supported
bridge subjected to different speeds of the vehicle and surface roughness amplitudes of
the bridge are conducted. The experiments proved the accuracy of the proposed
method.

Wu and Law (2010) developed moving force identification based on stochastic finite
element model. A statistical relationship between the random moving force and the
random structural responses is established to formulate a general stochastic force
identification algorithm. Numerical simulations prove effectiveness of the algorithm.

More recently Xun Xu and Jinping Ou (2015) proposed the method for “Force
identification of dynamic systems using virtual work principle”. This research indicated a
moving least square (MLS) method, which is one of the load reconstructed methods for
identifying the dynamic force. The method contained three main parts.

The first part was responsible for obtaining the expressions of the unknown acting
force at each moment. However before identification it is crucial to face some difficulties
such as the number of loads and the unknown individual values in time history. Method
is simplified by reducing the number of unknowns by defining force as a series of known
primary functions with unknown coefficients. In the research, Chebyshev orthogonal
basis functions are used as primary functions to express impact force and structural
responses. This approach reduces the calculating time and gives high accuracy. The
main idea of force identification is to change the differential equation to integral equation
based on the virtual work principle. Thanks to this, the method eliminates errors which
are connected with calculating the structural acceleration and velocity response. What is
more, there is no need to integrate and make iteration process to get a fitting solution.
Additionally the method is general for all types of forces due to the fact that shape
functions are always the same with different coefficients.

The second part is focused on solving the equation of motion. Due to the fact that

direct solving the differential equations is very difficult, the other method is proposed.
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The Fourier transform and the inverse frequency response function (IFSF) method are
used to transform the governing equation into the product of the frequency response
function and external load. These two techniques have also some drawbacks, for
instance, numerical instability for the resonance frequency or other errors due to very
short load duration. The previous studies proposed to use modal orthogonality to
simplify a problem however it may cause truncation errors and the instability for the ill-
conditioned matrix. Avoiding the calculation of the matrix inversion is also the
advantage.

The last part is focused on assuring the stability of the solution and dealing with
random noises. Using numerical methods, it is crucial to be aware of the error of
measured data, the error of discretization and round-off error. In this paper, the two
methods are proposed to deal with ill-conditioned problems, such as Tikhonov
regularization method and truncated singular value decomposition (TSVD).

The validation of proposed method is proved by three examples. The first two are
numerical simulations of a four-degree-of-freedom dynamic system and a cantilever
beam. The results are compared with actual applied force to calculate the relative error.
The noise impact is controlled by the signal-to-noise ratio (SNR). The significant
influence on the accuracy has not only noise level but also the pace of disturbances. It
is proved that harmonic force is better identified and more immunes to noise than
arbitrary force. The last example is an experimental model of a cantilever beam, which
checked the application of this method with different structures. Due to a certain error
between the real structure and the FEA model, the model was improved by the structural
frequency measured. The results are slightly less accurate than from previous examples

because of difficulty of correct noise’s identification and the FEA model error.

2.3.2 Acceleration based identification
The alternative idea of force identification is to use accelerometers instead of strain
gauges. The major advantage of application of accelerometers is that their installation is

much easier and they are more practically attractive.
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Xu et al. (2010) explored stress and acceleration analysis of coupled vehicle (train)
and long-span bridge systems. The mode superposition method is presented analyzing
only the resonance condition. The Tsing Ma Bridge in Hong Kong was selected as a
case study. It was proved that proposed method could be used to predict stressed
without installing strain gauges.

Lu and Liu (2011) described a method to identify both damages in bridge deck and
vehicular parameters using acceleration measurements. This approach is based on
dynamic response sensitivity-based finite element model. Through examples, it is shown
that the proposed method has potential for real application of damage detection and
parameter identification.

More recent studies, Ding et al. (2013) investigated the “Average acceleration
discrete algorithm for force identification in state space” and revealed quite good
results. The validation of the proposed method is checked on three structures.

Firstly, a three-dimensional three-storey frame is numerically investigated with single
and multiple random excitations. The investigation of the method’s accuracy includes
measurement noise, model error and unexpected environmental disturbances.

Secondly, a seven-storey planar frame is tested in a laboratory. The frame on the
bottom is connected firmly to the ground and two lumped mass are placed on each
floor. The stiffness of the structure is calculated by the optimization function ‘fmincon’.
The impact force is the horizontal hammer impact applied at the peak.

Finally, a scaled model of a fourteen-storey concrete shear wall building with
additional steel frame is subjected to shaking table simulating seismic excitation. A
scale ratio is 1/6; the steel frame is constructed with the rubber isolation. This
experiment enables to study the horizontal interaction between the steel frame and the
shear wall building.

The investigation of the method’s accuracy includes measurement noise, model
error and unexpected environmental disturbances. Without any noise and model error
the method is very accurate. Adding different percentage number of measurement

noise, model error or unexpected random base excitation show that force identification
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can be still fairly accurate. The study also explores two other existing force identification
algorithms to provide the check of the results. These discrete algorithms are the First-
Order-Hold (FOH) and the Zeroth-Order-Hold (ZOH).

The results both from numerical simulations and from laboratory tests prove that the
proposed method can be successfully used to identify external excitations by the
structural acceleration responses. Another advantage is that the method needs only
finite element model of the structure and accelerometers. It is important to recognize
that the idea of force identification with average acceleration discrete algorithm is used
only for structures subjected to seismic excitations in numerical simulations and simple
laboratory tests. The method has not been tested for real structures or different types of
an impact force yet.

Qiao et al. (2015) proposed a force identification method based on wavelet multi-
resolution analysis using cubic B-spline scaling functions. Instead of solving the original
governing equation of force identification, the coefficients of scaling functions, which
yield a well-posed problem, have to be found. Force identification laboratory
experiments are conducted on a cantilever beam to check the accuracy of the
proposed method. The cantilever beam structure is applied for impact and harmonic
force identification. The measured data is the acceleration response. Results are
compared with the results based on the truncated singular value decomposition (TSVD)
technique.

Wang et al. (2015) presented a novel state space method for force identification
based on the Galerkin weak formulation using the discretization idea of the Finite
Element Method and the refined version for the case of high noise level. The method is
more suitable for the cases of large time step and discontinuous loading compared with
the conventional state space method and the explicit Newmark method. Numerical
studies are conducted to evaluate the performance of the GW method on plane truss
structure. In the experiments the measured acceleration responses are used in force
identification. The method is proved to be conditionally stable and second-order

accurate.
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Feng et al. (2015) studied simultaneous identification of bridge structural
parameters and vehicle loads. The previous methods are based on a model with known
system parameters, therefore this research proposed a method which can be used not
only to identify vehicle dynamic axle loads but also to identify bridge structural
parameters such as flexural stiffness and damping ratio or the road roughness. This
possibility is beneficial, because the dynamic effects can be rapidly increased by road
roughness.

Firstly, dynamics of the VBI system are defined such as road surface roughness,
vehicle model and bridge model. The Newmark-f method is proposed to solve the
vehicle-bridge coupled equation. Secondly, an iterative procedure is developed to
address the inverse problem for simultaneous identification of bridge structural
parameters and vehicle axle loads from a limited number of response measurements.
Then, a Bayesian inference-based regularization technique is used to solve the ill-posed
problem of force identification. The measurement data is bridge acceleration response.
The objective of an iterative parametric optimization process is to minimize the error
between the measured and predicted system responses. Herein, the algorithm of this
iterative procedure is given. Numerical analyses of a simply-supported single-span
bridge and a three-span continuous bridge are conducted to investigate the accuracy
and efficiency of the proposed method. The errors occur only at the instances when the
moving vehicle enters and exits the bridge. The accuracy of solution can be improved
by increasing the number of sensors.

