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INTRODUCTION 

This chapter presents the key motivation and significance of the present study and 
then provides a summary resulting from an extensive review of background and 
advances in the modeling and analysis of fractures in piezoelectric media. Next, the 
main objectives, scope of work, methodology, and research procedure are briefly 
summarized. Finally, the expected outcome and contribution of the present work is 
addressed. 

1.1 MOTIVATION AND SIGNIFICANCE 

Nowadays, applications of piezoelectric materials have been increasingly found in 
many disciplines including industries and engineering field due to their strong electro-
mechanical coupling effects. These materials have been found in many parts and 
components of modern tools and devices such as sensors and actuators (e.g., sonar, 
ultra-precision positioner, ultrasonic cleaner, ink jet print head, etc.) and transmitters 
(e.g., remote control of vehicles and cellular phones) (see for examples, Birman et al., 
1999; Cai et al., 2001; Denda and Mansukh, 2005). Besides their attractive/desirable 
characteristics, it has been also known that most of available piezoelectric materials 
possess brittle failure mechanism and are exposed to fractures since they have 
relatively low fracture toughness. This, as a result, renders components, devices and 
tools made from this class of smart materials prone to fracture-induced 
damages/failures during their applications. Analysis, assessment, and design to avoid 
such undesirable failures are therefore essential and this obviously necessitates 
extensive investigations to understand fundamental fracture behavior and related 
damage/failure mechanisms of piezoelectric materials. 
 Two well-known approaches, namely the experimental investigations and 
mathematical simulations, have been widely employed to explore the fundamental 
fracture characteristics of piezoelectric solids (e.g., Shindo et al., 2007; Okayasu et al. , 
2010; Lee et al., 2011). Although results obtained from the first group can yield reliable 
information reflecting the real response and behavior, such findings are highly 
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dependent on testing parameters/environments controlled in laboratories and, in 
addition, costs associated with testing equipment, materials, and preparing of 
specimens can be very demanding. Therefore, applications of those experimental 
observations to different/practical/large-scale scenarios can be quite limited. As the 
direct consequence, the mathematical modeling and simulations have become an 
attractive alternative and have been extensively utilized together with the proper 
governing physics and a set of basic experiments essential for modeling calibrations, 
to examine the fracture phenomena in piezoelectric media. 
 Mathematical models based upon a classical theory of linear piezoelectricity 
and linear fracture mechanics have been found well-suited and adequate for the 
physical simulations with a wide range of practical situations (see, for examples, the 
work of Pan (1999), Xu and Rajapakse (2001), Sanz et al. (2005), Wippler and Kuna 
(2007), Rungamornrat and Mear (2008a), Solis et al. (2009), and Rungamornrat et al. 
(2015)). However, most of previous studies have focused primarily on electric and stress 
intensity factors, which are essential fracture parameters completely characterizing the 
first singular part of an asymptotic near-front expansion of the electric induction and 
stress fields. As being well recognized, these parameters have been often utilized in 
the simulations of crack initiation and the path of crack advances. Recently, an 
important issue related to the role of the non-singular part in the near-front expansion, 
especially a constant term representing the uniform generalized stress acting along the 
crack plane (generally termed a generalized T-stress), on the fracture behavior of 
piezoelectric media arises. Several investigators, who studied the influence of T-stress 
on the near-front characteristics of cracks in a linearly elastic medium, pointed out 
that the T-stress strongly influences the shape and size of a plastic zone embedding 
the crack front (e.g., Larsson and Carlsson, 1973; Rice, 1974; Ueda et al., 1983, Du and 
Hancock, 1991), the hydrostatic tri-axiality of the stress field ahead of the crack 
boundary (e.g., Bilby et al., 1986; Du and Hancock, 1991), the fracture toughness (e.g., 
Williams and Ewing, 1972; Hancock et al., 1993; Ayatollahi et al., 1998; Smith et al., 
2001; Tvergaard, 2008) and the direction of crack advances (e.g., Cotterell, 1966; 
Williams and Ewing, 1972; Ueda et al., 1983). Those findings have confirmed that 
ignorance of the T-stress data (i.e., the non-singular, constant term in the near-front 
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expansion) in the modeling can lead to inaccurate results or potentially mislead the 
conclusion. It is, therefore, essential to integrate the T-stress data in the fracture 
modeling and simulations and, as a result, the precise determination of such essential 
fracture information is a prerequisite. 
 Techniques based upon boundary integral equations are among numerical 
procedures that have been proven accurate and computationally efficient for 
modeling cracks in linear homogeneous media. A positive feature of this group of 
methods (over many domain-based approaches such as finite difference, finite 
element, and finite volume methods) is that the key governing equations contain only 
unknowns on the domain boundary and the surface of discontinuities and, as a result, 
the discretization of the boundary is only required instead of the whole domain. This 
apparently eases both the solution approximation and the generation/adaptation of 
meshes. These positive features, therefore, render the boundary-based methods 
efficient and attractive for analysis of linear fracture problems. While applications of 
this group of techniques to the linear piezoelectric fracture modeling has been 
recognized in the literature for the past three decades, existing techniques still have 
limited capabilities in the analysis for the generalized T-stress and it is required further 
investigations. 

1.2 BACKGROUND AND REVIEW 

Mathematical modeling of piezoelectric materials is a challenging task since this solid 
exhibits strong coupling between electrical and mechanical fields as well as their 
anisotropic behavior. Furthermore, the complexity of problems can significantly 
increase when the surface of displacement discontinuities such as dislocations and 
cracks are additionally present within the medium. In particular, the mechanical and 
electrical fields estimated by the classical linear theory of piezoelectricity become 
infinite along the boundary of discontinuities and also exhibit the rapid variation in a 
region embedding the discontinuities. 
 While various analytical techniques have been proposed to study fractures in 
linear piezoelectric media, most of existing investigations are limited only to simple 



 

 

4 

scenarios, such as simple crack geometries, simple loading conditions, and an infinite 
medium, due to the nature of the solution procedure (e.g., Park and Sun, 1995; Xu and 
Rajapakse, 1999; Chen and Shioya, 1999; Chen and Shioya, 2000; Chen et al., 2000; Xu 
and Rajapakse, 2001; Wang and Jiang, 2002; Wang and Mai, 2003; Li and Lee, 2004; 
Chen and Lim, 2005; Chiang and Weng, 2007; Li et al., 2011). To overcome the 
limitation of the analytical techniques and due to the increasing need to model 
complex and large-scale fracture problems, numerical techniques have been 
continuously established and become an attractive alternative as a result of their vast 
features and potential capability to treat problems within general settings (e.g., Pan, 
1999; Rajapakse and Xu; 2001; Davi and Milazzo, 2001; Chen, 2003; Zhao et al., 2004; 
Sanz et al., 2005; Groh and Kuna, 2005; Rungamornrat and Mear, 2008; Wippler and 
Kuna, 2007; Qin et al., 2007; Solis et al., 2009; Phongtinnaboot et al., 2011). 
 Nevertheless, most of existing analytical, semi-analytical, and numerical 
procedures established for performing the analysis of linear piezoelectric fracture 
problems have focused mainly on the calculation of electric and stress intensity factors 
(see an extensive review of relevant studies in the work of Rungamornrat and Mear, 
2008a; Phongtinnaboot, 2011; Phongtinnaboot et al., 2011; Rungamornrat et al., 2015). 
Relatively few studies concerning the generalized T-stress have been found and, 
unfortunately, most of them have restricted to two-dimensional boundary value 
problems (e.g., Zhu and Yang, 1999; Hao and Biao, 2004; Zhong and Li, 2008; Viola et 
al. , 2008; Liu et al., 2012). In particular, Zhu and Yang (1999) applied Stroh formalism 
together with the dislocation theory to obtain the generalized T-stress of an 
impermeable straight crack in a two-dimensional, homogeneous, linear piezoelectric 
infinite body under remote mechanical and electrical loading conditions. They also 
concluded that the generalized T-stress significantly affects the crack-kinking angle. 
Later, Hao and Biao (2004) used the principle of superposition and the Plemelj 
formulation to derive an analytical solution of the generalized T-stress for an 
impermeable straight crack embedded in a transversely isotropic, linear piezoelectric 
unbounded domain subjected to the uniform remote mechanical and electrical 
loading conditions. Results from their study indicated that the generalized T-stress 
depends strongly on both elastic and electric material constants. Later, Zhong and Li 



 

 

5 

(2008) reported the exact solution of the generalized T-stress for a semi-permeable 
Griffith crack in two-dimensional, transversely isotropic, linear piezoelectric solids with 
the influence of the magnetic field. In the analysis, a conventional method of Fourier 
transform was employed, and they found that the generalized T-stress in this coupling 
media is significantly different from that of the elastic material. In the same year, Viola 
et al. (2008) developed an analytical technique to investigate the contribution of non-
singular terms on the electro-mechanical fields of a Griffith crack in two-dimensional, 
transversely isotropic, linear piezoelectric, unbounded media under uniform remote 
loading for three different types of crack-face conditions (i.e., electrically permeable, 
impermeable, and semi-permeable conditions). They concluded in this study that the 
non-singular terms, induced by the biaxial loading, has the considerable influence on 
the hoop stress, the elastic and electric displacements, and the stress components 
collinear to the crack. In addition, it was also pointed out that ignorance of the non-
singular terms can mislead the prediction of the propagation direction since the 
influence of the bi-axiality of the applied load is neglected. Recently, Liu et al. (2012)  
employed a complex potential theory to construct the analytical solutions of both 
electric and elastic fields of an elliptical hole in a two-dimensional, transversely 
isotropic, linear piezoelectric infinite medium under the permeable condition, the 
uniform internal pressure, and the remote electro-mechanical loadings. Results for the 
limiting case, i.e., a straight crack, were also obtained. By comparing the obtained 
results with those from the work of Viola et al. (2008), it was confirmed that the non-
singular terms play a crucial role on behavior of the near-front stress and electric 
induction. 
 Most recently, Subsathaphol (2013) and Subsathaphol et al. (2014) successfully 
developed a computational technique based on the weakly singular, boundary integral 
equation method and standard Galerkin procedure to calculate the generalized T-
stress components of arbitrarily-shaped cracks in a three-dimensional, anisotropic, 
linear piezoelectric, whole space. While their proposed technique has been found 
computationally efficient and yielded highly accurate numerical solutions, their work 
is still restricted to cracks under electrically impermeable boundary conditions. The 
development based only on the impermeable crack-face condition, which is one of 



 

 

6 

several types of electrical boundary conditions commonly employed in simulations of 
cracks in piezoelectric media (see extensive review in the work of Rungamornrat et al., 
2015) poses the major limitation of the modeling capability. As pointed out by several 
investigators such as Dunn (1994), Sosa and Khutoryansky (1996), Gao and Fan (1999), 
McMeeking (2001) and Ou and Chen (2003), the impermeable crack-face model is not 
appropriate for simulating actual cracks and may lead to inaccurate and erroneous 
prediction of the near-front electric/mechanical fields. 
 On the basis of an extensive literature review, the development of numerical 
techniques for calculating the generalized T-stresses of general cracks in a three-
dimensional, linear piezoelectric body capable of treating several types of crack-face 
conditions such as electrically permeable, electrically impermeable, electrically semi-
permeable, and energetically consistent crack-face conditions has not been found at 
least in the context of the fracture analysis by boundary integral equation methods. 
This significant gap of knowledge requires further investigations and it motivates the 
present study. 

