ANSENATIE LTI UR NBUUIINYITUNIUNNTASINUSLANSUBU-ANSUBUNUNUBAN

YIYWTNU AT

unAngauasuitudoyaatuiinveineinusaauntnsfing 2554 Aliusnisluadetdyaig (CUIR)
\uuitudoyavestidndwoivendnus Ndsnunadudningidy
The abstract and full text of theses from the academic year 2011 in Chulalongkormn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the University Graduate School.

'31/|mﬁwuéﬁtﬂud'gwﬁwmmiﬁﬂmmwé’ﬂqmﬂ%mmﬁmmmammmﬁmeﬁm
a1 LAL AR AL
ANEINYIANERNT PNAINTUNINGIFY
Yn1sfinwn 2558

AUANSIRIPIAINTAIININGHY



SYNTHESIS OF FUROFURAN LIGNANS FROM SAMIN THROUGH CARBON-CARBON BOND
FORMATION WITH PHENOLICS

Mr. Phonpimon Khongchai

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Chemistry
Department of Chemistry
Faculty of Science
Chulalongkorn University
Academic Year 2015

Copyright of Chulalongkorn University



Thesis Title SYNTHESIS OF FUROFURAN LIGNANS FROM SAMIN
THROUGH CARBON-CARBON BOND FORMATION
WITH PHENOLICS

By Mr. Phonpimon Khongchai

Field of Study Chemistry

Thesis Advisor Associate Professor Preecha Phuwapraisirisan,
Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

Chairman

(Associate Professor Vudhichai Parasuk, Ph.D.)
_____________________________________________________________________ Thesis Advisor

(Associate Professor Preecha Phuwapraisirisan, Ph.D.)

Examiner

External Examiner

(Assistant Professor Wanchai Pluempanupat, Ph.D.)



NIAVUD ASTY : NTFWATIZIL SIS UBNMUUIINIITUNIUNNTAS 1IN U LA UBU-
ArSURUNURNUDAN (SYNTHESIS OF FUROFURAN LIGNANS FROM SAMIN
THROUGH CARBON-CARBON BOND FORMATION WITH PHENOLICS) 8.17iﬂ§ﬂ‘1%

enlinusuedn: sa. a3.U31 9alns@sea, 86 wih.

FlsTusuanuuudeiilaseadiauuy 2,6-diaryl-3,7-bicyclo [3.3.0] octane an
daaseiin 2 fumeu Tnsduneuusnifendestunisdsuee luauildnuiasenas vou
Ifhaduvesisiuailedlugansiifieniuiotiags fo weniiu meldaniieidnsnsefiten
MnunguansTlsTusugndaaseituiuUfiten Friedel-Crafts type aanmsviufiisen
sywinefiufuilaeiniivainuiln (a-k) FsUujAzerdananannsalindnsasinuideanis
(3a-3K) uardiuues (epi-3a-epi-3K) dedesasziin Wethilsihusuiidguamerldlunaaeu

grsAueyyadaszuarduginisviinurewear-nglaging Usinginluussaansign

£ '
a v faal !

dunsenvundndainiivylonsendadaseuniailuein Faleun 3a, 3e, 3¢, 3i, 3k, 1-3 wa
1-22 WSaunudnLes %ﬁqm‘éé”mawaﬁasz 1A SCsp Iud29 0.22-1.45 mM waz 0.15-0.41
mM #2878 DPPH uaz ABTS mudidu Bnvisdigvigudsnmsvinnureneulsduoar-ngladia
afeueaIng $28A1 1Cs lurae 1.14-8.23 mM aannrsanwinalnanisiudweulesiaes
arsUsenay 1-22 uanslifiudlnunnissudsasanslunguinlsinusudnuuu fo mixed-
competitive futlaaing AdgA1 K iag K 111U 0.29 uag 0.48 mM aua1dy 31ntaya
fsnanudunisuanaiiuimleasendadaszuinsiluedniiunumdidalunisiiugnidiu

auyadaszuazdidansinuveteuled

=

M LAl aneilavolan

a ~ A A P )
GRKRIEKIN LA AR B.NUINWIUAN

Unsfnwn 2558



# # 5772073723 : MAJOR CHEMISTRY

KEYWORDS: FUROFURAN LIGNANS / SESAMOLIN / SESAMIN / ANTIOXIDANT ACTIVITY /

ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY
PHONPIMON KHONGCHAI: SYNTHESIS OF FUROFURAN LIGNANS FROM SAMIN
THROUGH CARBON-CARBON BOND FORMATION WITH PHENOLICS. ADVISOR:
ASSOC. PROF. PREECHA PHUWAPRAISIRISAN, Ph.D., 86 pp.

Furofuran lignans contaning 2,6-diaryl-3,7-bicyclo [3.3.0] octane skeleton were
synthesized by two-step sequential process. The synthesis was first performed by
converting sesamolin, obtained from saponification of sesame oil, to the more reactive
compound named samin, under acid-catalyzed condition. Subsequently, a series of
furofuran lignans were synthesized through Friedel-Crafts type between samin and
various phenolics (namely a-k). The reaction produced desired products (3a-3k) along
with their epimers (epi-3a-epi-3k) with good yields. The synthesized furofuran lignans
were further evaluated for antioxidant and Ol-glucosidase inhibitory activity. Of
synthesized compounds, the products having free hydroxyl group on phenolic ring
(33, 3e, 3g, 3i, 3k, 1-3,1-22 and their epimers)showed remarkable both
antioxidant (SCsy 0.22-1.45 mM and 0.15-0.41 mM toward DPPH and ABTS, respectively)
and Ql-glucosidase inhibitory activity (ICsy 1.14-8.23 mM against maltase). An enzyme
kinetic study represented by 1-22 revealed that mode of inhibition was mixed-
competitive against maltase with K, and K; value of 0.29 and 0.48 mM, respectively.
These revealed that the free hydroxyl group on phenolic ring played an important role

in enhancing antioxidant activity and enzyme inhibitory potency.

Department: ~ Chemistry Student's Signature

Field of Study: Chemistry Advisor's Signature
Academic Year: 2015



ACKNOWLEDGEMENTS

| wish to express my deep gratitude to my advisor, Associate Professor Dr.
Preech Phuwapraisirisan for his generous assistance, kind guidance and

encouragement throughout the coure of this research.

| would like to gratefully acknowledge the committees, Associate Professor
Dr. Vudhichai Parasuk, Dr. Panuwat Padungros and Assistant Professor Dr. Wanchai
Pluempanupat for their comments guidance and extending cooperation over my

presentation

| would like to express my gratitude to Natural Products Research Unit,
Department of Chemistry, Faculty of Science, Chulalongkorn University for providing

the chemicals and facilities throughout the course of study.

A deep affectionate gratitude is acknowledge to my family for their
understanding, encouragement and support throughout the education course and
| would like to give special thanks to Dr. Wisuttaya Worawalai for technical
assistance. Moreover, | would like to thank all of my friends in the laboratory for

their friendships and help during the course of my graduate research.

Vi



CONTENTS

Page
THAT ABSTRACT <.ttt iv
ENGLISH ABSTRACT .ottt Vv
ACKNOWLEDGEMENTS ..ottt vi
CONTENTS <ttt vii
LIST OF TABLES .ttt iX
LIST OF FIGURES ..ottt X
LIST OF SCHEMES ..o Xii
LIST OF ABBREVIATIONS ...ttt Xiv
CHAPTER | INTRODUCTION ..ottt 1
1.1.5€SaME SEEA Oil..uuiiiiiiiiiiiii e 1
1.2, FUIOTUIrAN LIBNANS .ttt 3
1.3 Synthesis of furofuran ligNanS ........ccooiiiiiiii e 6

1.3.1. Total synthesis of furofuran lignans using five-membered ring lactone
AS INTEIMEAIATE ... 6

1.3.2. Semisynthesis of furofuran lignans using naturally available

POTECUISOIS ...ttt ettt ettt 9
CHAPTER Il SYNTHESIS OF SAMIN ..ottt 12
2.1 Saponification of SE€SAME Ol ....cueuiiiiiciiie 12
2.2 Hydrolysis of S€SaMOLIN ......c.ciuiiiirieieiee e 13
2.3 EXperimental SECTIONS ..ot 14
2.3.1 General experimental ProCeAUIES ...ttt 14
2.3.2 CREMICALL ettt 15

2.3.3 Isolation of sesamolin from sesame seed Oil...co.wuoeeeeeeeeeeeeeeeeeeeeeeeeeeeen 15



viii

Page

2.3.4 Hydrolysis of S€SaMOLIN .......cccceeeieieieieieieee e 15
CHAPTER Il CONCISE SYNTHESIS OF FUROFURAN LIGNANS FROM SAMIN.......ccccveurenee 17
3.1 Synthesis of furofuran ligNaNS ........ccccieiicce e 17
3.2 Stereochemistry determination of synthesized furofuran lignans.........cccccceu.... 22
3.3 EXPErimMENtal SECHION .....viiii e 25
3.3.1 Synthesis of furofuran lignans 3a — 3k and their epimers..........ccccccceveene. 25

3.3.2 Synthesis of sesaminol and epi-5eSamiNOL ..........cccceeueireeeeieeeeeeee, 38
CHAPTER IV BIOLOGICAL ACTIVITY EVALUATION ..ottt 39
4.1 Investigation of antioxidant aCtiVity .......ccoceeeiiriieee e 39
4.2 O-Glucosidase inhibitory activity and kinetic analysis ........cccccooviveeeieiininicieienen, 42
4.3 EXPerimental SECHION ..ot 48
4.3.1 Free radical scavenging aCtiVity ......cooeeiirireieeeceee e 48
0.3.1.1 DPPH @S58Y .vvetiuiiiieieieieittieieeiett ettt 48

0.3.1.2 ABTS G558Y weveveveiimiieieieieieteiee ettt 48

4.3.2 Ol -Glucosidase inhibitory activity and enzyme kinetic ......cccccoovvvviveeinnnne. 50
4.3.2.1 Q-Glucosidase inhibitory activity ..o 50

4.3.2.2 Kinetic study of Ol-glucosidase inhibition............cccoovrreiecicieiennen. 51

CHAPTER V CONCLUSION ..ottt 52
REFERENCES ...ttt 53
APPENAIX ottt 56



Table

1.1

1.2.

