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CHAPTER I

INTRODUCTION

1.1 Prologue

Let G and K be graphs with G a subgraph of K. A G-decomposition of K,

or a (K,G)-design, is a partition of the edge set of K into subgraphs isomorphic

to G. A (Kv, G)-design is also known as a G-design of order v.

One of the better studied problems in G-designs is the case when G is a cycle.

Necessary and sufficient conditions for the existence of Cn-designs of order v were

found about a decade ago by Alspach and Gavlas [8] and by Šajna [40]. Necessary

and sufficient conditions for the existence of a G-design of order v when G is a

2-regular graph of order at most 10 are found in [5]. For a general 2-regular graph

G of order n, the problem of finding necessary and sufficient conditions for the

existence of a G-design of order v is far from settled. It is expected however that

for such a G, there will exist a G-design of order v for all v ≡ 1 (mod 2n). This has

been confirmed when G is bipartite (see [19] and [10]), when G is almost-bipartite

[15], when G is rCm where m is odd [22], and when G has two components (see [2],

[11] and [14]). If in addition n is odd and (G, v) /∈ {(C4∪C5, 9), (C3∪C3∪C5, 11)},

then a G-design of order v for all v ≡ n (mod 2n) is likely to exist.

A well-known problem on decompositions of complete graphs into 2-regular

graphs is the Oberwolfach Problem. Let G be a 2-regular graph of odd order n.

The problem of determining whether there exists a G-decomposition of Kn is

known as the Oberwolfach Problem. This problem was settled in 1989 by Alspach,

Schellenberg, Stinson, and Wagner [9] in the case when all the components of G

are isomorphic to the same cycle. More recently, Traetta [43] settled the case

when G consists of two components. The general problem however is far from

settled. For example, very little is known when G consists of three components
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(see [13] for some known results).

It is easy to see that K2kn+n can be decomposed into K(2k+1)×n and 2k + 1

copies of Kn. Let G of odd order n be a 2-regular graph. Notice that if there is

a G-decomposition of Kn and a G-decomposition of K(2k+1)×n, then there is a G-

decomposition of K2kn+n. If G = C3, a popular construction for G-decompositions

of K6k+3 is known as the the Bose construction for Steiner triple systems.

This dissertation is organized as follows. The first chapter is the introduction

including all definitions and notations of graphs used frequently in this disserta-

tion, and also the definitions of graph decompositions and graph designs.

Chapter 2 is dedicated to a brief survey of the literature. It begins with Steiner

triple systems. The Bose construction, a well-known construction for Steiner

triple systems of order 3 (mod 6), is presented. We then discuss decompositions

of complete graphs and of complete multipartite graphs into 2-regular graphs.

We also give an overview of the Oberwolfach problem which is concerned with

determining whether there exists a G-decomposition Kn, where G is a 2-regular

graph of odd order n. Finally, α-labelings of bipartite graphs are discussed.

The next chapter contains our main results. We first show how the Bose

construction for Steiner triple systems of order 6k + 3 can be naturally extended

to obtain Cn-decompositions of K2nk+n for all odd n ≥ 5 and all positive integers

k. We then show that if G of odd order n is a 2-regular almost-bipartite graph or is

the vertex-disjoint union of three odd cycles, then there exists a G-decomposition

of K(2k+1)×n for every positive integer k. If G consists of only two components,

we combine the G-decomposition the K(2k+1)×n result with Traetta’s result on the

Oberwolfach problem to show that there exists a G-decomposition of Kv for all

v ≡ n (mod 2n) unless G = C4 ∪ C5 and v = 9. We also show that there exists

a G-decomposition of Kk×2n for all integers k ≥ 3. Furthermore, when G is the

vertex-disjoint union of three odd cycles, we find a G-decomposition of K2kn+1

for all positive integers k ̸= 2. Our research has resulted in three research papers

([17], [31], and [30]). In particular, the results on the decompositions of complete

multipartite graphs into the vertex-disjoint union of three odd cycles will appear
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in the Australasian Journal of Combinatorics [31].

Finally, the last chapter contains the summary of our results and several related

open problems are presented.

1.2 Definitions and notation

A graph G is an ordered pair (V (G), E(G)), where V (G) is a finite set of

objects called vertices and E(G) is a set of 2-element subsets of V (G), called

edges. We will refer to V (G) as the vertex set of G and to E(G) as the edge set

of G. The order and the size of G are |V (G)| and |E(G)|, respectively.

If e = {u, v} is an edge of a graph G, we say that u and v are the endvertices

of e and that u and v are adjacent. In this case, we also say that u and e are

incident, as are v and e. Furthermore, if e1 and e2 are distinct edges of G incident

with a common vertex, then e1 and e2 are adjacent edges. It is often convenient

to denote an edge by uv or vu rather than by {u, v}. The degree of a vertex v in

a graph G is the number of edges in G that are incident with v, which is denoted

by degG v or simply by deg v if G is clear from the context. A vertex of degree 0

is called an isolated vertex in G. We write G − e (G − u) for the subgraph of G

obtained by deleting an edge e (a vertex u).

It is customary to define or describe a graph G by means of a diagram in which

each vertex of G is represented by a point (often drawn as a small circle or some

similar object) and each edge e = {u, v} of G is represented by a line segment

or curve that joins the points corresponding to u and v. We then refer to this

diagram as the graph G itself. There are occasions when we are only interested

in the structure of a graph defined by a diagram and the vertex set of the graph

is irrelevant. In this case, we refer to the graph as an unlabeled graph. The two

graphs in Figure 3.4 are examples of such unlabeled graphs.

The union of graphs G1, . . . , Gk, written G1∪· · ·∪Gk, is the graph with vertex

set
k∪

i=1

V (Gi) and edge set
k∪

i=1

E(Gi). The graph obtained by taking the union of

graphs G and H with disjoint vertex sets is the disjoint union. The vertex-disjoint

union of r copies of a graph G will be denoted by rG.



4

A graph G is a subgraph of a graph H if V (G) ⊆ V (H) and E(G) ⊆ E(H); in

such a case, we also say that H contains G as a subgraph. Whenever a subgraph

G of a graph H has the same order as H, then G is called a spanning subgraph of

H. The complement Ḡ of a graph G is the graph with vertex set V (G) defined

by {u, v} ∈ E(Ḡ) if and only if {u, v} /∈ E(G).

A graph G is regular of degree r if deg v = r for each vertex v of G. Such

graphs are called r-regular. A graph is complete if every two of its vertices are

adjacent. A complete graph of order n is therefore (n−1)-regular and has size
(
n
2

)
.

We denote this graph by Kn. The first graph in Figure 1.3 is K8, the complete

graph of order 8.

An isomorphism from a simple graph G to a simple graph H is a bijection

f : V (G) → V (H) such that {u, v} ∈ E(G) if and only if {f(u), f(v)} ∈ E(H).

We say G is isomorphic to H, written G ∼= H, if there is an isomorphism from G

to H.

u1 u2

u4 u3

u5 u6

u8 u7

G

v8

v7

v6

v5

v4

v3

v2

v1

H

Figure 1.1: Isomorphic graphs

A path is a graph whose vertices can be ordered so that two vertices are

adjacent if and only if they are consecutive in the list. A path is empty if it

contains only one vertex and thus no edges. Note that a nonempty path starts

with a vertex of degree 1 and ends with a vertex of degree 1. These two vertices

are called the endpoints of the path. All other vertices between the first and the

last vertex of a path have degree 2. If the first vertex in a path G is u and the

last vertex is v, then G is called a u-v path or a path from u to v. A path with n

vertices is often denoted by Pn.

We denote the directed path with vertices x0, x1, . . . , xk, where xi is adjacent
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to xi+1, 0 ≤ i ≤ k − 1, by (x0, x1, . . . , xk). The first vertex of this path is x0,

the second vertex is x1, and the last vertex is xk. If G1 = (x0, x1, . . . , xj) and

G2 = (y0, y1, . . . , yk) are directed paths with xj = y0, then by G1 + G2 we mean

the path (x0, x1, . . . , xj, y1, y2, . . . , yk).

A cycle is a graph with an equal number of vertices and edges whose vertices

can be placed around a circle so that two vertices are adjacent if and only if they

appear consecutively along the circle. The number of vertices in a cycle is called

its length. The cycle with n vertices is denoted by Cn or n-cycle. We sometimes

denote the cycle with vertex set {x1, x2, . . . , xn} and edge set {{xi, xi+1} : 1 ≤ i ≤

n − 1} ∪ {xn, x1} by ⟨x1, x2, . . . , xn⟩. We note that (x1, x2, . . . , xn) + (xn, x1) =

⟨x1, x2, . . . , xn⟩. A cycle is even if its length is even; otherwise, it is odd. Figure 1.2

shows the path P5 and the cycle C6.

A vertex u is said to be connected to a vertex v in a graph G if there exists a

u-v path in G. A graph G is connected if every pair of its vertices is connected.

A graph that is not connected is disconnected. The relation “is connected to” is

an equivalence relation on V (G). The subgraphs of G induced by the resulting

equivalence classes are called the components of G.

P5 C6

Figure 1.2: A path and a cycle

A spanning subgraph of a graph G is a referred to as a factor of G. A k-

regular factor is called a k-factor. A spanning cycle in a graph G is also called a

Hamiltonian cycle in G.

A graph G is k-partite, k ≥ 1, if V (G) can be partitioned into into k subsets

V1, V2, . . . , Vk (called partite sets) such that every element of E(G) joins a vertex

of Vi to a vertex of Vj, i ̸= j. Note that every graph is k-partite for some k;

indeed, if G has order n, then G is n-partite. If G is a 1-partite graph of order n,
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then G = K̄n. For k = 2, such graphs are called bipartite graphs, and for k = 3

they are are called tripartite graphs. A non-bipartite graph G is almost-bipartite

if G contains an edge e whose removal renders G bipartite. For example, cycles

of odd length are almost-bipartite.

A complete k-partite graph G is a k-partite graph with partite sets V1, V2, . . . , Vk

having the added property that if u ∈ Vi and v ∈ Vj, i ̸= j, then {u, v} ∈ E(G).

If |Vi| = ni, then this graph is denoted by K(n1, n2, . . . , nk) or Kn1,n2,...,nk
. (The

order in which the numbers n1, n2, . . . , nk are written is not important.) Note that

a complete k-partite graph is complete if and only if ni = 1 for all i, in which case

it is Kk. A complete bipartite graph with partite sets V1 and V2, where |V1| = r

and |V2| = s, is then denoted by K(r, s) or more commonly Kr,s. We will denote

the complete multipartite graph with r ≥ 3 partite sets of order s each by Kr×s.

The complete bipartite graph K3,4 and the complete tripartite graph K3×4 are

shown in Figure 1.3.

K8 K3,4 K3×4

Figure 1.3: A complete graph, a complete bipartite graph and a complete multi-

partite graph

1.3 Graph decompositions and graph designs

A decomposition of a graph K is a set Γ = {G1, G2, . . . , Gt} of subgraphs of

K such that the edge sets of the graphs Gi form a partition of the edge set of

K. If Gi is a Hamiltonian cycle, then the decomposition is called the Hamiltonian

decomposition. If each Gi is isomorphic to a subgraph G of K, such decomposition
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is called a G-decomposition of K or a (K,G)-design. A (Kv, G)-design is also

known as a G-design of order v. The study of graph decompositions is known as

the study of graph designs or simply as the study of G-designs. For recent surveys

on G-designs, we direct the reader to [3] and [12].

A popular tool for finding (K,G)-designs is through the use of graph labelings.

A labeling of a graph G is an assignment of integers to the vertices of G subject

to certain conditions. Graph labelings were first introduced by Rosa in the late

1960s. Rosa [37] showed that certain basic labelings of a graph G with n edges

yielded G-decompositions of K2n+1. Additionally, other stricter labeling yielded

G-decomposition of K2nk+1 for all positive integers k. A survey of various of Rosa-

type labelings that summarize some of the related results can be found in [18].

For a comprehensive look at general graph labelings, we direct the reader to a

dynamic survey on the topic by Gallian [21]. We will focus on one of the labelings

defined by Rosa [37] for bipartite graphs in Section 2.6.



CHAPTER II

REVIEW OF THE LITERATURE

In this chapter, we give a brief survey of the literature for results related

to decompositions of complete graphs and complete multipartite graphs into 2-

regular graphs. We begin by looking at Steiner triple systems and one of the

popular constructions for them and some of its generalizations. Next, we discuss

decompositions of complete graphs and of complete multipartite graphs into 2-

regular graphs. We also discuss the Oberwolfach problem and some of the recent

progress made on it. Finally, we discuss α-labelings which we will use in obtaining

our results.

2.1 Steiner triple systems

A Steiner triple system of order v is an ordered pair (S, T ), where S is a finite

set of v points or symbols, and T is a set of 3-element subsets of S called triples,

such that each pair of distinct elements of S occurs together in exactly one triple

of T .

Example 2.1. If S = {0, 1, 2, 3, 4, 5, 6} and T = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5},

{3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}, then (S, T ) is a Steiner triple system of order

7.

Note that a Steiner triple system of order v is equivalent to a C3-decomposition

of Kv.

Steiner triple systems were evidently defined for the first time in 1844 by

W.S.B. Woolhouse [44]. In 1847, T.P. Kirkman [32] proved that a Steiner triple

system of order v exists if and only if v ≡ 1 or 3 (mod 6). In 1939, R.C. Bose

published a construction for a Steiner triple of order v ≡ 3 (mod 6) that is much
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simpler than the one given by Kirkman. In this construction, he made use of idem-

potent commutative quasigroups. We will refer to this construction as the Bose

construction. Our work can be viewed as an extension of the Bose construction.

2.2 The Bose construction

Let N denote the set of nonnegative integers. Let n ∈ N and Zn the group of

integers modulo n. If a and b are integers, we denote {a, a+ 1, . . . , b} by [a, b] (if

a > b, then [a, b] = ∅).

A quasigroup of order q is a pair (Q, ◦) where Q is a set of size q, say Q = [1, q],

and ◦ is a binary operation on Q such that for every pair of elements a, b ∈ Q,

the equations a ◦ x = b and y ◦ a = b have unique solutions. The quasigroup is

idempotent if i ◦ i = i for every i ∈ Q and it is commutative if i ◦ j = j ◦ i for

all i, j ∈ Q. Note that in such a quasigroup, if a ̸= b, then a, b, and a ◦ b are

distinct. It has long been known that an idempotent commutative quasigroup of

order q exists if and only if q is odd (see [34]). The Bose construction is described

as follow:

Let v = 6k + 3 for some positive integer k, and let (Q, ◦) be an idempotent

commutative quasigroup of order 2k + 1, where Q = [1, 2k + 1]. Let S = Z3 ×Q,

and define T to contain the following two types of triples:

Type 1: For 1 ≤ i ≤ 2k + 1, {(0, i), (1, i), (2, i)} ∈ T .

Type 2: For 1 ≤ i < j ≤ 2k + 1, {(0, i), (0, j), (1, i ◦ j)}, {(1, i), (1, j), (2, i ◦ j)},

{(2, i), (2, j), (0, i ◦ j)} ∈ T .

Then (S, T ) is a Steiner triple system of order 6k + 3.

Example 2.2. We will use the Bose construction to produce a Steiner triple

system (S, T ) of order 15. Let (Q, ◦) be the idempotent commutative quasigroup

of order 5 shown in Figure 2.1. Let S = Z3× [1, 5] and let T contain the following
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35 triples:

Type 1: {{(0, 1), (1, 1), (2, 1)}, {(0, 2), (1, 2), (2, 2)}, {(0, 3), (1, 3), (2, 3)},

{(0, 4), (1, 4), (2, 4)}, {(0, 5), (1, 5), (2, 5)}}

Type 2: i = 1, j = 2 i = 1, j = 3

{(0, 1), (0, 2), (1, 1 ◦ 2 = 5)} {(0, 1), (0, 3), (1, 1 ◦ 3 = 2)}

{(1, 1), (1, 2), (2, 1 ◦ 2 = 5)} {(1, 1), (1, 3), (2, 1 ◦ 3 = 2)}

{(2, 1), (2, 2), (0, 1 ◦ 2 = 5)} {(2, 1), (2, 3), (0, 1 ◦ 3 = 2)}

i = 1, j = 4 i = 1, j = 5

{(0, 1), (0, 4), (1, 1 ◦ 4 = 3)} {(0, 1), (0, 5), (1, 1 ◦ 5 = 4)}

{(1, 1), (1, 4), (2, 1 ◦ 4 = 3)} {(1, 1), (1, 5), (2, 1 ◦ 5 = 4)}

{(2, 1), (2, 4), (0, 1 ◦ 4 = 3)} {(2, 1), (2, 5), (0, 1 ◦ 5 = 4)}

i = 2, j = 3 i = 2, j = 4

{(0, 2), (0, 3), (1, 2 ◦ 3 = 4)} {(0, 2), (0, 4), (1, 2 ◦ 4 = 1)}

{(1, 2), (1, 3), (2, 2 ◦ 3 = 4)} {(1, 2), (1, 4), (2, 2 ◦ 4 = 1)}

{(2, 2), (2, 3), (0, 2 ◦ 3 = 4)} {(2, 2), (2, 4), (0, 2 ◦ 4 = 1)}

i = 2, j = 5 i = 3, j = 4

{(0, 2), (0, 5), (1, 2 ◦ 5 = 3)} {(0, 3), (0, 4), (1, 3 ◦ 4 = 5)}

{(1, 2), (1, 5), (2, 2 ◦ 5 = 3)} {(1, 3), (1, 4), (2, 3 ◦ 4 = 5)}

{(2, 2), (2, 5), (0, 2 ◦ 5 = 3)} {(2, 3), (2, 4), (0, 3 ◦ 4 = 5)}

i = 3, j = 5 i = 4, j = 5

{(0, 3), (0, 5), (1, 3 ◦ 5 = 1)} {(0, 4), (0, 5), (1, 4 ◦ 5 = 2)}

{(1, 3), (1, 5), (2, 3 ◦ 5 = 1)} {(1, 4), (1, 5), (2, 4 ◦ 5 = 2)}

{(2, 3), (2, 5), (0, 3 ◦ 5 = 1)} {(2, 4), (2, 5), (0, 4 ◦ 5 = 2)}
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2

5

5

5

5

54

4

4

4

3

3

3

3

3

2

2

2

1

1

1

1

5

4

43

5

4

3

2

1

2

2

◦ 1

1

(0,1) (0,2) (0,3) (0,4) (0,5)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3) (1,4)

(2,4)(2,3)

(1,5)

(2,5)

Figure 2.1: An idempotent commutative quasigroup of order 5 and one triple from

the Bose construction of a Steiner triple system of order 15.

In terms of graphs, we note that the triples of Type 1 in T form a C3-

decomposition of (2k + 1)K3 and the triples of Type 2 form a C3-decomposition

of K(2k+1)×3. Since all edges of K6k+3 can be separated into edges of (2k + 1)K3

and edges of K(2k+1)×3, we have the desired result.