To sum, although previous research investigations provide some insight into force
identification from acceleration response there is a need for continued research and
application of this idea. Further investigation should be conducted in order to modify this
method for different types of problem.

All recent methods are interesting however they have not been proved sufficiently
yet. For instance, Qiao et al. (2015) proved their method only by simple laboratory
experiments conducted on a cantilever beam. Wang et al. (2015) conducted only

numerical studies on plane truss structure. Feng et al. (2015) showed numerical
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analyses of a bridge with moving load. In contrast to the above researches, the Ding et
al. (2013) method is proved not only by numerical simulations but also by laboratory
tests. The paper contains a numerical investigation of three-dimensional three-storey
frame, a laboratory test of a seven-storey planar frame and a scaled model of a
fourteen-storey concrete shear wall building subjected to shaking table simulating
seismic excitation.

Although previous researches have been numerically and experimentally studied
and have shown that the external loads can be accurately predicted from acceleration
responses. They have overlooked a fundamental issue where it is impossible to predict
using only acceleration data such as static load case. Therefore this study will focus
firstly on the fundamental of load prediction from acceleration response by considering
some simple load patterns to understand the identification behavior. Then a more
realistic vehicle-bridge system is investigated. The identification technique is extended

form Ding (2013) and Feng (2015).



3. Theory

3.1 General

Since it is difficult to measure the moving forces directly, this chapter is focused on
techniques to measure indirectly the vehicle loads from measured acceleration
response of the bridge. Firstly vehicle-bridge interaction is presented. In order to
simulate the vehicle bridge-interaction, coupled system of bridge and vehicle is solved
at each time step. Secondly the concept of axle load identification is derived using

measured acceleration response.

3.2 Vehicle-bridge interaction

The vehicle-bridge interaction model is described based on the finite element

method. This concept has been studied by Deesomsuk (2008).

3.2.1 Vehicle Model

The vehicle model is present in Figure 3.1. The vehicle moving at a speed v(t)
over a bridge. There are 4 degrees of freedom in the vehicle model consisting of vertical
displacement, rotation of vehicle mass, vertical displacement of front and rear axle
suspension mass. The equation of motion can be derived by dynamic equilibrium of the

vehicle system in each degree of freedom as shown in Figure 3.2.
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Figure 3.1 Vehicle-bridge system
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positions of the front and rear axle respectively at time t

front and rear axle force respectively at time t

velocity of vehicle

rotation of vehicle mass

vertical displacement of vehicle

18



19

V1, Y2 - vertical displacement of front and rear suspension mass
w(t) - vertical dynamic deflection of bridge
aq,a, - center of gravity ratio of vehicle from front and rear axle.
o .
T IV0V
Yo + BagS =
f
sl
fSZ
Ksz y Csz Ksl y Csl
T m2y2 mlyl T
ft2 ftl
P(t)=f,+N, P, (t)= f,+N,
r(x)
e e =
:EE:\ | S | w(t)
) ]
: |

Figure 3.2 Free body diagram of vehicle-bridge system

The vertical force equilibrium of vehicle mass:

ZF =m,y, _fsl _fsz = M,y (3.1)
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where
fs1 = K1y — 0y S — 1) + Cs1 (0 — 9va15 — Y1)
fs2 = Kso(Oy + 0,a,8 —y2) + Co2 (0 + 6,0,5 — 37).
Using above equations, equilibrium of vehicle mass of vertical motion becomes:
mvj}v + (Csl + CsZ)Yv + (Ksl + Ksz)yv
+(—Cs1a,S + C52a,5)0, + (—Ks10,S + K,a,5)0, (3.2)
+(—Cs)y1 + (—Ks))y1 + (—Cs2)y2 + (—Ks2)y, = 0
Consider rotation of vehicle mass at center of gravity:
XM, = Ivév ; fs101S — f52a,8 = Ivév (3.3)
Replacing fs1, fs2 in (3.3), equilibrium of rotation of vehicle mass will become:
Ivév + (_Cslals + Cszazs)% + (_Kslals + KsZaZS)YU
+(C51a%52 + Cszagsz)év + (Ksla%sz + Ksza%SZ)gv (3.4)
+(Cs10,8)y1 + (K51019)y1 + (—C520,5)y, + (—Ks20,5)y, = 0
Consider the vertical equilibrium of suspension massmy:
YF=myj, ; fs1— fao = My (3.5)
where

fir = K (y1 — 41) + Cou (91 — 4)

4, =wy (xf (t),t)

4, = W1(xf(t)'t)
Replacing fs1, ft1 in Eq. (3.5), equilibrium of vertical motion of suspension mass

m4 will become:
mljjl + (_Csl)yv + (_Ksl)yv + (Cslals)év + (Kslals)gv

(3.6)
+(Cs1)y1 + (Ks1))y1 = —fua
The vertical equilibrium of suspension mass m,:
YF=myy, fs2 = fra = m2¥, (3.7)

where
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frz = Ko(y2 — 42) + C2 (92 — Az)
Ay = wy(x,(0), 1)
by =Wy (x(0), 1)
Replacing fi2, ft2 in Eq. (3.7), equilibrium of vertical motion of suspension mass

m, is:

mzyz + (_CSZ)S]‘U + (_Ksz)% + (_Cszazs)év + (_Kszazs)ev
(3.8)

+(Cs2)y2 + (Ks2)Y2 = —fr2

Thus, the equations of motion for the vehicle are transformed into matrix form

using Eg. (3.2), (3.4), (3.6) and (3.08):

M,Y(t) + C,Y(t) + K,Y(t) = P,(t) (3.9)
where
m, 0 O 0
10 I, 0O 0
Mi=1o 0 m o
0 0 O m,
Cs1 + Cs2 (=Cs1a1 + C5a3)S —Csq —Cs2
C. = (=Cs1a1 + C203)S  (C510f + Cs2a5)S (1048 —Ci20,S
v —Lls1 Cslals Csl 0
—Lls2 —Cs2a,S 0 Csz
[Ks1 + K, (—Ks1a1 + Kza3)S —Kgq —Ks, 1
K, = | (_Kslal + Kszaz)S (Ksla% + Ksza%)s Kslals _KSZQZSI
—Rgq Ks1a.8 Ksy 0
—Rgp —Ks,a,S 0 K,

Y = @) 6,(8) yi(6) y(O)

P, is the force terms containing the interaction force vector and static force vector

as follows:
0 0

RO =~{p o} )= gfo:) * zovf (3.10)
P.(1) N,
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where

Pe(t) (fe1(6) + Np) = Ki1 (y1(6) — 4:(0)) + Co (01 (2) — 4,(D) + Ny

P(t) = (f@® + Ny) = Kpa(v2(0) — 4,(1)) + Cro (72(0) — 4,(2)) + N,
Ny = (my + a,m;)g

N, = (my; +aymy)g

3.2.2 Bridge Model

The bridge structure is considered as a simply supported beam and is
discretized by finite element method using beam elements as shown in Figure 3.2. The
finite beam element has 2 nodes with respect to 4 degrees of freedom in vertical
displacement and rotational displacement at both ends as shown in Figure 3.3.

u, (t) u, (t)

u(x,t)
Uy (t) T Ug (t)

Node @ AEIl p " ¢ Node

»i N
) V|

Figure 3.3 Finite beam element with 4 degrees of freedom

where
- cross section area of beam element
- modulus of elasticity of beam element
I - moment of inertia of beam element
p - mass per unit length of beam element

- length of beam element.
Let u(x,t) is the deflection of the bridge at distance x at time t. Thus, the

governing equation of beam at position x and at time t can be expressed by:
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[Ela ”(“)] =0 (3.11)

ax2
For the bridge having constantEl, Eq. (3.11) can be rewritten as:

o*u(x,t)
ox*

The solution of Eq. (3.12) can be expressed in polynomial form as:

=0 (3.12)

u(x, t) = ¢ (D)x3 + 3 ()x? + c3(D)x + ¢4 (t) (3.13)
where c¢;(t) is the coefficient of the polynomial form with constant value.