3.1

4.1

4.2

4.3

LIST OF TABLES

Page
The classification of furofuran lignans based on stereomer of
arrangement of 2,6-diaryl sudstitutent on furofuran core structure
relation to bridgehead hydrogen ... 5
The biological activity of selected furofuran ligNans........cccceeeeerreecereine. 6
Synthesis of furofuran ligNanS.........ccciivieeeeieee e 18
Radical scavenging capability of furofuran lignans........cceceeeeeeeccccicene. 40
Ol-Glucosidase inhibitory effect of synthesized furofuran lignans.................... 42

The K, and V. profile of enzyme inhibition ..., a5



Figure

1.1

1.2

3.1

3.2

3.3
3.4
3.5
4.1
4.2

4.3

4.4

4.5

4.6

LIST OF FIGURES

Page

(a) Black and white sesame seed from Sesamum indicum (b) Saseme oil
is extracted by two processes; roasting process is that sesame was
heated at high temperature prior to the extraction of oil (left) and cold-

pressing of unroasted process (HGNL). ..o 1
Sesame lignans found in dietary sesame Oil. .....cccccvvirieeeiiriieecceeca 3

Phenolic (a-e) used to synthesize a series of furofuran lignans. The bold
and dash arrows indicated the position in which bonding between C-2 of

furofuran moiety and phenolics was formed. ..., 17

Electron density on phenolics ring from resonance effect of activating

group presented Dy the arrOWS.........ccieee e 20
Key HMBC (H = C) for 3a and epi-3a COMPOUNd........ccccoovuruereiierierriirieieens 21
Diagnostic NOESY (H «—»H) correlations for 3a (a) and epi-3a (b)................... 23
'H NMR spectra of 3a (upper) and epi-3a (lOWeN)..........ccooooorrvooreeeieereeeeeeen, 24
Antioxidant activity of particular furofuran lignans ........cccceeeeeeeerceenne, a1
Ol-clucosidase inhibitory activity of active furofuran lignans ..o a4

Lineweaver-Burk plot for inhibitory activity of epi-sesaminol (1-22) against

FAt INTESTINAL INAIEASE .ot 45

The secondary replot of slope (Vi,a/K:) versus [epi-sesaminol] for

determine the Ki. ValUe.......oo.oe e, 46

The secondary replot of intercept versus [epi-sesaminol] for determine

HNE Ky e VALUE oot e e s s s s es s e s ees e ee s ees e 46

Antioxidant activity and Ol-glucosidase inhibitory activity of particular

active fUrofUran liGNaNS........ccuiuriieeeieieeeeeee e a7



4.7

4.8

General SAR of furofuran ligNans .........cceviceriece e

Principle of Ql-glucosidase inhibitory activity based on glucose oxidase

colorimetric method

Xi



Scheme

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

21

2.2

3.1

3.2

3.3

Xii

LIST OF SCHEMES

Page

Transformation of sesamolin in sesame oil to antioxidant sesame lignan

such as sesamol and sesaminol during roasted sesame seed. ........cccccceiriinenes 2

Biosynthesis pathway of furofuran lignan via radical polymerization of

Phenylpropanoids (Co-Ca). .ot a
Key intermediate lactones for synthesis of furofuran lignans. ........cccccceeeennee. 7
Synthesis of epi-piperittolin (1-9) and epi-pinoresinolin (1-15). ......ccocceveiinnneee. 7
Synthesis of epi-Magolin (1-11). ....cociiiiiereeee e 8
Synthesis of (+)-gMeEliNOL (1-17) ..vovvieieeieiieeeeee e 9

Synthesis of mono-catechol (1-18) and bis-catechol (1-19) sesamin

AOIIVATIVES ..ottt et e 10

Synthesis of sesaminol (1-20), 2-epi-sesaminol (1-21) and sesamolin

ISOMIET (1722) .o 10
Synthetic plan of fufofuran lignans in this study. ..o 11
The isolation procedure of 1-2 and 1-1 from sesame seed Oil .........cccceuue.. 13

(a) Sesamolin under acid catalyzed condition could be transformed to
sesaminol and related isomer product (b) H,O as nucleophile could

compete against sesamol to afford sesamin........cccoovvriiiiiiccccce e 14

Propose formation of diastereomeric products from reaction between

samin (1-14) and m-cresol (a) under acid coONAITION w.ooveeveeveeeeeeeeeeeeeeeeeeeeeen, 18
Synthesis of 1-3 and its epiMer (1-22)......ccccooiiriniinrieieieeeeeee e 19

(a) Electron density on phenolics ring from resonance effect of activating
group presented by the arrows (b) pathway for generate multiple

products from reaction i phenolics with oxocarbenium ion intermediate..... 22



xiii

4.1 Putative mechanism pathway for mixed type reversible inhibition of 1-22.

E, S, I and P are maltase, maltose, 1-22 and glucose, respectively................. 45



ABTS
brs
calcd

CDCl,

dd
DPPH

equiv

HMBC

HRMS

LDA

mmol
mL
mM
MsCl
m/z

NADH

SAM

LIST OF ABBREVIATIONS

2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
broad singlet (NMR)

calulated

deuterated chloroform

doublet (NMR)

doublet of doublet (NMR)
2,2-diphenyl-1-picrylhydrazyl
equivalent

gram

heteronuclear multiple bond correlation
high resolution mass spectroscopy
coupling constant (NMR)

lithium diisopropylamide
multiplet (NMR)

milimole

milliliter

milimolar

methanesulfonyl chloride

mass per charge

nicotinamide adenine dinucleotide
singlet (NMR)

S-adenosyl methionine

Xiv



Tf,0
THF

TMSBR

pL

trifltuoromethanesulfonic anhydride
tetrahydrofuran

trimethylsilyl bromide

microliter

chemical shift (NMR)

XV



CHAPTER |
INTRODUCTION

1.1. Sesame seed oil

Sesame (Sesamum indicum L.) seed is an important oilseed crop containing
various nutrient, especially high oil-soluble lignans [1]. In fact, about 70% of the world’s
sesame oil is used for different utilizations such as food products, formulation cosmetic
and pharmaceutical products. The sesame oil is produced from roasted white or black
sesame seeds at 180-200 °C prior to the extraction of an oil with a typical flavor [2]
(Figure 1.1). Additionally, sesame oil is also obtained by cold-pressing extraction of
unroasted; nevertheless the unroasted oil is dramatically different in flavor and
noticeably lower antioxidant activity than the roasted sesame oil. During high
temperature roasting process, sesamolin in oil is first decomposed into sesamol
oxonium ion or sesamol dimmers by pyrolysis and then a new carbon bond was
formed to produce sesaminol [3] (Scheme 1.1). These compounds, sesamol and

sessaminol, play an important role in antioxidant of sesame oil.

Figure 1.1 (a) Black and white sesame seed from Sesamum indicum (b) Saseme oil is
extracted by two processes; roasting process is that sesame was heated at high
temperature prior to the extraction of oil (left) and cold-pressing of unroasted process

(right).
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Scheme 1.1 Transformation of sesamolin in sesame oil to antioxidant sesame lignan

such as sesamol and sesaminol during roasted sesame seed.

Dietary sesame lignans such as sesamin (1-1), sesamolin (1-2) and sesaminol (1-
3) (Figure 1.2) not only contribute to antioxidant and free radical scavenging activity
that may suppress oxidative stress in vivo [4], but are also responsible for a number of
beneficial health effect in human such as controlling fatty acid metabolism in the liver,
lowering of plasma cholesterol level and acceleration of alcohol and xenobiotic
metabolism as well as enhancement vitamin E activities and the bioavailability of ¥-
tocopherol (1-4) in vivo [2, 5, 6]. Recently, sesame lignans were used synergistically
with tocopherols for the anti-aging effect [7] and daily supplement for providing

essential fatty acid.
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Figure 1.2 Sesame lignans found in dietary sesame oil.

1.2.  Furofuran lignans

Sesame lignans are classified into furofuran lignans subclass of natural lignan.
Furofuran lignans are compounds containing the 2,6-diaryl-3,7-dioxabicyclo [3.3.0]
octane skeleton, which is biosynthesized from two phenylpropanoids (C4-Cs) via

oxidative radical polymerization [8] (Scheme 1.2).
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Scheme 1.2 Biosynthesis pathway of furofuran lignan via radical polymerization of

phenylpropanoids (C4-Cs).

Generally, furofuran lignans could be further divided into three different types
(exo-exo, endo-exo and endo-endo), depended on arrangement of 2,6-diaryl
substituent in relation to bridgehead hydrogen. The selected furofuran lignans in each

class are shown in Table 1.1.



Table 1.1 The classification of furofuran lignans based on stereomer of
arrangement of 2,6-diaryl sudstitutent on furofuran core structure relation to

bridgeehead hydrogen

Type Structure Compound

A=B=R'" pinoresinol (1-5)

A=B=R? eudesmin (1-6)

exo-exo

A =R’ B = R* kobusin (1-7)

A= B =R’: epi-eudesmin (1-8)

A =R’ B = R : epi-piperittolin (1-9)
endo-exo

A =R? B =R’ fargesin (1-10)

A = R% B = R?: epi-magolin (1-11)

A=B=R’: epi-asarinin (1-12)
endo-endo A =B =R": diayangambin (1-13)

OMe OMe 0\ OMe
OH OMe ) OMe
Rl — R2 — R3 — Rﬂ _
OMe

Furofuran lignans are diverse not only in nature and stereochemistry of 2,6-
diaryl substituents, but are also biological activities. The bioactivities of selected

furofuran lignans are summarized in the Table 1.2



Table 1.2. The biological activity of selected furofuran lignans

Furofuran lignan

Biological activity

Reference

sesamin (1-1)

controlling metabolism of lipid and glucose,
antihypertensive, anti-inflammation and free

radical scavenging.

(9]

sesamolin (1-2)

increasing both the hepatic mitochondrial and
the peroxisomal fatty acid oxidation rate and

act as antioxidant compound.

[10],[11]

sesaminol (1-3)

antioxidant compound that inhibit the
membrane lipid peroxidation as well as
synergistic compound raising liver and plasma

concentrations of vitamin E.

[12],[13]

pinoresinol (1-5)

inhibition membrane lipid peroxidation and the

LDL oxidation.

epi-asarinin (1-12)

anti-tumor promotion, antiallergic activity and
enhancement of the toxicity of certain

insecticides.

1.3 Synthesis of furofuran lignans

Based on interesting core structure of furofuran lignans and a variety of their

biological activity, the total synthesis and semisynthesis of furofuran lignans have been

reported.

1.3.1. Total synthesis of furofuran lignans using five-membered ring

lactone as intermediate

The general method for the synthesis of furofuran lignan is the construction of

five-membered lactone in the first step followed by cyclization reaction, which can be

divided into three pathways, to obtain bicyclic-fused ring of tetrahydrofuran (Scheme

1.3).
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Scheme 1.3 Key intermediate lactones for synthesis of furofuran lignans.

In 1997, Marchand and coworkers [5] synthesized samin as a versatile core
structure for functionalization to obtain sesamolin derivatives. Samin analogues 1-14
were synthesized from 4-vinybutylrolactone (pathway 1, Scheme 1.3) by aldol
condensation followed by oxidative cleavage and intramolecular cyclisation. After
treatment of 1-14 with phenols as nucleophiles under suitable condition, the desired
products (e.g. epi-piperitolin (1-9) and epi-pinoresinolin (1-15)) were obtained with

inversion of configuration at C-2 (Scheme 1.4.).

H
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Ar= OArl =
OMe
(1-15, 84%)

Scheme 1.4  Synthesis of epi-piperittolin (1-9) and epi-pinoresinolin (1-15).



In 2001, Brown and coworkers [15] prepared cyclobutanone from reaction of
amide 1-16 and Tf,0 to generate keteniuminuim intermediate. Then this intermediate
was reacted with allyl benzyl ether to give the targeted cyclobutanone in a good yield.
Next, cyclobutanone was converted to five-membered ring lactone as key intermediate
(pathway 2, Scheme 1.3) by Baeyer-Villiger oxidation in three steps. The key step was
CH- insertion reaction with rhodium-catalyzed stereoselective cyclization to give endo-

exo-2,6-diarylfurofurans (e.g. epi-magolin (1-11)) (Scheme 1.5).

Ar O—/
1 NMe2 Tf O, base Arl/\ﬁ/ H
Ar\/§o —2 " e
/ X then H, HZO A
ide 1-16 eteniuminuim
amide 16%
intermedate

C-H insertion reaction 4
—_—

- Hue
reduction Arh

Baeyer-Villiger oxidation

Diazo-transfer

(1-11, 76%)

Scheme 1.5 Synthesis of epi-magolin (1-11).