2.3 The quasigroup with hole construction

A variation on the Bose Construction makes use of quasigroups of even order

with holes of size two. For an integer k ≥ 3, let Q = [1, 2k] and for i ∈ [1, k],

let hi = {2i − 1, 2i}. Let H = {h1, h2, . . . , hk}. In what follows, all elements

hi ∈ H are called holes. A quasigroup with holes H is a quasigroup (Q, ◦) of order

2k in which for each hi ∈ H, we have (hi, ◦) is a subquasigroup of (Q, ◦). It is

known that for every k ≥ 3, there exists a commutative quasigroup (Q, ◦) of order

2k with holes H (see [34]). Commutative quasigroups of order 2k with holes H

are used to construct C3-decompositions of Kk×6 for every integer k ≥ 3. This

C3-decompositions of Kk×6 is then combined a C3-decomposition of K7 to obtain

a Steiner triple system of order 6k + 1.

Let k ≥ 3 be an integer and for i ∈ [1, k], let hi = {2i−1, 2i} and gi = Z3×hi.

Let Q = [1, 2k] and H = {h1, h2, . . . , hk}. Let (Q, ◦) be a commutative quasigroup

of order 2k with holes H. Let S = {∞} ∪ (Z3 × [1, 2k]). For 1 ≤ i ≤ k, let Ti

consist of the triples in a Steiner triple system of order 7 on the symbols {∞}∪gi.
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Consider the following:

(1) let T ′ =
k∪

i=1

Ti, and,

(2) for 1 ≤ i < j ≤ 2k, {i, j} /∈ H, let T ′′ contain the triples {(0, i), (0, j), (1, i ◦ j)},

{(1, i), (1, j), (2, i ◦ j)}, {(2, i), (2, j), (0, i ◦ j)}.

Then (S, T ′ ∪ T ′′) is a Steiner triple system of order 6k + 1.

Example 2.3. We will use the quasigroups with hole construction to produce a

Steiner triple system of order 19. For i ∈ [1, 3], let hi = {2i−1, 2i} and gi = Z3×hi.

Let Q = [1, 6] and H = {h1, h2, h3}. Let (Q, ◦) be the commutative quasigroup

of order 6 with holes H shown in Figure 2.2. Let S = {∞} ∪ (Z3 × [1, 6]). For

i ∈ [1, 3], let Ti consist of the triples from a Steiner triple system of order 7 on the

symbols {∞}∪ gi and let T ′ =
3∪

i=1

Ti. Then each Ti contains the following triples:

{(0, 2i− 1), (1, 2i− 1), (0, 2i)} {∞, (0, 2i− 1), (2, 2i− 1)}

{(1, 2i− 1), (2, 2i− 1), (1, 2i)} {∞, (0, 2i), (2, 2i− 1)}

{(2, 2i− 1), (0, 2i), (2, 2i)} {∞, (2, 2i), (1, 2i− 1)}

{(1, 2i), (2, 2i), (0, 2i− 1)}

For 1 ≤ i < j ≤ 6, with {i, j} /∈ H, let T ′′ contain the following triples:

i = 1, j = 3 i = 1, j = 4

{(0, 1), (0, 3), (1, 1 ◦ 3 = 5)} {(0, 1), (0, 4), (1, 1 ◦ 4 = 6)}

{(1, 1), (1, 3), (2, 1 ◦ 3 = 5)} {(1, 1), (1, 4), (2, 1 ◦ 4 = 6)}

{(2, 1), (2, 3), (0, 1 ◦ 3 = 5)} {(2, 1), (2, 4), (0, 1 ◦ 4 = 6)}

i = 1, j = 5 i = 1, j = 6

{(0, 1), (0, 5), (1, 1 ◦ 5 = 3)} {(0, 1), (0, 6), (1, 1 ◦ 6 = 4)}

{(1, 1), (1, 5), (2, 1 ◦ 5 = 3)} {(1, 1), (1, 6), (2, 1 ◦ 6 = 4)}

{(2, 1), (2, 5), (0, 1 ◦ 5 = 3)} {(2, 1), (2, 6), (0, 1 ◦ 6 = 4)}

i = 2, j = 4 i = 2, j = 5
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{(0, 2), (0, 4), (1, 2 ◦ 4 = 5)} {(0, 2), (0, 5), (1, 2 ◦ 5 = 4)}

{(1, 2), (1, 4), (2, 2 ◦ 4 = 5)} {(1, 2), (1, 5), (2, 2 ◦ 5 = 4)}

{(2, 2), (2, 4), (0, 2 ◦ 4 = 5)} {(2, 2), (2, 5), (0, 2 ◦ 5 = 4)}

i = 2, j = 6 i = 3, j = 5

{(0, 2), (0, 6), (1, 2 ◦ 6 = 3)} {(0, 3), (0, 5), (1, 3 ◦ 5 = 1)}

{(1, 2), (1, 6), (2, 2 ◦ 6 = 3)} {(1, 3), (1, 5), (2, 3 ◦ 5 = 1)}

{(2, 2), (2, 6), (0, 2 ◦ 6 = 3)} {(2, 3), (2, 5), (0, 3 ◦ 5 = 1)}

i = 3, j = 6 i = 4, j = 6

{(0, 3), (0, 6), (1, 3 ◦ 6 = 2)} {(0, 4), (0, 6), (1, 4 ◦ 6 = 1)}

{(1, 3), (1, 6), (2, 3 ◦ 6 = 2)} {(1, 4), (1, 6), (2, 4 ◦ 6 = 1)}

{(2, 3), (2, 6), (0, 3 ◦ 6 = 2)} {(2, 4), (2, 6), (0, 4 ◦ 6 = 1)}.

Then (S, T ′ ∪ T ′′) is a Steiner triple system of order 19.

��
��
��

��
��
��

��
��
��

��
��
��

12

243

6 1

265

45

65

6

6

5

4 3

3

3

2

1

1

5

4

43

5

4

3

2

1

2◦ 1

6

1 2

2 1

3

3

4

4

5

5

6

6

(0,1) (0,2)

(1,1)

(2,1)

(1,2)

(2,2)︸ ︷︷ ︸
g1

(2,3) (2,4)

(1,4)(1,3)

(0,4)(0,3)

︸ ︷︷ ︸
g2

(0,5)

(1,5)

(2,5)

(0,6)

(1,6)

(2,6)︸ ︷︷ ︸
g3

Figure 2.2: A commutative quasigroup of order 6 with holes and one triple from

the corresponding C3-decomposition of K3×6.

2.4 Decompositions of complete graphs and complete mul-

tipartite graphs into 2-regular graphs

The problem of investigating decompositions of complete graphs into 2-regular

graphs is one of the more popular problems in the study of G-designs. Perhaps

the oldest such problem is the study of C3-decompositions of Kv. It dates back
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to 1844 (see [44]) and later became known as the study of Steiner triple systems

(see Chapter 2.1). In 1847, T.P. Kirkman [32] proved that there exists a C3-

design of order v if and only if v ≡ 1 or 3 (mod 6). It was not until the early

1960’s that researchers began investigating other Cn-decompositions of complete

graphs. Anton Kotzig and Alex Rosa are credited with publishing some of the

earliest such investigations (see for example [33], [38], and [39]). Over the next

three decades, several others made significant contributions to the general problem

(see for example [29] and [27]). The problem of finding necessary and sufficient

conditions for the existence of a Cn-design of order v was settled completely a

little over a decade ago by Alspach and Gavlas [8] and by Šajna [40]. Necessary

and sufficient conditions for the existence of a G-design of order v are found in [5]

when G is a 2-regular graph of order at most 10. For a general 2-regular graph

G of order n, the problem of finding necessary and sufficient conditions for the

existence of a G-decomposition of Kv is far from settled. It is expected however

that for such a G-decomposition will exist for all v ≡ 1 (mod 2n). This has been

confirmed when G is bipartite (see [19] and [10]), when G is almost-bipartite [15],

when G is rCm where m is odd [22], and when G has two components (see [2], [11]

and [14]). If in addition n is odd and (G, v) /∈ {(C4 ∪ C5, 9), (C3 ∪ C3 ∪ C5, 11)},

then a G-design of order v for all v ≡ n (mod 2n) is likely to exist. The case

v = n is known as the Oberwolfach problem (see Section 2.5).

In recent years, numerous authors have investigated Cn-decompositions of com-

plete multipartite graphs. Particular focus has been placed on C3-decompositions

of complete multipartite graphs. Such decompositions fall under the umbrella of

the study of group divisible designs (see [23] for a summary). The problem of

C2k-decompositions of the complete bipartite graph Km,n was settled completely

by Sotteau in [41]. In [36], Piotrowski settled the problem of G-decompositions

of Kn,n when G is a 2-regular bipartite graph of order 2n. In [35], Liu settled the

problem of kCm-decompositions of Kr×s in the case when km = rs. We are not

aware of any work that has been done on G-decompositions of complete multipar-

tite graphs when G is a 2-regular graph with non-uniform components and the
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complete graph is not bipartite.

2.5 The Oberwolfach problem

Let t be a positive integer. For i ∈ [1, t], let ri ≥ 1 and mi ≥ 3 be integers.

Let n = r1m1 + r2m2 + · · · + rtmt. Let G be the 2-regular graph of order n

consisting of the vertex-disjoint union r1Cm1∪r2Cm2∪· · ·∪rtCmt . The Oberwolfach

problem OP (mr1
1 ,mr2

2 , . . . ,mrt
t ) is a problem of determining whether there exists

a G-decomposition of Kn if n is odd or of Kn − I, where I is a 1-factor, if n is

even. The Oberwolfach problem was posed by G. Ringel in 1967 at a meeting in

Oberwolfach, Germany. It was first mentioned in the literature in [24].

Example 2.4. A solution to OP (3, 4) looks as follows, where the vertices of K7

are labeled 0, 1, . . . , 6.

1st 2-factor 2nd 2-factor 3rd 2-factor

⟨0, 1, 4⟩ ⟨0, 2, 5⟩ ⟨0, 3, 6⟩

⟨2, 3, 5, 6⟩ ⟨3, 4, 6, 1⟩ ⟨4, 5, 1, 2⟩

It is known that OP (3, 3), OP (3, 3, 3, 3), OP (4, 5) and OP (3, 3, 5) have no so-

lutions (see [13]). The followings are some of the known results on the Oberwolfach

problem.

Theorem 2.5. The following Oberwolfach problems all have solutions.

(i) OP (mt) for all t ≥ 1 and m ≥ 3 (see [9]);

(ii) OP (mr1
1 ,mr2

2 , . . . ,mrt
t ) for r1m1 + r2m2 + · · ·+ rtmt ≤ 17;

(iii) OP (3k, 4) for all odd k ≥ 1 (see [16]);

(iv) OP (3k, 5) for all even k ≥ 4 (see [42]);

(v) OP (rk, n− kr) for n ≥ 6kr − 1, k ≥ 1, r ≥ 3;

(vi) OP (r, n− r) for 3 ≤ r ≤ 9 and n ≥ r + 3 (see [26]);
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(vii) OP (r, r, n− 2r) for r = 3, 4 and n ≥ 2r + 3 (see [26]);

(viii) OP (2r1, 2r2, . . . , 2rk) for all ri ≥ 2 and r1 + r2 + · · ·+ rk odd (see [25]);

(ix) OP (r, r + 1) and OP (r, r + 2) for r ≥ 3;

(x) OP (2r + 1, 2r + 1, 2r + 2) for r ≥ 1;

(xi) OP (3, 4r, 4r) for r ≥ 1;

(xii) OP (4k, 2r + 1) for k ≥ 0 and r ≥ 1;

(xiii) OP ((4s)k, 2r + 1) for k ≥ 0 and r ≥ 1;

Although the general problem is far from settled, Traetta [43] recently settled

the case when G has two components.

Theorem 2.6. Let a ≥ 2 and b ≥ 1 be integers and let n = 2a + 2b + 1. There

exists a (C2a ∪ C2b+1)-decomposition of Kn if and only if (a, b) ̸= (2, 2).

2.6 α-Labelings

In 1967, Rosa [37] introduced a hierarchy of labelings of simple graphs. We

use one such labeling in our approach. Let G be a bipartite graph with n edges

and vertex bipartition {A,B}. An α-labeling of G is an injection f : V (G) → N

such that

• f(a) < f(b) ≤ n for all a ∈ A and b ∈ B,

• {|f(u)− f(v)| : {u, v} ∈ E(G)} = [1, n].

For every such α-labeling, there necessarily exists an integer λ, called the critical

value of the α-labeling f , such that max(A) = λ and min(B) = λ+ 1.

Rosa [37] showed that ifG has an α-labeling, then there exists aG-decomposition

of K2nk+1 for all positive integers k. Moreover, α-labelings can be used to obtain

decompositions of complete bipartite graphs. For example, if a bipartite graph G

of size n admits an α-labeling, then there exists a G-decomposition of Kn,n (see
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0 21 3

8 57 4

C8 with λ = 3

0 41 6

12 1011 7

5

8

2

9

C6 ∪ C6 with λ = 6

Figure 2.3: A α-labeling of G where G = C8 or C6 ∪ C6

[28]). In [37], Rosa showed that if a 2-regular bipartite graph G of size n admits

an α-labeling, then we must have n ≡ 0 (mod 4).

In [37], Rosa determined when an even cycle admits an α-labeling.

Theorem 2.7. Cn has an α-labeling if and only if n ≡ 0 (mod 4).

In [2], Abrham and Kotzig settled the corresponding result for the union of

two even cycles.

Theorem 2.8. C2n ∪C2m has an α-labeling if and only if 2n+ 2m ≡ 0 (mod 4).

Because we are concerned with 2-regular graphs, we note the following results

on α-labelings.

Theorem 2.9. The following 2-regular bipartite graphs admit α-labelings.

(i) rC4 if and only if r ̸= 3 (see [1]).

(ii) C2m1 ∪C2m2 ∪C2m3 if and only if 2m1 +2m2 +2m3 ≡ 0 (mod 4) (see [20]).



CHAPTER III

MAIN RESULTS

In this chapter, we use novel extensions of the Bose construction for Steiner

triple systems to show that there exist a G-decomposition of K(2k+1)×n for every

positive integer k and a G-decomposition of Kk′×2n for every integer k′ ≥ 3 where

G is a 2-regular almost-bipartite graph of odd order n. We obtain similar results

when G consists of three odd length cycles. In Section 3.1, we focus on the case

when G as a single cycle. We also show that there exists a Cn-decomposition of

Kv for all v ≡ n (mod 2n). In Subsection 3.3.1, we concentrate when G has only

two components. Additionally, we find a G-decomposition of Kv for all v ≡ n

(mod 2n). In Subsection 3.3.2, we consider the case when G consists of any

number of even cycles and one single odd cycle. Finally, in Subsection 3.3.3, we

consider the case when G consists of three odd cycles. In the last case, we also

obtain a G-decomposition of Kv for all v ≡ 1 (mod 2n), except when v = 4n+1.

3.1 On extensions of the Bose construction

We begin with some sufficient conditions for the existence of aG-decomposition

of K(2k+1)×n and of Kk′×2n for all integers k ≥ 1 and k′ ≥ 3. These ideas make

use of extensions of the Bose construction for Steiner triple systems.

Let n ≥ 3 be an odd integer and let k be a positive integer. Let K(2k+1)×n have

vertex set Zn× [1, 2k+1] with the obvious vertex partition. For i ∈ [1, k], let hi =

{2i−1, 2i} and gi = Zn×hi. LetH = {h1, h2, . . . , hk}. Let V (Kk×2n) = Zn×[1, 2k]

with the vertex-set partition {g1, g2, . . . , gk}. For r < s, if e = {(i, r), (j, s)} is

an edge in K(2k+1)×n or in Kk×2n, define the length of e to be j − i if j ≥ i;

otherwise the length of e is n + (j − i). Thus, between any two parts, there are

edges of lengths 0, 1, . . . , n− 1. We will often write −j for edge length n− j when
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n is understood. Therefore, between any two parts, there are edges of lengths

0,±1,±2, . . . ,± (n−1)
2

.

Let K be a subgraph of the graph with vertex set Zn × [1, 2k + 1]. For a

positive integer ℓ, the graph K + ℓ has vertex set {(i+ ℓ, z) : (i, z) ∈ V (K)} and

edge set {{(i+ ℓ, r), (j + ℓ, s)} : {(i, r), (j, s)} ∈ E(K)}.

Lemma 3.1. Let G of odd order n be a 2-regular almost-bipartite graph and let

e ∈ E(G) be such that G − e is bipartite. Let G′ = G − u where u ∈ V (G) is

incident to e. Let P of size ℓ ≤ n − 2 be the component of G′ that is a path.

Let Kn,n have vertex set Zn × [1, 2] with the obvious vertex partition. Assume

that there exists an embedding of G′ in Kn,n with one edge of each length in

[−(n − 1)/2, (n − 1)/2] r {±z} for some z ∈ [1, (n − 1)/2] and such that the

endpoints of P are (j, 1) and (j, 2) for some j ∈ [0, n − 1]. Then there exists a

G-decomposition of K(2k+1)×n for every positive integer k.

Proof. Let k be a positive integer and let V (K(2k+1)×n) = Zn× [1, 2k+1] with the

obvious vertex partition. Let (Q, ◦) be an idempotent commutative quasigroup of

order 2k + 1, where Q = [1, 2k + 1].

Fix r and s with 1 ≤ r < s ≤ 2k + 1. Let G′
r,s and Pr,s be the embeddings

(as in the hypothesis of the lemma) of G′ and P , respectively, in the subgraph

of K(2k+1)×n with vertex set Zn × {r, s} and the obvious vertex partition. Let

(j, r) and (j, s) denote the endpoints of Pr,s and let z be as in the hypothesis. We

construct from G′
r,s a graph Gr,s, isomorphic to G, by adding the edges {(j, r), (j+

z, r ◦ s)} and {(j, s), (j + z, r ◦ s)} at the endpoints of Pr,s. Let G
∗
r,s = {Gr,s + x :

0 ≤ x ≤ n− 1}. Note that G∗
r,s contains n distinct copies of G. Moreover, in the

subgraph of K(2k+1)×n with vertex set Zn × {r, s}, G∗
r,s contains all the edges of

length i for all i ∈ [−(n− 1)/2, (n− 1)/2]r {±z}.

Let C = {Gr,s+x : 1 ≤ r < s ≤ 2k+1, 0 ≤ x ≤ n−1} and note that C contains(
2k+1
2

)
n distinct copies of G. We will show that every edge of K(2k+1)×n appears

on some copy of G in C. Let e = {(i, r), (j, s)} with r < s be an arbitrary edge of

K(2k+1)×n. Let t′ be the unique solution to r ◦ t′ = s and let α′ = min{r, t′} and

β′ = max{r, t′}. Let t′′ be the unique solution to s◦ t′′ = r and let α′′ = min{s, t′′}
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and β′′ = max{s, t′′}. If j − i ∈ [−(n − 1)/2, (n − 1)/2] r {±z}, then e belongs

to Gr,s + x for some x with 0 ≤ x ≤ n − 1. If j − i = z, then e belongs to

Gα′,β′ + x where 0 ≤ x ≤ n− 1. If j− i = −z, then e belongs to Gα′′,β′′ + x where

0 ≤ x ≤ n− 1. Since every edge of K(2k+1)×n appears on some copy of G in C and

since C contains
(
2k+1
2

)
n distinct copies of G, it follows that C is a decomposition

of K(2k+1)×n into copies of G.