The boundary conditions of beam element are:

u(0,t) = uy (t) u(l,t) = us(t)
ZOD = uy(t) 20D = u,(6) (3.14)

Substituting (3.13) in Eq. (3.14), the constant values become:

c4(t) = uy (1)
c3(t) = uy(t)

1
() = 2 [B3(usz —uy) — 1(2uy + uy)]
e () = 520w — us) — Ly + )] (3.15)

Substituting (3.15) in Eqg. (3.13), one can write the displacement equation of

beam element at position x and at time t as follow:
2x3

3 2 2 3
uet) = [1-Z+ 2w @ + 12 - Z + 5w

(3.16)
[———] uy(6) +1 [——+—] Uy (£)
The shape functions of displacements of a beam element are the coefficient
terms in front of u; (t).
The mass matrix of beam element is defined by substituting Eq. (3.16) in
equation of kinetic energy:
T(t) =3[, pA [a”(”)] dx (3.17)
Then, Eq. (3.17) becomes as:
T(t) = i Mi (3.18)
Where the elemental mass matrix is M and the time derivative of the elemental

displacement vector u(t) is 1
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uy (t)
uy ()
uz(t)
uy (1)
The elemental mass matrix of beam element is obtained by substituting Eq.

u(t) = (3.19)

(3.16) and Eq. (3.19) in Eq. (3.18).

156 221 54  —13I
_pat|220 412 131 —3I2

= 3.20
420|154 131 156 =221 ( )
—131 =312 =221 4I?
As the mass matrix, the stiffness matrix can be calculated by substituting
Eq. (3.16) in strain energy equation:
_ 1l [R2u@n]?
V() =2, B [ =50 ax (3.21)
The Eq. (3.21) can be written as:

V(t) =su"Ku (3.22)

Using u(t) which is determined in Eg. (3.19), the stiffness matrix of a beam

element can be expressed as:

12 6l —-12 6l
K - E_; 6l 4 -6l 2 599)
rl-12 -6l 12 -6l
6l  20° -6l A4l
The equation of motion of bridge is:
MyR(t) + C,R(t) + K,R(t) = P, (t) (3.24)
where M, — mass matrix of the bridge
Cy — damping matrix of the bridge
Ky — stiffness matrix of the bridge
R(t) - global response vector of the bridge
P,(t) - external acting load vector of the bridge, which is the interaction

force expressed as nodal loads at bridge’s degrees of freedom.
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Figure 3.4 Nodal loads from external load

n; (t) - the distance between the left node of element and the external
acting load P;(t).

The nodal loads transformed from external load become:

Ri(t) = (1 -2 4 2107 p (1) (3.25)
M;(t) = ( i(t) —@ "‘(t) )P (t) (3.26)
Ripa (1) = (- _ 20 )P ) (3.27)
M () = (22 - "‘(” ) Pi(2) (3.29)
where
R;(t),Ris1(t) - vertical load of node it*and i + 1"
M;, M;,, 1 bending moment of node i*and i + 1"

The shape function of the jth element which is used to calculate the nodal load

vector from the external acting load can be expressed as:
w=(1=30) +2() n(-1) 3@ 2 () n() 1) e

For the global external load shape function, the above equation becomes:
T

0 - 0 0 - H - 0
HC — O cee 0 coe Hl cee O cee O (330)
0 - Hy. =+ 0 =« 0 - 0

P
where
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H. - an NN x N matrix with zero entries except at the degrees of freedom
corresponding to the nodal displacements of the beam elements on
which the load is acting,

NN — the number of degrees of freedom of the bridge after considering the
boundary condition,

N, — the number of external acting loads.

Using the relationship between the nodal load and the global load, the

interaction force between bridge and vehicle is expressed as:

Py(t) = He(x(1)) - Pine (1) (3.31)
P () = {PL (D), P(0), .., Py, ®)} (3.32
where
P, (t) - nodal load vector of bridge
Hc(x(t)) — transformation vector from external loads to nodal loads
Py (1) - vector of vehicle-bridge interaction force with respect to

number of axles.
Then, the equation of motion for bridge becomes:

MypR(t) + C,R(t) + KyR(t) = He(x(t))Pine (1) (3.33)

3.2.3 Vehicle-Bridge Interaction

All degrees of freedom of vehicle and bridge must be solved simultaneously to
formulate the vehicle-bridge interaction as the equation of motion of the vehicle-bridge
system.

When vehicle with the number of axles N = 2 is considered, the interaction force

vector becomes:
Pr (t)}

Pt ® = {5
_ {Ktl (320 = wa(xr(©),£)) + Cex (32.(8) = Wi (37 (0), 1) )

K, (3’2 () — wy(x,- (), t)) + Ctz(}.’z () — W (x,- (), t))
{(m1 + azmv)g}
(my + aymy)g

(3.34)
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It is observed that the Eq. (3.34) contains vehicle’s and bridge’s degrees of
freedom.
When R(t) is obtained, the deflection of bridge at position x and at time t can

be obtained from:

w(x, t) = H' (x(©) - R(t) (3.35)
The time derivative of bridge’s deflection is
w(x, t) = w “R() - %(t) + H." (x(®)) - R(2). (3.36)

Substituting Eq. (3.35) and (3.46) in Eq. (3.34) yields
RO =Ka (n® -1 (3©) RO)

+Co (y'l(t) 2O py o) - 1T () R(t)) + (my + azm,)g

R(6) = Ke (y2(6) = H (3:(8)) - R(D))

+Ce (y'z(o - 2O gy v() - B (x,(0) - R(t)) +(my + aymy)g

(3.37)
The Eq. (3.37) can be rewritten in matrix form as:
Pr(t) _[Kx 0 ] (21(0) Co 0 7 (3:(®)
{Pr(t)} ~ (o Ktz] {yz(t)} W Ctz] {yz(t)}
i aHCT (x5 (©)
Ky - HT (xf(t)) + Ceq - v(t) '# (R®)}
o ' (3.38)

0H:T (xr()
Kz He (x(0) + Cp - v(p) - 2

'Ctl . HCT (xf(t)) B (ml + azmv) g
o BTy | O Lom + am -

Introducing Eq. (3.38) into the vehicle’s equation of motion (3.9), the equilibrium

for the vehicle degrees of freedom becomes

0 5 L0 0],
[0 M, [ ] Cr11 Corz [_]
0 ctHT cm Coza] X
| O (3.39)
+ 0 Ky11  Kyiz [ ] _ 19
T oH] L0
—K:H; — Ctva— Ky21  Kuoz
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where

m 0 m; O
M”l:[ov Iv];’”vz:[o1 mz]