In 2005, Pohmakotr and coworkers [16] prepared a-aroylparaconic as
intermediate (pathway 3, Scheme 1.3) for the synthesis of 1-substituent exo-endo
furofuran lignans. The a-aroylparaconic was obtained from the reaction of vicinal
diaions derived from a-aroylsuccinic esters with aromatic. The synthetic sequence
involved a-methylation or hydroxylation, reduction, bislactonization, reduction

followed by furofuran formation to give (+)-gmelinol (1-17) (Scheme 1.6).
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Scheme 1.6 Synthesis of (+)-gmelinol (1-17)

1.3.2. Semisynthesis of furofuran lignans using naturally available

precursors

Sesamin and sesamolin in sesame oil are always substrates for functionalization

to obtain various furofuran lignans.

In 2008, Urata and coworkers [17] found that sesamin (1-1) could be oxidized
by lead (IV) tetraacetate [Pb(OAC),] to obtain corresponding sesamin derivatives having
catechol unit (Scheme 1.7). Pb(OAc), was used as acetoxylating agent at carbon atom
of dioxymethylene group in first step. Then, acetoxylated sesamin derivatives were
hydrolyzed with acetic acid (AcOH) to yield mono-catechol (1-18) and bis-catechol (1-
19) sesamin derivatives. These compounds have more potent antioxidant activity than

sesamin.
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Scheme 1.7 Synthesis of mono-catechol (1-18) and bis-catechol (1-19) sesamin

derivatives

In 2012, Huang and coworkers [18] demonstrated that sesamolin (1-2) could be
used as a versatile precursor to synthesize sesaminol (1-3) and related isomers.
Sesamolin in acid condition could be rearranged to sesamol (1-20) and oxocarbenium
ion intermediate (1-21). Subsequently, two possible reaction pathways, (2)a and (2)b,
could be taken place. The reaction of path (2)a underwent electrophilic aromatic
substitution, Friedel-Crafts, resulting in carbon-carbon formation of sesaminol (1-3) and
2-epi-sesaminol (1-22).0n the other hand, path (2)b was the reverse of path (1) that

lead to the concurrent production of sesamolin isomer (1-23) (Scheme 1.8).

O/\O o
Hio—{
' . Hioy—{ o 2 )
HHHHH + H" (1) . Hoy &' \\O 1-3
YN +H* (2)b /@ O o

o O\\ o—/ Q\\
“d 42 ° 121 1-20 o ©
+ Ht (2)a b
O/\o /H:(z)b \/Q OH
(j - o
)
O .0 1-22

—d

Scheme 1.8 Synthesis of sesaminol (1-20), 2-epi-sesaminol (1-21) and sesamolin

isomer (1-22)
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To date, there have been many reports of biological activities displayed by
furofuran lignans but this is no investigation on the relation between furofuran lignan
structure and their biological activity. The main problem attribute to the above
synthesis approach that are not practical to produce a variety of furofuran lignans in a
few steps. Therefore, the semisynthesis could be applied to solve the aforementioned
problems by using naturally abundant lignans, especially sesamolin (1-2) as starting
material. In this research, we have an idea to convert sesamolin (1-2) to a more reactive
hemiacetal named samin (1-14) which can be reacted with various types of phenolics.
Under acid condition, 1-14 can be protonated to produce oxocarbenium ion (1-21)
together with the release of water. Finally, nucleophilic addition to oxocarbenium ion
by phenolics (Friedel-Crafts) can produce a series of desired furofuran lignans (Scheme

1.9).

0 reactive hemiacetal

o \\\O’C:O> . ‘
_ saponification ..H..H acid-catalyze, HZO Hi—{H
sesame oil -
@‘w O /© O
O
) (e

0O
sesamolin (1-2) samin (1-14)
ArOH, acid
4 A° MS

O, ArOH
H..gH
"o
0

0

furofuran lignans

Scheme 1.9 Synthetic plan of fufofuran lignans in this study.



CHAPTER Il
SYNTHESIS OF SAMIN

2.1 Saponification of sesame oil

Sesame oil is rich not only in edible oil and protein, but also in source of
furofuran lignan such as sesamin and sesamolin. Therefore, sesame oil is interesting
source to isolate furofuran lignans for starting material. However, these compounds
are dissolved in triglyceride matrix of sesame oil. Isolation of furofuran lignans with
direct column chromatography technique is not suitable method because sesame oil
comprises of large amount of triglyceride matrix that makes separation more tedious.
To solve this problem, the sesame oil should be primarily pretreated by converting to
salt of fatty acid by base-catalyzed saponification reaction in first step followed by

liquid-liquid extraction.

For base-catalyzed saponification reaction, sesame oil was dissolved in
methanol containing potassium hydroxide in order to obtain potassium salt of fatty
acid, which was easily dissolved in water. The minimum amount of potassium
hydroxide (KOH) used to complete saponification could be calculated from
saponification number (SN). However, the slight excess of KOH (about 1.5-2.0 times)
from SN was used to ensure converting triglyceride to soap. After saponification
completed, the reaction mixture was dissolved in water and extracted with ethyl
acetate (EtOAc). The organic phase or unsponifiable matters was further to isolate

because it mainly contains desired sesamolin (1-2)

Then, the unsponifiable matters after solvent removal under reduced pressure
were purified by silica gel column to obtain sesamolin (1-2) and sesamin (1-1). The

isolation procedure is summarized in Scheme 2.1.

Sesamolin (1-2) and sesamin (1-1) were obtained as white crystals. The

structure of sesamolin (1-2) was deduced by "H compared with previous report [19].



13

Sesame seed oil (150 g)
1) 35 ¢ KOH in methanol 150 mL
2) reflux at 70 °C, 3-4 h

3) MeOH removal
Crude reaction

- dissolved in HZO

Solution mixture

- partition with EtOAC (1:1,v/v)

Unsaponifiable matters Saponifiable matters

- silica gel column

Sesamolin (1-2)

S in (1-1
esamin (1-1) o

o) e
g 0 o Z;Z o)
o &

O -0

Scheme 2.1 The isolation procedure of 1-2 and 1-1 from sesame seed oil

2.2 Hydrolysis of sesamolin

Sesamolin (1-2) and sesamin (1-1) isolated from sesame oil seed are slightly
different in structure in which sesamolin possess oxygen insertion between C-2 of
furofuran core structure and carbon of aryl substitutent. In fact, the presence of acetal
in sesamolin (1-2) makes it more reactive toward nucleophile substitution than sesamin
(1-1). Therefore, reaction between 1-2 and any good nuclophile would produce a

variety furofuran lignans.

However, sesamolin under acid-catalyzed condition could g¢enerate
oxocabenium ion intermediate and sesamol (1-20) as by product, which in turn reacts

with 1-21 to produce sesaminol product (1-3) and its epimer (Scheme 2.2). To solve
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this problem, water (H,O) as good nucleophile must be added to compete against
sesamol (1-20), yielding samin (1-14) which is more reactive than sesamolin (1-2)

(Scheme 2.2).

0 O\\o
@
0 OH o
0.0 S
Hi iH e ol
" IHI i} H+ ; ’ (a) ) HMH o
e O "Ny

Sesamolin (1-2) 1-21 1-20 1-3 and related isomer

we 0
@)
|

0 Samin (1-14)

Scheme 2.2 (a) Sesamolin under acid catalyzed condition could be transformed to
sesaminol and related isomer product (b) H,O as nucleophile could compete against

sesamol to afford sesamin

With the starting material in hand, sesamolin (1-2) was further hydrolyzed in
the presence of amberlyst®-15, a strong acid resin, to afford samin (1-14, 90%). This
conversion would make 1-14 more reactive than 1-2 toward nucleophilic substitution.
1-14 was obtained as brown crystals, and its structure was deduced by 'H and *C data

compared with previous report [20]

2.3 Experimental sections
2.3.1 General experimental procedures

'H and "*C NMR spectra were recorded (CDCl; as solvent) at 400 and 100 MHz,
respectively on a Varian Mercury 400 NMR spectrometer. The chemical shifts were

reported in ppm downfield from TMS. Thin layer chromatography (TLC) was performed
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on pre-coated Merk silica gel 60 F,s4 plated (0.25 mm thick layer) and visualized under

254 nm UV. Silica gel 60 Merck cat. No. 7729 was used for column chromatography.

2.3.2 Chemical

Potassium hydroxide (KOH) and amberlyst®-15 were purchased from Sigma-

Aldrich. Sesame oil was purchased from Suan-pana (Samut Songkhram, Thailand).

2.3.3 Isolation of sesamolin from sesame seed oil

General procedure for isolation and extraction of sesamolin from sesame seed
oil are as follows. Sesame seed oil (150 ¢) dissolved in MeOH (150 mL) was saponified
with KOH (35 ¢) for 4 h. After solvent removal, the resulting mixture was dissolved in
water and then extracted with EtOAc. The organic extract mainly containing
unsaponifiable lignans was separated on silica gel column using 20:80 EtOAc-Hexane

to obtain sesamolin (1-2, 1%).

Sesamolin (1-2): white crystals; *H NMR (400 MHz, CDCl;) & 6.88 (s, 1H), 6.83 —
6.76 (m, 2H), 6.71 (d, J = 8.5 Hz, 1H), 6.62 (d, J = 2.3 Hz, 1H), 6.50 (dd, J = 8.4, 2.3 Hz,
1H), 5.96 (s, 2H), 5.92 (s, 2H), 5.50 (s, 2H), 4.45 (t, J = 9.0 Hz, 1H), 4.39 (d, J = 7.3 Hz, 1H),
4.12 (dd, J = 9.2, 6.0 Hz, 1H), 3.96 (d, J = 9.2 Hz, 1H), 3.63 (m, 1H), 3.31 (g, J = 8.7 Hz,
1H), 2.94 (dd, J = 6.9 Hz, 1H).

2.3.4 Hydrolysis of sesamolin

The solution of sesamolin (1-2, 0.27 mmol) in a mixture of acetonitrile/H,0 (9:1,
10 mL) was treated with amberlyst®-15. After stirring at 70 °C for 8 h, the reaction
mixture was evaporated to dryness and purified on column chromatography using

30:70 EtOAc-Hexane to give 1-14 (90%)
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Samin (1-14): as brown crystal solid ; 'H NMR (CDCls, 400 MHz) & 6.85 (s, 1H, H-
2, 6.80-6.75 (m, 2H, H-5" and H-6'), 5.94 (s, 2H, H-7"), 5.36 (s, 1H, H-2), 4.35 (d, J = 8.4
Hz, 2H, H-6 and H-8), 4.16 (dd, J = 9.2, 6.0 Hz, 1H, H-4), 3.89 (d, J = 9.2 Hz, 1H, H-4),
3.56 (dd, J = 8.8, 7.2 Hz, 1H, H-8), 3.25 (brs, 1H, -OH), 3.05 (m, 1H, H-1), 2.86 (m, 1H, H-
5); *C NMR (CDCls;, 100 MHz) & 148.1, 147.4, 134.7, 119.7, 108.3, 106.7, 102.4, 101.2,
87.0, 71.4, 69.5, 53.7, 52.9.