1.3 OBJECTIVES 

The main aims of this study are (i) to establish an accurate and efficient numerical 
procedure based upon the weakly singular boundary integral equation method for 
determining the generalized T-stress components of cracks in three-dimensional 
piezoelectric media subjected to different types of crack-face conditions and (ii) to 
investigate the accuracy, convergence, and capability of the developed technique. 

1.4 SCOPE OF RESEARCH 

The present study is limited to (i) a three-dimensional infinite medium that is made 
from homogeneous, anisotropic, linear piezoelectric materials and free of the body 
electrical charge and body force, (ii) a body subjected to uniform remote 
electrical/mechanical loadings and arbitrarily distributed prescribed crack-face 
generalized tractions, (iii) a piecewise smooth crack surface, and (iv) a crack subjected 
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to either electrically permeable, electrically permeable, electrically semi-permeable, 
or energetically consistent crack-face conditions. 

1.5 METHODOLOGY AND PROCEDURE 

The present study mainly involves the development of a computational technique, 
based upon a regularized boundary element method and standard Galerkin technique 
for modeling fractures in linear piezoelectric media under different crack-face 
conditions. Three main tasks including the formulation of governing equations, the 
numerical implementations, and verification of the developed technique with various 
benchmark cases are carried out. Fundamental theories, key assumptions, research 
methodology, and research procedures employed in the current investigation are 
described as follows: 

1) Basic field equations (e.g., conservation laws, constitutive laws, and 
kinematics) follow a classical theory of linear piezoelectricity. 

2) Four different crack-face models (i.e., electrically permeable, electrically 
impermeable, electrically semi-permeable, and energetically consistent 
conditions) are employed to simulate the crack-face condition. 

3) A set of standard boundary integral relations for both the generalized 
stresses and generalized displacements, resulting from the generalization of 
Somigliana’s identity, is utilized in the formulation of governing integral 
equations. 

4) A systematic regularization procedure suggested by Rungamornrat and Mear 
(2008b) is applied to obtain a set of singularity-reduced boundary integral 
relations/equations for cracks in anisotropic, linear piezoelectric, whole 
space without remote loadings. 

5) The influence of remote electrical/mechanical loadings is incorporated into 
the formulation by using a superposition technique. 

6) A system of completely regularized integral equations governing the 
unknown jump in and sum of the crack-face generalized displacements is 
formulated using results obtained from 4). 



 

 

8 

7) A weakly singular boundary element method is implemented to solve the 
governing boundary integral equation for the jump in the crack-face 
generalized traction to obtain the unknown jump in the crack-face 
generalized displacements. To enhance the accuracy of the near-front 
approximation, special interpolation functions proposed by Rungamornrat 
and Mear (2008a, b) are utilized to approximate the jump in the crack-face 
generalized displacements in the local region adjacent to the crack front. 

8) A discretized system of linear equations obtained from the approximation 
of the boundary integral equation for the jump in the crack-face generalized 
tractions is sufficient for solving the unknown jump in the crack-face 
generalized displacements along the crack front for both impermeable and 
permeable cracks. For semi-permeable and energetically consistent cracks, 
additional nonlinear equations are obtained by weakly enforcing the crack-
face conditions using a standard weighted residual technique. The combined 
system of linear and nonlinear algebraic equations is then solved by 
Newton-Raphson iterative scheme. 

9) Once the jump in the crack-face generalized displacements and other 
involved unknowns are obtained for any type of crack-face conditions, the 
sum of the generalized displacements is then obtained by solving the 
weakly singular, weak-form generalized displacement boundary integral 
equation via a standard Galerkin procedure. 

10) An explicit formula for computing the generalized T-stress under four types 
of crack-face conditions is established in terms of the gradient of the sum of 
the crack-face generalized displacement along the crack front. 

11) An in-house computer code is implemented to compute the generalized T-
stress of general cracks in three-dimensional, linear piezoelectric, whole 
space. 

12) An implemented computer code is verified by benchmarking computed 
numerical results with available analytical and reliable reference solutions. 
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1.6 EXPECTED OUTCOME AND CONTRIBUTION 

The proposed investigation offers an accurate and efficient computational procedure 
that is capable of calculating the generalized T-stress of general cracks in a three-
dimensional, fully anisotropic, linear piezoelectric, unbounded medium under various 
crack-face conditions. The proposed technique has been developed in a general 
framework allowing the treatment of general crack geometry, material anisotropy, and 
loading and boundary conditions. The technique with such vast features should be 
potentially useful as a simulation tool for the modeling of crack advances with growth 
laws integrating the influence of non-singular terms. In addition, this present research 
should also provide a fundamental basis for the possible extension of existing 
computational techniques to model more complex problems such as cracks 
embedded in a body of finite dimensions or a body made of coupled/multi-field 
materials. 
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PROBLEM FORMULATION 

This chapter briefly summarizes basic field equations obtained from the classical 
theory of linear piezoelectricity, different types of crack-face boundary conditions, the 
clear description of a boundary value problem, and the development of singularity-
reduced boundary integral equations governing unknown data on the crack surface. 

2.1 BASIC FIELD EQUATIONS 

From a classical theory of linear piezoelectricity, laws of conservation, kinematics, and 
constitutive relations governing all field quantities can be expressed in following forms 
 

, ,0 ;  0ij i i jD    (2.1) 

 , , ,

1
 ;  

2
ij i j j i i iu u E      (2.2) 

 ;  ij ijkm km mij m i ikm km im mE e E D e E        (2.3) 
 
where iu , 

ij  and 
ij  represent components of the displacement vector, the stress 

tensor, and the strain tensor, respectively;  , iD  and iE  denote the electric potential, 
components of the electrical induction vector, and components of the electrical field, 
respectively; 

ijkmE , im  and 
mije  denote elastic moduli, dielectric permittivity and 

piezoelectric constants of the medium, respectively; a notation 
,if  stands for / if x  ; 

and a standard rule for an indicial notation applies throughout (i.e., any lower-case 
index takes the values 1, 2, 3 and repeated or dummy indices indicate the summation 
over their range). For brevity in the presentation of all involved equations and the 
development presented further below, above field equations are rewritten in a more 
concise form, following the work of Rungamornrat and Mear (2008), as 
 

, 0iJ i   (2.4) 

,iJ iJKm K mE u   (2.5) 
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where any lower case index still follow the same rules described above; any upper-
case index takes the value 1, 2, 3 and 4 and any repeated or dummy upper-case index 
indicates the summation over its range; iJ  are termed components of the generalized 
stress which combine components of the stress tensor 

ij  and components of the 
electrical induction vector iD  by setting 4i iD   ; Ku  are termed components of the 
generalized displacement which combine components of the displacement vector 

ju  
and the electrical potential   by setting 4u  ; and iJKmE  are termed components of 
the generalized moduli that combines the elastic constants 

ijkmE , the piezoelectric 
constants 

mije  by setting 
4 4ij m m ji mijE E e  , and the dielectric permittivity 

44 44i m m i imE E    . It is remarked that the constitutive relation in terms of gradients 
of the generalized displacement (2.5) can be readily obtained by simply substituting 
(2.2) into (2.3). Similarly, the generalized surface traction at any point on the smooth 
surface, with its components denoted by Jt , is defined by J iJ it n  where in  denote 
the components of an outward unit normal vector to the surface. More specifically, 
the generalized surface traction Jt  combines components of the mechanical traction 

j ij it n  and the surface electric charge 4 4i i i it n D n  . 