C.. = [Cs1 + Cs2 (—Cs1a1 + Cs2a,)S ] ,
vt [(—Cs1a1 + Cspa3)S (C51a12 + Cszazz)s2 '
C — __Csl _Csz .
viz = | Ca,S —Cga,S)|’
[ C..a,S
_ s1 s1%1 s1
Cv21 B |~ Ls2 szazs] Cvzz [O Csz]
K. = [Ks1 + K2 (—Ks1a4 + Kgpa5)S
T (—Kgag + Kspa5)S (Ks1a4? + Kgpa,%)S?
K. — [—Ks1 _Ksz .
vi2 7 Kqa,S —Ksa,S|’
[— K. a.S K.
_ s1 s1“41 . _ s1 .
Kv21 B | T g2 _Kszazs] ’szz B [O Ksz] ’

_ Ctl O . 7/ Ktl 0 |
Ct‘[o Ctz]"(t‘ 0 Ktz]’

Y=0n 0, y1 ¥2}"
Likewise Eq. (3.39), using Eqg. (3.38) in the equation of motion of bridge Eg.

(3.33), the equilibrium of the bridge degrees of freedom can be written as:

My |0 0] s [C, + H.C.H]| HCt
0 |0 O H+l 0 ‘ H
0 |0 0 0
T oHZ
Ky + HKHE + H.Cov—5 | 0 —HeKe | p H M, (3.40)
s -] _ [HeMs
0 ‘0 [ ]
0 0 0

where

v - {(ml +a2mv)g}
* (mg +aymy)g
By combining Eqg. (3.39) and Eq. (3.40), the global equation of motion of vehicle-

bridge interaction system becomes:

aHC

[Mb [R] Cb +H CtHT | —H Ct R
vl ‘ Cvll v12 |
M, CtHT Cy21 Cy22
[ T ch “H.K] (3.41)
K, + H.K:H; + H.C,v 0 H.K; M
B _ C S
+ 0 ‘ Kyi1 Kyiz [Y] = [—0 ]

_Kt HT Ct Kv21 Kv22
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The Eqg. (3.41) is the vehicle-bridge interaction equation, and the Eq. (3.37) is the
front and rear axle load equations which are compose of static load of vehicle and
dynamic interaction force between vehicle and bridge. The vehicle-bridge interaction
equation can be solved step-by-step using either direct integration method such as

Newmark’s method — average acceleration.

3.3 Force identification using acceleration response

The average acceleration discrete algorithm for force identification has been
investigated by Ding et al. (2013). However the proposed method was used only for
structures subjected to seismic excitations in numerical simulations and simple
laboratory tests. The method has not been tested for real structures or for different type
of loading. In this chapter the average acceleration discrete algorithm is extended to

axle loads identification of vehicle moving on the bridge deck.

3.3.1  System equations of motion

Considering a bridge under a moving vehicle, the equations of motion of the bridge

beam can be expressed by

Mi(t) + Cx(t) + Kx(t) = L(t)F(t) (3.42)
where
M,C, K —the mass, damping and stiffness matrices of the bridge
F(t) — vehicle-bridge interaction force vector with respect to number of axles
L(t) — the global load transformation matrix, transformation external loads to

nodal loads for each time step, the matrix with zero entries except at the
degrees of freedom corresponding to the nodal displacements of the

beam elements on which the load is acting
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3.3.2 Discrete equation

The equations of motion of structural system form the continuous system equations
which can be transformed into the equivalent discrete equations. The superscripts C
and D denote the matrices for continuous and discrete system respectively. Recall the
Eqg. (3.42) and rearrange into the state-space expression, the continuous system

equations become

z(t) = Az(t) + BE(OF (v) (3.43)
where
_ [x(®)
7® = |15
0 I
G
e R O—M—lc]
Cr4y —
B = |-, 0)
A€ — continuous system matrix,
B¢(t) — time-varying input matrix due to the moving loading,
I — identity matrix.

After solving above equations, the state z(t) and Z(t) are known. Then the

bridge accelerations at any location can be obtained from the output vector y(t):

y(t) = Ri(t) (3.44)
where
R - output influence matrix for the measured acceleration, which depends
on the sensor location information, R € R™*"dof
m - dimension of the measured responses equal to the number of
accelerometers placed on the bridge deck
ndof - number of DOFs of the bridge

This output vector can be alternatively calculated from
y(t) = Cz(t) + DE(OF (1) (3.45)

where the continuous output matrices are
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C¢=[RM~'K —RM™(]
D¢ = RM™L(t)

Due to the fact that actual measured acceleration data is in a discrete form, the

above continuous state equations have to be converted into the discrete equations as

z(j+1) = Az(j) + BP(DF()) (3.46)
y() = CPz(j) + DP(HF () (3.47)

where
z(t), y(j) and F(j) - respectively the discrete vectors of state, output and

load at time step t = jAt forj =1,2,...,N
CP =€ DP = RM~IL(j) - discrete system matrices;
AP BP - discrete system matrices which are determined by
average acceleration algorithm for load identification at
paragraph 3.3.3.
For zero initial conditions, the discrete output becomes the summation of the

history load effects as

J
yG) = ) HE L FG =)
k=0

(3.48)
F (k) - history load vector for k = 0,1,2, ..., .
3.3.3 Average acceleration algorithm for force identification
The method is based on Newmark- 8 with the following assumptions:
. . X + 5f'k+1>
X =X, +|——] At
. Xp + jék+1)
X = X + X At + | ———— | At
Therefore the incremental acceleration and velocity are:
As . . 2 Axy 2%
X=x — Xy =2———2x
Af = ¥ .. 4Axk 4xk 2
X=X —X ——4——2x
el T Az A TR (3.52)
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By substituting these increments into the equation of motion at any step (k + 1)m one

can obtain:

4 2 4
( M+_C+K)Axk—Fk+1+Mxk+(C+ M) ka

At? A At (3.53)

The incremental displacement and velocity can be expressed as:
4 2 -1 ) 4 N
Axk (A 2M+_C+K) (Fk+1+Mxk+<C+_M>xk—ka> (354)

At At
4 2 - 4
Axk (At2M+A_tC+K> (Fk+1+Fk+A_thk_2ka> (355)
o Axy 1/ 4 2 -1
Axk:xk+1 xk—ZA—t—Zxk ZA_t<At2M+A_tC+K> (356)
4 .
' (Fk+1 + Fk + A_thk = Zka> - Zxk
The displacement and velocity at time step (k + 1)" can be written as:
xk+1] [xk + Ax]
Xk+1 X + Ax (3.57)
Zys1 = APz + BPLy, - Fy (3.58)
where
_ [*k+1
Zg+1 = [xk+1]
[ (mm+2ck)
p _ | \At? At
2 (2melcak)
At \At? At
[1-2(msZcok) Kk  m(omMascrk) M |
AP = At? At At \At? At

-1

MEmaZoik) K S(omMacrk) M-l
At \At? At At?2 \At? At

Then the output y(j) can be represented by

J
y() = ) HE L FG = k) (3.59
k=0
Hg =D° (3.60)
D _ rCpD
Hy = C"Bjy (3.61)
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j—1
HP = ¢c¢ (H A-D> BP
g i=j—k+1 ' Jk (3.62)

The superscript D denotes the system matrix in a new discrete version with average

acceleration discrete algorithm.