CHAPTER IlI
CONCISE SYNTHESIS OF FUROFURAN LIGNANS FROM SAMIN

3.1 Synthesis of furofuran lignans

A series of furofuran lignans could be synthesized from reaction between samin
(1-14) and phenolics (a-k) under acid catalyzed condition via Friedel — Crafts reaction
(Table 3.1). The phenolics reacted with samin are shown in Figure 3.1 which can be
classified into six groups based on number of hydroxyl or methoxy groups on benzene
ring. To test synthetic plan in hand, we first applied it to the reaction between samin
(1-14) and monooxygenated benzene, m-cresol (a). The reaction produced fufofuran
lignans 3a (30%) and the corresponding epimer (epi-3a, 15%). The generation of 3a
and epi-3a could be explained in Scheme 3.1. Under the acid condition, samin (1-14)
could be protonated to produce oxocarbenium ion together with the release of water,
which could be trapped by 4 °A MS. Then, oxocarbenium ion was attacked by m-cresol
(a) via either pathway (a) yielded epi-3a (exo,exo-furofuran) or pathway (b) afforded

3a (endo,exo-furofuran).

SOG6 & o & A&

monooxygenated dioxygenated  1,2,3-trioxygenated 1,3 d-trioxygenated 1,3,5-trioxygenated tetraoxygenated
OH OMe OMe OH OMe OH
RS & U & GHE & S ot
MeO OMe
CH OMe OMe OMe MeO OMe
a 3 b e OMe OMe
S h k
OMe OMe
e . OMe OH
N
OMe OMe
¢ f MeO OMe
OMe I
o OMeO
N
OMe
d MeO OMe
Q = OH or OMe j

Figure 3.1 Phenolic (a-e) used to synthesize a series of furofuran lignans. The bold
and dash arrows indicated the position in which bonding between C-2 of furofuran

moiety and phenolics was formed.
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epi-3a (endo,exo-furofuran)

HO. CH,
g
5
Hio—(+H
e
0]

3a (exo,exo-furofuran)

intermediate

Scheme 3.1 Propose formation of diastereomeric products from reaction between

samin (1-14) and m-cresol (a) under acid condition

To produce diverse furofuran lignans, we further synthesized furofuran lignans
using other phenolics, namely dioxygenated (b-d), trioxygenated (e-j) and
tetraoxygenated (k) benzenes (Figure 3.1). All reactions, excepted for the reaction

between samin (1-14) and ¢, produced a pair of diastereomeric products (Table 3.1).

Table 3.1 Synthesis of furofuran lignans

)

O WA Ar-OH
O +OH Ao Hi ciH
H..H Ar-OH, MeCN, Amberlyst-15 /(™ o '
we 0 < :@x 0
0 4 °A MS, RT, 8 h <o:© 5

3a - 3k epi-3a - epi-3k

Hi
oy

Isolated product (% Yield)

Entry
3 epi-3

1 3a (30%) epi-3a (15%)
2 3b (50%) epi-3b (45%)

3¢ (19%) epi-3c (21%)
’ 3c' (trace) epi-3c' (24%)
il 3d (31%) epi-3d (42%)
5 3e (27%) epi-3e (37%)

6 3f (31%) epi-3f (22%)
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Table 3.1 (Cont.) Synthesis of furofuran lignans

o)

O_ .OH O, .\Ar-OH Ar-OH
HI-H.,H Ar-OH, MeCN, Amberlyst-15 o H"‘g <H 0 H{H"H
"o

<OI>‘ 0 4 °A MS, RT, 8 h < D © <oj©

0 O

3a - 3k epi-3a - epi-3k

Isolated product (% Yield)

Entry

3 epi-3
7 3g (68%) epi-3g (7%)
8 3h (50%) epi-3h (trace)
9 3i (51%) epi-3i (47%)
10 3j (14%) epi-3j (trace)
11 3k (30%) epi-3k (40%)

Additionally, 1-3 and its epimer (1-22) could be synthesized by acid-catalyzed
reaction of sesamolin (1-2) with good yield shown in Scheme 3.2. Under acid condition,
1-2 generate oxocarbenium ion and sesamol as nucleophile, which in turn reacted

with oxocarbenium ion to produce the desired products.

o)

02 e O> MeCN, Amberlyst-15
HH o 5 H)—{"H oH
0 ey 70 °C, 24 h <O]©\w o
¢ $

1-2 1-3 (80%) 1-22 (11%)

Scheme 3.2 Synthesis of 1-3 and its epimer (1-22)

From the results, we found that number and type of electron donating group
on a phenolic aromatic ring influence the yield of products. On reaction with samin (1-
14), phenolic b having two methoxy groups (2XOCH3) as strong activating groups
afforded higher yield of 3b (50%) and epi-3b (45%); whereas phenolic a having a strong
activating group (-OH) and a weak activating group (-CHs) afforded 3a and epi-3a with
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lower yield of 30 and 15%, respectively. Therefore, higher electron density on the

phenolic aromatic moiety was critical to force reaction with higher yield of products.

Additionally, the orientation of substituents on phenolic ring was another key
factor to enhance reactivity of reaction. For example, phenolic g and i had the same
a number of strong activating group (1xOH, 2XOCH3) but they were different reactivity;
namely phenolic i was more reactive toward oxocarbenium ion than phenolic g. This
observation could be explained by constructive density of electron. In case of phenolic

i, all substituents reinforced each other whereas phenolic g did not (Figure 3.2).

OH o

\\«*d/ WA=

- 77BN H8Q OCH
OCH_

y -

Figure 3.2 Electron density on phenolics ring from resonance effect of activating

group presented by the arrows

Furthermore, when the multiple substituted phenolics underwent an
electrophilic aromatic substitution reaction, the directing effects of all substituents had
to be considered: phenolic a, for example, possessing the hydroxyl group directing to
the ortho- or para- position, and the methyl group directed to ortho- or para- position.
Notice that three positions were activated, but the new substituent ended up on only
one of three because steric hindrance effect made the position between the
substituents less accessible and the more powerful activating group , the hydroxyl
group (-OH) was the dominant influence over a weakly activating substituent (-CHa).
Therefore, the incoming oxocarbenium ion of furofuran moiety was installed at a

position that was ortho- or para- position to hydroxy or methyl groups, repectively as
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indicated by bold arrow in Figure 3.1. The other phenolics could be explained in the

same way.

To confirm correct structure, particular synthesized furofuran lignans, such as
3a and epi-3a, were elucidated by HMBC. The HMBC correlations (Figure 3.3) from H-
28, =485 d,J=56Hz) to C-1 (6 = 121.2), C-2 (8¢ = 155.5) and C-6 (5. =126.9),
suggested that the favor reactivity on phenolic to furan moiety was ortho- or para-

position to hydroxy or methyl groups corresponding with theoretical assumption.

e
3

HO
O ﬁ 5
N>

() 12
HII%
\\"6 o 8
@)

-0

Figure 3.3 Key HMBC (H = C) for 3a and epi-3a compound

However, multiple products were also obtained if there are more than one
favored sites. This observation was demonstrated by the reaction between samin (1-

14) and phenolic c. Once the oxocarbenium ion was produced, electrophilic aromatic
substitution at C-2 of phenolic (pathway A) yielded lignan 3c and its epimer (epi-3c)
while the substitution at C-4 or C-6 (pathway B) afforded lignan 3¢’ and its epimer

(epi-3c") (Scheme 3.3).
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Scheme 3.3 (a) Electron density on phenolics ring from resonance effect of activating
group presented by the arrows (b) pathway for generate multiple products from

reaction i phenolics with oxocarbenium ion intermediate

3.2 Stereochemistry determination of synthesized furofuran lignans

Reactions between samin (1-14) and phenolics produced a pair of
diastereomeric. To easily elucidate each isomer, we first drawn boat-boat and chair-
boat conformation of each isomer, which was verified by X-ray analysis of samin and

epi-samin, respectively [21].

3a and epi-3a were represented for construction this model. The relative
configurations of 3a and epi-3a were inspected by NOESY data as well as the observed
'H NMR pattern. 3a revealed key NOESY correlations from H-2 to H-8,,and H-6 to H-
4., which were indicated of exo-exo orientation (Figure 3.4a). In contrast, epi-3a
showed key NOESY correlations from H-2 to H-4,, and H-6 to H-8,,. Therefore, the

structure of epi-3a was elucidated as endo-exo orientation (Figure 3.4b).

The difference in stereochemistry at C-2 of 3a and epi-3a could also be easily
observed in 'H NMR spectra (Figure 3.5). H-2 and H-6 in 3a revealed doublet (d) signal
with nearly equal coupling constant (J = 4.0 Hz), whereas those of epi-3a
demonstrated significantly different values (J = 5.6 Hz and J = 8.0 Hz for H-2 and H-6,
respectively). Furthermore, the difference in 'H NMR splitting patterns of 3a and epi-
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3a was also striking observed for H-4 (Figure 3.5). H-4,, and H-4., of 3a each showed
the expected doublet of doublet (dd) signal whereas those of epi-3a demonstrated
different splitting patterns. The H-4,, of epi-3a revealed unexpected doublet (d) signal

caused solely by germinal coupling with H-4,,. This observation could be accounted

for a nearly 90° dihedral angle between H-4,,and H-5 that give rise 2J4eq,5 ~ 0 Hz [22].
Noticeably, the differences in 'H NMR splitting patterns of 3a and its epimer were also
observed in other synthesized furofuran lignans. Therefore, applying the above
mentioned observation would be useful to readily discriminate the stereochemistry at

C-2 of synthesized furofuran lignans.

Hax

Hax

endo-exo

Figure 3.4 Diagnostic NOESY (H <= H) correlations for 3a (a) and epi-3a (b)
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H-2 H-6 H4, HS8, H-8,, .
I MS=
(oen - 1)
H-2 H-6 H4,, | H8, H-4, H-8,,
slo' ' .4.3' ' .4:.6. ‘ '4‘4 .... ;1‘-‘,;'..:)' ' '3'3' ' '3Vs‘ 4 '3'.4' ' '3I2A I -:slo-

Figure 3.5 'H NMR spectra of 3a (upper) and epi-3a (lower)
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3.3 Experimental section
3.3.1 Synthesis of furofuran lignans 3a — 3k and their epimers
Genernal procedure for synthesis

To a solution of samin 1-14 (1 equiv) in acetonitrile (1.0 mL/0.1 mmol of samin)
was treated with phenolics a - e (1.5 - 2 equiv), acidic resin amberlyst-15 (1 mg/0.005
mmol of samin) and 4 A MS. After stirring at room temperature for 8 h, the reaction

mixture was evaporated to dryness and purified by column chromatography.