2.2 PROBLEM DESCRIPTION 

 

 
 
Figure 2.1 Schematic of isolated crack in homogeneous, anisotropic, linear piezoelectric 
whole space 
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Let us consider an isolated crack of arbitrary shape embedded in a whole space   as 
illustrated in Figure 2.1. A piezoelectric material constituting the body is assumed to 
be homogeneous, anisotropic and linear with the generalized moduli iJKmE  fully 
prescribed. The crack surface is described mathematically by two coincident surfaces, 
represented by the lower crack surface 

cS  and the upper crack surface 
cS  . The 

outward unit normal vectors of the two surfaces are denoted by n  and n , 
respectively. The medium is loaded by a uniform remote electrical/mechanical field 
but the body electrical charge and the body force are negligible. Also, it is assumed 
that the crack surface is smooth (i.e., the outward unit normal vector is uniquely 
defined) and the condition on the crack surface (i.e., termed the crack-face condition) 
is governed by one of the four crack-face conditions indicated further below. It is 
significant to note that while only a single crack is illustrated in Figure 2.1, the 
development of both the formulation and solution technique is also applicable to 
multiple cracks by simply considering 

cS  and 
cS   as the combination of all lower crack 

surfaces and upper crack surfaces, respectively. 
 Besides basic field equations described above, the crack-face condition is found 
essential in the modeling of cracks in linear piezoelectric materials. Such crack-face 
boundary condition must be properly prescribed a priori in the analysis and it exhibits 
a significant influence on the near-front responses and fracture information on the 
crack boundary. In the present investigation, following four mathematical models used 
to simulate the condition on the crack surface are considered: electrically permeable, 
electrically impermeable, electrically semi-permeable, and energetically consistent 
crack-face models. These four different crack-face models can be separated into two 
categories, one containing the first two models where the prescribed mechanical and 
electrical conditions are fully uncoupled whereas the other containing the last two 
models with fully coupled mechanical/electrical conditions being prescribed (see 
details in Rungamornrat et al (2015)). 
 For an impermeable crack-face condition, the jump in the crack-face 
generalized displacement, defined by 

J J Ju u u    , is unknown a priori whereas the 
crack-face generalized tractions, defined by 

It
  and 

It
 , are completely known. For a 

permeable crack-face condition, the jump in the crack-face displacement iu  and the 
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crack-face surface electrical charge 
4t
  are unknown whereas the mechanical tractions 

it
  and 

it
  are known and the jump in the crack-face electrical potential 4u  and the 

sum of the crack-face surface electrical charges (i.e., 
4 4 4t t t    ) vanish. For an 

electrically semi-permeable crack-face condition, the crack-face tractions 
it
  and 

it
  

are completely known whereas the sum of the crack-face surface electrical charge 4t  
vanishes. In addition, the jump in the crack-face generalized displacement Ju  and 
the crack-face surface electrical charge 

4t
  are fully unknown and they satisfy the 

following relation (see Rungamornrat et al. (2015)) 
 

4 4i i ct u n u      (2.6) 
 
where the constant c  denotes the dielectric permittivity of ta medium filled within 
the crack cavity. To easily provide the description of the last crack-face condition, the 
mechanical tractions on the lower crack surface and upper crack surface 

it
  and 

it
  

can be separated into two parts such that 
i i it       and 

i i it       where 

 ,i i    and  ,i i    represent the normal and shear tractions, respectively. For an 
energetically consistent crack-face model, the shear traction on both crack surfaces 

 ,i i    are completely known whereas the sum of the crack-face surface electrical 

charge 4t  and the sum of the crack-face normal tractions (i.e., 
i i i      ) vanish. 

In addition, the jump in the crack-face generalized displacement Ju , the crack-face 
normal traction 

i
 , and the crack-face surface electrical charge 

4t
  are fully unknown 

and they must satisfy (2.6) and the following condition 
 

   
22

42 /c i iu u n      (2.7) 
 
where 

i in     denotes the normal mechanical traction. It is emphasized that the 
superscripts “  ” and “ ” are employed to designate quantities associated with the 
lower crack surface and upper crack surface, respectively. 
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2.3 STANDARD INTEGRAL RELATION 

A boundary element method is based primarily on a system of boundary integral 
equations established from the basic field equations (2.4) and (2.5) in another form 
containing merely quantities on the domain boundary and crack surface. In the 
absence of the body electrical charge, the body force, and remote mechanical and 
electrical loadings, the generalized stress IK  and the generalized displacement Pu  at 
any point x  in a piezoelectric whole space containing cracks can be established in 
terms of data on the crack surface 

J J Jt t t     and 
J J Ju u u     as 

 

               P P

P J J iJ i J

S S

u U t dA S n u dA
 

      x x x        (2.8) 

               K lK

lK lJ J iJ i J

S S

S t dA n u dA
 

        x x x        (2.9) 

 
where  P

J
U  x ,  P

iJ
S  x , and  lK

iJ
  x  are known functions associated with a 

piezoelectric state of an infinite medium under a unit concentrated body force and 
electric charge. The explicit expressions of these Green’ functions for an anisotropic, 
linear piezoelectric solid are given by (see Rungamornrat and Mear (2008a)) 
 

     
1

2

0

1

8

P

J JP

z r

U ds
r



 

  x z,z z  (2.10) 

 
 P

KP

iJ iJKl

l

U
S E



 
 



x
x


  (2.11) 

 
 P

iJlK

iJ lKPq

q

S
E



 
  



x
x


  (2.12) 

 
where  r x ; r  r ; z  is a unit vector contained in a plane normal to the position 

vector r ;   i iJPl lJP
z E zz , z ,  

1
z , z  represents an inverse of the matrix  z , z ; and 

the line integral in (2.10) must be carried out over a unit circle 1z  on the plane 
0 z r . It is important to remark that all two-point functions  P

J
U  x ,  P

iJ
S  x

, and  lK

iJ
  x  are singular at  x  of order  1 r/O ,  21 r/O , and  31 r/O , 

respectively. It is remarked that the boundary integral relations (2.8) and (2.9) render 
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the generalized displacement and the generalized stress at any point within the body 
to be calculated once the unknown jump in the crack-face generalized displacement 
is solved. By forming a proper limiting process 

c
S x y  of the relation (2.8), it leads 

to an integral equation for the sum of the crack-face generalized displacement P
u : 

 

               
1

2

P P

P J J iJ i J

S S

u U t dA S n u dA
 

       y x x        (2.13) 

 
The boundary integral equation (2.13) possesses following key features: (i) it involves 
only the known sum of the crack-face generalized traction P

t ; (ii) it contains two 
unknown crack-face data P

u  and P
u ; and (iii) the first integral involves the weakly 

singular kernel  P

J
U  x  which can be evaluated using the concept of Riemann 

whereas the second integral involves the strongly singular kernel  P

iJ
S  x  which 

must be interpreted in the sense of Cauchy. It is crucial to point out that only the 
integral relation (2.13) is not adequate for solving both the unknowns P

u  and P
u  

on the crack surface. This stems directly from that the boundary integral equation 
(2.13) is mathematically degenerate and cannot differentiate two problems involving 
the same crack subjected to different self-equilibrated, crack-face generalized traction 
(i.e., 0

P
t   for both cases). 

 By multiplying equation (2.9) by an outward unit normal vector n  at any point 

c
S y  and taking a proper limiting process 

c
S x y , it yields the boundary integral 

equation for the jump in the crack-face generalized traction 
K K K

t t t    : 
 

         

         

1

2

                 

K

K lJ l J

S

lK

iJ l i J

S

t S n t dA

n n u dA





    

   





y x y

x

  

    
 (2.14) 

 
The boundary integral equation (2.14) possesses following important features: (i) it 
contain the complete information of the crack-face generalized tractions K

t  and J
t

; (ii) it contains only one unknown function J
u ; and (iii) the first integral involves the 

strongly singular kernel  K

lJ
S  x  which must be interpreted in the sense of Cauchy 
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whereas the second integral involves the hyper-singular kernel  lK

iJ
  x  which must 

be interpreted using the concept of Hadamard finite part integrals. The features (i) and 
(ii) render the integral equation (2.14) sufficient for solving the unknown relative crack-
face generalized displacement J

u . Once J
u  is determined, the sum of the crack-

face, generalized displacement P
u  can be obtained from the integral equation (2.13). 

 While the standard boundary integral equations (2.13) and (2.14) provide a 
sufficient basis for the modeling of fractures in a linear piezoelectric medium, use of 
those equations still requires the nontrivial treatment of both hyper-singular and 
strongly singular integrals in the numerical implementations. 

2.4 REGULARIZED INTEGRAL RELATIONS/EQUATIONS 

To circumvent the treatment of hypersingular and strongly singular integrals, 
completely regularized boundary integral equations are established utilizing the same 
procedure suggested by Rungamornrat and Mear (2008a, 2008b) and Pongtinnaboot et 
al. (2011). In their study, a systematic regularization procedure is utilized to treat cracks 
in both infinite and finite domains. The important component used in such 
regularization procedure is the interchange of derivatives between the kernels and the 
boundary data via the integration-by-parts technique with Stokes’ theorem. From this 
regularization procedure, the strongly singular kernel  P

iJ
S  x  and the hypersingular 

kernel  lK

iJ
  x  are represented in following form 

 

   
 P

mJP P

iJ iJ ism

s

G
S H 



 
   



x
x x


   (2.15) 

     lK tK

iJ iJKl ism lrt mJ

s r

E C 
 

 
      

 
x x x    (2.16) 

 
where ism

  denotes an alternating tensor,    x  denotes a Dirac-delta distribution 
with the center at a point x , and the functions  P

iJ
H  x ,  P

mJ
G  x , and 

 tK

mJ
C  x  are defined by (see Rungamornrat and Mear (2008b) and Rungamornrat 
and Senjuntichai (2009)) 
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   3

1

4

P

iJ JP i i
H x

r
 


   x  (2.17) 

     
1

2

0
8

mqa qJKlP

mJ a lKP

E
G z z ds

r







 

  
z r

x z,z z  (2.18) 

     
1

2

0
8

KJPQ
tK mtsl
mJ s lPQ

A
C z z ds

r



 

  
z r

x z,z z  (2.19) 

 
with JP

  denotes the generalized Kronecker delta and a material-dependent constant 
KJPQ

mtsl
A  defined by 
 

1

4

KJPQ

mtsl aum adt uKPs dJQl dJKu lPQs
A E E E E 

 
  

 
 (2.20) 

 
It is apparent that the function  P

iJ
H  x  is free of material constants and singular 

at a point  x  of  21 r/O  while the functions  P

mJ
G  x  and  tK

mJ
C  x  are 

clearly singular only at a point  x  of  1 r/O . 
 By applying the two representations (2.15) and (2.16) to the standard integral 
relations (2.8) and (2.9) and then integrating terms involving the functions  P

mJ
G  x  

and  tK

mJ
C  x  by parts via Stokes’ theorem, the regularized integral relations for 

both the generalized stress and the generalized displacement are expressed as 
 

               

              

c c

c

P P

P J J iJ i J

S S

P

mJ m J

S

u U t dA H n u dA

G D u dA

 



     

  

 



x x x

x

      