Lemma 3.2. Let G of odd order n be a 2-regular almost-bipartite graph and let

e ∈ E(G) be such that G − e is bipartite. Let G′ = G − u where u ∈ V (G) is

incident to e. Let P of size ℓ ≤ n− 2 be the component of G′ that is a path. Let

Kn,n have vertex set Zn × [1, 2] with the obvious vertex partition. Assume that

there exists an embedding of P in Kn,n with one edge of each length in [−(n −

1)/2, (n− 1)/2]r {±z} for some z ∈ [1, (n− 1)/2] and such that the endpoints of

P are (j, 1) and (j, 2) for some j ∈ [0, n−1]. Then there exists a G-decomposition

of Kk×2n for every integer k ≥ 3.

Proof. Let k ≥ 3 be an integer and let Q = [1, 2k]. For i ∈ [1, k], let hi = {2i −

1, 2i} and gi = Zn×hi. LetH = {h1, h2, . . . , hk}. Let V (Kk×2n) = Zn×[1, 2k] with

the vertex-set partition {g1, g2, . . . , gk}. Let (Q, ◦) be an idempotent commutative

quasigroup of order 2k with holes H.

Fix r and s with 1 ≤ r < s ≤ 2k and {r, s} /∈ H. Let G′
r,s and Pr,s be

the embeddings (as in the hypothesis of the lemma) of G′ and P , respectively,

in the subgraph of Kk×2n with vertex set Zn × {r, s} and the obvious vertex

partition. Let (j, r) and (j, s) denote the endpoints of Pr,s and let z be as in the

hypothesis. We construct from G′
r,s a graph Gr,s, isomorphic to G, by adding the

edges {(j, r), (j + z, r ◦ s)} and {(j, s), (j + z, r ◦ s)} at the endpoints of Pr,s.

We proceed in the same fashion as in the proof of Lemma 3.1. Let C =

{Gr,s + x : 1 ≤ r < s ≤ 2k, {r, s} /∈ H and 0 ≤ x ≤ n − 1} and note that

C contains
(
2k
2

)
n distinct copies of G. For the proof that every edge of Kk×2n

appears on some copy of G in C, we proceed in the same fashion as the proof of

Lemma 3.1.

Next, we prove a lemma about the existence of paths with certain edge lengths
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in Kn,n.

Lemma 3.3. Let n ≥ 3 be an odd integer and let x ≤ n be a positive inte-

ger. Let Kn,n have vertex set Zn × [1, 2] with the obvious vertex partition. For

positive integers d1, d2, . . . , dx−1 with d1 < d2 < · · · < dx−1 ≤ (n − 1)/2, there

exists an embedding of a path P of size 2x − 1 in Kn,n whose edges have lengths

0,±d1,±d2, . . . ,±dx−1. Furthermore, V (P ) ⊆ [0, dx−1]× [1, 2].

Proof. If x = 1, let P be the path consisting of the edge {(0, 1), (0, 2)}. Otherwise,

for k ∈ [1, x−1], define vk =
k−1∑
i=0

(−1)idx−1−i. Note that since d1 < d2 < · · · < dx−1,

we have that v1 > v3 > · · · and v2 < v4 < · · · . Consider the path of size

x − 1 given by P ′ : (0, 1), (v1, 2), (v2, 1), (v3, 2), . . . where P ′ ends with (vx−1, 2) if

x − 1 is odd or (vx−1, 1) if x − 1 is even. Observe that the lengths of the edges

on P ′, in the order encountered, are dx−1, dx−2, . . . , d1. Next consider the path

P ′′ : (0, 2), (v1, 1), (v2, 2), (v3, 1), . . . where P
′′ ends with (vx−1, 1) if x− 1 is odd or

(vx−1, 2) if x−1 is even, and observe that the edges on P ′′, in the order encountered,

are −dx−1,−dx−2, . . . ,−d1. Construct the path P from the paths P ′ and P ′′ by

adding the edge from (vx−1, 1) to (vx−1, 2) in Kn,n. Note that P has size 2x−1, the

edges of P have lengths 0,±d1,±d2, . . . ,±dx−1, and V (P ) ⊆ [0, dx−1]× [1, 2].

(0, 1) (1, 1) (2, 1) (3, 1) (5, 1)

(5, 2) (3, 2) (2, 2) (1, 2) (0, 2)

0 -1 -2 -4 -55 4 2 1

Figure 3.1: A path P of size 9 whose edges have lengths 0,±1,±2,±4,±5.

Theorem 3.4. For all odd integers n ≥ 3, there exists a Cn-decomposition of

K(2k+1)×n for all positive integers k and of Kk′×2n for all integers k′ ≥ 3.

Proof. Label the vertex set of Kn,n with the elements of the set Zn× [1, 2] with the

obvious vertex bipartition. It is sufficient to show that there exists an embedding
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of a path P of size n− 2 in Kn,n with one edge of each length in [−(n− 1)/2, (n−

1)/2]r{±z} for some z ∈ [1, (n−1)/2] and such that the endpoints of P are (j, 1)

and (j, 2) for some j ∈ [0, n−1]. By Lemma 3.3, there exists an such embedding of

a path P of size n−2 using the edge lengths in [−(n−3)/2, (n−3)/2] with endpoints

(0, 1) and (0, 2). In the lemma we would use d1 = 1, d2 = 2, . . . , d(n−3)/2 =

(n− 3)/2, so V (P ) ⊆ [0, (n− 3)/2]× [1, 2]. Thus, by Lemma 3.1 and Lemma 3.2,

we conclude that there exists a G-decomposition of K(2k+1)×n for every positive

integer k and a G-decomposition of Kk′×2n for every integer k′ ≥ 3.

It has long been known that if n ≥ 3 is odd, then there exists a Cn-decomposition

of Kn. This result is often credited to Walecki (see [4] for details).

Theorem 3.5. For any odd integers n ≥ 3, there exists a Cn-decomposition of

Kn.

By combining the results from Theorem 3.4 and Theorem 3.5, we obtain the

following previously known result (see [29]).

Theorem 3.6. There exists a Cn-decomposition of K2kn+n for all odd integers

n ≥ 3 and all positive integers k.

Proof. Observe that K2kn+n = (2k + 1)Kn ∪K(2k+1)×n for all positive integers k.

By Theorem 3.5, there exists a Cn-decomposition of Kn and hence of (2k + 1)Kn

and by Theorem 3.4, there exists a Cn-decomposition of K(2k+1)×n. The result

follows.

Example 3.7. We give an example of a C5-decomposition of K15.

Let K15 have vertex set Z5 × [1, 3]. For each i ∈ [1, 3], there exists a C5-

decomposition of the K5 with vertex set Z5 × i (by Theorem 3.5.) Then for each

i ∈ [1, 3], we have two copies of C5 as follows:

⟨(0, i), (1, i), (2, i), (4, i), (3, i)⟩, ⟨(0, i), (2, i), (3, i), (1, i), (4, i)⟩.

Thus we have a C5-decomposition of 3K5.

It remains to find a C5-decomposition of the complete multipartite subgraph

K3×5. Let Q = [1, 3] and let (Q, ◦) denote a commutative idempotent quasigroup
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of order 3 in Figure 3.2. For fixed r and s with 1 ≤ r < s ≤ 3, Let Pr,s denote the

path ((0, r), (1, s), (1, r), (0, s)). We construct a 5-cycle Gr,s from Pr,s by adding

the edges {(0, r), (2, r ◦ s)} and {(0, s), (2, r ◦ s)}. Let G∗
r,s = {Gr,s + x : x ∈ Z5}.

The 5-cycle G1,2 + 1 is shown in Figure 3.2. Then the cycles in G∗
1,2 ∪G∗

1,3 ∪G∗
2,3

give a C5-decomposition of K3×5. The 5 copies of C5 in G∗
1,2 are listed below:

⟨(0, 1), (1, 2), (1, 1), (0, 2), (2, 1 ◦ 2 = 3)⟩,

⟨(1, 1), (2, 2), (2, 1), (1, 2), (3, 1 ◦ 2 = 3)⟩,

⟨(2, 1), (3, 2), (3, 1), (2, 2), (4, 1 ◦ 2 = 3)⟩,

⟨(3, 1), (4, 2), (4, 1), (3, 2), (0, 1 ◦ 2 = 3)⟩,

⟨(4, 1), (0, 2), (0, 1), (4, 2), (1, 1 ◦ 2 = 3)⟩.

Since K15 = 3K5 ∪K5×3, we have a C5-decomposition of K15.

(0,1) (0,2) (0,3)

(3,1) (3,2)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(4,1)

(3,3)

(2,3)

(4,2) (4,3)

2

3

3

1

1

3

2

3

3

2

1

2

2

◦ 1

1

Figure 3.2: An idempotent commutative quasigroup of order 3 and one copy of a

C5 from the corresponding of C5-decomposition of K15.

Before proceeding with the remainder of our results, we need some additional

notation.

3.2 Additional notation

We denote the directed path with vertices x0, x1, . . . , xk, where xi is adjacent

to xi+1, 0 ≤ i ≤ k − 1, by (x0, x1, . . . , xk). The first vertex of this path is x0,
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the second vertex is x1, and the last vertex is xk. If G1 = (x0, x1, . . . , xj) and

G2 = (y0, y1, . . . , yk) are directed paths with xj = y0, then by G1 + G2 we mean

the path (x0, x1, . . . , xj, y1, y2, . . . , yk).

For the remainder of this chapter, we consider only subgraphs of a complete

bipartite graphs Km,m with vertex set [0,m − 1] × [1, 2] and the obvious vertex

bipartition. Furthermore, if m, n, and i are integers with m ≤ n, we denote{
(m, i), (m+ 1, i), . . . , (n, i)

}
by

[
(m, i), (n, i)

]
Let P (k) be the path with k edges and k+1 vertices given by

(
(0, 1), (k, 2), (1, 1),

(k − 1, 2), (2, 1), (k − 2, 2), . . . , (⌈k/2⌉, ⌈k/2⌉ − ⌊k/2⌋ + 1)
)
. Note that the set of

vertices of this graph is A ∪ B, where A =
[
(0, 1), (⌊k/2⌋, 1)

]
, B =

[
(⌊k/2⌋ +

1, 2), (k, 2)
]
, and every edge joins a vertex of A to one of B. Furthermore, the set

of lengths of the edges of P (k) is [1, k].

(1, 1) (2, 1) (3, 1)

(6, 2) (5, 2) (4, 2)

(0, 1)

P (6)

(1, 1) (2, 1) (3, 1)

(9, 2) (8, 2)

(4, 1)(0, 1)

(7, 2) (5, 2) (5, 2)

P (9)

Figure 3.3: Examples of the P (k) notation

Now let a be a nonnegative integer and b be an integer such that |b| ≤ ⌊k/2⌋+1,

and let us add (a, 0) to all the vertices of A and (b, 0) to all the vertices of B. We

denote the resulting graph by P (a, b, k). Note that this graph has the following

properties.

P1 P (a, b, k) is a path with first vertex (a, 1) and second vertex (b + k, 2). Its

last vertex is (a+ k/2, 1) if k is even and (b+ (k + 1)/2, 2) if k is odd.

P2 Each edge of P (a, b, k) joins a vertex of A′ =
[
(a, 1), (⌊k/2⌋ + a, 1)

]
to a

vertex of B′ =
[
(⌊k/2⌋+ 1 + b, 2), (k + b, 2)

]
.

P3 The set of edge lengths of P (a, b, k) is [b− a+ 1, b− a+ k].

Now consider the directed path Q(k) obtained from P (k) replacing each ver-

tex (i, j) with (k − i, 3 − j). The new graph is the path
(
(k, 2), (0, 1), (k −
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1, 2), (1, 1), . . . , (⌊k/2⌋, ⌊k/2⌋ − ⌈k/2⌉+ 2)
)
. The set of vertices of Q(k) is A ∪B,

where A =
[
(0, 1), (⌈k/2⌉ − 1, 1)

]
and B =

[
(⌈k/2⌉, 2), (k, 2)

]
, and every edge

joins a vertex of A to one of B. The set of edge lengths is still [1, k].

We again add (a, 0) to the vertices of A and (b, 0) to vertices of B, where a is

nonnegative integer and b is an integers with |b| ≤ ⌈k/2⌉. We denote the resulting

graph by Q(a, b, k). Note that this graph has the following properties.

Q1 Q(a, b, k) is a path with first vertex (k + b, 2). Its last vertex is (b+ k/2, 2)

if k is even and (a+ (k − 1)/2, 1) if k is odd.

Q2 Each edge of Q(a, b, k) joins a vertex of A′ =
[
(a, 1), (a+ ⌈k/2⌉− 1, 1)

]
to a

vertex of B′ =
[
(b+ ⌈k/2⌉, 2), (b+ k, 2)

]
.

Q3 The set of edge lengths of Q(a, b, k) is [b− a+ 1, b− a+ k].

For ease of notation, we henceforth use ir and is to denote the vertices (i, r)

and (i, s), respectively.

41 51 61 71

112 102 92

P (4, 5, 6)

21 31 61 71

132 122 112 102

Q(2, 6, 7)

Figure 3.4: Examples of P (a, b, k) and Q(a, b, k)

3.3 A G-decomposition of K(2k+1)×n and of Kk′×2n

Let A and B be finite subsets of the integers. If max(A) ≤ min(B), we will

write A ≤ B. We define A < B, A ≥ B, and A > B analogously. Let Kn,n have

vertex set Zn × [1, 2] with the obvious vertex partition. We prove three lemmas

about the existence of an embedding of Cm with certain edge lengths in Kn,n to

use in Subsection 3.3.1 and Subsection 3.3.2. The constructions depend on the

congruence class of m modulo 8.
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Lemma 3.8. Let n ≥ 11 and m ≥ 10 be integers such that n is odd, m ≡ 2

(mod 8), and m/2 ≤ (n − 1)/2. Let Kn,n have vertex set Zn × [1, 2] with the

obvious vertex partition. If m = 8t+ 2, then there exists an embedding of a cycle

C of size m in Kn,n with one edge of each length in ±[2, 4t + 2]. Furthermore,

V (C) ⊆ [0, 4t+ 2]× [1, 2].

Proof. To embed a cycle C of size m in Kn,n, let

C = G1 +G2 +G3 +G4 + ((4t+ 2)1, (2t+ 1)2, 01),

where

G1 = P (0, 2t+ 1, 2t+ 1),

G2 = Q(t+ 2, t+ 3, 2t− 1),

G3 = P (2t+ 1, 0, 2t− 1),

G4 = Q(3t+ 2,−(t+ 1), 2t+ 1).

We then show that G1 +G2 +G3 +G4 + ((4t+ 2)1, (2t+ 1)2, 01) is a cycle of size

m. Note that by P1 and Q1 the first vertex of G1 is 01, and the last vertex is

(3t + 2)2; the first vertex of G2 is (3t + 2)2, and the last vertex is (2t + 1)1; the

first vertex of G3 is (2t + 1)1, and the last vertex is t1; the first vertex of G4 is

t1, and the last vertex is (4t + 2)1. For 1 ≤ i ≤ 4, let Ai and Bi denote the sets

labeled A′ and B′ in P2 and Q2, we compute

A1 = [01, t1], B1 = [(3t+ 2)2, (4t+ 2)2],

A2 = [(t+ 2)1, (2t+ 1)1], B2 = [(2t+ 3)2, (3t+ 2)2],

A3 = [(2t+ 1)1, (3t)1], B3 = [t2, (2t− 1)2],

A4 = [(3t+ 2)1, (4t+ 2)1], B4 = [02, t2].

Thus,

A1 < A2 ≤ A3 < A4 and B4 ≤ B3 < B2 ≤ B1.

Note that V (G1)∩V (G2) = {(3t+2)2}, V (G2)∩V (G3) = {(2t+1)1}, and V (G3)∩

V (G4) = {t2}; otherwise, Gi and Gj are vertex-disjoint for i ̸= j. Therefore,

G1 +G2 +G3 +G4 + ((4t+ 2)1, (2t+ 1)2, 01) is a cycle of size m.
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Next, let Ei denote the set of edge lengths in Gi for 1 ≤ i ≤ 4. By P3 and

Q3, we have edge lengths

E1 = [2t+ 2, 4t+ 2],

E2 = [2, 2t],

E3 = [−2t,−2],

E4 = [−(4t+ 2),−(2t+ 2)].

Moreover, the path ((4t+2)1, (2t+1)2, 01) consists of edges lengths −(2t+1) and

2t+ 1. Thus, C has edge lengths ±[2, 4t+ 2].

01 11 21 41

52 102 92 82

51 61 81

72 32 22
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12 02
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G2

G3

G4

Figure 3.5: The cycle C with paths G1, G2, G3 and G4 where t = 2 in Lemma 3.8
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Figure 3.6: The cycle C where t = 2 in Lemma 3.8

Lemma 3.9. Let n ≥ 15 and m ≥ 14 be integers such that n is odd, m ≡ 6

(mod 8), and m/2 ≤ (n − 1)/2. Let Kn,n have vertex set Zn × [1, 2] with the

obvious vertex partition. If m = 8t + 6, then there exists an embedding of a

cycle C of size m in Kn,n with one edge of each length in ±[1, 4t + 4] r {±2}.

Furthermore, V (C) ⊆ [0, 4t+ 4]× [1, 2].
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Proof. To embed a cycle C of size m in Kn,n, let

C = G1 +G2 +((2t+3)2, (2t+2)1, (2t+1)2)+G3 +G4 +((4t+4)1, (2t+2)2, 01),

where

G1 = P (0, 2t+ 2, 2t+ 2),

G2 = P (t+ 1, t+ 3, 2t− 1),

G3 = Q(2t+ 4, 2, 2t− 1),

G4 = P (3t+ 3,−(t+ 2), 2t+ 2).

We then show that G1 +G2 + ((2t+ 3)2, (2t+ 2)1, (2t+ 1)2) +G3 +G4 + ((4t+

4)1, (2t + 2)2, 01) is a cycle of size m. Note that by P1 and Q1, the first vertex

of G1 is 01, and the last vertex is (t + 1)1; the first vertex of G2 is (t + 1)1, and

the last vertex is (2t + 3)2; the first vertex of G3 is (2t + 1)2, and the last vertex

is (3t+3)1; the first vertex of G4 is (3t+3)1, and the last vertex is (4t+4)1. For

1 ≤ i ≤ 4, let Ai and Bi denote the sets labeled A′ and B′ in P2 and Q2, we

compute

A1 = [01, (t+ 1)1], B1 = [(3t+ 4)2, (4t+ 4)2],

A2 = [(t+ 1)1, (2t)1], B2 = [(2t+ 3)2, (3t+ 2)2],

A3 = [(2t+ 4)1, (3t+ 3)1], B3 = [(t+ 2)2, (2t+ 1)2],

A4 = [(3t+ 3)1, (4t+ 4)1], B4 = [02, t2].

Thus,

A1 ≤ A2 < A3 ≤ A4 and B4 < B3 < B2 < B1.

Note that V (G1)∩V (G2) = {(t+1)1}, and V (G3)∩V (G4) = {(3t+3)1}; otherwise,

Gi and Gj are vertex-disjoint for i ̸= j. Therefore, G1 + G2 + ((2t + 3)2, (2t +

2)1, (2t+ 1)2) +G3 +G4 + ((4t+ 4)1, (2t+ 2)2, 01) is a cycle of size m.

Next, let Ei denote the set of edge labels in Gi for 1 ≤ i ≤ 4. By P3 and Q3,
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we have edge lengths

E1 = [2t+ 3, 4t+ 4],

E2 = [3, 2t+ 1],

E3 = [−(2t+ 1),−3],

E4 = [−(4t+ 4),−(2t+ 3)].