3a epi-3a

Following the above general precedure, reaction of 1-14 (64.5 mg, 0.26 mmol)
and m-cresol (a, 40 pL, 0.39 mmol) in acetonitrile (2 mL) after 8 h yielded compounds
3a (27 mg, 30%) and epi-3a (13 mg, 15%) as white solid. Note that the IUPAC
nomenclutures of synthesized products were made based on “classification and

nomenclature of lignans”, published in 1995 [23]

3a (1R,25,5R,65)—2-(2'-hydroxy—d'-methylphenyl)—6-(3’I,41I-metylenedioxyphenyl)—3,8-
dioxabicyclo [3.3.0] octane: *H NMR (CDCls, 400 MHz) & 7.89 (brs, 1H, -OH), 6.92 (d, J =
7.6 Hz, 1H, H-6"), 6.83-6.78 (m, 3H, H-2', H-5', and H-6"), 6.71 (s, 1H, H-3"), 6.67 (d, J =
7.6 Hz, 1H, H-5"), 5.95 (s, 2H, H-7"), 4.87 (d, J = 4.0 Hz, 1H, H-2), 4.78 (d, J = 4.0 Hz, 1H,
H-6), 4.34 (dd, J = 9.2, 7.6 Hz, 1H, H-4), 4.15 (dd, J = 9.2, 6.8 Hz, 1H, H-8), 3.92-3.85 (m,
2H, H-4 and H-8), 3.21 (m, 1H, H-1), 3.14 (m, 1H, H-5), 2.29 (s, 3H, -CHs); *C NMR (CDCL,,
100 MHz) & 155.5, 148.2, 147.4, 139.8, 134.8, 126.8, 120.9, 120.9, 119.5, 117.9, 108.4,
106.7, 101.3, 86.7, 85.6, 72.5, 70.9, 53.6, 53.1, 21.2; HRMS m/z 363.1212 [M+Na]" (calcd
for CyoH,oNaOs, 363.1208).
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epi-3a (1R,ZR,5R,65)—2—(2'—hydroxy—dl—methylphenyl)—6—(3’,4'—metyLenedioxyphenyl)-
3,8-dioxabicyclo [3.3.0] octane: 'H NMR (CDCls, 400 MHz) & 7.85 (brs, 1H, -OH), 6.92 (d,
J =7.6 Hz, 1H, H-6"), 6.86-6.80 (m, 3H, H-2', H-5', and H-6'), 6.71 (s, 1H, H-3"), 6.67 (d,
J = 7.6 Hz, 1H, H-5"), 5.97 (s, 2H, H-7"), 4.85 (d, J = 5.6 Hz, 1H, H-2), 4.55 (d, J = 8.0 Hz,
1H, H-6), 4.11 (d, J = 9.6 Hz, 1H, H-4), 3.90 (dd, J = 8.4, 7.6 Hz, 1H, H-8), 3.82 (dd, J =
9.6, 6.0 Hz, 1H, H-4), 3.38-3.28 (m, 2H, H-1 and H-8), 3.04 (m, 1H, H-5), 2.29 (s, 3H, -CH,);
1C NMR (CDCls, 100 MHz) & 155.5, 147.9, 146.9, 139.8, 132.0, 126.9, 121.2, 120.8, 118.8,
118.0, 108.4, 106.5, 101.2, 88.6, 82.0, 70.7, 70.2, 53.4, 49.9, 21.3; HRMS m/z 363.1213
[M+Na]" (caled for CyoH,oNaOs, 363.1208).
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OMe

3b epi-3b

Following the above general procedure, reaction of 1-14 (12.5 mg, 0.05 mmol)
and 1,3-dimethoxybenzene ( b, 12 mg, 0.075 mmol) in acetonitrile (0.5 mL) after 8 h
yielded compounds 3b (10 mg, 55%) and epi-3b (8.2 mg, 45%) as colorless oil.

3b (1R,2S,5R,65)—2—(2’,4’—dimethoxyphenyl)—6—(3",4"—metylenedioxyphenyl)—3,8—
dioxabicyclo [3.3.0] octane: *H NMR (CDCls, 400 MHz) & 7.25 (dd, J = 8.0, 2.8 Hz, 1H,),
6.84 (s, 1H), 6.81-6.74 (m, 2H), 6.45 (d, J = 7.2 Hz, 1H), 6.44 (d, J = 2.4 Hz, 1H), 5.92 (s,
2H), 5.03 (d, J = 4.8 Hz, 1H), 4.64 (d, J = 5.6 Hz, 1H), 4.30 (dd, J = 9.2, 7.6 Hz, 1H,), 4.19
(dd, J = 8.8, 6.4 Hz, 1H), 3.98 (dd, J = 9.2, 5.2 Hz, 1H), 3.90 (dd, J = 9.2, 4.0 Hz, 1H), 3.80
(s, 3H), 3.79 (s, 3H), 3.01 (m, 1H), 2.91 (m, 1H); *C NMR (CDCls, 100 MHz) 6 160.2, 157.4,
147.9,147.1, 1354, 126.1, 122.8, 119.5, 108.1, 106.6, 103.8, 101.0, 98.6, 85.5, 82.0, 73.3,
71.2, 55.4, 55.3, 54.7, 53.7; HRMS m/z 393.1310 [M+Na]® (calcd for CyHyNaOy,
393.1314).

epi-3b (1R,2R,5R,65)-2-(2 4 -dimethoxyphenyl)}-6-3 4 -metylenedioxyphenyl)-3,8-
dioxabicyclo [3.3.0] octane: 'H NMR (CDCls, 400 MHz) & 7.44 (d, J = 8.4 Hz, 1H), 6.87 (s,
1H), 6.81-6.76 (m, 2H), 6.50 (dd, J = 8.4, 2.4 Hz, 1H), 6.44 (s, 1H), 5.94 (s, 2H), 4.91 (d, J
= 6.0 Hz, 1H), 4.36 (d, J = 8.0 Hz, 1H), 4.09 (d, J = 9.2 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H3),
3.78-3.74 (m, 2H), 3.47 (m, 1H), 3.22 (dd, J = 8.8, 8.8 Hz, 1H), 2.84 (m, 1H); °C NMR
(CDCls, 100 MHz) 6 160.2, 156.6, 148.1, 147.3, 135.6, 127.3, 127.3, 119.7, 108.3, 106.8,
103.9, 101.1, 98.3, 87.6, 78.6, 70.5, 69.9, 55.5, 55.4, 54.9, 48.7; HRMS m/z 393.1310
[M+Na]" (calcd for C,;H,,NaOg, 393.1314)
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Following the above general procedure, reaction of 1-14 (68.3 mg, 0.27 mmol)
and 3,5-dimethoxytoluene (¢, 79 uL, 0.54 mmol) in acetonitrile (3 mL) after 8 h yielded
compounds 3c (21 mg, 20%), 3c' (22 mg, 21%) and epi-3c' (24 mg,23%) as white solid.

3¢ (1R,25,5R,65)-2-2 6 -dimethoxy-6 -methylphenyl)-6-3 4 -metylenedioxyphenyl)-
3,8-dioxabicyclo [3.3.0] octane: 'H NMR (CDCls, 400 MHz) & 6.90 — 6.78 (m, 3H), 6.38 (s,
2H), 5.95 (s, 2H), 5.47 (d, J = 5.9 Hz, 1H), 4.70 (d, J = 6.2 Hz, 1H), 4.27 (dd, J = 8.5, 6.6
Hz, 1H), 4.16 (dd, J = 8.9, 7.2 Hz, 1H), 3.87 - 3.83 (m, 2H), 3.80 (s, 6H), 3.50 (m, 1H), 3.07
(m, 1H), 2.33 (s, 3H); "*C NMR (CDCls, 100 MHz) & 158.9, 148.0, 147.1, 139.9, 136.0, 119.6,
114.1, 108.3, 106.7, 105.4, 101.1, 85.6, 78.3, 73.2, 72.3, 56.4, 55.9, 51.2, 22.2; HRMS m/z
407.1462 [M+Na]" (calcd for Cy,HpqNaO4",407.1465).

3¢’ (1R25,5R,65)-2-2 & -dimethoxy-6 -methylphenyl)-6-3 4 -metylenedioxyphenyl)-
3,8-dioxabicyclo [3.3.0] octane: 'H NMR (CDCls, 400 MHz) & 6.87 - 6.71 (m, 3H), 6.33 (d,
J = 6.3 Hz, 2H), 5.96 (s, 2H), 5.22 (d, J = 7.2 Hz, 1H), 4.81 (d, J = 4.6 Hz, 1H), 4.38 (t, J =
8.0 Hz, 1H), 4.03 (m, 1H), 3.89 (m, 1H), 3.79 (m, 7H), 3.32 (m, 1H), 3.17 (m, 1H), 2.41 (s,
3H). ; °C NMR (CDCls, 100 MH2) & 160.0, 159.3, 148.1, 147.1, 139.5, 135.8, 135.4, 125.2,
119.5, 108.3, 108.0, 106.7, 101.2, 97.0, 85.1, 81.5, 72.7, 71.9, 55.8, 55.4, 55.4, 52.1, 21.0.
HRMS m/z (calcd for CpHaeNaOg",407.1465)



29

epi-3c' (1R,ZR,ER,65)—2—(21,41—dimethoxy—6l—methprhenyl)—é—(Bl',4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 6.90
- 6.78 (m, 3H), 6.33 (brs, 1H), 6.32(brs, 1H), 5.96 (s, 2H), 5.02 (d, J = 7.7 Hz, 1H), 4.82 (d,
J=56Hz 1H), 4.07 (d, J = 9.3 Hz, 1H), 3.84 — 3.72 (m, 8H), 3.37 (m,1H), 3.26 — 3.16 (m,
2H), 2.41 (s, 3H); >°C NMR (CDCls, 100 MHz) & 159.9, 159.3, 147.7, 146.7, 146.6, 139.7,
132.7,118.8, 108.2, 108.1, 106.6, 101.1, 96.8, 82.0, 81.9, 71.7, 69.6, 55.9, 55.4, 51.8, 51.1,
20.9; HRMS m/z [M+Na]" (calcd for C,,H,qNaOg",407.1465)
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Following the above general procedure, reaction of 1-14 (63mg, 0.25 mmol)
and 2,6-dimethoxytoluene (d, 74 uL, 0.5 mmol) in acetonitrile (2.5 mL) after 8 h yielded
compounds 3d (40 mg, 42%) and epi-3d (30 mg, 31%) as yellow oil.

3d (1R 25,5R,65)-2-2 & -dimethoxy-3 -methylphenyl)-6-3 4 -metylenedioxyphenyl)-
3,8-dioxabicyclo [3.3.0] octane: 'H NMR (CDCls, 400 MHz) & 7.16 (d, J = 8.5 Hz, 1H), 6.90
- 6.72 (m, 3H), 6.63 (d, J = 8.5 Hz, 1H), 5.95 (s, 2H), 5.06 (d, J = 4.6 Hz, 1H), 4.68 (d, J =
5.5 Hz, 1H), 4.30 (t, J = 8.2 Hz, 1H), 4.21 (m, 1H), 3.98 (dd, J = 9.0, 4.8 Hz, 1H), 3.90 (dd,
J=9.1,3.9Hz, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 3.09 (m, 1H), 3.00 (m, 1H), 2.16 (s, 3H).; °C
NMR (CDCls, 100 MHz) & 158.6, 157.0, 148.1, 147.2, 135.5, 127.0, 123.8, 120.1, 119.6,
108.3, 106.7, 106.0, 101.2, 85.7, 82.3, 73.1, 71.5, 60.9, 55.8, 54.8, 54.1, 9.2.; HRMS m/z
407.1470 [M + Na* ] (caled for Cy,H,4NaOg", 407.1465)

epi-3d (1R,ZR,SR,65)—2—(2’,4’—dimethoxy—3’—methylphenyl)—6—(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 7.36
(d, J = 8.6 Hz, 1H), 6.90 — 6.74 (m, 3H), 6.66 (d, J = 8.5 Hz, 1H), 5.94 (s, 2H), 4.96 (d, J =
6.2 Hz, 1H), 4.38 (d, J = 7.4 Hz, 1H), 4.10 (d, J = 9.3 Hz, 1H), 3.83 - 3.80 (m, 4H), 3.76 -
3.73 (m, 4H), 3.46 (m, 1H), 3.24 (t, J = 8.6 Hz, 1H), 2.87 (m, 1H), 2.16 (s, 3H) ; °C NMR
(CDCls, 100 MHz) 6158.3, 155.7, 148.1, 147.3, 135.6, 124.5, 124.2, 123.6, 119.8, 108.3,
106.78, 105.9, 101.2, 87.7, 78.8, 70.6, 69.9, 60.6, 55.8, 55.0, 49.3, 9.3; HRMS m/z [M +
Na* ] (caled for C,,H,4NaOg*, 407.1465)
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Following the above general procedure, reaction of 1-14 (36 mg, 0.14 mmol)
and 2,6-dimethoxyphenol (e, 43 mg, 0.28 mmol) in acetonitrile (1.5 mL) after 8 h
yielded compounds 3e (15.2 mg, 27%) and epi-3e (20 mg, 37%) as yellow oil.