  
 (2.21) 

               
c c

P tK

lK lrt tK J mJ m J

r S S

G t dA C D u dA
x

 
 

   
      

   
 x x x      

                    

c

J

lK J

S

H t dA


   x    (2.22) 

 
where    m i ism s

D n      /  denotes the surface differential operator. This set of 
regularized integral relations can be employed as an alternative to the standard 
integral relations (2.8) and (2.9) in the post-process of the generalized stresses and the 
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generalized displacements at any point within the medium after the relative crack-face 
generalized displacement J

u  is solved. 
 By taking the limit 

c
S x y  of the integral relation (2.21), it results in an 

alternative integral equation for the sum of the crack-face generalized displacement. 
By further multiplying this equation by a well-behaved test function P

t  and then 
performing the integration over the entire crack surface, it leads to the weakly singular 
weak-form boundary integral equation for the sum of the crack-face generalized 
displacement: 
 

               

           

         

1

2

                                       

                                       

c c c

c c

c c

P

P P P J J

S S S

P

P iJ i J

S S

P

P mJ m J

S S

t u dA t U t dA dA

t H n u dA dA

t G D u dA dA

  

 

 

  

 

 

  

 

 

y y y y x y

y x y

y x y

   

    

   

 (2.23) 

 
Similarly, the alternative form of the integral equation for the jump in the crack-face 
generalized traction (2.14) can be alternatively established by taking the product 

   lK l
n 

x y  of the integral relation (2.22) and then carrying out the limit 
c

S x y

. By multiplying the generalized traction integral equation by an arbitrary well-behaved 
test function K

u , then performing the integration over the entire crack surface, and 
finally utilizing Stokes’ theorem to carry out the integration by parts of an integral 
associated with the function  tK

mJ
C  x , it gives rise to 

 

               

         

         

1

2

                                          

                                          

c c c

c c

c c

tK

K K t K mJ m J

S S S

J

t K tK J

S S

J

K iK i J

S S

u t dA D v C D u dA dA

D v G t dA dA

v H n t dA d

  

 

 

   

 

 

  

 

 

y y y y x y

y x y

y x y

   

   

     A y

 (2.24) 

 
 It is vital to point out that the weak-form boundary integral equations (2.23) 
and (2.24) are fully regularized in that the kernels  P

J
U  x ,    P

iJ i
H n x  , 
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   J

iK i
H n x y ,  P

mJ
G  x ,  tK

mJ
C  x  are weakly singular of  1 r/O . This pair 

of weakly singular, weak-form, boundary integral equations provides a complete basis 
for determining crack-face unknown data. 
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SOLUTION PROCEDURE 

This chapter presents briefly the solution methodology for determining the jump in 
and sum of the crack-face generalized displacement, keys ingredient of a 
computational procedure based upon the weakly singular boundary-based method 
and standard Galerkin technique, and the post-process for the generalized T-stress 
from the solved data on the crack surface. 

3.1 SOLUTION METHODOLOGY 

The weakly singular, weak-form integral equations for the sum of the crack-face 
generalized displacement (2.23) and the jump in the crack-face generalized traction 
(2.24) provide a complete set of governing integral equations for determining the 
unknown crack-face data P

u  and P
u . Both the integral equations (2.23) and (2.24) 

can be re-expressed in a form convenient for further reference as 
 

             t , u t , t t , u t , uD U G H  (3.1) 

             u, u t ,u t ,u u, tC G H D  (3.2) 
 
where all bilinear and linear integral operators are given explicitly by 
 

           
c c

P

P J J

S S

X U Y dA dA
 

  X ,Y y x y  U  (3.3) 

           
c c

tK

t K mJ m J

S S

D X C D Y dA dA
 

   X ,Y y x y  C  (3.4) 

           
c c

P

P mJ m J

S S

X G D Y dA dA
 

  X ,Y y x y  G  (3.5) 

             
c c

P

P iJ i J

S S

X H n Y dA dA
 

   X ,Y y x y   H  (3.6) 

       
1

2
c

K K

S

X Y dA


  X ,Y y y yD  (3.7) 

 



 

 

21 

where X  and Y  are any four-component vectors. It is crucial to remark that the linear 
integral operators C  and D  given by (3.4) and (3.7) are in a symmetric form (i.e., 

   X ,Y Y, XC C  and    X ,Y Y, XD D . It is also evident from the system of 
boundary integral equations (3.1) and (3.2) that they are fully coupled through the 
jump in the crack-face generalized displacement P

u  and the weakly singular, weak-
form boundary integral equation for the jump in the crack-face generalized traction 
does not contain the sum of the crack-face generalized displacement P

u . As a result, 

P
u  is obtained first by solving the integral equation (3.2) along with the prescribed 

crack-face condition using weakly singular SGBEM and Galerkin technique similar to the 
work of Rungamornrat et al. (2015). It should be remarked that for the case of 
energetically consistent and electrically semi-permeable cracks, additional crack-face 
conditions (2.6) and (2.7) must be properly integrated in the solution procedure and 
the resulting set of nonlinear equations must be solved via a selected efficient 
nonlinear solver. After P

u  is determined, the weak-form integral equation (3.1) can 
be subsequently solved by the standard Galerkin scheme to obtain the sum of the 
crack-face generalized displacement P

u . Once all the unknown crack-face data is 
known, the generalized T-stress can be obtained by post-processing the solution of 

P
u  in the neighborhood of the crack front. 

3.2 SOLUTION DISCRETIZATION 

By introducing Galerkin approximation to a set of weakly singular integral equations 
(3.1) and (3.2), it leads to two sets of linear equations: 
 

        +
 

   
 

T
D U U G H

U
 (3.8) 

   +     
 

       

ˆ T
C U G H D

T
 (3.9) 

 

where sub-matrices  ˆ ,C, D,D G,H,U  are associated with the linear integral operators 

, , , ,C D G H U  respectively; U  and U  are nodal vectors associated with the sum 
of and the jump in the crack-face generalized displacements, respectively; and T  
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and T  are vectors of nodal quantities associated with the sum of and the jump in 
the crack-face generalized tractions, respectively. To enhance the approximation of 
the relative crack-face displacement, special elements developed by Rungamornrat 
and Mear (2008a) are utilized to discretize the near-front field. Shape functions of these 
special elements are enhanced to contain the right near-front square-root behavior 
and they, as a result, can capture the near-front singularity accurately by using 
relatively large element size. 
 To treat energetically consistent and electrically semi-permeable cracks, 
additional crack-face conditions (2.6) and (2.7) are enforced weakly using a standard 
weighted residual procedure. The resulting weak-forms of both (2.6) and (2.7) is given 
by (see also the work of Rungamornrat et al. (2015)) 
 

            4 4
0

c

c j j

S

w u t u n dA


     ˆ y y y y y y  (3.10) 

        
2

4
2 0

c

c

S

w t dA 


    ˆ y y y y  (3.11) 

 
where ŵ  is a square-integrable test function. By following Galerkin technique along 
with the discretization of the 

4
t  , i

u  and 4
u  described above, the approximate 

version of (3.10) and (3.11) can be expressed as 
 

  0e m e  , ,f U U T  (3.12) 

  0mn e ,g T T  (3.13) 
 
where eU  denotes a nodal vector corresponding to the discretization of 4

u ; mU  
denotes a nodal vector corresponding to the discretization of i

u ; e
T  denotes a 

nodal vector corresponding to the discretization of 
4

t  ; mn
T  denotes a nodal vector 

corresponding to the discretization of the mechanical normal traction  ; and f  and 
g  are systems of nonlinear algebraic equations with their function form defined by 
the weak-forms (3.10) and (3.11), respectively. 
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3.3 NUMERICAL INTEGRATION 

While the sub-matrices D  and D̂  obtained from the approximation of a single surface 
integral can be readily evaluated using Gaussian quadrature, the computation of the 
sub-matrices C,G,H  and U  needs more extensive calculations of double surface 
integrals containing weakly singular kernels tK P P P

mJ mJ iJ i J
C G H n U, , ,  for a pair of elements 

from the approximation of the crack surface. All involved double surface integrals over 
a pair of elements can be separated into three groups depending on the characteristic 
of the integrand. The first group contains double surface integrals associated with pairs 
of remote finite elements. Due to the well-behaved integrand, integrals in this group 
can be efficiently and accurately integrated by Gaussian quadrature. The second group 
contains double surface integrals over a pair of identical finite elements. For this 
particular case, it is apparent that the involved integrands are weakly singular. Although 
the integrals exist in the sense of Riemann, the direct integration of these integrals 
using Gaussian quadrature is computationally inefficient as pointed out by Xiao (1998). 
To circumvent this problem, a systematic technique via a triangular polar 
transformation and other related changes of variables suggested by Xiao (1998) is 
exploited to regularize the weakly singular integrand. The singularity-free double 
surface integrals are then integrated by Gaussian quadrature. The final group contains 
double surface integrals over pairs of adjacent or relatively close finite elements. In 
this case, the involved integrand is nearly singular and possesses the rapid variation 
characteristic. Again, it was pointed out by Xiao (1998) that this particular type of 
integrals is difficult to be treated and the standard Gaussian quadrature alone cannot 
be used to efficiently integrate such nearly singular integrals. In the present study, the 
systematic technique suggested by Xiao (1998) is adopted. In particular, a family of 
variable transformations is employed first to regularize the integrand behavior and then 
Gaussian quadrature is applied to integrate the resulting well-behaved integrals. 
 To build the system of nonlinear algebraic equations (3.12) and (3.13), all 
involved integrals contain only regular functions (e.g., shape functions and prescribed 
data) and they are given in a form of single surface integrals over elements obtained 
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from the approximation of the crack surface. Standard Gaussian quadrature can be 
subsequently applied to efficiently and accurately integral all those integrals. 