3.3.4 lterative regularization method

The general form of the acceleration output as a function of the load input based on

average acceleration algorithm (3.59) can be expressed as

Y=HF (3.63)
H, 0 . 0
H, = Hl HO - 8 £ (3.64)
Hy_1 Hy—, - Hp
Lo O . 0
IS = 0 Ll 0
; : ¢ 0 (3.65)
0 0 LN—l
where
Y — represents the measured acceleration response.

To identify the load vector F from the measured acceleration of the bridge Y,
both sides of above equations are pre-multiplied with a pseudo inverse of the matrix H; .

The identified load F is obtained by a conventional least-square method as
F=H"H)HTY (3.66)

However above equations become an ill-posed condition when the position of
the moving load is close to the bridge supports. The regulation method as proposed by

Tikhonov might be employed to obtain the improved solution as

F=HTH+ AD'HTY (3.67)
where

A - non-negative penalty coefficient.



4. Numerical Example

The purpose of this numerical study is to approximate weight of the truck moving
over the bridge. The Newmark- f method is employed to obtain acceleration response
of the bridge. The average acceleration algorithm is adopted for load identification using
only bridge acceleration as the input. Four numerical examples are investigated. In first
numerical examples moving vehicle is modeled as a point load. While in the last one it is
modeled as the vehicle system with 4 degrees of freedom: vertical displacement,
rotation of vehicle mass, vertical displacement of front and rear axle suspension mass.

To study the accuracy of identified force, the relative percentage error is calculated

based on force and response.

errory = w. 100%
”Factual” (4-1)
error... = X~ Facuall o000 (4.2)
Vs Iljc.actual ”

Where F and X denote the identified load and identified acceleration, respectively.

4.1 System properties

The vehicle-bridge system as in Figure 4.1 is considered. The bridge deck is
simplified as a simply supported beam with constant cross-section with properties given
in Table 4.1. The vehicle is a 4-degree of freedom system consisting of vertical
displacement, rotation of vehicle mass, vertical displacement of front and rear axle

suspension mass.
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Figure 4.1 Vehicle-bridge system

Table 4.1 Properties of bridge and vehicle

Bridge Vehicle
EI=2.3x10" N/m’ 1 =9.50E5 kg-m’ m, = 700 kg k,=3.50-10° N/m
L=36m m,=28780 kg m, = 1100 kg c,,=1.00-10" N/m/s

=U. =4. m =U.40- m C.,—Z. : m/s
¢ =0.02 S=4.27 k.,=0.40-10° N/ ,=2.00-10" N/m/

=5x10° kg/m a, =0.567 k_,=1.00-10° N/m c,=3.90-10° N/m/s

1 s2 t1
a, =0.433 k,=1.75-10° N/m c,=4.3010° N/m/s

4.2 Equivalent SDOF bridge system

F(t)
massless
A El A
—L/2 —=—L/2—+

o~ L ——
Figure 4.2 Single Degree of Freedom system
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The numerical study begins with the simplest system in which the bridge is modeled
by single-degree-of-freedom system (SDOF) as in Figure 4.2. The mid-span deflection of
the bridge is considered to be the DOF. The properties of this equivalent SDOF are
obtained from the first modal properties of the bridge. Four basic load functions F(t) with
time-varying amplitude as in Figure 4.3 are investigated with T and tx equal to 1.8 and
0.1 seconds, respectively. The maximum load is equal to F,__ =200kN. Time step for all

simulations is equal to dt=0.0005s.

Force No. 1 Force No. 2
F o o P/WW
i 1 L —
— Tx = T = Tx|— — T b= T = DX
Force No. 3 Force No. 4
/\ -
X T ———f x| —-|tx|—- ——|th|-—

Figure 4.3 Time varying amplitude load functions

The influence of load function on accuracy of the identified force is investigated and

shown as in Fig. 4.4.

a a
x 10 Force No.1 x 10 Force No.2
20 S i
S
@ 10
N
0
0 s G5 1 1.5 2 0 2 05 1 1.5 2
ZOX 10 Force No.3 x 10 Force No.4t —Real force
- " Identified force
=
5 10
o
VY
0 0.5 1 1.5 2 0 0.5 1 1.5 2

Time (s) Time (s)
Figure 4.4 Identified forces for Single Degree of Freedom system
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Table 4.2 presents force identification errors for all load functions. For different
load functions applied to the system, the errors of identified force are found to be less
than 10% for all cases.
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Figure 4.5 Reproduced responses for Force No.1
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Figure 4.6 Reproduced responses for Force No.2
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Figure 4.7 Reproduced responses for Force No.3
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Figure 4.8 Reproduced responses for Force No.4

From table 4.2, the following observations can be made. Even though the average
force identification error is 6.87%, the identified responses are rather accurate. In
particular the error of acceleration is less than 0.5%. It is also observed that for different

loadings similar errors of acceleration and displacement are reported. It can be
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concluded that the type of time varying amplitude load function does not influence the
accuracy of force identification.

Table 4.2 Identification error for Single Degree of Freedom system

Error[%]
Force -
F X X X

No.1 7.15 0.43 0.76 6.17

No.2 714 0.43 0.76 6.18

No.3 6.62 0.53 2.20 6.50

No.4 6.57 0.40 2.25 6.51
Average 6.87 0.45 1.49 6.34

In addition, the errors between load and displacement identifications are noticed to
be in the same order. The reason of this relation could be following. In the proposed
method, the acceleration response is an input data which is used to estimate the
dynamic force of the system. Since dynamic force depends not only on acceleration, but
also displacement and velocity response, the other responses have to be approximated
from acceleration. To obtain these two responses, double integration of acceleration is
indirectly made.

The error of approximation of velocity is a constant that is added to the function,
obtained by evaluating the integral of a given function of acceleration. The error of
approximation of displacement becomes a linear function of time. Since the part of
identified force, which relies on the displacement, is the most important, the accuracy of
identification relies mainly on the accuracy of displacement. The error of approximation
of displacement depends on the number of time steps. The higher the number of time
steps, the bigger the accumulation of the error. Due to that, the difference between real
and identified force increases linearly with the time. It should be noted, that reducing the
number of time steps should not be made by enlarging the length of time step, since it

will increase the error.
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4.3 Bridge with a non-moving load

In this paragraph, Multi Degree of Freedom System is studied. The bridge is

modeled by 8 beam elements. The vehicle is simplified as a non-moving force applied in

the middle of the beam which is shown in Figure 4.9. Two types of loading, i.e. Force

No. 2 and Force No.4, are considered. Time step for all simulations is equal to

dt=0.0005s. Three accelerometers are placed on the bridge deck. The location of these

accelerometers is shown in Figure 4.10.