3e (1R,2S,5R,65)—2-(3’—hydroxyl—2’,4’—dimetho><yphenyl)—6-(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 6.89
- 6.73 (m, 4H), 6.62 (d, J = 8.6 Hz, 1H), 5.94 (s, 2H), 5.05 (d, J = 4.8 Hz, 1H), 4.68 (d, J =
5.7 Hz, 1H), 4.31 (dd, J = 9.1, 7.3 Hz, 1H), 4.22 (dd, J = 9.1, 6.6 Hz, 1H), 4.01 (dd, J = 9.2,
4.7 Hz, 1H), 3.92 (d, J = 4.3 Hz, 4H), 3.89 (d, J = 7.1 Hz, 4H), 3.05 (m, 1H), 2.98 (m, 1H),
BC NMR (CDCls, 100 MHz) 6 148.1, 147.4, 144.6, 138.7, 135.4, 128.3, 119.6, 115.9, 108.3,
106.7, 105.9, 101.2, 85.6, 82.4, 73.1, 71.6, 60.6, 56.4, 54.8, 54.2; HRMS m/z 409.1263 [M
+ Na* ] (calcd for CyH,,NaO;*, 409.1258).

epi-3e (1R,ZR,5R,65)—2—(3,—hydroxyl—2’,4’—dimethoxyphenyl)—6—(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 7.02
(d, J = 8.5 Hz, 1H), 6.87 - 6.76 (m, 3H), 6.65 (d, J = 8.4 Hz, 1H), 5.95 (s, 2H), 4.95 (d, J =
5.9 Hz, 1H), 4.36 (d, J = 8.0 Hz, 1H), 4.09 (d, J = 9.4 Hz, 1H), 3.92 — 3.86 (m, 7H), 3.83 -
3.78 (m, 2H), 3.45 (m, 1H), 3.23 (m, 1H), 2.86 (dd, J = 15.4, 7.2 Hz, 1H); >C NMR (CDCls,
100 MHz) & 148.1, 147.3, 147.2, 138.2, 135.5, 129.9, 124.6, 119.7, 116.8, 108.3, 106.8,
105.8, 101.2, 87.7, 78.7, 70.6, 69.9, 60.3, 56.4, 54.9, 49.2 ; HRMS m/z 409.1263 [M + Na”*
] (caled for CyH,,NaO;*, 409.1258)
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Following the above general procedure, reaction of 1-14 (81.6 mg, 0.33 mmol)
and 1,2,3-trimethoxybenzene (f, 54.8 mg, 0.66 mmol) in acetonitrile (3 mL) after 8 h
yielded compounds 3f (41 mg, 31%) and epi-3f (29 mg, 22%) as yellow oil.

3f (1R,ZS,ER,65)—2—(2’,3’,4’—trimethoxyphenyl)—6—(3lI,41I—metylenedioxyphenyt)—3,8—
dioxabicyclo [3.3.0] octane: 'H NMR (400 MHz, CDCl3) & 7.03 (d, J = 8.6 Hz, 1H), 6.89 —
6.75 (m, 3H), 6.64 (d, J = 8.6 Hz, 1H), 5.95 (s, 2H), 5.03 (d, J = 4.6 Hz, 1H), 4.67 (d, J =
5.7 Hz, 1H), 4.33 (dd, J = 8.9, 7.6 Hz, 1H), 4.21 (dd, J = 9.0, 6.6 Hz, 1H), 4.00 (dd, J = 9.1,
4.8 Hz, 1H), 3.94 — 3.88 (m, 4H), 3.87 (s, 3H), 3.85 (s, 3H), 3.05 (m, 1H), 2.97 (m, 1H). **C
NMR (101 MHz, CDCl5) & 153.4, 151.2, 148.1, 147.3, 142.4, 135.4, 128.0, 125.2, 120.3,
119.6, 108.3, 107.1, 106.7, 101.2, 85.6, 82.4, 73.2, 71.5, 60.9, 56.2, 54.8, 54.2, HRMS m/z
423.1431 [M+Na]" (calcd for Cy,H,qNaO5, 423.1420).

epi-3f (1R,ZR,ER,65)—2-(2',3',4'-trimethoxyphenyl)—6—(3lI,41I-metylenedioxyphenyl)—3,8-
dioxabicyclo [3.3.0] octane: 'H NMR (CDCls, 400 MHz) 6 7.21 (d, J = 8.6 Hz, 1H), 6.87-
6.76 (m, 3H, H-2', H-5', and H-6'), 6.67 (d, J = 8.6 Hz, 1H), 5.94 (s, 2H), 4.93 (d, J = 5.6
Hz, 1H), 4.37 (d, J = 8.0 Hz, 1H), 4.09 (d, J = 9.2 Hz, 1H), 3.92 (s, 3H), 3.86 (s, 6H), 3.83-
3.77 (m, 2H), 3.43 (m, 1H), 3.24 (m, 1H), 2.86 (m, 1H); >C NMR (CDCls, 100 MHz) & 153.2,
150.0, 148.1, 147.3, 141.8, 135.5, 124.4, 121.2, 119.7, 108.3, 107.0, 106.8, 101.2, 87.7,
78.6, 70.6, 69.9, 60.9, 60.8, 56.1, 55.0, 49.2; HRMS m/z 423.1431 [M+Na]* (calcd for
CoH,eNaO,, 423.1420).
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Following the above general procedure, reaction of 1-14 (46.8 mg, 0.19 mmol)
and 3,4-dimethoxyphenol (g, 58 mg, 0.37 mmol) in acetonitrile (2 mL) after 8 h yielded
compounds 3g (49 mg, 68%) and epi-3g (6 mg, 7%) as white powder.

3g (1R,ZS,ER,éS)—Z—(Z'—hydroxyl—41,5'—dimethoxyphenyl)—6—(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: 'H NMR (CDCls, 400 MHz) & 8.05
(brs, 1H, -OH), 6.87-6.77 (m, 3H), 6.46 (s, 1H), 6.42 (s, 1H), 5.95 (s, 2H), 5.01 (d, J = 6.0
Hz, 1H), 4.44 (d, J = 6.8 Hz, 1H), 4.19 (d, J = 9.6 Hz, 1H), 3.98 (t, J = 8.8 Hz, 1H), 3.88 (m,
1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.49 (dd, J = 8.4, 9.2 Hz), 3.40 (m, 1H), 2.91 (m, 1H); ">C
NMR (CDCls, 100 MHz) & 150.1, 149.8, 148.2, 147.5, 142.7, 134.8, 125.2, 119.8, 110.5,
108.4, 106.7, 101.9, 101.2, 87.7, 84.6, 71.9, 70.1, 57.0, 56.0, 53.7, 50.8; HRMS m/z
409.1275 [M+Na]* (calcd for CpyH,,NaO;, 409.1263).

epi-3g (1R,ZR,ER,65)—2-(2'-hydroxyl—ﬁl’,S'—dimethoxyphenyl)—6—(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: 'H NMR (CDCls, 400 MHz) § 7.71
(brs, 1H), 6.84-6.79 (m, 3H), 6.54 (s, 1H), 6.49 (s, 1H), 5.96 (s, 2H), 4.82 (d, J = 6.0 Hz,),
4.78 (d, J = 4.0 Hz), 4.36 (dd, J = 8.8, 7.2 Hz, 1H), 4.16 (dd, J = 9.6, 6.4 Hz, 1H), 3.92-3.86
(m, 2H), 3.84 (s, 3H), 3.82 (s, 3H), 3.21-3.14 (m, 2H); >*C NMR (CDCls, 100 MHz) & 150.3,
150.1, 148.2, 147.4, 142.6, 134.8, 125.2, 119.5, 111.2, 108.4, 106.7, 102.1, 101.3, 86.7,
85.6, 72.6, 70.8, 57.2, 56.1, 53.6, 53.2; HRMS m/z 409.1275 [M+Na]" (calcd for
C,H,,NaO-, 409.1263).
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Following the above general procedure, reaction of 1-14 (25.5 mg, 0.10 mmol)
and 1,3,5-trimethoxybenzene (h, 26 mg, 0.15 mmol) in acetonitrile (1 mL) after 8 h
yielded compound 3h (20 mg, 50%) as a colorless oil,

3h (1R.25,5R,65)-2-2 4 ,6 -trimethoxyphenyl)-6-3 4 -metylenedioxyphenyl)-3,8-
dioxabicyclo [3.3.0] octane: *H NMR (CDCls, 400 MHz) & 6.89 (s, 1H, H-2), 6.84 (d, J =
8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.13 (s, 2H), 5.95 (s, 2H), 5.42 (d, J = 6.0 Hz, 1H),
4.70 (d, J = 6.0 Hz, 1H), 4.25 (dd, J = 8.8, 6.8 Hz, 1H4), 4.16 (dd, J = 8.8, 7.2 Hz,), 3.85-
3.82 (m, 2H,), 3.81 (s, 3H), 3.80 (s, 6H), 3.49 (m, 1H), 3.07 (m, 1H); >C NMR (CDCl;, 100
MHz) & 161.3, 159.9, 159.9, 148.0, 147.1, 136.0, 119.6, 109.6, 108.3, 106.7, 101.1, 91.2,
91.2, 85.6, 78.3, 73.2, 72.2, 56.3, 56.0, 56.0, 55.5, 51.1; HRMS m/z 423.1417 [M+Na]*
(caled for Cy,HyqNaO5, 423.1420).
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Following the above general procedure, reaction of 1-14 (56.5 mg, 0.22 mmol)
and 3,5-dimethoxyphenol (i, 52 mg, 0.34 mmol) in acetonitrile (2 mL) after 8 h yielded
compounds 3i (41 mg, 47%) and epi-3i (44 mg, 51%) as white powder.