3.4 EVALUATION OF INVOLVED KERNELS 

To additionally lower the computational resource needed to construct all involved 
coefficient matrices in a set of linear equations (3.8)-(3.9), all involved kernels 

P tK P P

iJ i mJ mJ J
H n C G U, , ,  have to be calculated in an efficient fashion for every pair of field 
and source points  , y . For the weakly singular kernel P

iJ i
H n , it only requires the 

calculation of a unit vector i
n  to the crack surface and the elementary function P

iJ
H , 

and this can be readily accomplished via a direct substitution and the geometric 
information of finite elements. For the last three weakly kernels, their expressions for 
generally anisotropic materials are derived in terms of a line integral over a unit circle. 
The direct computation of the contour integral for all pairs of source and field points 

 , y  resulting from quadrature is clearly time demanding. To prevent such 
substantial calculation, an interpolation scheme (e.g., Rungamornrat and Mear (2008a, 
2008b)) is employed to obtain the values of all involved kernels. In this technique, 
values of the kernels are first determined by directly integrating the line integrals (2.18) 
and (2.19) via Gaussian quadrature at all grid points and their interpolant is then 
established on a two-dimensional grid via standard local basis functions. The value of 
the kernels tK P P

mJ mJ J
C G U, ,  at any pair of points  , y  is then approximated by their 

interpolant and the accuracy can be enhanced by either increasing the degrees of basis 
functions or refining the grid size.   

3.5 SOLVERS 

To solve for the relative crack-face generalized displacement, a set of linear algebraic 
equations (3.9) must be solved together with the known crack-face boundary 
conditions. To aid following discussion, the vectors of nodal quantities T , T  and 
U  appearing in (3.9) can be partitioned into   m e    T = T T ,   m e    T = T T  

and   m e    U = U U  where the superscript “e” and “m” are employed to 
designate, respectively, the electrical and mechanical quantities. Furthermore, the 
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nodal quantities corresponding to the relative crack-face mechanical traction mT  can 
be decomposed into m ms mn    T T T  where msT  and mnT  denote the 
contribution from the shear and normal tractions, respectively. 
 For an impermeable crack-face model, the vectors T  and T  are fully 
prescribed and, as a consequence, the set of linear equations (3.9) can be solved 
directly for the unknown U  by a selected efficient linear solver such as a 
preconditioning conjugate gradient method. For a permeable crack, the mechanical 
traction data mT  and mT  are completely known whereas the sum of the electrical 
tractions and the jump in the electric potential vanish (i.e., 0e e   T U ). For this 
case, (3.9) is still adequate for determining the crack-face unknowns mU  and eT  
and a partitioning scheme together with a preconditioning conjugate gradient method 
is adopted to determine the numerical solution. 
 For a semi-permeable crack-face model, the mechanical traction data mT  
and mT  are completely known; the sum of the electrical tractions disappears (i.e., 

0e T ); and the jump in the crack-face generalized displacement U  and the jump 
in the crack-face electrical traction 2e e T T  are unknown a priori. To solve for 
these unknown crack-face data, (3.9) and a set of nonlinear algebraic equations (3.12) 
are solved simultaneously using Newton-Raphson iterative scheme. It should be 
remarked that each node on the crack surface contains five nodal unknowns, four 
associated with components of the relative crack-face generalized displacement and 
one corresponding to the jump in the electrical traction. 
 For an energetically consistent crack, the mechanical shear tractions msT  and 

msT  are completely known; the sum of mechanical normal tractions and electrical 
tractions vanish (i.e., 0e mn   T T ); and the relative crack-face generalized 
displacement U , the jump in the electrical traction 2e e T T , and the jump in 
the mechanical normal traction 2mn mn T T  are unknown a priori. All these unknown 
crack-face data is solved from (3.9) and two systems of nonlinear algebraic equations 
(3.12)-(3.13) simultaneously using Newton-Raphson iterative scheme. For this particular 
case, each node on the crack surface involves six nodal unknowns, four associated 
with components of the relative crack-face generalized displacement, one 
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corresponding to the jump in the electrical traction and the other corresponding to 
the jump in the crack-face mechanical normal traction. 
 Once the relative crack-face generalized displacement U  is solved for any 
type of crack-face conditions, this information serves as an input in the system of linear 
equations (3.8). The unknown sum of the nodal crack-face generalized displacements 
U  can then be obtained by solving (3.8) using a preconditioning conjugate gradient 
method. 

3.6 CALCULATIONS OF GENERALIZED T-STRESS 

Once the sum of the crack-face generalized displacement is completely determined, 
the generalized T-stress along the crack front can be extracted directly from this set 
of information as described, in detail, below. 
 Consider a crack-tip element with c

x  denoting one of its nodes on the crack 
boundary. Let define  1 2 3c

x x xx ; , ,  as a local reference Cartesian coordinate system 
with its origin located at c

x  and  1 2 3
e ,e ,e  be a set of corresponding orthonormal 

base vectors as shown schematically in Figure 3.1. The generalized T-stress 
components referring to the defined local coordinate system are denoted by 11

T , 13
T

, 33
T , 14

T , and 34
T  where the first three components are associated with the elastic T-

stress and the last two correspond to the electrical T-stress. Values of the generalized 
T-stress components 11

T , 13
T , 33

T , 14
T  and 34

T  at the nodal point c
x  can be directly 

related to the finite part of the generalized strain tensor (combining the mechanical 
strain and the gradient of the electric potential) at a limiting point of c

x  on the surface 
of the crack, denoted by iK

 , via the following constitutive relation 
 

iJ iJKl lK
T E   (3.14) 
 
where 

ij ji
T T , ik ki

  , and the components 22
T , 12

T , 23
T , and 24

T  are equal to the 
value of the generalized traction at a limiting point of c

x  on the crack surface. For the 
impermeable case, 22

T , 12
T , 23

T , and 24
T  are known a priori from the prescribed 

generalized traction; for the permeable case, 22
T , 12

T , 23
T  are known a priori from the 
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prescribed mechanical tractions and 24
T  is obtained from solving the system (3.15); for 

the semi-permeable case, 22
T , 12

T , 23
T  are known a priori from the prescribed 

mechanical tractions and 24
T  is obtained from solving the systems (3.15) and (3.18); 

and for the energetically consistent case, 12
T , 23

T  are known a priori from the 
prescribed mechanical shear tractions and 22

T , 24
T  are obtained from solving the 

systems (3.15), (3.18) and (3.19). The generalized strain components 11
 , 13

 , 33
 , 14



, and 34
  can be computed from the information of the sum of the crack-face 

generalized displacement in the neighborhood of the point c
x  via the following 

relations 
 

 1 1
11

1 1

1 1
lim

2 2c
c

x x

u u

x x




 
 

 
x  (3.15) 

 3 3
33

3 3

1 1
lim

2 2c
c

x x

u u

x x




 
 

 
x  (3.16) 

 3 31 1
13

3 1 3 1

1 1
lim

4 4c
c

x x

u uu u

x x x x




     
      

      
x  (3.17) 

 4 4
14

1 1

1 1
lim

2 2c
c

x x

u u

x x




 
 

 
x  (3.18) 

 4 4
34

3 3

1 1
lim

2 2c
c

x x

u u

x x




 
 

 
x  (3.19) 
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Figure 3.1 Schematic of crack-tip element and local reference coordinate system for 
calculation of generalized T-stress 
 
The derivatives involved in the expressions (3.15)-(3.19) can be readily computed 
within the crack-tip elements. By using the known information of 22

T , 12
T , 23

T , and 24
T  

and the computed components 11
 , 13

 , 33
 , 14

 , and 34
 , the unknown generalized 

strain components 22
 , 12

 , 23
 , and 24

  and the generalized T-stress 11
T , 13

T , 33
T , 

14
T , and 34

T  at the point c
x  can be obtained by solving a set of nine linear equations 

(3.14). 
  

Crack front 
 Crack-tip element 
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NUMERICAL RESULTS AND DISCUSSIONS 

Computational efficiencies and accuracy of the proposed technique are fully explored 
by performing an extensive numerical experiment for various problems involving cracks 
in linear piezoelectric whole space under four different types of conditions on the 
crack surface including electrically permeable, electrically impermeable, electrically 
semi-permeable and energetically consistent conditions. A simple problem 
corresponding to a circular crack subjected to uniform remote and crack-face 
mechanical/electrical loadings is considered first and computed solutions are then 
benchmarked with existing analytical results to validate the integral formulation, the 
implemented solution procedure, and the post-process for the generalized T-stress. 
After the technique is fully tested, its vast capability is then demonstrated through the 
analysis of more complex problems involving nonaligned cracks, non-planar cracks and 
multiple cracks under general loading conditions. 
 To explore the convergence of computed solutions, a series of meshes with 
significantly different mesh sizes is adopted and used in the analysis. In the numerical 
study, the jump in the crack-face generalized displacement over the majority of the 
crack surface is discretized using standard, two-dimensional, six-node and eight-node 
isoparametric elements whereas that in a zone close to the crack boundary is 
discretized by nine-node special elements. The sum of the crack-face generalized 
displacement and other remaining crack-face unknowns over the entire crack surface 
are discretized by standard two-dimensional, isoparametric elements with the same 
mesh as that utilized for the discretization of the relative crack-face generalized 
displacement. A representative transversely isotropic, linear piezoelectric solid with 
elastic constants, dielectric permittivity and piezoelectric constants chosen to be the 
same as those of PZT-5H shown in Table 4.1 is employed for all cases considered in 
the numerical study presented further below. 
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Table 4.1 Elastic moduli, dielectric permittivities and piezoelectric constants of PZT-
5H used in numerical study 

Elastic constants 
( x 109 Pa) 

1111E  126.00 

1122E  55.00 

1133E  53.00 

3333E  117.00 

1313E  35.30 

Piezoelectric constants 
(C/m2) 

1143E  -6.50 

3343E  23.30 

1341E  17.00 

Dielectric permittivities 
( x 10-9 C/(Vm)) 

1441E  15.10 

3443E  13.00 

 

4.1 VERIFICATIONS 

Consider a circular crack with the radius a  contained in a linear piezoelectric whole 
space with the axis of material symmetry and poling direction coincident with the 3

x

-axis as depicted in Figure 4.1(a). The crack front is described by 
 

1 2 3
cos ,  sin ,  0x a x a x     (4.1) 

 
where  0,2   denotes the angular position. The medium is subjected to four 
different loading conditions. The first two loading cases are associated with the uniform 
remote biaxial tension 

33 11 0
2 2      (see Figure 4.1(b)) and the uniform remote 

electrical induction along the 1
x - and 3

x -axes 
34 14 0

2 2d     (see Figure 4.1(c)) 
whereas the last two loading cases correspond to the uniformly distributed normal 
traction 

3 3 0
t t      (see Figure 4.2(a)) and the linearly distributed normal traction 

 3 3 0 1
1 / /2t t x a      (see Figure 4.2(b)). In the analysis, the values of 0

  and 0
d  

are taken as 6 21×10 N/m  and -3 21×10 C/m , respectively, and three different meshes of 
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a crack indicated in Figure 4.3 are employed. The permittivity of a medium filled within 
the crack cavity is chosen to be  -128.85×10 C/ Vm

c
   for both energetically 

consistent  and electrically semi-permeable crack-face conditions. The normalized 
generalized T-stress components obtained from the proposed technique for all three 
meshes and four crack-face conditions are reported in Figure 4.4-4.8 along with the 
exact solutions established by Pich et al. (2015). 