Moreover, the path ((2t+ 3)2, (2t+ 2)1, (2t+ 1)2) consists of edges lengths 1 and

−1, and the path ((4t+ 4)1, (2t+ 2)2, 01) consists of edges lengths −(2t+ 2) and

2t+ 2. Thus, C has edge lengths ±[1, 4t+ 4]r {±2}.
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Figure 3.7: The cycle C with paths G1, G2, G3 and G4 where t = 2 in Lemma 3.9
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Figure 3.8: The cycle C where t = 2 in Lemma 3.9

Lemma 3.10. Let n ≥ 5 and m ≥ 4 be integers such that n is odd, m ≡ 0

(mod 4), and m/2 ≤ (n − 1)/2. Let Kn,n have vertex set Zn × [1, 2] with the

obvious vertex partition. If m = 4t, then there exists an embedding of a cycle C

of size m in Kn,n with one edge of each length in ±[1, 2t]. Furthermore, V (C) ⊆

[0, 2t+ 1]× [1, 2].
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Proof. To embed a cycle C of size m in Kn,n, let

C = G1 +G2 + ((2t+ 1)1, 12, 01),

where

G1 = P (0, 2t+ 1, 2t+ 1),

G2 = Q(t+ 2, t+ 3, 2t− 1).

We then show that G1 +G2 + ((2t+ 1)1, 12, 01) is a cycle of size m. Note that by

P1 and Q1 the first vertex of G1 is 01, and the last vertex is (t + 1)2; the first

vertex of G2 is (t+ 1)2, and the last vertex is (2t+ 1)1. For i ≤ i ≤ 2, let Ai and

Bi denote the sets labeled A′ and B′ in P2 and Q2, we compute

A1 = [01, (t− 1)1], B1 = [(t+ 1)2, (2t)2],

A2 = [(t+ 2)1, (2t+ 1)1], B2 = [22, (t+ 1)2].

Thus,

A1 < A2 and B2 ≤ B1.

Note that V (G1) ∩ V (G2) = {(t + 1)1} otherwise, G1 and G2 are vertex-disjoint.

Therefore, G1 +G2 + ((2t+ 1)1, 12, 01) is a cycle of size m.

Next, let Ei denote the set of edge labels in Gi for 1 ≤ i ≤ 2. By P3 and Q3,

we have edge lengths

E1 = [2, 2t],

E2 = [−(2t− 1),−1].

Moreover, the path ((2t + 1)1, 12, 01) consists of edges lengths −2t and 1. Thus,

C has edge lengths ±[1, 2t].

3.3.1 G consisting of one even cycle and one odd cycle

Let G of odd size n be the vertex-disjoint union of one even cycle and one

odd cycle. In this section, we will show how to construct a G-decomposition of
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01 11 41 51

12 42 32 22
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Figure 3.9: The cycle C with paths G1 and G2 where t = 2 in Lemma 3.10
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Figure 3.10: The cycle C where t = 2 in Lemma 3.10

K(2k+1)×n for all positive integers k and of Kk′×2n for all integers k′ ≥ 3. To obtain

these results, it suffices to show that there exists an embedding of G that satisfies

the statements in Lemma 3.1 and Lemma 3.2. Furthermore, if we combine these

results with the results in Theorem 2.6, we obtain a G-decomposition of Kv where

v ≡ n (mod 2n), unless G = C4∪C5 and v = 9. Furthermore, we obtain necessary

and sufficient conditions for a G-decomposition of Kv when n is a prime power.

Lemma 3.11. Let G be vertex-disjoint union of a cycle C of size m and a path P

of size 2ℓ− 1 where m, ℓ > 0 are integers and m is even. Let n = m+ 2ℓ+ 1 and

let Kn,n have vertex set Zn × [1, 2] with the obvious vertex partition. Then there

exists an embedding of G in Kn,n with one edge of each length in [−(n−1)/2, (n−

1)/2]r {±z} for some z ∈ [1, (n− 1)/2] and such that the endpoints of P are 01

and 02.

Proof. Let n = m + 2ℓ + 1 and V (Kn,n) = Zn × [1, 2] with the obvious vertex

partition. We proceed by cases depending on the congruence class of m modulo 8.

Case 1. Suppose m ≡ 2 (mod 8). Let m = 8t+2 for some positive integer t. By

Lemma 3.8, there exists an embedding of a cycle C of size m with edge lengths

±[2, 4t+ 4] in Kn,n. Furthermore, V (C) ⊆ [0, 4t+ 2]× [1, 2].
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We next give an embedding of P of size 2ℓ − 1 in Kn,n. If ℓ = 1, then by

Lemma 3.3, there exists an embedding of a path P ∗ of size 1 using edge length

0 with endpoints 01 and 02. Let P = P ∗ + (4t + 3) with endpoints (4t + 3)1 and

(4t+ 3)2. Note that 4t+ 3 < 8t+ 5 = n. Thus, the edge set of G has one edge of

each length i ∈ [−(4t+ 2), 4t+ 2]r {±1} = [−(n− 1)/2, (n− 1)/2]r {±1}.

Suppose that ℓ ≥ 2. By Lemma 3.3, there exists an embedding of a path P ∗

of size 2ℓ− 1 using edge lengths {−1, 0, 1} ∪±[(4t+3), (n− 3)/2] with endpoints

01 and 02. In the lemma we would use d1 = 1, d2 = 4t + 3, . . . , dℓ−1 = (n − 3)/2,

so V (P ∗) ⊆ [0, (n− 3)/2]× [1, 2]. Let P = P ∗ + (4t+ 3) with endpoints (4t+ 3)1

and (4t + 3)2. Then V (P ) ⊆ [4t + 3, (n − 3)/2 + (4t + 3)] × [1, 2]. Note that

(n−3)/2+(4t+3) = (n+m+1)/2 = (2n−2ℓ)/2 < n and P is vertex disjoint from

C. Thus, the edge set of G has one each of each length i ∈ [−(n−3)/2, (n−3)/2],

except the edge lengths ±(n− 1)/2. Figure 3.11 shows an embedding of C and P

in Kn,n where t = 1 and ℓ = 2 .
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32
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728292

91 15171

152

Figure 3.11: An example of C and P in case 1 of Lemma 3.11

Case 2. Suppose m ≡ 6 (mod 8). Let m = 8t+6 where t is nonnegative integer.

Case 2.1. t = 0. Let C∗ = ⟨01, 32, 21, 02, 31, 22⟩ be an embedding of C. Its

edge lengths are 3, 1,−2,−3,−1, 2.

We next give an embedding of P of size 2ℓ − 1 in Kn,n. If ℓ = 1, then by

Lemma 3.3, there exists an embedding of a path P ∗ of size 1 using edge length 0

with endpoints 01 and 02. Let P = P ∗ + 4 with endpoints 41 and 42. Note that

4 < 9 = n. Thus, the edge set of G has one edge of each length i ∈ [−3, 3], except

the edge lengths ±4.

Suppose that ℓ ≥ 2. By Lemma 3.3, there exists an embedding of a path

P ∗ of size 2ℓ − 1 using edge lengths {0} ∪ ±[4, (n − 3)/2] with endpoints 01
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and 02. In the lemma, we would use d1 = 4, d2 = 5, . . . , dℓ−1 = (n − 3)/2, so

V (P ∗) ⊆ [0, (n − 3)/2] × [1, 2]. Let P = P ∗ + 4 with endpoints 41 and 42. Then

V (P ) ⊆ [4, (n − 3)/2 + 4] × [1, 2]. Note that (n − 3)/2 + 4 = (n + 5)/2 =

(2n− 2ℓ+ 2)/2 < n since ℓ > 1, and P is vertex disjoint from C. Thus, the edge

set of G has one each of each length i ∈ [−(n− 3)/2, (n− 3)/2], except the edge

lengths ±(n − 1)/2. Figure 3.12 shows an embedding of C and P in Kn,n where

t = 0 and ℓ = 5.
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Figure 3.12: An example of C and P in case 2.1 of Lemma 3.11

Case 2.2. t ≥ 1. By Lemma 3.8, there exists an embedding of a cycle C

of size m with edge lengths ±[1, 4t + 4] r {±2} in Kn,n. Furthermore, V (C) ⊆

[0, 4t+ 4]× [1, 2].

We next give an embedding of P of size 2ℓ − 1 in Kn,n. If ℓ = 1, then by

Lemma 3.3, there exists an embedding of a path P ∗ of size 1 using edge length

0 with endpoints 01 and 02. Let P = P ∗ + (4t + 5) with endpoints (4t + 5)1 and

(4t+ 5)2. Note that 4t+ 5 < 8t+ 9 = n. Thus, the edge set of G has one edge of

each length i ∈ [−(4t+ 4), 4t+ 4]r {±2} = [−(n− 1)/2, (n− 1)/2]r {±2}.

Suppose that ℓ ≥ 2. By Lemma 3.3, there exists an embedding of a path P ∗

of size 2ℓ − 1 using edge lengths {−2, 0, 2} ∪ ±[4t + 5, (n − 3)/2] with endpoints

01 and 02. In the lemma we would use d1 = 2, d2 = 4t + 5, . . . dℓ−1 = (n − 3/2),

so V (P ∗) ⊆ [0, (n − 3)/2] × [1, 2]. Let P = P ∗ + 4t + 5 with endpoints (4t + 5)1

and (4t + 5)2. Then V (P ) ⊆ [4t + 5, (n − 3)/2 + (4t + 5)] × [1, 2]. Note that

(n−3)/2+(4t+5) = (n+m+1)/2 = (2n−2ℓ)/2 < n and P is vertex disjoint from

C. Thus, the edge set of G has one each of each length i ∈ [−(n−3)/2, (n−3)/2],

except the edge lengths ±(n− 1)/2. Figure 3.13 shows an embedding C and P in

Kn,n where t = 1 and ℓ = 3.
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Figure 3.13: An example of C and P in case 2.2 of Lemma 3.11

Case 3. Suppose m ≡ 0 (mod 4). Let m = 4t for some positive integer t. By

Lemma 3.10, there exists an embedding of a cycle C of size m with edge lengths

±[1, 2t] in Kn,n. Furthermore, V (C) ⊆ [0, 2t+ 1]× [1, 2].

We next give an embedding of P of size 2ℓ − 1 in Kn,n. If ℓ = 1, then by

Lemma 3.3, there exists an embedding of a path P ∗ of size 1 using edge length

0 with endpoints 01 and 02. Let P = P ∗ + (2t + 2) with endpoints (2t + 2)1 and

(2t+ 2)2. Note that 2t+ 2 < 4t+ 3 = n. Thus, the edge set of G has one edge of

each length i ∈ [−2t, 2t], except the edge lengths ±(2t+ 1).

Suppose that ℓ ≥ 2. By Lemma 3.3, there exists an embedding of a path P ∗

of size 2ℓ− 1 using edge lengths {0} ∪ ±[2t+ 1, (n− 3)/2] with endpoints 01 and

02. In the lemma we would use d1 = 2t + 1, d2 = 2t + 2, . . . , dℓ−1 = (n− 3)/2, so

V (P ∗) ⊆ [0, (n − 3)/2] × [1, 2]. Let P = P ∗ + (2t + 2) with endpoints (2t + 2)1

and (2t + 2)2. Then V (P ) ⊆ [2t + 2, (n − 3)/2 + (2t + 2)] × [1, 2]. Note that

(n−3)/2+(2t+2) = (n+m+1)/2 = (2n−2ℓ)/2 < n and P is vertex disjoint from

C. Thus, the edge set of G has one each of each length i ∈ −(n− 3)/2, (n− 3)/2],

except the edge lengths ±(n− 1)/2. Figure 3.14 shows an embedding of C and P

in Kn,n where t = 2 and ℓ = 5.
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Figure 3.14: An example of C and P in case 3 of Lemma 3.11
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Theorem 3.12 is obtained by combining the results from Lemma 3.11 and

Lemma 3.1 to show that there exists a G-decomposition of K(2k+1)×n for all posi-

tive integers k. Also, by combining the results from Lemma 3.11 and Lemma 3.2

to prove the existence of a G-decomposition of Kk′×2n for all integers k′ ≥ 3.

Theorem 3.12. Let G be a 2-regular graph of odd order n consisting of exactly two

cycles. Then there exists a G-decomposition of K(2k+1)×n for all positive integers

k, and of Kk′×2n for all integer k′ ≥ 3.

By combining the results from Theorem 2.6 and Theorem 3.12 we obtain the

following theorem.

Theorem 3.13. Let G be a 2-regular graph of odd order n consisting of exactly

two cycles. There exists a G-decomposition of Kv for all v ≡ n (mod 2n) unless

G = C4 ∪ C5 and v = 9.

Proof. In [5], it is shown that there exists a (C4 ∪ C5)-decomposition of Kv if

and only if v ≡ 1 or 9 (mod 18) and v ̸= 9. For all other G, let v = 2kn + n.

Observe that Kv = (2k + 1)Kn ∪ K(2k+1)×n. By Theorem 2.6, there exists a G-

decomposition of Kn and hence of (2k + 1)Kn and by Theorem 3.12, there exists

a G-decomposition of K(2k+1)×n. The result follows.

If n in Theorem 3.12 is a power of a prime, then we have the following corollary.

Corollary 3.14. Let G be a 2-regular graph of odd order n consisting of exactly

two cycles. If n is a prime power, then there exists a G-decomposition of Kv if

and only if v ≡ 1 or n (mod 2n), unless G = C4 ∪ C5 and v = 9.

Proof. The necessary conditions for the existence of a G-decomposition of Kv

are n|v(v − 1)/2 and v ≥ n is odd. If n = pk, where p is prime, then we have

2pk|v(v− 1) and v ≥ pk is odd. Since v and v− 1 are relatively prime, either pk|v

or pk|v − 1. Thus, v ≡ 1 or pk (mod 2pk).

It is known that there exists a G-decomposition of Kv for all v ≡ 1 (mod 2n)

(see [11] and [5]). By Theorem 3.13, there exists a G-decomposition of Kv for all

v ≡ n (mod 2n) unless G = C4 ∪ C5 and v = 9. The result follows.
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3.3.2 G consisting of any number of even cycles and one

odd cycle

In this section, we extend the idea of the construction in Subsection 3.3.1 to

prove that there exists a G-decomposition of K(2k+1)×n for all positive integers k

and of Kk′×2n for all integers k′ ≥ 3 where G of size n is an almost-bipartite graph

consisting of any number of even cycles and one odd cycle. For this construction,

we need to use the properties of α-labelings of even cycles to get a new labeling.

Let Mi be a bipartite graph of size mi, with α-labeling fi, critical value λi,

and vertex bipartition {Ai, Bi} for all i such that 1 ≤ i ≤ w. Let M of size m be

a disjoint-union of w bipartite graphs, Mi of size mi where i = 1, 2, . . . , w. That

is, M = M1 ∪M2 ∪ · · · ∪Mw with size m = m1 +m2 + · · ·+mw.

Lemma 3.15. For 1 ≤ i ≤ w, let Mi be a bipartite graph of size mi that admits

an α-labeling with critical value λi. If λ1 ≥ λ⌈w
2
⌉+1 ≥ λ2 ≥ λ⌈w

2
⌉+2 ≥ · · · , then

0 ≤
⌈w
2
⌉∑

i=1

λi −
w∑

i=⌈w
2
⌉+1

λi < m1.

Proof. Let k = w if w is even and let k = (w + 1)/2 if w is odd. Then by the

hypothesis, λ1 ≥ λ⌈w
2
⌉+1 ≥ λ2 ≥ λ⌈w

2
⌉+2 ≥ · · · ≥ λk. Hence we have both of the

following:

0 ≤ λ1 − λ⌈w
2
⌉+1 + λ2 − λ⌈w

2
⌉+2 + · · ·+ (−1)w−1λk =

⌈w
2
⌉∑

i=1

λi −
w∑

i=⌈w
2
⌉+1

λi

and

0 ≤ λ⌈w
2
⌉+1 − λ2 + λ⌈w

2
⌉+2 − λ3 + · · ·+ (−1)w−2λk =

w∑
i=⌈w

2
⌉+1

λi −
⌈w
2
⌉∑

i=2

λi.

Therefore,

0 ≤
⌈w
2
⌉∑

i=1

λi −
w∑

i=⌈w
2
⌉+1

λi = λ1 −

 w∑
i=⌈w

2
⌉+1

λi −
⌈w
2
⌉∑

i=2

λi

 ≤ λ1 < m1.
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Lemma 3.16. For 1 ≤ i ≤ w, let Mi be the bipartite graph of size mi with vertex

bipartition {Ai, Bi} that admits α-labeling fi with critical value λi = max
(
fi(Ai)

)
such that λ1 ≥ λ⌈w

2
⌉+1 ≥ λ2 ≥ λ⌈w

2
⌉+2 ≥ · · · . Let M = M1 ∪ M2 ∪ · · · ∪ Mw

and m =
w∑
i=1

mi. Let AL =
⌈w
2
⌉∪

i=1

Ai and AR =
w∪

i=⌈w
2
⌉+1

Ai and define BL and BR

analogously. Let a, b, c, d be integers such that 0 ≤ a < c and b, d ∈ [a, c], and let

n = m+ c+ d+ 1. Define a labeling function f : V (M) → [a, n− 1] by

f(v) =



fi(v) +
i−1∑
j=1

(λj + 1) + a, v∈Ai⊆AL;

fi(v) +
w∑

j=i+1

(λj + 1) + b, v∈Ai⊆AR;

fi(v) +
i−1∑
j=1

(λj + 1) + a+
⌈w
2
⌉∑

j=i+1

mj +
w∑

j=⌈w
2
⌉+i

mj + c, v∈Bi⊆BL;

fi(v) +
w∑

j=i+1

(λj + 1) + b+
i−⌈w

2
⌉∑

j=1

mj +
i−1∑

j=⌈w
2
⌉+1

mj + d, v∈Bi⊆BR.

Then both f |AL∪BL
and f |AR∪BR

are injective. Furthermore, f(AL) ∩ f(BR) =

∅ = f(AR) ∩ f(BL).

Proof. First, we consider f |(AL∪BL). For 1 ≤ i ≤ ⌈w
2
⌉, we have

min
(
f(Ai)

)
= 0 +

i−1∑
j=1

(λj + 1) + a,

max
(
f(Bi)

)
= mi +

i−1∑
j=1

(λj + 1) + a+

⌈w
2
⌉∑

j=i+1

mj +
w∑

j=⌈w
2
⌉+i

mj + c.

Note that

min
(
f(A1)

)
= a and max

(
f(B1)

)
= m+ c+ a < m+ c+ d+ 1 = n
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For 1 ≤ i ≤ ⌈w
2
⌉ − 1, we have

max
(
f(Ai)

)
= λi +

i−1∑
j=1

(λj + 1) + a =
i∑

j=1

(λj + 1) + a− 1 = min
(
f(Ai+1)

)
− 1,

min
(
f(Bi)

)
= (λi + 1) +

i−1∑
j=1

(λj + 1) + a+

⌈w
2
⌉∑

j=i+1

mj +
w∑

j=⌈w
2
⌉+i

mj + c

=
i∑

j=1

(λj + 1) + a+
( ⌈w

2
⌉∑

j=i+2

mj +mi+1

)
+
( w∑
j=⌈w

2
⌉+i+1

mj +m⌈w
2
⌉+i

)
+ c

=
(
mi+1 +

i∑
j=1

(λi + 1) + a+

⌈w
2
⌉∑

j=i+2

mj +
w∑

j=⌈w
2
⌉+i+1

mj + c
)
+m⌈w

2
⌉+i

= max
(
f(Bi+1)

)
+m⌈w

2
⌉+i.