Force (N)

x 10

—
o

Ln

o
4

n

4

F(©)

T

A

L/2——t+—L/2

e—+ L ——
Figure 4.9 MDOF — non-moving load at mid-span

[ [ [ [ ]

A A

i123A

Figure 4.10 Schematic of sensor locations
a

Force No.2 x 10 Force No.4

—Real force

"""" Identified force

0

0.5 Timel(s)

1.5 2 0 05 Timel(s) 1.5 2

Figure 4.11 Identified forces for MDOF with non-moving load
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Figure 4.13 Reproduced responses for Force No.4

4.3 |dentification error for MDOF system with non-moving load
Error[%]
Force No. — -
F X X X
2. 17.35 8.78 1.60 15.05
4. 16.52 4.71 5.92 16.37
Average 16.94 6.75 3.76 15.71
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For the same load functions applied to the SDOF system and MDOF system, the
error of force identification is significantly different. For MDOF system with non-moving
force the average error is 16.94%, which is more than 2 times higher than that for SDOF.
The increase in error of force identification might be caused by imperfections of the
model. Using more complicated model with higher number of degrees of freedom
causes difficulties in capturing the real behavior of the system.

Similar linearly increasing error between identified force and real force and the
relation between errors of displacement and force are observed. The errors are larger
due to the use of more complicated model.

The type of load function does not influence the accuracy of identified force as it
was for SDOF. However the decrease in the accuracy of acceleration reproduction can
be observed. It seems that for continuous load function, the accuracy of reproduced
acceleration is higher for MDOF systems. These obtained results imply that the load
identification demands higher mode information to accurately reproduce the

acceleration response.

4.4 Bridge with a moving load

This section considers MDOF system with a concentrate load moving over the
beam. The time-varying amplitude load function as in Figure 4.14 is applied. The
maximum load is equal to F__ =200kN. The system is studied for three different speeds
of moving loads which are 10, 20 and 40 m/s, with the excitation frequencies of 62.83,
125.66 and 251.33 rad/s, respectively. The bridge is modeled by 8 beam elements.
Time step for all simulations is equal to dt=0.0005s. Three accelerometers are placed on
the bridge deck at the same locations as described in paragraph 4.3.

F(t)

max

.»
— T —————

Figure 4.14 Time-varying amplitude load function
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Figure 4.15 MDOF — moving load at mid-span
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Figure 4.16 Identified force for MDOF with moving load (V=10m/s)
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Figure 4.17 Identified force for MDOF with moving load (V=20m/s)
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Figure 4.18 Identified force for MDOF with moving load (V=40m/s)
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Figure 4.19 Identified responses at mid-span for MDOF with moving load (V=10m/s)
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Figure 4.20 Identified responses at mid-span for MDOF with moving load (V=20m/s)
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Figure 4.21 Identified responses at mid-span for MDOF with moving load (V=40m/s)
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Table 4.4 Percentage error for MDOF system with moving load for different speeds

Speed Error [%]

[mvs] F X X X
10 >100 2.45 33.62 54.88
20 >100 3.69 16.18 38.21
40 >100 7.82 16.07 33.77

Average >100 4.65 21.96 42.29

Table 4.4 presents the identification errors from three cases of speeds of moving
load. Unlike the previous cases, even though the identification errors of the acceleration
are found well within 10%, the errors of identified loads are greater than 100% in all
cases. This is due to the fact that the system equation becomes an ill-posed condition
when the position of moving load is close to the bridge supports. The speed of vehicle
influences the accuracy of reproduction of responses. If speed increases, error of
reproduced acceleration increases, while error of displacement and velocity decrease.

As shown in Figures 4.17 and 4.20, the similar error between real and identified
force and displacement can be observed. It proves that the significant factor in
accuracy is error of displacement approximation in force identification, which
accumulates with time.

It should be noted that, to improve the identification accuracy, one might reduce
the time step size of 0.0005 second to smaller size. However, this seems impractical
since it costs on both hardware and software. In the next chapter, to reduce the error

due to ill-posed condition, the regularization parameter A will be applied.

4.5 Bridge with a moving vehicle

This section considers MDOF system with vehicle moving over the beam. The bridge

is modeled by 36 beam elements for response simulation and 4 beam elements for force
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identification. Three accelerometers are placed on the bridge deck. The location of

these accelerometers is shown below.

|
>

. . . |
1 2 3 A

>

Figure 4.22 Schematic of sensor locations

Table 4.5 Sensor location ( DOF no.)

Sensor No. Simulation Force identification
1 18 2
2 36 4
3 54 6

For all simulations time step is equal to dt=0.001s and the regularization
parameter A = 107'° asin Eq. 3.67. In this numerical study, the 7°t part will be focused
on the identification of dynamic force for whole time period. While in the 2" part, weight
estimation will be addressed. In these two parts the influence of properties of vehicle on
accuracy of force identification will be shown, such as: axle spacing, mass of vehicle

and speed.

4.5.1 Dynamic force identification

This section considers identification of dynamic force of moving vehicle over the
bridge deck. To demonstrate the accuracy of the identified force, percentage errors,
between identified force and real interaction force of front axle, rear axle and summation
of two axles, are calculated. In addition, the dynamic structural responses are

reproduced using Newmark- f method. The reproduced displacement, velocity and
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acceleration at the mid-span of the bridge are plotted and compared with the real forces

and bridge responses.

4.5.1.1 Axle spacing

The properties of the vehicle are following: static weight of axles N,= 300kN,
additional force F_,,= 10%, speed v=20m/s. Three axle spacing are investigated: 0.5S,

1.0S and 1.5S, where S=4.27m.
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o}
- —Real
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Figure 4.23 Summation of identified forces for 0.5S
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Figure 4.24 Summation of identified forces for 1.0S
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Figure 4.25 Summation of identified forces for 1.5S

The errors of identification occur at the time when front and rear axles enter and
leave the bridge deck. However for wider axle spacing the errors become smaller. It can

be observed that identified force in time goes away from the real dynamic force.
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Figure 4.26 Identified responses at mid-span for 0.5S
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Figure 4.27 Identified responses at mid-span for 1.0S
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Figure 4.28 Identified responses at mid-span for 1.5S

Table 4.6 Identification error for different axle spacing

Axle Error[%]

spacing | Front Rear Sum X X X

0.55 78.33 79.86 30.91 7.27 12.95 13.76

S 38.20 49.75 21.37 7.37 11.94 11.47

1.55 18.14 35.07 17.89 6.96 9.82 10.68
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As shown in Table 4.6, the force identification error decreases as the axle
spacing is wider. It seems that summation of dynamic forces of both axles is the most
accurate and the least susceptible to the varying of axle spacing. The second most
accurate identified value is dynamic force of front axle. It is important to highlight that
even though the force identification errors are significant, the reproduced acceleration
response is accurate: error is only around 7%. It can be concluded that for significantly
different forces, it is possible to obtain very similar responses.

The identified force is prone to varying of axle spacing, while the accuracy of
reproduced responses is similar for different axle spacing. The difference between 0.5S
and 1.5S is less than 3% for all responses.

For wider axle spacing, the identified force is more accurate. The reason of this
relation is connected with the error of displacement approximation. When the
displacement is close to zero, the error is smaller. While the axle spacing is wider, the
time when only one force is moving over the bridge is longer. This results in simpler
model, similar to one point load moving over the bridge which yields smaller error in

displacement approximation.

4.5.1.2 Mass of vehicle

The properties of the vehicle are following: axle spacing S= 4.27m and speed
v=20m/s. Five static weight are investigated: N,=100, 200, 300, 400 and 500kN with
three different additional force: F,,,=0, 10 and 20%.