4.1.1 Uniform remote biaxial tension 

For this particular loading case, only mechanical components of the generalized T-
stress 11

T , 33
T  and 13

T  are non-zero and a function of the angular position   as shown 
in Figure 4.4-4.6. It is seen that the non-zero generalized T-stress components obtained 
from the three meshes for all four crack-face conditions show excellent agreement 
with the exact solutions. Specifically, the coarse mesh (i.e., Mesh-1) containing only 
eight elements can also yield sufficiently accurate results. Moreover, it can also reveal 
from results shown in Figures 4.4 and 4.5 that the generalized T-stresses components 

11
T  and 33

T  are strongly dependent on the crack-face condition. On the contrary, the 
generalized T-stress component 13

T  is independent of the crack-face condition; 
computed values of 13

T  are identical for electrically permeable, electrically 
impermeable, electrically semi-permeable and energetically consistent cracks as 
clearly indicated in Figure 4.6. 

4.1.2 Uniform remote electric induction in the both 1
x –axis and 3

x –axis 

For this particular case, the generalized T-stress components 11
T  and 33

T  are identical 
and constant along the entire crack front but depend strongly on the crack-face 
condition as shown in Figure 4.7. In addition, it is found that the generalized T-stress 
components 11

T  and 33
T  vanishes for both permeable and semi-permeable cracks 

whereas those for the impermeable and energetically consistent cracks are of opposite 
sign.  
 In contrast with 11

T  and 33
T , the generalized T-stress components 14

T  and 34
T  

are dependent on the position on the crack boundary and the crack-face condition 



 

 

32 

play no role on the values of both 14
T  and 34

T  for this particular loading condition as 
shown in Figure 4.8. More specifically, the generalized T-stress components 14

T  and 

34
T  are identical for all types of crack-face conditions treated. 
 

   
 (a) (b) (c) 
 
Figure 4.1 (a) Circular crack in piezoelectric whole space, (b) body under uniformly 
remote biaxial tension 

33 11 0
2 2     , and (c) body subjected to uniform remote 

electrical induction 
34 14 0

2 2d     
 
 

             
 (a) (b) 
 
Figure 4.2 Circular crack under (a) uniformly distributed normal traction 

3 3 0
t t     , 

and (b) linearly distributed normal traction  3 3 0 1
1 / /2t t x a      

  

Poling direction 
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 Mesh-1 Mesh-2 Mesh-3 
 
Figure 4.3 Meshes of circular crack used in numerical study; Mesh-1 containing 8 
elements and 4 crack-tip elements, Mesh-2 containing 36 elements and 12 crack-tip 
elements, and Mesh-3 containing 144 elements and 24 crack-tip elements 
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Figure 4.4 Normalized generalized T-stress component 11

T  of crack under uniform 
remote biaxial tension for four crack-face conditions 
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Figure 4.5 Normalized generalized T-stress component 33

T  of crack under uniform 
remote biaxial tension for four crack-face conditions 
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Figure 4.6 Normalized generalized T-stress component 13

T  of crack under uniform 
remote biaxial tension for four crack-face conditions 
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Figure 4.7 Normalized generalized T-stress components 11

T  and 33
T  of crack under 

uniform remote electrical induction for four crack-face conditions 
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Figure 4.8 Normalized generalized T-stress components 14

T  and 34
T  of crack under 

uniform remote electrical induction for four crack-face conditions 
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4.1.3 Uniformly distributed normal traction 

For the third loading case (i.e., the uniformly distributed normal traction 
3 3 0
t t    

), the generalized T-stress components 11
T  and 33

T  are non-zero and independent of 
the angular position   due to the axisymmetry. Computed results normalized by the 
analytical solutions are shown in Table 4.2 for three crack-face conditions, i.e., 
electrically permeable, electrically impermeable and electrically semi-permeable 
conditions. It can be seen from these results that the computed T-stresses are in good 
agreement with the benchmark solutions and show slight dependence on meshes 
used. In particular, the errors of the predicted solutions for all three meshes are less 
than 0.5%. 

4.1.4 Triangular distributed pressure 

For the last loading case (i.e., linearly distributed normal traction 

 3 3 0 1
1 / /2t t x a     ), only impermeable and permeable cracks are considered 

since there is no analytical solution for energetically consistent and electrically semi-
permeable cracks. The computed generalized T-stress are reported in Figure 4.9 and 
4.10 for permeable and impermeable cases, respectively. This set of results indicates 
that all non-zero generalized T-stress components 11

T , 33
T  and 13

T  are dependent on 
the position along the crack front and, once again, the numerical results are 
comparable to the benchmark solutions and weakly dependent on the level of mesh 
refinement. In particular, results generated by the Mesh-1 differ slightly from the 
reference solution while results predicted by the Mesh-2 and the Mesh-3 are nearly 
indistinguishable from the reference solution. 
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Table 4.2 Normalized generalized T-stress 11
T   and 33

T  for circular crack contained in 
piezoelectric whole space under uniformly distributed normal traction for three crack-
face conditions. 

Mesh 

Impermeable BC. Permeable BC. Semi-permeable BC. 

     

11

11

e x a c t

T

T
 

     

33

33

e x a c t

T

T
 

     

11

11

e x a c t

T

T
 

     

33

33

e x a c t

T

T
 

     

11

11

e x a c t

T

T
 

     

33

33

e x a c t

T

T
 

1 0.9979 0.9984 0.9985 0.9989 0.9985 0.9989 

2 0.9974 0.9988 0.9982 0.9992 0.9982 0.9992 

3 0.9951 0.9980 0.9968 0.9986 0.9967 0.9986 
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Figure 4.9 Normalized generalized T-stress components 11

T , 33
T , and 13

T  of 
impermeable crack under linearly distributed normal traction 
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Figure 4.10 Normalized generalized T-stress components 11

T , 33
T , and 13

T  of 
permeable crack under linearly distributed normal traction 

4.2 CAPABILITY OF PROPOSED TECHNIQUE 

After the implemented procedure is fully verified with various benchmark cases, more 
complex problems are examined to further illustrate the robustness and capability of 
the present technique. Three representative problems, one associated with an 
elliptical crack, one corresponding to a spherical cap crack and the last involving a pair 
of identical circular cracks, are selected in the numerical study with the primary 
objective to show the vast feature of the present technique to model planar cracks of 
general geometry, non-flat cracks, and multiple cracks. Owing to the complexity of the 
problems consider, analytical solutions for all cases presented in this section do not 
exist and only the convergence of numerical results via a series of different meshes is 
explored. In the analysis, the permittivity of a medium filled within the crack cavity is 
chosen as  -128.85×10 C/ Vm

c
   for both energetically consistent and electrically 

semi-permeable cracks. 

T11 

T13 

T33 
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4.2.1 Elliptical crack 

Consider an elliptical crack contained in a linear piezoelectric whole space with a  and 
b  representing its major and minor semi-axes, respectively, as depicted in Figure 
4.11(a). The poling direction and axis of material symmetry are taken along the 3

x -axis 
whereas the crack is oriented such that the crack front is fully described by 
 

1 2 3
cos cos ,  sin ,  cos sinx a x b x a         (4.2) 

 
where  0,2   denotes the angular position on the crack boundary and   denotes 
the angle between a normal vector to the crack surface and the 3

x -axis. A body is 
under two loading conditions similar to the first loading cases of the previous example, 
i.e., the uniform remote biaxial tension 

33 11 0
2 2      (also see Figure 4.11(b)) and 

the uniform remote electrical induction along the 1
x -axis and 3

x -axis 
34 14 0

2 2d     
(also see Figure 4.11(c)). In the analysis, the values of 0

  and 0
d  are taken as 

6 21×10 N/m  and -3 21×10 C/m , respectively, and the aspect ratio / 2a b   and the 
orientation of the crack 45   are considered. Three meshes for a crack depicted in 
Figure 4.12 are adopted; in particular, the Mesh-1, the Mesh-2, and the Mesh-3 consist 
of 8 elements, 36 elements and 144 elements, respectively. 
 