Moreover,

max
(
f(A⌈w

2
⌉)
)
= λ⌈w

2
⌉ +

⌈w
2
⌉−1∑

j=1

(λj + 1) + a

< (λ⌈w
2
⌉ + 1) +

⌈w
2
⌉−1∑

j=1

(λj + 1) + a+
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c

= (λ⌈w
2
⌉ + 1) +

⌈w
2
⌉−1∑

j=1

(λj + 1) + a+

⌈w
2
⌉∑

j=⌈w
2
⌉+1

mj +
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c

= min
(
f(B⌈w

2
⌉)
)
.

Hence,

a ≤ f(A1) < f(A2) < · · · < f(A⌈w
2
⌉) < f(B⌈w

2
⌉) < f(B⌈w

2
⌉−1) < · · ·

· · · < f(B1) ≤ n− 1.

Next, we consider f |AR∪BR
. Note that for ⌈w

2
⌉+ 1 ≤ i ≤ w, we have

max
(
f(Ai)

)
= λi +

w∑
j=i+1

(λj + 1) + b,

min
(
f(Bi)

)
= (λi + 1) +

w∑
j=i+1

(λj + 1) + b+

i−⌈w
2
⌉∑

j=1

mj +
i−1∑

j=⌈w
2
⌉+1

mj + d,
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and for ⌈w
2
⌉+ 1 ≤ i ≤ w − 1, we have

min
(
f(Ai)

)
= 0 +

w∑
j=i+1

(λj + 1) + b

=
(
λi+1 +

w∑
j=i+2

(λj + 1) + b
)
+ 1

= max
(
f(Ai+1)

)
+ 1,

max
(
f(Bi)

)
= mi +

w∑
j=i+1

(λj + 1) + b+

i−⌈w
2
⌉∑

j=1

mj +
i−1∑

j=⌈w
2
⌉+1

mj + d

= mi +
( w∑
j=i+2

(λj + 1) + (λi+1 + 1)
)
+ b+

(i+1−⌈w
2
⌉∑

j=1

mj −mi+1−⌈w
2
⌉
)
+

( i∑
j=⌈w

2
⌉+1

mj −mi

)
+ d

=
(
(λi+1 + 1) +

w∑
j=i+2

(λj + 1) + b+

i+1−⌈w
2
⌉∑

j=1

mj +
i∑

j=⌈w
2
⌉+1

mj + d
)
−mi+1−⌈w

2
⌉

= min
(
f(Bi+1)

)
−mi+1−⌈w

2
⌉.

Moreover,

max
(
f(Aw)

)
= λw +

w∑
j=i+1

(λj + 1) + b

< (λw + 1) +
w∑

j=i+1

(λj + 1) + b+

w−⌈w
2
⌉∑

j=1

mj +
w−1∑
j=1

mj + d

= min
(
f(Bw)

)
.

Also, observe that

min
(
f(Aw)

)
= b ≥ a and max

(
f(Bw)

)
≤ m+ b+ d < m+ c+ d+ 1 = n.

Hence,

a ≤ f(Aw) < f(Aw−1) < · · · < f(A⌈w
2
⌉+1) < f(B⌈w

2
⌉+1) < f(B⌈w

2
⌉+2) < · · ·

· · · < f(Bw) ≤ n− 1.
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Since for each i ∈ [1, w] the α-labeling fi is injective, f is also injective on each

Ai and Bi, and the first result follows. Finally, consider

max
(
f(AL)

)
= max

(
f(A⌈w

2
⌉)
)
= λ⌈w

2
⌉ +

⌈w
2
⌉−1∑

j=1

(λj + 1) + a = ⌈w
2
⌉ − 1 +

⌈w
2
⌉∑

j=1

λj + a.

(3.1)

By Lemma 3.15, we have

max
(
f(AL)

)
< ⌈w

2
⌉ − 1 +m1 +

w∑
j=⌈w

2
⌉+1

λj + a

< λ⌈w
2
⌉+1 +m1 +

(
⌈w
2
⌉ − 1 +

w∑
j=⌈w

2
⌉+1

λj

)
+ b+ d

≤ λ⌈w
2
⌉+1 +m1 +

w∑
j=⌈w

2
⌉+1

(λj + 1) + b+ d

= λ⌈n
2
⌉+1 +

w∑
j=⌈w

2
⌉+1

(λj + 1) + b+

(⌈w
2
⌉+1)−⌈w

2
⌉∑

j=1

mj +

(⌈w
2
⌉+1)−1∑

j=⌈w
2
⌉+1

mj + d

= min
(
f(B⌈w

2
⌉+1)

)
= min

(
f(BR)

)
.

Similarly,

min
(
f(BL)

)
= min

(
f(B⌈w

2
⌉)
)

= (λ⌈w
2
⌉ + 1) +

⌈w
2
⌉−1∑

j=1

(λj + 1) + a+

⌈w
2
⌉∑

j=⌈w
2
⌉+1

mj +
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c

= (λ⌈w
2
⌉ + 1) +

(
⌈w
2
⌉ − 1 +

⌈w
2
⌉−1∑

j=1

λj

)
+ a+

⌈w
2
⌉∑

j=⌈w
2
⌉+1

mj +
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c

= ⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + a+
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c.

Thus,

min
(
f(BL)

)
= min

(
f(B⌈w

2
⌉)
)
= ⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + a+
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c, (3.2)
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and by Lemma 3.15,

min
(
f(BL)

)
≥ ⌈w

2
⌉+

w∑
j=⌈w

2
⌉+1

λj + a+
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c

>

w∑
j=⌈w

2
⌉+1

(λj + 1) + a+
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c

≥
( w∑
j=⌈w

2
⌉+2

(λj + 1) + (λ⌈w
2
⌉+1 + 1)

)
+ b

> λ⌈w
2
⌉+1 +

w∑
j=⌈w

2
⌉+2

(λj + 1) + b

= max
(
f(A⌈w

2
⌉+1)

)
= max

(
f(AR)

)
,

and thus the second result follows.

Example 3.17. We illustrate the results from Lemma 3.16 here.

Let M = M1 ∪M2 ∪M3 where M1 = C6 ∪C6, M2 = C8 and M3 = C12. In this

example, m = 32 and w = 3. By Theorem 2.7 and Theorem 2.8, each Mi admits

an α-labeling fi with critical value λi and vertex bipartition {Ai, Bi} shown as

in Figure 3.15. Note that λ1 = 6, λ2 = 3 and λ3 = 5 and λ1 ≥ λ3 ≥ λ2. Let

0 41 6

12 1011 7

5

8

2

9

0 1

8 7

2

5

3

4

M1(C6 ∪ C6) M3(C12) M2(C8)

Ai

Bi

0 21 3

12 1011 8

4

7

5

6

Figure 3.15: A graph M = M1 ∪M2 ∪M3 where each of Mi admits an α-labeling

AL = A1 ∪A2, AR = A3, BL = B1 ∪B2, and BR = B3, and let a = b = 4 = c = d.
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Let n = 32 + 4 + 4 + 1 = 41. Define a labeling function f : V (M) → [4, 40] by

f(v) =



fi(v) +
i−1∑
j=1

(λj + 1) + 4, v∈A1 ∪ A2;

fi(v) + 4, v∈A3;

fi(v) +
i−1∑
j=1

(λj + 1) +
2∑

j=i+1

mj +
3∑

j=2+i

mj + 8, v∈B1 ∪B2;

fi(v) +
i−2∑
j=1

mj + 8, v∈B3.

Then we have the graph M that satisfies a new labeling f as shown in Figure

3.16. We can observe that f |AL∪BL
and f |AR∪BR

are injective. Furthermore,

f(AL) ∩ f(BR) = ∅ = f(AR) ∩ f(BL).

4 85 10

40 3839 35

9

36

6

37

11 12

23 22

13

20

14

19

M1(C6 ∪ C6) M3(C12) M2(C8)

Ai

Bi

4 65 7

32 3031 28

8

27

9

26

Figure 3.16: A labeling f of M = M1 ∪M2 ∪M3

Next, we show how to obtain an embedding of M in Kn,n.

Lemma 3.18. Let a, b, c, d, mi, m, w, M , f , AL, AR, BL and BR be defined as

for Lemma 3.16. Let n = m+c+d+1 and let Kn,n have vertex set Zn× [1, 2] with

the obvious vertex partition. Define a labeling function f ′ : V (M) → V (Kn,n) by

f ′(v) =



f(v)1, if v ∈ AL;

f(v)2, if v ∈ AR;

f(v)2, if v ∈ BL;

f(v)1, if v ∈ BR.

Then f ′ is an injective labeling under M . Furthermore, define f̄ ′ : E(M) →

[0,m + c + d] such that if e = {v1, v2} ∈ E(M), then f̄ ′(e) = f ′(v2) − f ′(v1) if

f ′(v2) ≥ f ′(v1) and f̄ ′(e) = n + f ′(v2) − f ′(v1), otherwise. Then f̄ ′(E(M)) =

[c+ 1, c+m].
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Proof. Recall that for 1 ≤ i ≤ w, the set of edge lengths f̄i(E(Mi)) = [1,mi],

because fi is an α-labeling of Mi. Also, Lemma 3.16 ensures us that f ′ is injective.

We now consider the set of edge lengths of M under f ′. Note that

f̄ ′(E(M⌈w
2
⌉)) =


[c+ 1, c+m⌈w

2
⌉], if w odd;

[c+mw + 1, c+mw +m⌈w
2
⌉], if w even.

We have edge labels

f̄ ′(E(Mw)) = n−

f̄w(E(Mw)) +

w−⌈w
2
⌉∑

j=1

mj +
w−1∑

j=⌈w
2
⌉+1

mj + d


=

( w∑
i=1

mj + c+ d+ 1
)
−

[1,mw] +

w−⌈w
2
⌉∑

j=1

mj +
w−1∑

j=⌈w
2
⌉+1

mj + d


= (c+ 1) +

 w∑
j=1

mj −
w−⌈w

2
⌉∑

j=1

mj −
w−1∑

j=⌈w
2
⌉+1

mj

− [1,mw]

= (c+ 1) +

 w∑
j=1

mj −
w−⌈w

2
⌉∑

j=1

mj −
w−1∑

j=⌈w
2
⌉+1

mj

+ [0,mw − 1]−mw

= c+

 w∑
j=w−⌈w

2
⌉+1

mj −
w−1∑

j=⌈w
2
⌉+1

mj

+ [1,mw]−mw

= [1,mw] + c+
w∑

j=w−⌈w
2
⌉+1

mj −
w∑

j=⌈w
2
⌉+1

mj.

That is

f̄ ′(E(Mw)) =


[c+m⌈w

2
⌉ + 1, c+m⌈w

2
⌉ +mw], if w odd;

[c+ 1, c+mw], if w even.

Thus f̄ ′(E(Mw)) > f̄ ′(E(M⌈w
2
⌉)) if w is odd and f̄ ′(E(Mw)) < f̄ ′(E(M⌈w

2
⌉)) if w

is even. Next, for 1 ≤ i ≤ ⌈w
2
⌉ − 1, we have edge lengths

f̄ ′(E(Mi)) = f̄i(E(Mi)) +

⌈w
2
⌉∑

j=i+1

mj +
w∑

j=⌈w
2
⌉+i

mj + c

= [1,mi] +

⌈w
2
⌉∑

j=i+1

mj +
w∑

j=⌈w
2
⌉+i

mj + c.
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Note that max
(
f̄ ′(E(M1))

)
= c+

w∑
j=1

mj = c+m.

For 1 ≤ i ≤ ⌈w
2
⌉ − 1, we have edge labels

f̄ ′(E(M⌈w
2
⌉+i)) = n−

f̄⌈w
2
⌉+i(E(M⌈w

2
⌉+i)) +

⌈w
2
⌉+(i−⌈w

2
⌉)∑

j=1

mj +

⌈w
2
⌉+i−1∑

j=⌈w
2
⌉+1

mj + d


=

( w∑
i=1

mj + (c+ d) + 1
)
−

[1,m⌈w
2
⌉+i] +

i∑
j=1

mj +

⌈w
2
⌉+i−1∑

j=⌈w
2
⌉+1

mj + d


= (c+ 1) +

 w∑
j=1

mj −
i∑

j=1

mj −
⌈w
2
⌉+i−1∑

j=⌈w
2
⌉+1

mj

− [1,m⌈w
2
⌉+i]

= (c+ 1) +

 w∑
j=1

mj −
i∑

j=1

mj −
⌈w
2
⌉+i−1∑

j=⌈w
2
⌉+1

mj

+ [0,m⌈w
2
⌉+i − 1]−m⌈w

2
⌉+i

= c+

 w∑
j=i+1

mj −
⌈w
2
⌉+i−1∑

j=⌈w
2
⌉+1

mj

+ [1,m⌈w
2
⌉+i]−m⌈w

2
⌉+i

= [1,m⌈w
2
⌉+i] + c+

w∑
j=i+1

mj −
⌈w
2
⌉+i∑

j=⌈w
2
⌉+1

mj.

Since

⌈w
2
⌉∑

j=i+1

mj +
w∑

j=⌈w
2
⌉+i

mj =

⌈w
2
⌉∑

j=i+1

mj +

 w∑
j=⌈w

2
⌉+i+1

mj +m⌈w
2
⌉+i


=

 ⌈w
2
⌉∑

j=i+1

mj +
w∑

j=⌈w
2
⌉+i+1

mj

+m⌈w
2
⌉+i

=
w∑

j=i+1

mj −
⌈w
2
⌉+i∑

j=⌈w
2
⌉+1

mj +m⌈w
2
⌉+i,

we have

f̄ ′(E(Mi)) = [1,mi] + max
(
f̄ ′(E(M⌈w

2
⌉+i))

)
.

Since

w∑
j=i+1

mj −
⌈w
2
⌉+i∑

j=⌈w
2
⌉+1

mj =

 ⌈w
2
⌉∑

j=i+1

mj +mi+1

+
w∑

j=⌈w
2
⌉+i+2

m⌈w
2
⌉+j

=

⌈w
2
⌉∑

j=i+1

mj +
w∑

j=⌈w
2
⌉+i+2

m⌈w
2
⌉+j +mi+1,
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we have

f̄ ′(E(M⌈w
2
⌉+i)) = [1,m⌈w

2
⌉+i] + max

(
f̄ ′(E(Mi+1))

)
.

Therefore, all edge lengths of M are distinct because

c+m ≥ f̄ ′(E(M1)) > f̄ ′(E(M⌈w
2
⌉+1)) > f̄ ′(E(M2)) > f̄ ′(E(M⌈w

2
⌉+2)) > · · ·

· · · > f̄ ′(E(Mk)),

where k = ⌈w
2
⌉ if w is odd and k = w if w is even. Note that

min
(
f̄ ′(E(Mk))

)
= c+ 1.

Since f̄ ′(E(Mi)) ∩ f̄ ′(E(Mj)) = ∅ for all i ̸= j, and |E(M)| = m, we have

f̄ ′(E(M)) = [c+ 1, c+m].

Example 3.19. We illustrate the results from Lemma 3.18 here.

Let M = M1 ∪M2 ∪M3 where M1 = C6 ∪ C6, M2 = C8 and M3 = C12. Then

M is the same graph in Example 3.17 and all vertices of each Mi were labelled as

the graph on the top in Figure 3.17. Let a, b, c, d, mi, m, n, w, f , AL, AR, BL,

and BR be defined as for Example 3.17. Recall that m = 32, w = 3, n = 41, and

a = b = 4 = c = d. Let V (K41,41) = Z41 × [1, 2] with obvious vertex partition.

Define a labeling function f ′ : V (M) → V (K41,41) by

f ′(v) =



f(v)1, if v ∈ AL = A1 ∪ A2;

f(v)2, if v ∈ AR = A3;

f(v)2, if v ∈ BL = B1 ∪B2;

f(v)1, if v ∈ BR = B3,

By using the labeling f ′, we can embed M in K41,41 as Figure 3.17. Observe that

f ′ is an injective labeling under M . Furthermore, define f̄ ′ : E(M) → [0, 40] such

that if e = {v1, v2} ∈ E(M), then f̄ ′(e) = f ′(v2) − f ′(v1) if f ′(v2) ≥ f ′(v1) and

f̄ ′(e) = n+ f ′(v2)− f ′(v1), otherwise. Then f̄ ′(E(M)) = [5, 36].

In Corollary 3.20, we give bounds on the labels of the graph M that is embed-

ded in Kn,n.
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Figure 3.17: An embedding of M = M1 ∪M2 ∪M3 in K41,41 by using the labeling

f ′

Corollary 3.20. Let a, b, c, d, mi, m, w, M , AL, AR, BL, BR, f , and f ′ be defined

as for Lemmas 3.16–3.18, and n = m + c + d + 1. Let x = max{f ′(AL), f
′(AR)}

and y = min{f ′(BL), f
′(BR)}. Then f ′(M) ⊆ ([a, x] ∪ [y, n− 1])× [1, 2].

Proof. Let Kn,n have vertex set Zn × [1, 2] with the obvious vertex partition.

Recall that f : V (M) → [a, n − 1] and f ′ : V (M) → V (Kn,n) such that f ′ = f .

Since f(AL) < f(BL) and f(AR) < f(BR), we have max
(
f ′(AL)

)
< min

(
f ′(BL)

)
and max

(
f ′(AR)

)
< min

(
f ′(BR)

)
. Moreover, in the last part of the proof of

Lemma 3.16, we showed that

max
(
f(AL)

)
< min

(
f(BR)

)
and max

(
f(AR)

)
< min

(
f(BL)

)
.

Thus,

max
(
f ′(AL)

)
= max

(
(f(AL))1

)
< min

(
(f(BR))1

)
= min

(
f ′(BR)

)
max

(
f ′(AR)

)
= max

(
(f(AR))2

)
< min

(
(f(BL))2

)
= min

(
f ′(BL)

)
.

We conclude that x < y, thus the result follows.
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In the next corollary, we give exact values for the x and y from the the proofs of

Lemmas 3.25–3.27. The exactly values of x and y are shown in the next corollary.

Corollary 3.21. Let a, b, c, d, mi, m, w, M , AL, AR, BL, BR, f and f ′ be defined

as for Lemmas 3.16–3.18, and n = m + c + d + 1. Let x and y be defined as for

Corollary 3.20. Then

x = max{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + a− 1, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + b− 1},

y =


min{⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + a+ c, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + b+ d+m1}, if w odd;

min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + a+ c+mw, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + b+ d+m1}, if w even.

Proof. Since f ′ = f , we can investigate x and y from the function f . From

equations (3.1) and (3.2) in the proof of Lemma 3.16, we have

max
(
f(AL)

)
= max

(
f(A⌈w

2
⌉)
)
= ⌈w

2
⌉ − 1 +

⌈w
2
⌉∑

j=1

λj + a,

min
(
f(BL)

)
= max

(
f(B⌈w

2
⌉)
)
= ⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + a+
w∑

j=⌈w
2
⌉+⌈w

2
⌉

mj + c.

Note that

min
(
f(BL)

)
=


⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + a+ c, if w odd;

⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + a+mw + c, if w even.