3i (1R,2S,5R,65)—2-(2'—hydroxyl—4’,6’—dimethoxyphenyl)—6-(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 8.96
(brs, 1H), 6.82-6.77 (m, 3H), 6.06 (d, J = 2.4 Hz, 1H), 6.01 (d, J = 2.4 Hz, 1H), 5.95 (s, 2H),
521(d,J=7.6Hz 1H), 4.81 (d, J = 4.0 Hz, 1H), 4.47 (dd, J = 9.2, 8.4 Hz), 4.13 (dd, J =
9.2, 2.8 Hz), 4.03 (dd, J = 9.2, 6.8 Hz), 3.79 (m, 1H), 3.76 (s, 6H), 3.19 (m, 1H), 3.01 (m,
1H); °C NMR (CDCls, 100 MHz) & 161.0, 158.0, 157.6, 148.2, 147.3, 134.9, 119.5, 108.3,
106.7, 105.0, 101.2, 94.6, 91.0, 84.2, 84.2, 72.7, 71.0, 55.5, 55.5, 54.8, 53.7, HRMS m/z
387.1449 [M+H]" (calcd for C,yH,504, 387.1444).

epi-3i (1R,ZR,SR,65)—2—(2'—hydroxyl—4’,6’—dimethoxyphenyl)—6—(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 9.15
(brs, 1H), 6.87-6.77 (m, 3H), 6.07 (d, J = 2.0 Hz, 1H), 6.00 (d, J = 2.4 Hz, 1H), 5.95 (s, 2H),
5.17 (d, J = 8.0 Hz, 1H), 4.40 (d, J = 7.2 Hz, 1H), 4.17 (d, J = 10.0 Hz, 1H), 3.91 (dd, J =
8.0, 8.0 Hz, 1H), 3.81 (dd, J = 9.6, 6.4 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.51-3.42 (m, 2H),
2.87 (m, 1H); *C NMR (CDCl5, 100 MHz) 6 160.9, 158.1, 157.4, 148.2, 147.5, 134.9, 119.8,
108.3, 106.8, 101.7, 101.2, 94.3, 90.8, 87.5, 81.9, 71.4, 70.3, 55.7, 55.4, 53.7, 49.6; HRMS
m/z [M+Na]* (calcd for C,,H,50, 387.1444).
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Following the above general procedure, reaction of 1-14 (116.6 mg, 0.46 mmol)
and 2,4,6-trimethoxyacetophenone (j, 196 mg, 0.92 mmol) in acetonitrile (5 mL) after

8 h yielded compound 3j (13 mg, 15%) as white solid.

3 (1R,2S,5R,65)—2-(3'—acety—Z',4’,6’—trimethoxyphenyt)—6-(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 6.88
(m, 3H), 6.27 (s, 1H), 5.95 (s, 2H), 5.23 (d, J = 6.0 Hz, 1H), 4.74 (d, J = 5.6 Hz, 1H), 4.31
(dd, J =9.2, 7.2 Hz, 1H), 4.13 (dd, J = 8.8, 7.6 Hz, 1H), 3.92-3.90 (m, 2H), 3.85 (s, 3H),
3.83 (s, 3H), 3.77 (s, 3H), 3.44 (m, 1H) 3.12 (m, 1H), 2.49 (s, 3H); *C NMR (CDCls, 100
MHz) 6 202.0, 160.6, 158.1, 157.8, 148.1, 147.2, 135.7, 119.7, 119.5, 108.3, 106.7, 101.2,
101.2, 92.0, 85.3, 79.1, 72.8, 72.6, 64.4, 56.0, 56.0, 55.9, 51.5, 29.8; HRMS m/z 465.1538
[M+Na]" (calcd for CyqH,NaOg, 465.1525).
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Following the above general procedure, reaction of 1-14 (39 mg, 0.16 mmol)
and 3,4,5-trimethoxyphenol (k, 44 mg, 0.24 mmol) in acetonitrile (1.6 mL) after 8 h
yielded compounds 3k (25.7 mg, 40%) and epi-3k (18.8 mg, 30%) as colorless oil.

3k (1R,2S,5R,65)—2-(2'—hydroxyl—4’,5',6’—trimethoxyphenyl)—6-(3",4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 8.58
(brs, 1H), 6.82-6.77 (m, 3H), 6.22 (s, 1H, H-3"), 5.95 (s, 2H), 5.12 (d, J = 7.6 Hz, 1H), 4.83
(d,J =3.6Hz, 1H), 4.49 (dd, J = 8.4, 8.4 Hz, 1H), 4.13 (dd, J = 9.6, 2.8 Hz, 1H), 4.04 (dd,
J=9.2,6.8Hz 1H), 3.90 (s, 3H), 3.81 (s, 3H), 3.80 (m, 1H), 3.79 (s, 3H), 3.22 (m, 1H), 3.03
(m, 1H); °C NMR (CDCls;, 100 MHz) & 153.9, 152.1, 150.9, 148.2, 147.3, 135.2, 134.7,
119.5, 109.1, 108.4, 106.8, 101.2, 97.0, 84.4,84.2, 72.9, 70.8, 61.1, 60.9, 56.0, 54.7, 53.7,
HRMS m/z 439.1366 [M+Na]" (calcd for C,,H,4NaQg, 439.1369).

epi-3k (1R,ZR,SR,65)—2—(2'—hydro><yl—4’,5',6’—trimethoxyphenyl)—6—(3”,4”—
metylenedioxyphenyl)-3,8-dioxabicyclo [3.3.0] octane: "H NMR (CDCls, 400 MHz) & 8.87
(brs, 1H), 6.87 (s, 1H), 6.83-6.77 (m, 2H), 6.21 (s, 1H), 5.95 (s, 2H), 5.15 (d, J = 4.0 Hz, 1H),
4.40(d, J=4.0Hz 1H),4.18 (d,J = 10.0 Hz, 1H), 3.92 (m, 1H), 3.90 (s, 3H), 3.82 (s, 3H),
3.79 (m, 1H), 3.78 (s, 3H), 3.48-3.43 (m, 2H), 2.90 (m, 1H); >C NMR (CDCls, 100 MHz) &
153.8, 152.6, 150.2, 148.2, 147.5, 135.0, 134.8, 119.8, 108.3, 106.7, 105.7, 101.2, 96.8,
87.5, 82.0, 71.4, 70.3, 61.1, 60.9, 55.9, 53.8, 50.2; HRMS m/z [M+Na]® (calcd for
C,,HpaNaOg, 439.1369).
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3.3.2 Synthesis of sesaminol and epi-sesaminol

Sesaminol (1-3) and epi-sesaminol (1-22) were obtained from acid catalysis of
sesamolin (1-2) using the following procedure: To a solution of sasemolin (1-2, 82 mg,
0.221 mmol) in acetonitrile (2.5 mL) was treated with amberlyst®-15 (40 mg) and 4 A
MS. After stirring at 70°C for 5 h, the reaction mixture was evaporated to dryness and
purified by column chromatography (SiO,, 30:70 EtOAc-Hexane) yielded sesaminol (1-
3, 66 mg, 80%) and epi-sesaminol (1-22, 11 mg, 13%) as white powder.
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Saseminol (1-2): 'H NMR (CDCls, 400 MHz) & 7.76 (brs, 1H), 6.83-6.78 (m, 3H),
6.51 (s, 1H), 6.45 (s, 1H), 5.96 (s, 2H), 5.89 (s, 2H), 4.77 (d, J = 4.0 Hz, 2H), 4.35 (dd, J =
8.8, 7.6 Hz, 1H), 4.14 (dd, J = 9.2, 6.0 Hz, 1H), 3.89-3.83 (m, 2H), 3.18-3.11 (m, 2H); °C
NMR (CDCls, 100 MHz) & 150.9, 148.3, 148.2, 147.4, 141.1, 134.7, 125.2, 119.5, 115.2,
108.4, 106.7, 106.3, 101.3, 99.6, 86.7, 85.5, 72.6, 70.7, 53.5, 53.1; HRMS m/z 393.0962
[M+Na]" (calcd for CyoH,gNaO-, 393.0950).

epi-sesaminol (1-22): 'H NMR (CDCls, 400 MHz) & 8.17 (brs, 1H), 6.87-6.77 (m,
3H), 6.42 (s, 1H), 6.40 (s, 1H), 5.96 (s, 2H), 5.90 (s, 2H), 4.97 (d, J = 5.9 Hz, 1H), 4.41 (d, J
= 7.0 Hz, 1H), 4.17 (d, J = 10.0 Hz, 1H), 4.00 (dd, J = 9.2, 8.8 Hz, 1H), 3.84 (dd, J = 9.6,
6.4 Hz, 1H), 3.49 (dd, J = 9.2, 8.4 Hz, 1H), 3.37 (m, 1H), 2.89 (m, 1H); °C NMR (CDCls, 100
MHz) & 150.8, 148.2, 147.9, 147.5, 141.2, 134.7, 119.8, 112.1, 108.3, 106.7, 105.8, 101.3,
101.2, 99.4, 87.7, 84.5, 71.9, 70.1, 53.6, 50.7; HRMS m/z 393.0946 [M+Na]" (calcd for
CooH1gNaO-, 393.0950)



CHAPTER IV
BIOLOGICAL ACTIVITY EVALUATION

4.1 Investigation of antioxidant activity

The antioxidant activity of synthesized furofuran lignans was evaluated in order
to get insight into the structure-antioxidant activity relationship. The antioxidant activity
was evaluated based on free radical scavenging againt DPPH and ABTS. In DPPH
bioassay, the antioxidant activity was measured in term of hydrogen atom transfer
(HAT) capability to DPPH radical. On the other hand, ABTS analysis is based on a single

electron transfer (SET) capability.

The synthesized compounds showed variation in antioxidant activity (Table
4.1). Generally, furofuran lignans having one hydroxyl group (namely 3a, 3e, 3g, 3i, 3k,
1-3 and 1-22 along with their epimers) showed highly potent activity with SCs, values
in range 0.22 — 1.45 mM and 0.15 - 0.41mM toward DPPH and ABTS, repectively. On
the other hand, furofuran lignans contaning no free hydroxy group reveled low or no
scavenging activity. These results indicated that the presence of a free hydroxyl group
on the phenolic moiety was particularly important for scavenging potency compared
to methoxy (-OCH;) and methyl (-CHs) groups. These observations were examplified by
3i and 3h along with their epimers, whose structures process one and no hydroxy

group, respectively.

Of synthesized compounds, the most potent antioxidant compound toward
DPPH" and ABTS"radicals was 3e along with epimer (Figure 4.1). The antioxidant
potency of 3e and epimer over the other products was mainly illustrated by low O-H
bond dissociation enthalpies (BDE) that facillate direct hydrogen tranfer to radical as
well as intramolecullar hydrgen bonding between hydroxyl and methoxy groups at

ortho-postition on phenolic moiety.[24].



Table 4.1 Radical scavenging capability of furofuran lignans

Radical scavenging (SCs,, mM)

Compound
DPPH ABTS
1-2 NA? NA
1-14 NA NA
3a NA 0.34
epi-3a NA 0.20
3b NA NA
epi-3b NA NA
3c NA NA
3c' NA NA
epi-3c' NA NA
3d NA NA
epi-3d NA NA
3e 0.34 0.22
epi-3e 0.17 0.15
3f NA NA
epi-3f NA NA
3g 0.41 0.34
epi-3g 0.22 0.37

3h NA NA




Table 4.1 (Cont.) Radical scavenging capability of furofuran lignans

Radical scavenging (SCs,, mM)

Compound

DPPH ABTS

3i NA 0.31
epi-3i NA 0.25

3j NA NA

3k 2.3 0.41
epi-3k 1.45 0.40
1-3 0.65 0.39
1-22 0.42 0.35
BHT 1.56 0.14

® Not active; %inhibition less than 30% at highest

concentration (1 mg/mL) examined
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Figure 4.1 Antioxidant activity of particular furofuran lignans
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4.2 Ol-Glucosidase inhibitory activity and kinetic analysis

Glucosidase inhibitory activity of all synthesized furofuran lignans was also
evaluated againt rat intesinal maltase and and, the results expressed as ICso, are
summarized in Table 4.2 . Among synthesized products, the componds having free
hydroxy group on phenolic moiety (namely 3a, 3e, 3g, 3i, 3k, 1-3 and 1-22 along with
their epimer) exhibited potent inhibition against maltase with ICs, values in the
milimolar concentration rang of 1.14 — 8.23 mM whereas the weaker inhibitory effects
were observed in sucrase (3.13 — 18.89 mM) (Figure 4.2). The results suggested that
hydroxy group was critical for enzyme inhibition, possibly through hydrogen bonding
between hydroxy group and amino group residue of enzyme [25]. Noticeably, epimeric
analogs revealed slightly enhanced inhibition than their congener; for example the

inhibition against maltase of 1-22 (ICsy 1.14 mM) vs 1-3 (IG5, 3.42 mM).