   
 (a) (b) (c) 

Figure 4.11 (a) Eiliptical crack in linear piezoelectric whole space, (b) body under 
uniform remote biaxial tension 

33 11 0
2 2     , and (c) body under uniform remote 

electrical induction 
34 14 0

2 2d     

Poling direction 
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 Mesh-1 Mesh-2 Mesh-3 

Figure 4.12 Three meshes of elliptical crack used in the numerical study; Mesh-1 
containing 8 elements and 4 crack-tip elements, Mesh-2 containing 36 elements and 
12 crack-tip elements, and Mesh-3 containing 144 elements and 24 crack-tip elements 

4.2.1.1 Uniform remote biaxial tension 

For this loading condition, all generalized T-stress components 11
T , 33

T , 13
T , 14

T and 

34
T  exist and vary along the boundary of the crack. As can be seen from results in 
Figures 4.13-4.17, solutions obtained from the impermeable model is notably different 
from those generated by other three crack-face models. In addition, numerical results 
show the good convergence behavior; specifically, the coarsest mesh (i.e., Mesh-1) 
containing relatively large elements yield results comparable to those obtained from 
the Mesh-2 and Mesh-3. The slight dependence on the level of refinement results 
directly from the use of special elements on the crack boundary to discretize the near-
front relative crack-face generalized displacement. 
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Figure 4.13 Normalized generalized T-stress component 11

T  of crack under uniform 
remote biaxial tension for four types of crack-face conditions 
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Figure 4.14 Normalized generalized T-stress component 33

T  of crack under uniform 
remote biaxial tension for four types of crack-face conditions 
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Figure 4.15 Normalized generalized T-stress component 13

T  of crack under uniform 
remote biaxial tension for four types of crack-face conditions 
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Figure 4.16 Normalized generalized T-stress component 14

T  of crack under uniform 
remote biaxial tension for four types of crack-face conditions 
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Figure 4.17 Normalized generalized T-stress component 34

T  of crack under uniform 
remote biaxial tension for four types of crack-face conditions 

4.2.1.2 Uniform remote electric induction in the both 1
x -axis and 3

x -axis 

For this particular loading condition, the mechanical generalized T-stress components 

11
T , 33

T  and 13
T  of permeable and semi-permeable cracks vanish whereas those 

associated with the other two electrically boundary conditions (i.e., impermeable and 
energetically consistent conditions) are non-zero and vary along the crack boundary 
as shown in Figure 4.18-4.20. Moreover, it can be concluded from Figure 4.21 that the 
computed generalized T-stress 14

T  for all four crack-face conditions are nearly 
identical, while the computed generalized T-stress 34

T  of the impermeable case is 
slightly different from those obtained from the other three crack-face conditions as 
clearly illustrated in Figure 4.22. Finally, it should be confirmed from numerical results 
shown Figure 4.18-4.22 that the present numerical procedure yields a fast rate of 
convergence; relatively large elements can be employed in the solution discretization. 
  

Other three cases 

Impermeable 
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4.2.2 Spherical cap crack 

In order to treat more general crack geometry, the boundary value problem involving 
a non-planar crack embedded in linear piezoelectric infinite body is investigated. 
Consider a spherical cap crack contained in a linear piezoelectric whole space as 
presented in Figure 4.23(a). The surface of the crack can be parameterized by 
 

   1 2 3
sin cos ,  sin sin ,  cos ,  0,2 ,  0,x a x a x a              (4.3) 

 
where a  represents the spherical crack radius;   stands for the half-subtended angle 
of a spherical surface; and   represents an angular position along the crack front. 
Following four loading conditions are investigated in the numerical study: (i) the 
uniform remote tension in 3

x -direction 
33 0

    (see Figure 4.23(b)), (ii) the uniform 
remote electrical induction in 3

x -direction 
34 0

d    (see Figure 4.23(c)), (iii) the uniform 
remote biaxial tension 

22 11 0
2 2      (see Figure 4.24(a)), and (iv) the uniform 

remote electrical induction along the 1
x - and 3

x -axes 
24 14 0

2 2d     (see Figure 
4.24(b)). The axis material symmetry and poling direction are taken to be coincident 
with the 3

x -axis. In the investigation, the half subtended angle 30  , 
6 2

0
1×10 N/m   and 3 2

0
1×10 C/md   are chosen, and three selected meshes with 

different levels of refinement are adopted, as illustrated in Figure 4.25, to explore the 
convergence characteristic of numerical solutions. 

4.2.2.1 Uniform remote tension in 3
x -direction 

For this particular loading case, non-zero generalized T-stress components 11
T , 33

T  and 

14
T  are constant along the crack front due to the axisymmetry. The computed 
numerical results normalized by the benchmark solution generated by the finest mesh 
(i.e., Mesh-3) are reported in Table 4.3 and 4.4. It is found that the generalized T-stress 
components obtained from the Mesh-1 and Mesh-2 are in very good agreement with 
those from the finest mesh. More specifically, the difference between the results of 
the coarsest and intermediate meshes and those from the finest mesh all types of 
crack-face conditions is less than 0.4% and 0.1% for 11

T , 0.2% and 0.02% for 33
T , 0.4% 
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and 0.04% for 14
T , respectively. In addition, the obtained results also suggest that the 

generalized T-stress components exhibit the strong dependence on the crack-face 
conditions. 

4.2.2.2 Uniform remote electric induction in 3
x -direction 

The non-zero generalized T-stress components 11
T , 33

T  and 14
T , for this loading case, 

obtained from all three meshes are reported in Table 4.5 and 4.6. It is found that all 
generalized T-stress components are independent of the angular position along the 
crack front but they depend significantly on the boundary condition adopted on the 
crack surface. Moreover, it can be seen from Table 4.5 that the generalized T-stress 
components 11

T  and 33
T  vanishes for both electrically permeable and semi-permeable 

cracks but are non-zero for both impermeable and energetically consistent cracks. In 
addition, it can be deduced from results shown in Table 4.6 that the generalized T-
stress component 14

T  is non-zero for all four crack models. Finally, it is seen from 
Table 4.5 and 4.6 that the computed generalized T-stress components from all meshes 
are in very good agreement. In particular, the discrepancy between solutions generated 
by the coarse and intermediate meshes and that of the fine mesh for all four crack 
models is less than 3.0% and 2.0% for 11

T , 2.0% and 0.7% for 33
T , and 0.6% and 0.8% 

for 14
T , respectively. 

4.2.2.3 Uniform remote biaxial tension 

For the third loading condition, the non-zero generalized T-stress components 11
T , 33

T

, 13
T , 14

T and 34
T  is strongly dependent on the angular position along the crack front 

as indicated by Figure 4.26-4.28. However, all non-zero generalized T-stress 
components except 14

T  are independent of crack-face boundary conditions. For the 
component 14

T , solutions predicted by the electrically impermeable model appears 
to be slightly different from those generated by the others three crack-face conditions 
(see Figure 4.27). In addition, it should be remarked that the coarsest and finest meshes 
considered in the simulations yield results of comparable quality. This implies that the 
size of elements employed in the discretization slightly affect the accuracy of 
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numerical results and one can employ relatively coarse meshes to accurately capture 
the generalized T-stress along the crack front. 

4.2.2.4 Uniform remote electrical induction along 1
x - and 3

x -axes 

For the last loading condition, the generalized T-stress components 11
T , 33

T  and 13
T  

are strongly influenced by the crack-face boundary conditions as illustrated by results 
shown in Figures 4.29-4.31 whereas 34

T  for four crack-face conditions are nearly 
identical as shown in Figure 4.32. On the contrary, the crack-face condition exhibits no 
contribution to the value of generalized T-stress component 14

T  (see Figure 4.33). In 
addition, the mechanical components of the generalized traction 11

T , 33
T  and 13

T  
identically vanish for the entire crack front for both permeable and semi-permeable 
models. Similar to all previous loading conditions, numerical results generated by the 
present technique show the good convergence behavior merely slight dependence on 
the mesh size is observed. 
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Figure 4.18 Normalized generalized T-stress component 11

T  of crack under uniform 
remote electrical induction for four crack-face conditions 
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Figure 4.19 Normalized generalized T-stress component 33

T  of crack under uniform 
remote electrical induction for four crack-face conditions 
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Figure 4.20 Normalized generalized T-stress component 13

T  of crack under uniform 
remote electrical induction for four crack-face conditions 
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Figure 4.21 Normalized generalized T-stress component 14

T  of crack under uniform 
remote electrical induction for four crack-face conditions 
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Figure 4.22 Normalized generalized T-stress component 34

T  of crack under uniform 
remote electrical induction for four crack-face conditions 

Impermeable 

Other three cases 
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 (a) (b) (c) 

Figure 4.23 (a) Spherical cap crack in linear piezoelectric whole space, (b) body under 
uniform remote tension 

33 0
   , and (c) body under uniform remote electrical 

induction 
34 0

d    

        
 (a) (b) 

Figure 4.24 Spherical cap crack in linear piezoelectric whole space under (a) uniform 
remote biaxial tension 

22 11 0
2 2      and (b) uniform remote electrical induction 

34 14 0
2 2d     

       
 Mesh-1 Mesh-2 Mesh-3 

Figure 4.25 Meshes of shperical cap crack used in numerical study; Mesh-1 containing 
16 elements and 8 crack-tip elements, Mesh-2 containing 64 elements and 16 crack-
tip elements, and Mesh-3 containing 288 elements and 32 crack-tip elements 
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Table 4.3 Normalized generalized T-stress components 11
T  and 33

T  of spherical cap 
crack contained in linear piezoelectric whole space under uniform remote tension for 
four crack-face conditions. 
 

Mesh 
Impermeable BC. Permeable BC. 

Semi-permeable 
BC. 

Energetically 
consistent BC. 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

1 0.9998 0.9994 0.9966 0.9989 0.9969 0.9989 0.9968 0.9989 

2 1.0008 1.0001 0.9994 0.9998 0.9996 0.9998 0.9995 0.9998 

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
Table 4.4 Normalized generalized T-stress component 14

T  of spherical cap crack 
contained in linear piezoelectric whole space under uniform remote tension for four 
crack-face conditions. 
 

Mesh 

Impermeable 
BC. 

Permeable 
BC. 

Semi-
permeable BC. 

Energetically 
consistent 

BC. 

 

1 4

1 4

r e f

T

T
 

 

1 4

1 4

r e f

T

T
 

 

1 4

1 4

r e f

T

T
 

 

1 4

1 4

r e f

T

T
 

1 0.9965 0.9963 0.9962 0.9961 

2 1.0001 0.9996 0.9996 0.9996 

3 1.0000 1.0000 1.0000 1.0000 
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Table 4.5 Normalized generalized T-stress components 11
T  and 33

T  of spherical cap 
crack contained in linear piezoelectric whole space under uniform remote electrical 
induction for four crack-face conditions. 
 