In the proof of Lemma 3.16, we have

max
(
f(AR)

)
= max

(
f(A⌈w

2
⌉+1

)
= λ⌈w

2
⌉+1 +

w∑
j=⌈w

2
⌉+2

(λj + 1) + b

= ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + b− 1,
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min
(
f(BR)

)
= min

(
f(B⌈w

2
⌉+1

)
= (λ⌈w

2
⌉+1 + 1) +

w∑
j=⌈w

2
⌉+2

(λj + 1) + b+

(⌈w
2
⌉+1)−⌈w

2
⌉∑

j=1

mj +

(⌈w
2
⌉+1)−1∑

j=⌈w
2
⌉+1

mj + d

= ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + b+ d+m1.

Thus,

x = max{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + a− 1, ⌊w
2
⌋+

w∑
j=⌈n

2
⌉+1

λj + b− 1},

y =


min{⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + a+ c, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + b+ d+m1}, if w odd;

min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + a+ c+mw, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + b+ d+m1}, if w even.

This concludes the proof.

Lemma 3.22. Let M of size m be the vertex-disjoint union of 2-regular bipartite

graphs, each of which admits an α-labeling. Let G be the vertex-disjoint union

of the graph M and a path P of size 2ℓ − 1, where ℓ is a positive integer. Let

n = m + 2ℓ + 1 and let Kn,n have vertex set Zn × [1, 2] with the obvious vertex

partition. Then there exists an embedding of G in Kn,n with one edge of each

length in [−(n− 1)/2, (n− 1)/2]r {±z} for some z ∈ [1, (n− 1)/2] and such that

the endpoints of P are j1 and j2 for some j ∈ [0, n− 1].

Proof. LetM = M1∪M2∪· · ·∪Mw such that eachMi admits an α-labeling fi with

critical value λi and λ1 ≥ λ⌈w
2
⌉+1 ≥ λ2 ≥ λ⌈w

2
⌉+2 ≥ · · · . Let a, b, c, d, f , f ′, and f̄ ′

be defined as for Lemmas 3.16–3.18 and n = m+2ℓ+1. Let V (Kn,n) = Zn× [1, 2]

with the obvious vertex bipartition, and assume that a = b = c = d = ℓ. We will

embed G in Kn,n by giving embeddings of both M and P . To embed M , define a

labeling function

h : V (M) → [ℓ, n− 1], h′ : V (M) → V (Kn,n), h̄′ : E(M) → [0, n− 1]

by h = f , h′ = f ′ and h̄′ = f̄ ′. Then by Lemma 3.18, h′ is an injective labeling of

M and h′(V (M)) ⊆ [ℓ, n − 1] × [1, 2]. Furthermore h̄′(E(M)) = [ℓ + 1, ℓ +m] =

±[l + 1,m/2 + ℓ].
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By Lemma 3.3, there exists an embedding of P of size 2ℓ−1 by using the edge

lengths in {0}∪±[1, ℓ− 1] with endpoints 01 and 02. In the lemma, we would use

d1 = 1, d2 = 2, . . . , dℓ−1 = ℓ− 1, so V (P ) ⊆ [0, ℓ− 1]× [1, 2].

Thus, M and P are vertex disjoint and the edge set of G has one edge of each

length i ∈ [−(m/2 + ℓ),m/2 + ℓ]r {±ℓ}.

Example 3.23. We illustrate the results from Lemma 3.22 here.

LetG be the vertex-disjoint union of C12, C6, C6, C8, and P8. LetM1 = C6∪C6,

M2 = C8 and M3 = C12. Then by Theorem 2.7 and Theorem 2.8, each Mi

admits an α-labeling fi with critical value λi and vertex bipartition {Ai, Bi} (see

Figure 3.15). Then λ1 ≥ λ3 ≥ λ2. Let a, b, c, d, f , f ′ and f̄ ′ be defined as for

Lemmas 3.16–3.18. Let M = M1 ∪M1 ∪M3. Then G = M ∪ P8. Since ℓ = 2, we

have a = b = 2 = c = d and n = m+ 2ℓ+ 1 = 41. The vertex labeling f ′ of M is

shown in Figure 3.17. Let V (K41,41) = Z41 × [1, 2] with obvious vertex partition.

To embed M in K41,41, define labeling functions

h : V (M) → [4, 40], h′ : V (M) → V (K41,41), h̄′ : E(M) → [0, 40]

by h = f , h′ = f ′ and h̄′ = f̄ ′. Note that the set of edge lengths of M is

h̄′(E(M)) = [ℓ+ 1, ℓ+m] = ±[l + 1,m/2 + ℓ] = ±[5, 20].

By Lemma 3.3, there exists an embedding P of P8 such that V (P ) ⊆ [0, 3]×

[1, 2] and with edge lengths set {0} ∪ ±[1, 3]. Thus G can be embedded in K41,41

with the edge set of G having one edge of each length i ∈ [−20, 20] r {±4} (see

Figure 3.18).

Theorem 3.24. Let M be a 2-regular bipartite graph of order m ≡ 0 (mod 4).

Let G be the disjoint union of M and a cycle C of size 2ℓ+1 where ℓ is a positive

integer and n = m+2ℓ+1. Then there exists a G-decomposition of K(2k+1)×n for

all positive integers k and of Kk′×2n for all integers k′ ≥ 3.

Proof. Since m ≡ 0 (mod 4), the graph M is the union of graphs that ad-

mit α-labelings. Combine with Lemma 3.22 and Lemma 3.1, we obtain a G-

decomposition of K(2k+1)×n for all positive integers k. By Lemma 3.22 and

Lemma 3.2, a G-decomposition of Kk′×n exists for all integers k′ ≥ 3.



50

3

01 11

32 22

21

12

31

02

P8

321 301311 281

42 6252 72

271

82

261

92

41 51 101

402 382392 352

91

362

61

372

111 121

232 222

131

202

141

192

M1(C6 ∪ C6) M3(C12) M2(C8)

5
67

8
10

11

12

9

81

-17-18

18

-19
-20

20

19
17161514

13-10-13

-12

-14

-15

-16
-11

-8

-9

-7

-6
-5

0
1 -1

2 -2
-3

Figure 3.18: An embedding of G = C12 ∪ C6 ∪ C6 ∪ C8 ∪ P8 in K41,41

Next, we focus on the case when the number of cycles of order 2 (mod 4) in

G is odd.

Lemma 3.25. Let M of size m be the vertex-disjoint union of 2-regular bipartite

graphs that admit α-labeling. Let G be the vertex-disjoint union of M , a cycle C

of size m′ ≡ 2 (mod 4) and a path P of size 1. Let n = m+m′ + 3 and let Kn,n

have vertex set Zn × [1, 2] with the obvious vertex partition. Then there exists an

embedding of G in Kn,n with one edge of each length in [−(n− 1)/2, (n− 1)/2]r

{±z} for some z ∈ [1, n − 1] and such that the endpoints of P are j1 and j2 for

some j ∈ [0, n− 1].

Proof. LetM = M1∪M2∪· · ·∪Mw such thatMi admits an α-labeling fi with crit-

ical value λi and vertex bipartition {Ai, Bi} where λ1 ≥ λ⌈w
2
⌉+1 ≥ λ2 ≥ λ⌈w

2
⌉+2 ≥

· · · . Let a, b, c, d, f , f ′, f̄ ′, AL, AR, BL and BR be defined as for Lemmas 3.16–

3.18 and n = m + m′ + 3. Let V (Kn,n) = Zn × [1, 2] with the obvious vertex

bipartition. We will embed the graph G in Kn,n, consisting of the graph M of size

m, the cycle C of size m′ and the path P of size 1.

Case 1. Suppose that w is even. Assume that a = 1 = b and c = m′

2
+ 1 = d.
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Let x and y be defined as for Corollary 3.21. Then

x = max{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj} = ⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj,

y = min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + 2 + m′

2
+mw, ⌊w

2
⌋+

w∑
j=⌈w

2
⌉+1

λj + 2 + m′

2
+m1}.

Define a labeling function

h : V (M) → [1, n− 1], h′ : V (M) → V (Kn,n), h̄′ : E(M) → [0, n− 1]

by h = f , h′ = f ′ and h̄′ = f̄ ′. Then by Lemma 3.18, h′ is a injective labeling

under M and h′(M) ⊆ ([1, x] ∪ [y, n − 1]) × [1, 2]. Furthermore M has a set of

edge lengths

h̄′(E(M)) = [m
′

2
+ 2,m+ m′

2
+ 1] = ±[m

′

2
+ 2, m

2
+ m′

2
+ 1].

By Lemma 3.3, there exists an embedding of the path P of size 1 using edge

length 0 with endpoints 01 and 02. Next, we will embed the graph M of size m

and the cycle C of size m′ by considering the congruence class of m modulo 8.

Case 1.1. Suppose that m′ ≡ 2 (mod 8). Let m′ = 8t + 2 for some positive

integer t. Recall that M has a set of edge lengths

h̄′(E(M)) = ±[m
′

2
+ 2, m

2
+ m′

2
+ 1],

y = min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + 4t+ 3 +mw, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + 4t+m1 + 3}.

By Lemma 3.8, there exists an embedding of a cycle C∗ of size m′ with edge

lengths

±[2, 4t+ 2] = ±[2, m
′

2
+ 1].

Furthermore, V (C∗) ⊆ [0, 4t + 2] × [1, 2]. Let C = C∗ + (x + 1). Then V (C) ⊆

[x+1, 4t+2+(x+1)]× [1, 2]. By using Lemma 3.15, note that 4t+2+(x+1) =

4t+ 3 + ⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj < y.

Thus the edge set of G has one edge of each length i ∈ [−(m
2
+ m′

2
+ 1), m

2
+

m′

2
+ 1]r {±1}.
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Case 1.2. Suppose thatm′ ≡ 6 (mod 8). Letm′ = 8t+6 for some nonnegative

integer t.

Subcase 1.2(a). t = 0. Then M has a set of edge lengths

h̄′(E(M)) = ±[5, m
2
+ 4].

Recall that

y = min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj +mw + 5, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj +m1 + 5}.

To embed C of size m′ in Kn,n, let C
∗ = ⟨01, 32, 21, 02, 31, 22⟩. Its lengths are

3,−1, 2,−3, 1,−2. Let C = C∗+(x+1). Then V (C) ⊆ [x+1, 3+(x+1)]× [1, 2].

By Lemma 3.15, note that 3 + (x+ 1) = ⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + 4 < y.

Thus, M , C and P are vertex-disjoint, and the edge set of G has one edge of

each length i ∈ [−(m
2
+ 4), m

2
+ 4]r {±4}.

Subcase 1.2(b). t ≥ 1. Then M has a set of edge lengths

h̄′(E(M)) = ±[m
′

2
+ 2, m

2
+ m′

2
+ 1],

y = min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + 4t+ 5 +mw, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + 4t+ 5 +m1}.

By Lemma 3.9, there exists an embedding of a cycle C∗ of size m′ with edge

lengths is

±[1, 4t+ 4)]r {±2}] = ±[1, m
′

2
+ 1]r {±2}.

Furthermore, V (C∗) ⊆ [0, 4t + 4] × [1, 2]. Let C = C∗ + 1. Then V (C) ⊆

[x + 1, 4t + 4 + (x + 1)] × [1, 2]. By Lemma 3.15, note that 4t + 4 + (x + 1) =

4t+ 5 + ⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj < y.

Thus the edge set of G has one edge of each length i ∈ [−(m
2
+ m′

2
+ 1), m

2
+

m′

2
+ 1]r {±2}.

Case 2. Suppose that w is odd. Let m′ = 4t+ 2 for some positive integer t, and

assume that a = 2 = d, b = 2t+ 2 and c = 4t+ 2. By Corollary 3.21, we have

x = max{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + 1, ⌊w
2
⌋+

w∑
j=⌈n

2
⌉+1

λj + 2t+ 1},
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y = min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + 4t+ 4, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + 2t+ 4 +m1}

.

Define a labeling function

h : V (M) → [2, n− 1], h′ : V (M) → V (Kn,n), h̄′ : E(M) → [0, n− 1]

by h = f , h′ = f ′ and h̄′ = f̄ ′. Then by Lemma 3.18, h′ is a injective labeling

under M . Furthermore, M has a set of edge lengths

h̄′(E(M)) = [4t+ 3, 4t+ 2 +m] = [m′ + 1, m
2
+ m′

2
+ 1] ∪ [−(m

2
+ m′

2
+ 1),−3].

To embed C of size 4t+ 2 in Kn,n, let

C = G1 +G2 +
(
22, 11, 02, (2t+ 4 +m)1

)
where

G1 = P
(
m+ 2t+ 4, 0, 2t+ 1

)
,

G2 = Q
(
m+ 3t+ 6,−(t− 3), 2t− 2

)
.

We then show that G1 + G2 +
(
22, 11, 02, (m + 2t + 4)1

)
is a cycle of size 4t + 2.

Note that by P1 and Q1, the first vertex of G1 is (m + 2t + 4)1, and the last

vertex is (t + 1)2; the first vertex of G2 is (t + 1)2, and the last vertex is 22. For

1 ≤ i ≤ 2, let Ai(C) and Bi(C) denote the sets labeled A′ and B′ in P2 and Q2,

we compute

A1(C) = [(m+ 2t+ 4)1, (m+ 3t+ 4)1], B1(C) = [(t+ 1)2, (2t+ 1)2],

A2(C) = [(m+ 3t+ 6)1, (m+ 4t+ 4)1], B2(C) = [22, (t+ 1)2].

Thus,

A1(C) < A2(C) and B2(C) ≤ B1(C).

Note that V (G1) ∩ V (G2) = {(t+ 1)2}; otherwise, G1 and G2 are vertex disjoint.

Therefore, G1 +G2 +
(
22, 11, 02, (m+ 2t+ 4)1

)
is a cycle of size 4t+ 2.
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Next, let Ei(C) denote the set of edge labels in Gi for 1 ≤ i ≤ 2. By P3 and

Q3, we have edge lengths

E1(C) = [−(m+ 2t+ 3),−(m+ 3)] = [m
′

2
+ 1,m′],

E2(C) = [−(m+ 4t+ 2),−(m+ 2t+ 5)] = [3, m
′

2
− 1].

Moreover, the path
(
22, 11, 02, (m+ 2t+ 4)1

)
consists of edges lengths 1, −1, and

−(m+ 2t+ 4) = 2t+ 1 = m′

2
.

Note that in this case

min
(
h′(AL)

)
= min

(
h′(A1)

)
= 2

max
(
h′(Bw)

)
= mw + b+

⌊w
2
⌋∑

j=1

mj +
w−1∑

j=⌈w
2
+1⌉

mj + d < b+ d+m = 2t+ 4 +m.

Also,

min
(
h′(AR)

)
= min

(
h′(Aw)

)
= b = 2t+ 2,

max
(
h′(BL)

)
= max

(
h′(B1)

)
= m+ a+ c = m+ 4t+ 4 = n− 1.

Since

2 = min
(
h′(AL)

)
< max

(
h′(BR)

)
< 2t+ 4 +m = min

(
A1(C) ∪ A2(C)

)
,

n− 1 = max
(
h′(BL)

)
> min

(
h′(AR)

)
= 2t+2 > 2t+1 = max

(
B1(C)∪B2(C)

)
,

we have M and C are vertex disjoint.

By Lemma 3.3, there exists an embedding of a path P ∗ of size 1 using edge

length 0 with endpoints 01 and 02. Let P = P ∗ + (x+ 1) with endpoints (x+ 1)1

and (x+1)2. Note that 2t+2 < 4t+3 = n. Thus, the edge set of G has one edge

of each length i ∈ [−2t, 2t], except the edge lengths ±(2t + 1). Since x + 1 < y,

we have P is vertex disjoint from M and C. Thus, the edge set of G has one edge

of each length i ∈ [−(m
2
+ m′

2
+ 1), m

2
+ m′

2
+ 1]r {±2}.

Example 3.26. We illustrate the results from Lemma 3.25 here.

Let G be the vertex-disjoint union of C10, C8, C8, C4, C4, C4 and P2. Let

M1 = C8, M2 = C4, M3 = C4, M4 = C8 andM5 = C4. Then by Theorem 2.7, each
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Mi admits an α-labeling fi with critical value λi and vertex bipartition {Ai, Bi}.

Figure 3.19 illustrates the α-labeling of Mi. Then λ1 ≥ λ4 ≥ λ2 ≥ λ5 ≥ λ3. Let

a, b, c, d, f , f ′, f̄ ′, AL, AR, BL and BR be defined as for Lemmas 3.16–3.18. Let

M = M1 ∪M2 ∪ · · · ∪M5. Then G = M ∪ C10 ∪ P2. Note that m′ = 10, m = 28

and t = 2. Then n = m+m′ + 3 = 41. Since 10 ≡ 2 (mod 8) and M consists of

five subgraphs Mi, we need to use Case 2 in Lemma 3.25 to embed G in K41,41.

In this case, we assume that a = 2 = d, b = 2t+ 2 = 6 and c = 4t+ 2 = 10.

To embed M in K41,41, define a labeling function

h : V (M) → [2, 40], h′ : V (M) → V (K41,41), h̄′ : E(M) → [0, 40]

by h = f , h′ = f ′ and h̄′ = f̄ ′. Then the vertices of M are labelled as in

Figure 3.20. Note that V (M) ⊆ ([2, 11] ∪ [20, 40]) × [1, 2] and the set of edge

lengths of M is h̄′(E(M)) = [11, 20] ∪ [−20,−3].

To embed C10 in K41,41, let C = G1 + G2 +
(
22, 11, 02, 361

)
be an embedding

of C10 where G1 = P (36, 0, 5) and G2 = Q(40, 1, 2). For 1 ≤ i ≤ 2, let Ai(C) and

Bi(C) denote the sets labeled A′ and B′ in P2 and Q2, we compute

A1(C) = [(m+ 2t+ 4)1, (m+ 3t+ 4)1] = [361, 381],

B1(C) = [(t+ 1)2, (2t+ 1)2] = [32, 52],

A2(C) = [(m+ 3t+ 6)1, (m+ 4t+ 4)1] = {401},

B2(C) = [22, (t+ 1)2] = [22, 32].

Then V (C) = (([36, 40] ∪ {1}) × {1}) ∪ (([2, 5] ∪ {0}) × {2}) and the set of edge

lengths of C is [6, 10] ∪ [3, 4] ∪ {−1, 1, 5}. Thus, C is vertex disjoint from M .

Let x and y be defined as for Corollary 3.20. Then we can note that

x = max
( 5∪
i=1

h′(Ai)
)
= 11 and y = min

( 5∪
i=1

h′(Bi)
)
= 20

By Lemma 3.3, there exists an embedding P ∗ of P2 in K41,41 with endpoints 01

and 02, and its edge length 0. Let P = P ∗ + (x + 1) = P ∗ + 12 with endpoints

121 and 122. Hence, G can be embedded in K41,41 so that the edge set of G has

one edge of each length i ∈ [−20, 20]r {±2}.
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Figure 3.19: A graphM = M1∪M2∪· · ·∪M5 where eachMi admits an α-labeling.
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Figure 3.20: An embedding of G = C8 ∪ C8 ∪ C4 ∪ C4 ∪ C4 ∪ C10 ∪ P2 in K41,41

Lemma 3.27. Let M of size m be the vertex-disjoint union of any 2-regular

bipartite graphs, each of which admits an α-labeling. Let G be the vertex-disjoint

union of M , a cycle C of size m′ and a path P of size 2ℓ−1 where m′ ≡ 2(mod 4)

and ℓ ≥ 2 is an integer. Let n = m + m′ + 2ℓ + 1 and let Kn,n have vertex set

Zn × [1, 2] with the obvious vertex partition. Then there exists an embedding of

G in Kn,n with one edge of each length in [−(n − 1)/2, (n − 1)/2] r {±z} for

some z ∈ [1, (n − 1)/2] and such that the endpoints of P are j1 and j2 for some

j ∈ [0, n− 1].