Figures 4.29, 4.30 and 4.31 present the typical comparison of identified with real

summation of forces with N=500 kN and F_,,=0, 10 and 20%, respectively.

add
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Figure 4.29 Summation of identified forces for N=500kN, F_,,=0%
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Figure 4.30 Summation of identified forces for N=500kN, F_,,=10%
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Figure 4.31 Summation of identified forces for N=500kN, F_,,=20%
Table 4.7 Identification error for N, = 100kN
Error[%]
F. N, = 100kN
Front Rear Sum X X X
0 39.95 49.56 21.98 13.19 12.32 11.44
10% 38.72 49.73 21.27 7.37 12.04 11.47
20% 39.88 50.87 21.89 7.21 11.42 11.55
Average | 39.52 50.05 21.71 9.26 11.93 11.49
Table 4.8 Identification error for N, = 200kN
Error[%]
F.aa N,= 200kN
Front Rear Sum X X X

0 39.36 49.47 22.00 12.67 12.26 11.44
10% 38.08 49.65 21.30 7.37 11.98 11.50
20% 39.16 50.83 21.93 7.21 11.37 11.56
Average | 38.87 49.98 21.75 9.08 11.87 11.50




Table 4.9 Identification error for N, = 300kN

Error[%]
Fo N, = 300kN
Front Rear Sum X X X
0 39.50 49.57 22.07 12.67 12.22 11.42
10% 38.20 49.75 21.37 7.37 11.94 11.47
20% 39.22 50.94 22.00 7.21 11.34 11.53
Average | 38.97 50.09 21.81 9.08 11.84 11.47
Table 4.10 Identification error for N, = 400kN
Error{%]
F o N,= 400kN
Front Rear Sum X X X
0 39.72 49.67 22.10 12.61 12.15 11.39
10% 38.38 49.86 21.39 7.36 11.89 11.45
20% 39.35 51.06 22.02 7.21 11.30 11.50
Average | 39.15 50.20 21.84 9.06 11.78 11.45
Table 4.11 Identification error for N, = 500kN
Error{%]
F .o N, = 500kN
Front Rear Sum X X X
0 39.75 49.65 22.07 12.52 1212 11.39
10% 38.41 49.84 21.36 7.36 11.86 11.44
20% 39.35 51.04 21.98 7.21 11.27 11.50
Average | 39.17 50.18 21.80 9.03 11.75 11.44
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It is clearly seen from obtained results that the mass of vehicle and additional force
do not have any influence on the accuracy of force identification. However, it can be
observed that for higher additional force, the reproduced acceleration response is more
accurate. It seems that for sinusoidal force is easier to identify acceleration response
accurately than for constant force. The reason of this relation is that it is impossible to
predict static load using only acceleration response, so for force with dynamic pattern
such as sinusoid, the reproduced acceleration is more accurate.

It can be concluded that method of identification is equally accurate for different

weights of moving vehicles and different magnitude of bridge roughness.

4.5.1.3 Speed of vehicle

The properties of the vehicle are following: static weight of axles N= 300kN,
additional force F,,,= 10%, axle spacing S= 4.27m. The system is studied for eight
different speeds of moving which are 5, 10, 15, 20, 25, 30, 35 and 40m/s, with the
excitation frequencies of 31.42, 62.83, 94.25, 125.67, 157.08, 188.50, 219.91 and
251.33 rad/s, respectively.

The parameter which represents the effect of the speed- a is introduced by Fryba
(1973). The given parameter is a ratio of speed of vehicle to critical speed. The critical
speed v, = 2Lf; depends on length of the bridge and 1* natural frequency. For the
frequency of studied bridge equal to 2.6 Hz, the critical speed is equal to 187.2 m/s. For
studied speeds of vehicle such as 5 m/s and 40 m/s, « is equal only to 0.027 and 0.2,
respectively. It implies that the effect of the speed is significantly small and that studied
vehicle-bridge system is almost a static system. The errors may be caused by the fact

that it is not possible to identify static force using only acceleration response.
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Figure 4.32 Summation of identified forces for v=5m/s
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Figure 4.33 Identified responses at mid-span for v=5m/s
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Figure 4.34 Summation of identified forces for v=40m/s
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Figure 4.35 Identified responses at mid-span for v=40m/s

From the obtained results, it is obviously seen that the speed of vehicle is an
important factor in force identification. It can be observed that for speed v=5m/s the
error between real and identified force is significant. In addition, similar error exists on
the figure of reproduced displacement, while acceleration and velocity responses are
quite accurate. However, for speed=40m/s, these errors cannot be observed neither at

the figure of identified force or reproduced displacement.
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Figure 4.36 Comparison of identified displacement at mid-span for v=5m/s and v=40m/s
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Figure 4.37 Comparison of identified displacement at mid-span for v=5m/s and v=40m/s

It seems that higher speed of vehicle reduces the error between identified and
real dynamic force. The reason is that for moving vehicle with high speed, the system
has dynamic pattern as shown in Figure 4.37. The similar relation was observed in
paragraph 4.5.1.2, which presented that for higher additional force, reproduction of

responses was more accurate.
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Table 4.12 Identification error for different speeds of vehicle

Speed Error[%]
[m/s] Front Rear Sum % % %
5 73.26 92.07 83.82 1.35 35.83 80.89

10 33.47 62.61 45.75 5.29 32.56 37.96

15 33.13 50.26 28.14 5.04 18.31 19.06

20 38.20 49.75 21.37 7.37 11.94 11.47

25 61.61 47.85 25.21 7.83 8.48 7.26

30 47.62 51.62 20.49 7.38 6.03 6.05

35 51.08 51.16 22.97 7.93 4.83 4.90

40 50.99 51.82 22.98 7.56 3.73 4.39

As shown in Table 4.12, the higher speed of vehicle, the more accurate
identification of dynamic force is obtained. With the increase of the speed of vehicle, the
accuracy of reproduced displacement and velocity increase, although the accuracy of
acceleration response decreases significantly.

For higher speeds the most accurate is summation of both axles. This suggests
the use of summation of identified dynamic forces to approximate the weight of moving
vehicle.

In addition, the influence of time step on accuracy is checked. Since the axle loads
identification is the most accurate for vehicle moving with the speed 40m/s, this speed is
applied to the vehicle in the numerical example. Four time steps are investigated:

dt=0.0002, 0.001, 0.0005 and 0.00025 s.
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Table 4.13 Identification error for different time steps

Time step Error[%)]
[s] Front Rear Sum | 4 4
0.002 43.33 92.01 51.19 12.76 8.85 10.49
0.001 50.99 51.82 22.98 7.56 3.73 4.39

0.0005 53.69 56.84 24.51 4.99 1.92 3.10

0.00025 41.51 49.17 27.26 3.78 1.24 2.48

The accuracy of force identification and response reproduction increases for smaller
time steps. For time step equal to dt=0.001s, the accuracy of obtained results is
satisfying, since acceleration error is less than 8%. Further reducing the size of time step
seems to be impractical because the improvement in accuracy is not significant, while
the computation time increases dramatically. Due to good accuracy for this time step
dt=0.001, it is chosen as representative and is used in all simulations of weight

estimation.

4.5.2 Weight estimation

This section studies weight estimation of moving vehicle over the bridge deck. The
movement of vehicle over the bridge can be divided into three intervals. The 1" interval
is from the time zero, when front axle enters the bridge to the time when rear axle enters
the bridge. The 2" interval is the time when two axles of the vehicle are on the bridge
deck. The last interval is time when only rear axle is on the bridge deck. To identify

weight of front and rear axle, the algorithm is divided into two parts.