Mesh 
Impermeable BC. Permeable BC. 

Semi-permeable 
BC. 

Energetically 
consistent BC. 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 1 1 3 3 4 3

0 1 1 1 1

T E

d E
 3 3 3 3 4 3

0 1 1 1 1

T E

d E
 1 1 3 3 4 3

0 1 1 1 1

T E

d E
 3 3 3 3 4 3

0 1 1 1 1

T E

d E
 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

1 0.9720 0.9872 0.0000 0.0000 0.0000 0.0000 1.0112 1.0073 

2 0.9886 0.9935 0.0000 0.0000 0.0000 0.0000 1.0012 1.0004 

3 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 

 
Table 4.6 Normalized generalized T-stress component 14

T  of spherical cap crack 
contained in linear piezoelectric whole space under uniform remote electrical 
induction for four crack-face conditions. 
 

Mesh 

Impermeable 
BC. 

Permeable 
BC. 

Semi-
permeable BC. 

Energetically 
consistent 

BC. 

 

1 4

1 4

r e f

T

T
 

 

1 4

1 4

r e f

T

T
 

 

1 4

1 4

r e f

T

T
 

 

1 4

1 4

r e f

T

T
 

1 1.0006 0.9994 0.9994 0.9998 

2 1.0008 1.0001 1.0001 1.0001 

3 1.0000 1.0000 1.0000 1.0000 
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Figure 4.26 Normalized generalized T-stress components 11

T , 33
T  and 13

T  of crack 
under uniform remote biaxial tension for four crack-face conditions 
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Figure 4.27 Normalized generalized T-stress component 14

T  of crack under uniform 
remote biaxial tension for four crack-face conditions 
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T13 
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Other three cases 
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Figure 4.28 Normalized generalized T-stress component 

34
T  of crack under uniform 

remote biaxial tension for four crack-face conditions 
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Figure 4.29 Normalized generalized T-stress component 11

T  of crack under uniform 
remote electrical induction for four crack-face conditions 
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Figure 4.30 Normalized generalized T-stress component 33

T  of crack under uniform 
remote electrical induction for four crack-face conditions 
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Figure 4.31 Normalized generalized T-stress component 13

T  of crack under uniform 
remote electrical induction for four crack-face conditions 
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Figure 4.32 Normalized generalized T-stress component 34

T  of crack under uniform 
remote electrical induction for four crack-face conditions 
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Figure 4.33 Normalized generalized T-stress component 14

T  of crack under uniform 
remote electrical induction for four crack-face conditions 

Other three cases 
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4.2.3 A pair of identical circular cracks 

As the last example, consider a pair of identical circular cracks with the radius a  
contained in a linear piezoelectric whole space as illustrated in Figure 4.34. The two 
cracks, called crack-A and crack-B, are oriented such that their centers are located at 
the points  0,0, d  and  0,0,d , respectively, and the crack surface is normal to the 

3
x -axis. The medium is subjected to two loading conditions, one for the uniform 
uniaxial remote stress in the 3

x -direction 
33 0

    (see Figure 4.34(a)) and the other 
for the uniform electrical induction in the 3

x -direction 
34 0

d    (see Figure 4.34(b)). In 
the analysis, / 0.25d a  , 6 2

0
1×10 N/m   and 3 2

0
1×10 C/md   are considered and 

three meshes shown in Figure 4.3 are employed to discretize both cracks. 
 Computed generalized T-stress components for the crack-A are normalized by 
the single crack solution and then reported in Figure 4.7 and 4.8 for both loading 
conditions. It is remarked that it is sufficient to present only results of the crack-A due 
to the symmetry and the normalization by the single crack solution is only for 
demonstrating the effect of the interaction between the two cracks. It can be seen 
from these results that the convergence of numerical results is achieved as the level 
of discretization is refined. Specifically, the coarsest mesh yields results with only slight 
difference from those from the finest mesh. It is also found that for the second loading 
case, the mechanical generalized T-stress components 11

T  and 33
T  vanishes for both 

electrically permeable and electrically semi-permeable crack-face conditions. This 
finding is similar to that observed in a single penny-shaped crack. 
 To further investigate the influence of interacting cracks, results of the 
generalized T-stress components for different values of /d a  are computed by using 
the Mesh-3. The obtained results for 11

T , 33
T  and 14

T  are reported along with the 
single-crack solution as shown in Figures 4.35-4.37, respectively. Results from those 
Figures indicate that decreasing the normalized distance /d a  enhances the interaction 
between the two cracks. On the contrary, as /d a  increases, solutions of the two cracks 
converge rapidly to results of a single crack. It is important to note that as the ratio 

/d a  increases, the magnitude of 11
T  and 33

T  increases rapidly to reach the maximum 
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value and then decreases monotonically to the single-crack solution whereas the 
magnitude of 14

T  increases monotonically and converges to the single-crack solution. 

      

Figure 4.34 Schematic of a pair of identical circular cracks under (a) uniform uniaxial 
remote stress 0

  in 3
x -direction (b) uniform remote electrical induction 0

d   in 3
x -

direction 
 
Table 4.7 Normalized generalized T-stress components 11

T  and 33
T  of a pair of circular 

cracks in linear piezoelectric whole space under uniform uniaxial remote stress in 3
x -

direction for four rack-face conditions. 
 

Mesh 
Impermeable BC. Permeable BC. 

Semi-permeable 
BC. 

Energetically 
consistent BC. 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

1 1.0258 0.8423 1.0245 0.8567 1.0247 0.8555 1.0247 0.8555 

2 1.0669 0.8608 1.0625 0.8737 1.0631 0.8727 1.0631 0.8727 

3 1.0799 0.8665 1.0748 0.8790 1.0755 0.8781 1.0755 0.8781 
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Table 4.8 Normalized generalized T-stress 11
T  and 33

T  of a pair of circular cracks in 
linear piezoelectric whole space under uniform remote electrical induction in 3

x -
direction for four crack-face conditions. 
 

Mesh 
Impermeable BC. Permeable BC. 

Semi-permeable 
BC. 

Energetically 
consistent BC. 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 1 1 3 3 4 3

0 1 1 1 1

T E

d E
 3 3 3 3 4 3

0 1 1 1 1

T E

d E
 1 1 3 3 4 3

0 1 1 1 1

T E

d E
 3 3 3 3 4 3

0 1 1 1 1

T E

d E
 

 

1 1

1 1

r e f

T

T
 

 

3 3

3 3

r e f

T

T
 

1 1.0080 1.0116 0.0000 0.0000 0.0000 0.0000 1.0234 0.8613 

2 1.0140 1.0122 0.0000 0.0000 0.0000 0.0000 1.0601 0.8776 

3 1.0205 1.0146 0.0000 0.0000 0.0000 0.0000 1.0717 0.8825 
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Figure 4.35 Normalized generalized T-stress component 11

T  of crack under uniform 
remote tension for four crack-face conditions 
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Figure 4.36 Normalized generalized T-stress component 33
T  of crack under uniform 

remote tension for four crack-face conditions 
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Figure 4.37 Normalized generalized T-stress component 14
T  of crack under uniform 

remote tension for four crack-face conditions 
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CONCLUSIONS AND REMARKS 

An accurate and efficient numerical procedure based upon the weakly singular, 
boundary integral equation method and standard Galerkin technique for analysis of 
generalized T-stress components of general cracks in three-dimensional, linear 
piezoelectric, whole space under various crack-face conditions has been successfully 
developed. The technique has been implemented in a general framework allowing 
planar, non-planar and multiple cracks in generally anisotropic piezoelectric medium 
under arbitrarily distributed applied crack-face loadings and uniform mechanical and 
electrical fields to be treated. A pair of weakly singular, weak-form integral equations, 
one for the sum of the crack-face generalized displacement and the other for the jump 
in the crack-face generalized traction, has been developed and employed in the 
formulation of key equations governing the unknown on the crack surface. The weak-
form boundary integral equations are fully regularized and contain merely the weakly 
singular kernels. As a result, it makes all involved integrals existing in the sense of 
Riemann and their validity only needs the continuity of the crack-face data. In addition, 
the weakly singular nature of the boundary integral equations also eases their 
interpretation and numerical evaluation in comparison with strongly singular and 
hypersingular integrals commonly involved in conventional boundary integral equation 
methods.  
 The weakly singular boundary element method together with the standard 
Galerkin scheme is utilized to discretize both a pair of weakly singular integral 
equations and the energetically consistent and electrically semi-permeable crack-face 
conditions. To enhance the quality of solution approximation and computational 
efficiency, special local basis functions have been employed to approximate the near-
front jump in the crack-face generalized displacement; the special quadrature has 
been utilized to treat both weakly singular and near singular double surface integrals; 
and an interpolation scheme has been implemented to compute kernels for general 
anisotropic piezoelectric materials. The discretization of a pair of boundary integral 
equations yields two systems of linear algebraic equations whereas that of the 
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prescribed energetically consistent and electrically semi-permeable crack-face 
conditions leads to two systems of nonlinear algebraic equations. All involved sets of 
linear algebraic equations are solved by a preconditioning conjugate gradient method 
whereas the resulting set of nonlinear equations (for the case of energetically 
consistent and electrically semi-permeable cracks) is solved by a nonlinear solver 
based on Newton iteration. 
 After all crack-face unknowns data are solved, the generalized T-stress 
components along the crack front have been post-processed using the information of 
the sum of the crack-face generalized displacement and the known crack-face 
generalized traction in the limiting point of the crack boundary. Results from extensive 
numerical experiments for various scenarios (e.g., planar and nonplanar cracks, 
multiple cracks, cracks under general loading conditions) have indicated that the 
proposed technique is computationally robust and, in addition, gives very accurate 
results in comparison with available benchmark solution with use of reasonably coarse 
meshes. 
 Finally, it is remarked that the formulation and implementations are still limited 
to cracks in an infinite medium. The extension of the present development to simulate 
cracks in a finite body should be potentially useful for modeling more practical and 
large-scale problems. All components established in this current investigation should 
at least provide an essential basis for such generalization. 
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