Proof. LetM = M1∪M2∪· · ·∪Mw such thatMi admits an α-labeling fi with crit-

ical value λi and vertex bipartition {Ai, Bi} where λ1 ≥ λ⌈w
2
⌉+1 ≥ λ2 ≥ λ⌈w

2
⌉+2 ≥

· · · . Let a, b, c, d, f , f ′, f̄ ′, AL, AR, BL and BR be defined as for Lemmas 3.16-
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3.18 and n = m+m′ + 2ℓ+ 1. Let V (Kn,n) = Zn × [1, 2] with the obvious vertex

bipartition. We will embed the graph G, consisting of the graph M of size m, the

cycle C of size m′ and the path P of size 2ℓ− 1.

Case 1. m′ = 6. To embed M of size m in Kn,n, assume that a = b = c = d =

ℓ+ 3. Define a labeling function

h : V (M) → [ℓ+ 3, n− 1], h′ : V (M) → V (Kn,n), h̄′ : E(M) → [0, n− 1]

by h = f , h′ = f ′ and h̄′ = f̄ ′. Then by Lemma 3.18, h′ is a injective labeling

under M and h′(M) ⊆ ([ℓ+3, x]∪ [y, n− 1])× [1, 2]. Furthermore M has a set of

edge lengths

h̄′(E(M)) = [ℓ+ 4,m+ ℓ+ 3] = ±[ℓ+ 4, m
2
+ ℓ+ 3].

Let x and y be defined as for Corollary 3.21. Then

x = max{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + ℓ+ 2, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + ℓ+ 2} = ⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + ℓ+ 2,

y =


min{⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + 2ℓ+ 6, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + 2ℓ+ 6 +m1}, if w odd;

min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + 2ℓ+ 6 +mw, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + 2ℓ+ 6 +m1}, if w even.

To embed C of size 6 Kn,n, let C
∗ = ⟨01, 32, 21, 02, 31,22⟩. Its edge lengths are

3,−1, 2,−3, 1,−2. Let C = C∗+(x+1). Then V (C) ⊆ [x+1, 3+(x+1)]×[1, 2]. By

Lemma 3.15 and ℓ ≥ 2, we have 3+(⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj+ℓ+3) = ⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj+ℓ+6 < y.

By Lemma 3.3, there exists an embedding of P of size 2ℓ − 1 using the edge

lengths in {0}∪±{4, ℓ+2} with endpoints 01 and 02. In the lemma we would use

d1 = 4, d2 = 5, . . . , dℓ−1 = ℓ+ 2, so V (P ) ⊆ [0, ℓ+ 2]× [1, 2].

Thus the edge set of G has one edge of each length i ∈ [−(m
2
+ ℓ+3), m

2
+ ℓ+

3]r {±(ℓ+ 3)}

Case 2. m′ ≥ 10. First we will embed a graph M in Kn,n, assume that a = b =

c = d = ℓ+ m′

2
.



58

Let x and y be defined as for Corollary 3.21. Then

x = max{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + ℓ+ m′

2
− 1, ⌊w

2
⌋+

w∑
j=⌈w

2
⌉+1

λj + ℓ+ m′

2
− 1}

= ⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + ℓ+ m′

2
− 1,

y =


min{⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + 2ℓ+m′, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + 2ℓ+m′ +m1}, if w odd;

min{⌈w
2
⌉+

⌈w
2
⌉∑

j=1

λj + 2ℓ+m′ +mw, ⌊w
2
⌋+

w∑
j=⌈w

2
⌉+1

λj + 2ℓ+m′ +m1}, if w even.

Define a labeling function

h : V (M) → [ℓ+ m′

2
, n− 1], h′ : V (M) → V (Kn,n), h̄′ : E(M) → [0, n− 1]

by h = f , h′ = f ′ and h̄′ = f̄ ′. Then by Lemma 3.18, h′ is a injective labeling

under M and h′(M) ⊆ ([ℓ+ m′

2
, x] ∪ [y, n− 1])× [1, 2]. Furthermore M has a set

of edge lengths

h̄′(E(M)) = [ℓ+ m′

2
+ 1, ℓ+ m′

2
+m] = ±[ℓ+ m′

2
+ 1, ℓ+ m′

2
+ m

2
].

For an embedding of the remaining graphs C of size m′ and P of size 2ℓ − 1

in Kn,n, we will consider 2 cases.

Case 2.1. m′ ≡ 2 (mod 8). Let m′ = 8t + 2 for some positive integer t. By

Lemma 3.8, there exists an embedding of a cycle C∗ of size m′ with edge lengths

±[1, 4t+ 2] = ±[1, m
′

2
+ 1]

and V (C∗) ⊆ [0, 4t+ 2]× [1, 2]. Let C = C∗ + (x+ 1). Then V (C) ⊆ [x+ 1, 4t+

2 + (x+ 1)]× [1, 2]. Note that by using Lemma 3.15, we have 4t+ 2 + (x+ 1) =

m′

2
+1+(⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + ℓ+ m′

2
) = ⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + ℓ+m′+1 < y. Thus, C is vertex

disjoint from M .

By Lemma 3.3, there exists an embedding of P of size 2ℓ − 1 using the edge

lengths in {−1, 0, 1} ∪ ±[m
′

2
+ 2, ℓ + m′

2
− 1] with endpoints 01 and 02. In the
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lemma we would use d1 = 1, d2 = m′

2
+ 2, . . . , dℓ−1 = ℓ + m′

2
− 1, so V (P ) ⊆

[0, ℓ+ m′

2
− 1]× [1, 2].

Thus, M , P and C are vertex disjoint, and the edge set of G has one edge of

each length i ∈ [−(m
2
+ m′

2
+ ℓ), m

2
+ m′

2
+ ℓ]r {±(m

′

2
+ ℓ)}.

Case 2.2. Suppose that m′ ≡ 6(mod 8). Let m′ = 8t + 6 for some positive

integer t. By Lemma 3.9, there exists an embedding of a cycle C∗ of length m′

with edge lengths

±[1, 4t+ 4]r {±2} = ±[1, m
′

2
+ 1]r {±2}

and V (C∗) ⊆ [0, 4t+ 4]× [1, 2]. Let C = C∗ + (x+ 1). Then V (C) ⊆ [x+ 1, 4t+

4 + (x+ 1)]× [1, 2]. Note that by using Lemma 3.15, we have 4t+ 4 + (x+ 1) =

m′

2
+ 1 + (⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + ℓ+ m′

2
) = ⌈w

2
⌉+

⌈w
2
⌉∑

j=1

λj + ℓ+m′ + 1 < y .

By Lemma 3.3, there exists an embedding of P of size 2ℓ − 1 using the edge

lengths in {0} ∪ {±2} ∪ ±[m
′

2
+ 2, m

′

2
+ ℓ − 1] with endpoints 01 and 02. In the

lemma we would use d1 = 2, d2 = m′

2
+ 2, . . . , dℓ−1 = ℓ + m′

2
− 1, so V (P ) ⊆

[−(ℓ+ m′

2
− 1), ℓ+ m′

2
− 1]× [1, 2].

Thus the edge set of G has one edge of each length i ∈ ±[−(m
2
+ m′

2
+ ℓ), m

2
+

m′

2
+ ℓ]r {±(m

′

2
+ ℓ)}.

Example 3.28. We illustrate the results from Lemma 3.27 here.

Let G be the vertex-disjoint union of C14, C12, C8, C6, C6, C4 and P4. Let

M1 = C6 ∪ C6, M2 = C8, M3 = C12 and M4 = C4. Then by Theorem 2.7

and Theorem 2.8, Mi admits an α-labeling fi with critical value λi and vertex

bipartition {Ai, Bi}. Figure 3.21 illustrates the α-labeling of Mi. Then λ1 ≥

λ3 ≥ λ2 ≥ λ4. Let a, b, c, d, f , f ′, f̄ ′, AL, AR, BL and BR be defined as for

Lemmas 3.16–3.18. Let M = M1 ∪M2 ∪M3 ∪M4. Then G = M ∪C14 ∪P4. Note

that m′ = 14, m = 36 and ℓ = 2. Then n = m +m′ + 2ℓ + 1 = 55. Since 14 ≡ 6

(mod 8), we need to use Case 2.2 in Lemma 3.27 to embed G in K55,55. In this

case, we assume that a = b = c = d = 9.

To embed M in K55,55, define a labeling function

h : V (M) → [9, 54], h′ : V (M) → V (K55,55), h̄′ : E(M) → [0, 54]
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by h = f , h′ = f ′ and h̄′ = f̄ ′. Then the vertices of M are labelled as in

Figure 3.21. Note that the set of edge lengths of M is h̄′(E(M)) = ±[10, 27].

Let x and y be be defined as for Corollary 3.20. Then we can observe that

x = max
( 4∪
i=1

h′(Ai)
)
= 19 and y = min

( 4∪
i=1

h′(Bi)
)
= 32.

Note that V (M) ⊆ ([9, 19] ∪ [32, 54]× [1, 2].

By Lemma 3.9, there exists an embedding of a cycle C∗ of size 14 with edge

lengths ±[1, 8]r{±2}, and V (C∗) ⊆ [0, 8]× [1, 2]. Let C = C∗+(x+1) = C∗+20

be an embedding of C14. Note that V (C) ⊆ [20, 28] × [1, 2]. Thus C is vertex

disjoint from M .

Finally, by Lemma 3.3, there exists an embedding P of P4 using the edge

lengths in {−2, 0, 2} with endpoints 01 and 02, and V (P ) ⊆ [0, 2]× [1, 2].

Hence, G can be embedded in Kn,n with edge set of G has one edge of each

length i ∈ [−27, 27]r {±9}.
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Figure 3.21: A graph M = M1∪M2∪M3∪M4 where each Mi admits an α-labeling

By using the results of Lemmas 3.1–3.2, we obtain the following theorem.

Theorem 3.29. Let G be a 2-regular graph of odd order n consisting of any

number of even cycles and only one odd cycle. There exists a G-decomposition of

K(2k+1)×n for all positive integers k and of Kk′×2n for all integers k′ ≥ 3.

Proof. Let M = M1 ∪M2 ∪ · · · ∪Mw where Mi is an even cycle of size mi, and

let m = m1 + m2 + · · · + mw. Let G = M ∪ Cm′ of size n where m′ ≥ 3 is an

odd integer. If w = 1, then G has only two components; G consists of one even

cycle and one odd cycle. Then the results follow from Theorem 3.12. Assume that
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Figure 3.22: An embedding of G = C12 ∪ C6 ∪ C6 ∪ C8 ∪ C4 ∪ C14 ∪ P4 in K55,55

w ≥ 2. If m ≡ 0 (mod 4), we are done (see Theorem 3.24). Suppose that m ≡ 2

(mod 4). Let M∗ = {Mi : Mi ⊆ M and mi ≡ 2 (mod 4)}. Then |M∗| is odd.

Let Cm′ be one of the cycles in M∗. The cycles in M∗r {Cm′} can be partitioned

into pairs of graphs that admits α-labelings. Also note that the cycles in M rM∗

all have lengths 0 (mod 4) and thus admit α-labelings. By combining the results

of Lemma 3.1 and Lemmas 3.25–3.27, we obtain a G-decomposition of K(2k+1)×n

for all positive integers k. By combining Lemma 3.2 and Lemmas 3.25–3.27, a

G-decomposition of Kk′×2n exists for all integers k′ ≥ 3.

If a G-decomposition of Kn exists (i.e., if the Oberwolfach problem has a

solution in this case), then a G-decomposition of K2kn+n will also exist.

Theorem 3.30. Let G of order n be a 2-regular almost bipartite graph. If a G-

decomposition of Kn exists, then there exists a G-decomposition of K2kn+k for all

positive integers k.

Proof. Observe that K2kn+n = (2k + 1)Kn ∪K(2k+1)×n. Since a G-decomposition

of Kn exists, a G-decomposition of (2k + 1)Kn will also exist. By Theorem 3.29,

there exists a G-decomposition of K(2k+1)×n. The result follows.
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3.3.3 G consisting of three odd cycles

Finally we consider the case where G consists of three cycles of odd length.

Lemma 3.31. Let n ≥ 3 be an odd integer and let m ≤ (n − 1)/2 be a positive

integer. Let Kn,n have vertex set Zn × {1, 2} with the obvious vertex partition.

Let d1, d2, . . . , dm−1 be an increasing sequence of consecutive positive integers with

dm−1 ≤ (n− 1)/2. There exists a path P in Kn,n of size 2m− 1 whose edges have

lengths 0,±d1,±d2, . . . ,±dm−1 with endpoints 01 and 02. Furthermore, V (P ) ⊆(
[0, ⌈m

2
⌉ − 1] ∪ [dm−1 − ⌊m

2
⌋+ 1, dm−1]

)
× [1, 2].

Proof. If m = 1, let P be the path consisting of the edge {01, 02}. Otherwise,

for k ∈ [1,m− 1], define vk =
k−1∑
i=0

(−1)idm−1−i. Note that since di+1 − di = 1, we

have v2j = j and v2j+1 = dm−1 − j. Thus, vm−1 = ⌈m
2
⌉ − 1 if m − 1 is even and

vm−1 = dm−1−⌊m
2
⌋+1 if m−1 is odd. Similarly, vm−2 = ⌈m

2
⌉−1 or dm−1−⌊m

2
⌋+1

if m− 1 is odd or even, respectively.

Consider the path of size m− 1 given by P ′ : 01, (v1)2, (v2)1, (v3)2, . . . where P
′

ends with (vm−1)2 if m − 1 is odd or (vm−1)1 if m − 1 is even. Thus, V (P ′) ⊆(
[0, ⌈m

2
⌉ − 1] ∪ [dm−1 − ⌊m

2
⌋+ 1, dm−1]

)
× [1, 2]. Also, observe that the lengths of

the edges of P ′, in the order encountered, are dm−1, dm−2, . . . , d1.

Next consider the path P ′′ : 02, (v1)1, (v2)2, (v3)1, . . . where P
′′ ends with (vm−1)1

if m − 1 is odd or (vm−1)2 if m − 1 is even, and observe that the edges on P ′′,

in the order encountered, are −dm−1,−dm−2, . . . ,−d1. Since P ′′ is constructed in

the same way as P ′ with the corresponding vertices lying in the opposite parts of

V (Kn,n), we have V (P ′′) ⊆
(
[0, ⌈m

2
⌉ − 1] ∪ [dm−1 − ⌊m

2
⌋ + 1, dm−1]

)
× [1, 2], and

V (P ′) ∩ V (P ′′) = ∅.

Construct the path P from the paths P ′ and P ′′ by adding the edge from

(vm−1)1 to (vm−1)2. Note that P has size 2m − 1, the edges of P have lengths

0,±d1,±d2, . . . ,±dm−1, and V (P ) ⊆
(
[0, ⌈m

2
⌉ − 1] ∪ [dm−1 − ⌊m

2
⌋ + 1, dm−1]

)
×

[1, 2].

Theorem 3.32. Let G be a 2-regular graph of order n consisting of exactly

three odd cycles. For every positive integer k, there exists a G-decomposition
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of K(2k+1)×n.

Proof. Let G = C2x+1 ∪ C2y+1 ∪C2z+1 where x, y, and z are positive integers and

let n = 2x + 2y + 2z + 3. Let k ≥ 1 be an integer. Label the vertex set of

K(2k+1)×n with the elements of the group Zn × [1, 2k + 1] with the obvious vertex

partition. Let (Q, ◦) be an idempotent commutative quasigroup of order 2k + 1,

where Q = [1, 2k + 1].

Fix r and s with 1 ≤ r < s ≤ 2k+1. We will construct a graph Gr,s consisting

of the vertex-disjoint union of the following three cycles: Cr,s of size 2x + 1, C
′
r,s

of size 2y + 1, and C
′′
r,s of size 2z + 1. We will consider two cases.

Case 1. G has at least two cycles of size 3. Without loss of generality, we may

assume that x = y = 1. Then the vertex sets of Cr,s and C
′
r,s can be given by

⟨0r, 1s, 3r◦s⟩ and ⟨3r, 2s, 5r◦s⟩, respectively. If z = 1, then the vertex set of C ′′
r,s

can be given by ⟨4r, 4s, 8r◦s⟩. Suppose that z ≥ 2. By Lemma 3.31, there exists a

path P ∗
r,s of size 2z − 1 whose edges have lengths {0} ∪±[5, z + 3]. In the lemma,

we would use d1 = 5, d2 = 6, . . . , dz−1 = z + 3, so V (P ∗
r,s) ⊆ [0, z + 3] × {r, s}

with endpoints 0r and 0s. Let P
′′
r,s = P ∗

r,s + 4. Thus P ′′
r,s has endpoints 4r and 4s.

Then V (P ′′
r,s) ⊆ [4, z + 7]× {r, s}. Thus, P ′′

r,s is vertex disjoint from Cr,s and C ′
r,s.

Construct the cycle C ′′
r,s of length 2z + 1 from the path P ′′

r,s by adding the edges

{4r, 8r◦s} and {4s, 8r◦s}.

Note that in the subgraph ofK(2k+1)×n with vertex set Zn×{r, s}, Gr,s contains

one edge of each length i ∈ [−1, 1]∪±[5, z+3] (if z = 1, the Gr,s contains one edge

of each length i ∈ [−1, 1]). Moreover, the three edges of Gr,s that are incident

with vertices in Zn × {r, r ◦ s} are all of different lengths. For instance, the

edges {0r, 3r◦s} in Cr,s, {3r, 5r◦s} in C ′
r,s, and {4r, 8r◦s} in C ′′

r,s, have lengths 3,

2, and 4, respectively, if r < r ◦ s, and lengths −3, −2, and −4, respectively,

otherwise. Similarly, the three edges of Gr,s that are incident only with vertices

in Zn × {s, r ◦ s} are all of different lengths. For instance, the edges {1s, 3r◦s} in

Cr,s, {2s, 5r◦s} in C ′
r,s, and {4s, 8r◦s} in C ′′

r,s, have lengths 2, 3, and 4, respectively,

if s < r ◦ s, and lengths −2, −3, and −4, respectively, otherwise. Figure 3.23

shows an example of Cr,s, C
′
r,s and C ′′

r,s where x = y = 1 and z = 4.
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Next, let G∗
r,s = {Gr,s + ℓ : 0 ≤ ℓ < n − 1}. Thus G∗

r,s contains n distinct

copies of G. Moreover, in the subgraph of K(2k+1)×n with vertex set Zn × {r, s},

G∗ contains all edges of length i for all i ∈ [−(n− 1)/2, (n− 1)/2]r±[2, 4]. Let

C = {Gr,s + ℓ : 1 ≤ r < s ≤ 2k + 1, 0 ≤ ℓ ≤ n − 1} and note that C contains(
2k+1
2

)
n distinct copies of G. We will show that every edge of K(2k+1)×n appears

on some copy of G in C. Let e = {ir, js} with r < s be an arbitrary edge of

K(2k+1)×n. Let t′ be the unique solution to r ◦ t′ = s and let α′ = min{r, t′} and

β′ = max{r, t′}. Let t′′ be the unique solution to s◦ t′′ = r and let α′′ = min{s, t′′}

and β′′ = max{s, t′′}. If j− i ∈ [−(n− 1)/2, (n− 2)/2]r±[2, 4] then e belongs to

Gr,s + ℓ where 0 ≤ ℓ ≤ n− 1.