ﬁw‘ A

A0

NV

T
Figure 4.38 Weight estimation scheme

T
1
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N; = average of F¢(t) (4.3)
N; = average of F.(t) (4.4)
N, =N — Ny (4.5)

The first part covers force identification only when front axle is moving over the
bridge (1St interval). To identify weight of front axle, central time period equal to 50% of
whole interval is used to remove the undesirable influence of support conditions. The
weight of front axle is assumed to be the average of identified dynamic force.

In the second part, force identification covers all movement of vehicle over the
bridge (three intervals together). Firstly the summation of identified axle forces is done.
Then, time period equal to 50% of the 2" interval (when two axles are on the bridge) is
used to identify summation of forces. Finally subtraction between the average of
summed identified forces and estimated weight of front axle from the 1 part is made to
identify weight of rear axle as shown in Figure 4.38.

The idea of using 50 % of interval gives better accuracy and reduces errors due to
enter and exit of front and rear axles on the bridge. Additionally to study accuracy of
identified weight, the relative percentage errors are calculated based on average

identified force and real weight.

N; =N

errory = 1% = |l 100% (4.6)
T
N,.— N,

errory = ”leTT” 100% (4.7)
N, — N,

errory = % 100% (4.8)

Where N and N denote the average identified load and static weight of axle,
respectively. The indices f, r and t denote front axle, rear axle and summation of both

axles, respectively.



4.5.2.1 Axle spacing

62

The same properties of the vehicle are considered as in the 4.5.1.1. Three axle

spacing are investigated: 0.5S, S and 1.5S, where S= 4.27m to address the accuracy of

weight estimation for different width of axle spacing.
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Figure 4.39 Summation of identified forces for 0.5S
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Figure 4.40 Summation of identified forces for 1.5S
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Table 4.14 |dentification error for different axle spacing

Axle Error[%]
spacing Front Rear Sum
0.5S -1.33 24.73 13.52
S -0.21 19.09 10.78
1.58 2.55 13.67 8.88

As shown above, the weight estimation of front axle is quite accurate for all axle
spacing, no significant difference in error can be observed. For wider axle spacing, the
accuracy of weight estimation of rear axle increases significantly. This indicates that

weight estimation is more accurate for wide axle spacing.

4.5.2.2 Mass of vehicle

1201 7

100

Force (kN)
o0
<

(o))

<
T

|

—Real ldentified - 1st interval —- Identified

o
<
T

0 0.2 04 0.6 08 1 1.2 1.4 1.6 1.8
Time (s)

Figure 4.41 Summation of identified forces for N=100kN, F_,,=20%
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Figure 4.42 Summation of identified forces for N=500kN, F_,,=20%

add™

As shown in the figures above, the accuracy of weight estimation does not
depend on the weight of the vehicle or the percentage of additional force applied to the
system. The difference between the errors of summed weights between N, = 100kN and

N, = 500kN is not significant, is around 1%.

Table 4.15 Identification error for N, = 100kN

Error{%]
Fadd N,= 100kN
Front Rear Sum
0 0.42 19.42 11.34
10% -0.22 19.97 11.39
20% -0.85 20.52 11.43
Average -0.22 19.97 11.39




Table 4.16 Identification error for N, = 200kN

Error[%)]
Fadd N, = 200kN
Front Rear Sum
0 0.42 19.23 11.15
10% -0.22 19.78 11.20
20% -0.85 20.34 11.25
Average -0.22 19.78 11.20
Table 4.17 Identification error for N, = 300kN
Error[%)]
Fadd N,= 300kN
Front Rear Sum
0 0.42 18.53 10.74
10% -0.21 19.09 10.78
20% -0.85 19.65 10.83
Average -0.21 19.09 10.78
Table 4.18 Identification error for N, = 400kN
Error[%]
Fadd N, = 400kN
Front Rear Sum
0 0.42 18.02 10.43
10% -0.21 18.58 10.48
20% -0.85 19.13 10.52
Average -0.21 18.58 10.48




Table 4.19 Identification error for N, = 500kN

Error[%]
Fadd N, = 500kN
Front Rear Sum
0 0.42 17.86 10.34
10% -0.21 18.42 10.38
20% -0.85 18.98 10.43
Average -0.21 18.42 10.38

4.5.2.3 Speed of vehicle
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This part will show the relation between the accuracy of identified weights and

speed of vehicle. The same properties are considered in this numerical simulation as in

4.5.
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Figure 4.43 Summation of identified forces for v=40m/s
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Table 4.20 Identification error for different speeds of vehicle

Speed Error[%)]

[m/s] Front Rear Sum
5 6.51 136.25 80.41
10 -1.87 66.16 36.88
15 -0.55 33.07 18.60
20 -0.21 19.09 10.78
25 0.26 11.34 6.57
30 0.21 8.68 5.03
35 0.19 7.09 4.12
40 0.36 6.37 3.78

It seems that the speed of vehicle is a main factor which influences the accuracy of
weight estimation as it was for dynamic force identification. For speed of vehicle higher
than 10m/s, estimated weight of front axle is very accurate; the error is always less than
1%. To estimate weight of rear axle, the speed of vehicle should be higher than 25m/s to
obtain error less than 10%. That is why in future application the method should be used
only when minimum speed limit is achieved.

In conclusion, the accuracy of weight estimation depends greatly on the axle
spacing and speed of vehicle. The relation between these factors and error of identified
weight is shown in Figures 4.44, 4.45 and 4.46. It is clearly seen from these figures that
weight estimation of front axle is accurate for any axle spacing and speed higher than
5m/s, the error is less than 5%. The estimation of rear axle and summation of axles is the
most accurate for high speed and wide axle spacing. It should be noted that speed of
vehicle is the significant factor in weight estimation and the influence of axle spacing

may not be considered.
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5. Conclusion

The average acceleration discrete algorithm is proposed to identify moving load
passing over the bridge. Numerical analyses of four systems are conducted. Vehicle is
simplified as a single point load or as 4 degrees of freedom model. Three models of
bridge system consisting of SDOF, MODF with non-moving load and MDOF with moving
load are investigated.

For SDOF system, force identification is accurate for all considered load functions.
The identification errors of less than 10% are expected. It is possible to identify not only
continuous force, but also impact force in which its magnitude changes abruptly. Load
identification for either constant or sinusoidal load functions reveals similar results. This
implies that fluctuation of the load does not significantly affect the accuracy.

For MDOF system with non-moving load, larger errors of the identified loads can be
observed. This implies that the accurate load identification demands higher mode
information to precisely reproduce the acceleration response of MDOF system.

For MDOF system with moving load, unlike previous cases, the identification errors
of the loads are found very large (>100%) although the errors of the acceleration are
well within 10%. This is caused by the ill conditioned system when the load position is
close to the bridge support. Although the reduction of time step size can enhance the
identification accuracy, the required step size seems to be impractical.

For MDOF system with moving vehicle, the impact of different vehicle properties on
accuracy has been studied. To reduce the error connected with ill-conditioned system
the optimal regularization parameter A was applied to the system.

For identification of dynamic interaction force and estimation of weight, the same
conclusions have been made. Mass of vehicle and the additional force do not change
the accuracy of identification. The most important factors are axle spacing and speed of
vehicle. The best accuracy was obtained for the widest axle spacing and high speed.
That is why, in application this method should be used only when minimum speed limit is

guaranteed.
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