Table 4.2 a-Glucosidase inhibitory effect of synthesized furofuran lignans

a-Glucosidase inhibitory effect

Compound (1Cs0, mM)
Maltase Sucrase
1-2 NA? NA
1-14 NA NA
3a 8.23 14.67
epi-3a 7.01 8.52
3b NA NA
epi-3b NA NA
3c NA NA
3¢’ NA NA
epi-3c' NA NA
3d NA NA

epi-3d NA NA




Table 4.2 (Cont.)  a-Glucosidase inhibitory effect of synthesized furofuran

lignans

a-Glucosidase inhibitory effect

Compound (1Csp, mMM)
Maltase Sucrase
3e 2.15 3.83
epi-3e 1.52 3.13
3f NA NA
epi-3f NA NA
3g 5.59 8.21
epi-3¢ 2.44 3.30
3h NA NA
3 a.67 18.89
epi-3i 2.98 11.1
3j NA NA
3k 3.36 3.59
epi-3k 1.31 3.84
1-3 3.42 6.90
1-22 1.14 4.01
Acarbose® 0.0015 0.0023

® Not active; % inhibition less than 30% at highest

concentration (0.0625 mg/mL) examined
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Figure 4.2 a-glucosidase inhibitory activity of active furofuran lignans

epi-Sesaminol (1-22), the most potent a-glucosidase inhibitor was further
studied for enzyme kinetic by Lineweaver-Burk plot to gain insight into mode of
inhibition. The Lineweaver - Burk plot was generated from initial velocity values (1/V)
displayed on the Y-axis, and maltose concentration (1/ [maltose]) on the X-axis in the
presence and absence of various concentrations of 1-22. This plot gave a series of
straight lines; all of which intersected in the second quadrant, as shown in Figure 4.3.
The analysis showed that V., decreased with increasing K, in the presence of
increasing concentrations of 1-22. This behavior indicated that 1-22 inhibited maltase
in a mix-type manner (Table 4.3) through two different pathways, competitively
forming enzyme-inhibitor (El) complex and interrupting enzyme-substrate (ES)
intermediate by forming enzyme-substrate-inhibitor (ESI) complex in noncompetitive

manner (Scheme 4.1).
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Table 4.3 The K, and V., profile of enzyme inhibition

Lineweaver-Burk plot

Mode of inhibition

K V max
competitive increased unaffected
noncompetive unaffected reduced
uncompetitive reduced reduced
mix increased or reduced

reduced
0.09
0.08

! min.mg protein)

« No inhibitor

1V (Frhot

A [11=01mg/mL

8 1 m [] = 1 mg/mL

-3 -2.5 -2 -1.5 -1 0.5 0.5 1 1.5 2
-0.01 4

1/[maltose] mm™

Figure 4.3 Lineweaver-Burk plot for inhibitory activity of epi-sesaminol (1-22) against

rat intestinal maltase

E ES——E + P

, m
K =029 K =048
I

]

El ESI

Scheme 4.1 Putative mechanism pathway for mixed type reversible inhibition of 1-

22 E, S, | and P are maltase, maltose, 1-22 and glucose, respectively.
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To gain insight into preferential pathway of 1-22 to proceed, binding affinities
of El and ESI complex were investigated through dissociation constants K; and K;,
respectively. The secondary replot of slope versus concentration of 1-22 revealed the
Ki, value of 0.29 mM (Figure 4.4) while that of intercept versus concentration of 1-22
yielded the K; value of 0.48 mM (Figure 4.5). From this result, K; value was 0.6 times
smaller than K;, suggesting that 1-22 predominantly inhibited maltase by competitive

forming of El complex over noncompetitive manner.

003

0.02
. /
aQ
S

0.01 4

0 T T T 1
0 0.05 0.1 0.15 0.2

[epi-sesaminol] mM

Figure 4.4 The secondary replot of slope (Vi/Ky) versus [epi-sesaminol] for

determine the K. value

0.1 4

0.05 -

L

O T T 1
0 0.06 0.12 0.18

intercept

[epi-sesaminol] mM

Figure 4.5 The secondary replot of intercept versus [epi-sesaminol] for determine the

K. value
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From biological acitivity results, the hydroxy group on phenolic moiety played
an important role in enhancing both antioxidant acitivity and a-glucosidase inhibition
activity (Figure 4.6). Additonally, the relation between structure of furofuran lignan and
above biological activity SAR could be sumarized in Figure 4.7: (a) stereochemistry at
C-2, almost epimeric products (endo-exo) reveal more slightly potent inhibition than
their isomeric products (exo-exo) and (b) type of substitutent on phenolic moiety,
hydroxyl groups contribute to more potent inhibition than other substituent groups

(e.g. -OMe and -Me), possibly attribute to hydrogen bonding ability.

f S
20 = \\\
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:  A.S§ NRR S
£ e - S %\ = N
\./10 i S . 3__\ -
0 RS SASANS S s
0
S 8 & & & JFd® BH F S D
A T T

[T DPPH %z ABTS 2Z£ Maltase %4 Sucrase

Figure 4.6 Antioxidant activity and a-glucosidase inhibitory activity of particular active

furofuran lignans

endo-exo conformer enhance bioactivity

than exo-exo conformer

hydroxy group has potent inhibiton againt

-0 maltase over subsitutient group (e.g.fOCH3

and -CH )
3

Figure 4.7 General SAR of furofuran lignans
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4.3 Experimental section
4.3.1 Free radical scavenging activity
4.3.1.1 DPPH assay

The sample solution (20 pL at concentrations of 0.008, 0.04, 0.2 and 1
mg/mL in DMSO) was added to 0.1 mM methanolic solution of DPPH (180 pL). Then,
the mixture was kept dark at room temperature for 15 min. The absorbance of the
resulting solution was measured at 517 nm with 96-well microplate reader (Bio-Red
microplate reader model 3550 UV). The percentage scavenging (%SC) was calculated
by [(A;-A1)/Ag] x 100, where A, is the absorbance without the sample, and A; is the
absorbance with the sample. The SCs, value was determined from a plot of percentage
inhibition versus sample concentration by sigmaplot programme. Butylated
hydroxytoluene (BHT) was used as standard control and the experiment was

performed in triplicate.

ArOH (antioxidant)

ON ON
2 . )
ArO
2,2-diphenyl-1-picrylthydrazyl 2,2-diphenyl-1-picrylthydrazyl
free radical (DPPH) (DPPH)
Purple, 517 nm Colorless

4.3.1.2 ABTS assay

ABTS™ radical cation was produced by mixing 10 mL of 7.4 mM ABTS
with 0.5 mL of 2.6 mM potassium persulphate (K,S,0g) for 16 h in the dark at room
temperature. The ABTS+" stock solution was diluted with ethanol to an absorbance of
0.70 + 0.02 at 750 nm. The synthesized compound (20 ulL) was mixed with 80 pL of
diluted ABTS™ solution. After 2 h of incubation, the absorbance was determined at 750
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nm. The percentage inhibition could be calculated using in the above expression.
Butylated hydroxytoluene (BHT) was used as standard control and the experiment was

performed in triplicate.

+

SO,H SO H
e N S ‘e N
N N= KSO °N N—
5= O
HO3S S ) HO3S S )
ABTS ABTS' "
colorless blue-green, 750 nm

single electron L.
ArOH (antioxidant)

transfer

ABTS
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4.3.2 a -Glucosidase inhibitory activity and enzyme kinetic
4.3.2.1 a-Glucosidase inhibitory activity

The inhibitory activity of the test compounds against a-glucosidases
from rat intestine (as maltase and sucrase) was based on glucose oxidase colorimetric
method. Maltase and sucrase was obtained from rat intestinal acetone powder (Sigma,
St.Louis). The rat intestinal acetone powder (1 ¢) was homogenized with 30 mL of 0.9%
NaCl solution. The aliquot containing both maltase and sucrase was obtained upon
centrifugation (12,000 rpm) for 30 min. The suppression aqueous layer (maltase and
sucrose) was collected to test inhibitory activity of compound. To evaluate inhibition
potential, a 10 pL of synthesized compounds (1 mg/mL in DMSO) was added with 30
uL of the 0.1 M phosphate buffer (pH 6.9), 20 uL of the substrate solution (maltose:
10 mM; sucrose: 100 mM) in 0.1 M phosphate buffer, 80 uL of glucose assay kit, and
20 pL of the crude enzyme solution. The reaction mixture was then incubated at 37
°C for 10 min (for maltose) and 40 min (for sucrose). Enzymatic activity was quantified
by measuring the absorbance at 500 nm. The percentage inhibition was calculated by
following equation: Inhibition (%) = [(AbS ool = ADScontrot blank)~(ADSsample = ADSgampte blank)
/ [(ABS ontrol = AbScontrol blank] X 100. Acarbose® was used as standard control and the

experiment was performed in triplicate.

OH
. OH OH O
-gll d E o) H O
Sucrose/Maltose o5 O>19aE HO\/'\/'\/”\H 2, + Hﬂm
OH OH  slucose oxidase Hydrogen peroxide OHO

D-glucose D-gluconolactone
OH peroxidase
O 0
N
N A
i, - C O
/ ) o
4-aminoantipyrine phenol quinoimine

Figure 4.8 Principle of a-glucosidase inhibitory activity based on glucose oxidase

colorimetric method
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4.3.2.2 Kinetic study of a-glucosidase inhibition

The mode of inhibition for a-glucosidase was investigated with
increasing concentrations of maltose in the presence or absence of epi-sesaminol. The
inhibition type was determined by pattern a series straight of Lineweaver—Burk plots
(1/V versus 1/[maltose]). For two secondary replots, they were constructed from slop
of Lineweaver-Burk plots versus [epi-sesaminol] and intercept vesus [epi-sesaminol],

repesctively by following express equation [26].

Lineweaver-Burk plots equation:

= = Sl 1)
\ \Y

max [S] Vmax

Secondary replots can be constructed as

K K[l
slope= 4y — (2)
max VimaxKi
and
1 1
Y-intercept= + : [1] (3)

maXapp



CHAPTER V
CONCLUSION

A series of furofuran lignans having different substituents at C-2 of furofuran
core structure were synthesized by coupling of samin and phenolic compounds via
Fridel-Crafts type reaction under acid-catalyzed condition. Samin, as versatile starting
material, was obtained from naturally available sesamolin derived by saponification of
sesame oil followed acid hydrolysis reaction. This present methodology allowed to
synthesize various furofuran lignans with good yields compared with total synthesis.
Moreover, the substituent position on phenolics were contributed to the yield of
product; the strong electron donating group (-OH or —OCH;) arranged meta-position
enhance reaction proceeded with in high yield of products. For biological activity, the
free hydroxyl on phenolic moiety is critical to enhance biological activity both
antioxidant activity and a-glucosidase inhibition activity, especially 3a, 3e, 3g, 3i, 3k, 1-
3 and 1-22 along with their epimers. From enzyme kinetics study, the mode of
inhibition of the furofuran lignans was predominantly competitive against maltase. The
present results indicated that this methodology is alternatively efficient method for
synthesis of active furofuran lignans, which played the important role in prevention or

treatment of diabetic mellitus type II.
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