Note that if j − i = 2, then e belongs to the triple {(i, r), (i − 1, t′), (j, s)}

which is a copy of Ct′,r if t′ < r, or a copy of C ′
r,t′ if r < t′. If j − i = 3, then e

belongs to the triple {(i, r), (i+ 1, t′), (j, s)} which is a copy of C ′
t′,r if t

′ < r, and

a copy of Cr,t′ if r < t′. Also, if j − i = 4, then e belongs to some copy of C ′′
α′,β′ .

Thus, if j − i ∈ [2, 4], then e belongs to Gα′,β′ + ℓ where 0 ≤ ℓ ≤ n− 1.

Observe that if j− i = −2, then e belongs to the triple {(j, s), (j−1, t′′), (i, r)}

which is a copy of Ct′′,s if t
′′ < s, or a copy of C ′

s,t′′ if s < t′′. If j − i = −3, then e

belongs to the triple {(j, s), (j+1, t′′), (i, r)} which is a copy of C ′
t′′,s if t

′′ < s, or a

copy of Cs,t′′ if s < t′′. Also, if i− j = −4, then e belongs to some copy of C ′′
α′′,β′′ .

Thus, if j − i ∈ [−4,−2], then e belongs to Gα′′,β′′ + ℓ where 0 ≤ ℓ ≤ n− 1. Since

every edge of K(2k+1)×n appears on some copy of H in C and since C contains(
2k+1
2

)
n distinct copies of G, it follows that C is a decomposition of K(2k+1)×n into

copies of G.

4r 10r5r 11r

11s 5s10s 4s

0r

1s

3r◦s 8r◦s

3r

2s

5r◦s

Figure 3.23: Cr,s, C
′
r,s and C ′′

r,s where x = y = 1 and z = 4

Case 2. G has at most one cycle of size 3. Suppose y ≥ 2 and z ≥ 2. By
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Lemma 3.31, there exist a path Pr,s of size 2x − 1 using the edge lengths in

{0} ∪ ±[y + z + 3, x + y + z + 1] with endpoints 0r and 0s. In the lemma, we

would use d1 = y + z + 3, d2 = y + z + 4, . . . , dx−1 = x + y + z + 1, so

V (Pr,s) ⊆
(
[0, ⌈x

2
⌉ − 1] ∪ [⌈x

2
⌉ + y + z + 2, x + y + z + 1]

)
× {r, s}. We construct

the cycle Cr,s of size 2x + 1 from Pr,s by adding the edges {0r, (y + z)r◦s} and

{0s, (y + z)r◦s}.

Next, we will construct the cycle C ′
r,s of size 2y + 1. Let P ′

r,s = G′
1 +G′

2 +G′
3

where

G′
1 = P (⌈x

2
⌉, ⌈x

2
⌉+ 3, y − 2)

G′
2 =


(
(⌈x

2
⌉+ y+5

2
)s, (⌈x

2
⌉+ y+1

2
)r, (⌈x

2
⌉+ y−1

2
)s, ⌈x

2
⌉+ y+5

2
)r
)
, if y − 2 odd;(

(⌈x
2
⌉+ y−2

2
)r, (⌈x

2
⌉+ y+2

2
)s, (⌈x

2
⌉+ y+4

2
)r, ⌈x

2
⌉+ y−2

2
)s
)
, if y − 2 even,

G′
3 =


P
(
⌈x
2
⌉+ y+5

2
, ⌈x

2
⌉ − y−1

2
, y − 2

)
, if y − 2 odd;

Q
(
⌈x
2
⌉+ y+6

2
, ⌈x

2
⌉ − y−2

2
, y − 2

)
, if y − 2 even.

If y = 2, then P ′
r,s = G′

2 =
(
⌈x
2
⌉r, (⌈x

2
⌉+ 2)s, (⌈x

2
⌉+ 3)r, ⌈x

2
⌉s
)
.

Note that by P1, the first vertex ofG′
1 is ⌈x

2
⌉r, and the last vertex is (⌈x

2
⌉+ y+5

2
)s

if y−2 is odd and (⌈x
2
⌉+ y−2

2
)r if y−2 is even; the first vertex of G′

3 is (⌈x
2
⌉+ y+5

2
)r

and the last vertex is ⌈x
2
⌉s if y − 2 is odd. By Q1, the first vertex of G′

3 is

(⌈x
2
⌉+ y−2

2
)s and the last vertex is ⌈x

2
⌉s if y − 2 is even.

For i = 1 or 3, let A′
i and B′

i denote the sets labeled A′ and B′ in P2 and Q2

corresponding to the graph Gi. Then using P2 and Q2, we compute

A′
1 = [⌈x

2
⌉r, (⌈x

2
⌉+ ⌊y−2

2
⌋)r],

B′
1 = [(⌈x

2
⌉+ ⌈y+5

2
⌉)s, (⌈x

2
⌉+ y + 1)s],

A′
3 = [(⌈x

2
⌉+⌈y+5

2
⌉)r, (⌈x

2
⌉+y+1)r],

B′
3 = [⌈x

2
⌉s, (⌈x

2
⌉+ ⌊y−2

2
⌋)s].
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Thus,

A′
1 < A′

3 and B′
1 < B′

3.

Note that V (G′
1) ∩ V (G′

2) = {(⌈x
2
⌉+ y+5

2
)s} if y − 2 is odd and V (G′

1) ∩ V (G′
2) =

{(⌈x
2
⌉ + y−2

2
)r} if y − 2 is even and, V (G′

2) ∩ V (G′
3) = {(⌈x

2
⌉ + y+5

2
)r} if y − 2 is

odd and V (G′
2) ∩ V (G′

3) = {(⌈x
2
⌉+ y−2

2
)s} if y − 2 is even; otherwise, G′

1, G
′
2 and

G′
3 are vertex disjoint. Therefore, G′

1 +G′
2 +G′

3 is a path of size 2y − 1 with the

endpoints ⌈x
2
⌉r and ⌈x

2
⌉s. Since V (P ′

r,s) ⊆ [⌈x
2
⌉, ⌈x

2
⌉+ y+1]×{r, s}, P ′

r,s is vertex

disjoint from Pr,s.

Next, let E ′
i denote the set of edge lengths in G′

i for i = 1 or 3. By P3 and

Q3, we have edge lengths

E ′
1 = [4, y + 1],

E ′
3 = [−(y + 1),−4].

Notice that the set of edge lengths in G′
2 is {2,−1,−3}. Then construct the cycle

C
′
r,s of size 2y+1 from the path P

′
r,s by adding the edges {

⌈
x
2

⌉
r
, (
⌈
x
2

⌉
+y+z+1)r◦s}

and {
⌈
x
2

⌉
s
, (
⌈
x
2

⌉
+ y + z + 1)r◦s}.

Finally we will construct the cycle C ′′
r,s of size 2z+1. Let P ′′

r,s = G′′
1 +G′′

2 +G′′
3

where

G′′
1 = P (x+ y + z + 2, x+ 2y + z + 3, z − 2),

G′′
2=


(
(2x+4y+3z+5

2
)s,(

2x+4y+3z−1
2

)r,(
2x+4y+3z+1

2
)s,(

2x+4y+3z+5
2

)r
)
, if z−2 odd;(

(2x+2y+3z+2
2

)r,(
2x+2y+3z+8

2
)s,(

2x+2y+3z+6
2

)r,(
2x+2y+3z+2

2
)s
)
, if z−2 even,

G′′
3 =


P
(
2x+4y+3z+5

2
, 2x+2y+z+5

2
, z−2

)
, if z − 2 odd;

Q
(
2x+4y+3z+6

2
, 2x+2y+z+6

2
, z−2

)
, if z − 2 even.

If z = 2, then P ′′
r,s = G′′

2 =
(
(x+ y+4)r, (x+ y+7)s, (x+ y+6)r, (x+ y+4)s

)
.

Note that by P1, the first vertex of G′′
1 is (x+ y+ z +2)r, and the last vertex

is (2x+4y+3z+5
2

)s if z − 2 is odd and (2x+2y+3z+2
2

)r if z − 2 is even; the first vertex
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of G′′
3 is (2x+4y+3z+5

2
)r and the last vertex is (x + y + z + 2)s if z − 2 is odd. By

Q1, the first vertex of G′′
3 is (2x+2y+3z+2

2
)s and the last vertex is (x + y + z + 2)r

if z − 2 is even.

For i = 1 or 3, let A′′
i and B′′

i denote the sets labeled A′ and B′ in P2 and Q2

corresponding to the graph G′′
i . Then using P2 and Q2, we compute

A′′
1 = [(x+ y + z + 2)r, (x+ y + ⌊3z

2
⌋+ 1)r],

B′′
1 = [(x+ 2y + ⌈3z+5

2
⌉)s, (x+ 2y + 2z + 1)s],

A′′
3 = [(x+ 2y + ⌈3z+5

2
⌉)r, (x+ 2y + 2z + 1)r],

B′′
3 = [(x+ y + z + 2)s, (x+ y + ⌊3z

2
⌋+ 1)s].

Thus,

A′′
1 < A′′

3 and B′′
1 < B′′

3 .

Note that V (G′′
1)∩V (G′′

2) = {(x+2y+⌈3z+5
2

⌉)s} if z−2 is odd and V (G′′
1)∩V (G′′

2) =

{(x+ y + ⌊3z
2
⌋+ 1)r} if z − 2 is even and, V (G′′

2)∩ V (G′′
3) = {(x+ 2y + ⌈3z+5

2
⌉)r}

if z − 2 is odd and V (G′′
2) ∩ V (G′′

3) = {(x + y + ⌊3z
2
⌋ + 1)s} if z − 2 is even;

otherwise, G′′
1, G

′′
2 and G′′

3 are vertex disjoint. Therefore, G′′
1 +G′′

2 +G′′
3 is a path

of size 2z − 1 with the endpoints (x + y + z + 2)r and (x + y + z + 2)s. Since

V (P ′′
r,s) ⊆ [x+ y + z + 2, x+ 2y + 2z + 1]× {r, s}, P ′′

r,s is vertex disjoint from Pr,s

and P ′
r,s.

Next, let E ′′
i denote the set of edge lengths in G′′

i for i = 1 or 3. By P3 and

Q3, we have edge lengths

E ′′
1 = [y + 2, y + z − 1]

E ′′
3 = [−(y + z − 1),−(y + 2)].

Notice that the set of edge lengths in G′′
2 is {3, 1,−2}. Then, construct the cycle

C
′′
r,s of size 2z + 1 from the path P

′′
r,s by adding the edges {(x+ y + z + 2)r, (x+

2y + 2z + 4)r◦s} and {(x+ y + z + 2)s, (x+ 2y + 2z + 4)r◦s}.

Since (y + z)r◦s,(
⌈
x
2

⌉
+ y + z + 1)r◦s and (x + 2y + 2z + 4)r◦s are different

vertices, and Pr,s, P
′
r,s and P ′′

r,s are vertex disjoint, we have Cr,s, C
′
r,s and C

′′
r,s are
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also vertex disjoint. Figure 3.24 shows an example of Cr,s, C
′
r,s and C ′′

r,s where

x = 4, y = 2 and z = 5.

Let G∗
r,s = {Gr,s + ℓ : 0 ≤ ℓ ≤ n− 1}. Then G∗

r,s contains n distinct copies of

G and all the edges of each length i ∈ [−(n− 1)/2, (n− 1)/2]r±[y+ z, y+ z+2]

in the subgraph of K(2k+1)×n with vertex set Zn × {r, s}. Let C = {Gr,s + ℓ : 1 ≤

r < s ≤ 2k + 1, 0 ≤ ℓ ≤ n − 1} and note that C contains
(
2k+1
2

)
n distinct copies

of G. We will show that every edge of K(2k+1)×n appears on some copy of G in

C. Let e = {ir, js} with r < s be an arbitrary edge of K(2k+1)×n. Let t′ be the

unique solution to r ◦ t′ = s and let α′ = min{r, t′} and β′ = max{r, t′}. Let t′′

be the unique solution to s ◦ t′′ = r and let α′′ = min{s, t′′} and β′′ = max{s, t′′}.

If j − i ∈ [−(n− 1)/2, (n− 1)/2]r±[y + z, y + z + 2], then e belongs to Gr,s + ℓ

for some ℓ with 0 ≤ ℓ ≤ n − 1. If j − i ∈ [y + z, y + z + 2], then e belongs to

Gα′,β′ + ℓ where 0 ≤ ℓ ≤ n− 1. If j − i ∈ [−(y + z + 2),−(y + z)], then e belongs

to Gα′′,β′′ + ℓ where 0 ≤ ℓ ≤ n− 1. Since every edge of K(2k+1)×n appears on some

copy of Gr,s in C and since C contains
(
2k+1
2

)
n distinct copies of G, it follows that

C is a decomposition of K(2k+1)×n into copies of G.

0r 14r 18r15r 19r

18s 14s16s 13s

22r◦s

13r

19s

10r◦s

2s4s

5r2r

7r◦s

11s12s

1r 11r

0s1s

12r

Figure 3.24: Cr,s, C
′
r,s and C ′′

r,s where x = 4, y = 2 and z = 5

In the proof of Theorem 3.32, if we replace idempotent symmetric quasigroups

with symmetric quasigroups with holes, then we obtain a G-decomposition of

Kk×2n for every integer k ≥ 3.

Theorem 3.33. Let G be a 2-regular graph of order n consisting of exactly three

odd cycles. For every integer k ≥ 3, there exists a G-decomposition of Kk×2n.

Proof. Let G = C2x+1 ∪C2y+1 ∪C2z+1, where x, y, z ≥ 1. Let k ≥ 3 be an integer

and let Q = [1, 2k]. For i ∈ [1, k], let hi = {2i − 1, 2i} and gi = Zn × hi. Let
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n = 2x+2y+2z+3 and let V (Kk×2n) = Zn× [1, 2k] with the vertex-set partition

{g1, g2, . . . , gk}. Let (Q, ◦) be a commutative quasigroup of order 2k with holes

H.

Fix r and s with 1 ≤ r < s ≤ 2k and {r, s} /∈ H. We proceed in the same

fashion as in the proof of Theorem 3.32 producing the graph Gr,s consisting of a

cycle Cr,s of size 2x+ 1, a cycle C ′
r,s of size 2y + 1 and a cycle C ′′

r,s of size 2z + 1

such that Cr,s, C
′
r,s and C ′′

r,s are vertex disjoint.

Note that for fixed r and s with 1 ≤ r < s ≤ 2k and with {r, s} /∈ H, the

set {Gr,s + ℓ : 0 ≤ ℓ ≤ n − 1} contains n distinct copies of G and all the edges

of lengths i ∈ [−(x + y + z + 1), x + y + z + 1] r ±[y + z, y + z + 2] in the

subgraph of Kk×2n with vertex set Zn × {r, s}. Let C = {Gr,s + ℓ : 1 ≤ r < s ≤

2k, {r, s} /∈ H, 0 ≤ ℓ ≤ n − 1} and note that C contains
(
2k
2

)
n distinct copies of

G. We wish to show that every edge of Kk×2n appears on some copy of G in C.

Let e = {ir, js} be an arbitrary edge of Kk×2n. Without loss of generality, we may

assume r < s. If j − i ∈ [0, x + y + z + 1] r [y + z, y + z + 2], then e belongs

to Gr,s + ℓ for some ℓ with 0 ≤ ℓ ≤ n − 1. If j − i = [y + z, y + z + 2], then e

belongs to Gr,t + ℓ where t is the unique solution to r ◦ t = s and 0 ≤ ℓ ≤ n− 1.

If j− i = [−(y+ z+2),−(y+ z)], then e belongs to Gs,t + ℓ where t is the unique

solution to s ◦ t = r and 0 ≤ ℓ ≤ n − 1. Since every edge of Kk×2n appears on

some copy of G in C and since C contains
(
2k
2

)
n distinct copies of G, it follows

that C is a decomposition of Kk×2n into copies of G.

Let G of order n be the vertex-disjoint union of three odd cycles. It is shown

in [7] and [6] that there exists a G-decomposition of K2n+1. It was not known

whether a G-decomposition of K2kn+1 exists for every positive integer k. Using

the decomposition of K2n+1 and the result from Theorem 3.33, we can answer this

question in the affirmative for k ≥ 3.

Theorem 3.34. Let G of order n be the vertex-disjoint union of three odd cycles.

There exists a G-decomposition of K2kn+1 for every positive integer k ̸= 2.

Proof. Since there exists a G-decomposition of K2n+1, we can assume that k ≥ 3.

For i ∈ [1, k], let Si be a set with 2n elements and let Hi be a complete graph of
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order 2n+1 with vertex set Si ∪{∞}. Let V (K2kn+1) = S1 ∪S2 ∪ . . .∪Sk ∪{∞}.

Thus, K2kn+1 = H1 ∪H2 ∪ . . . ∪Hk ∪Kk×2n. Since there is a G-decomposition of

Hi for i ∈ [1, k] and there is a G-decomposition of Kk×2n, the result follows.

If a G-decomposition of Kn exists (i.e., if the Oberwolfach problem has a

solution in this case), then a G-decomposition of K2kn+n will also exist.

Theorem 3.35. Let G of order n be the vertex-disjoint union of three odd cycles.

If a G-decomposition of Kn exists, then there exists a G-decomposition of K2kn+k

for every positive integer k.

Proof. Observe that K2kn+n = (2k + 1)Kn ∪K(2k+1)×n. Since a G-decomposition

of Kn exists, a G-decomposition of (2k + 1)Kn will also exist. By Theorem 3.32,

there exists a G-decomposition of K(2k+1)×n. The result follows.



CHAPTER IV

SUMMARY AND OPEN PROBLEMS

4.1 Summary

Let G be a 2-regular graph of odd order n such that either G is almost bi-

partite or G consists of three cycles of odd lengths. By using novel extensions

of the Bose construction for Steiner triple systems, we proved the existence of

G-decompositions of several classes of complete multipartite graphs as well as of

some complete graphs. Our results are summarized below.

(i) If G is Cn, then there exist G-decompositions of K(2k+1)×n and of K2kn+n

for every positive integer k, and of Kk′×2n for every integer k′ ≥ 3.

(ii) If G is almost-bipartite, then there exist G-decompositions of K(2k+1)×n and

of Kk′×2n for all positive integers k and k′ ≥ 3.

(iii) If G is the vertex-disjoint union of one even cycle and one odd cycle, then

there exist G-decompositions of Kv for all v ≡ n (mod 2n), unless (G, v) =

(C4 ∪ C5, 9).

(iv) If G consists of three odd cycles, then there exist G-decompositions of

K(2k+1)×n and of Kk′×2n for all positive integers k and k′ ≥ 3. We also

found G-decompositions of Kv for all v ≡ 1 (mod 2n), v ̸= 4n+ 1.

4.2 Open Problems

Several open problems related to the results in this dissertation warrant further

investigation.

(i) If G is almost-bipartite of order n, find G-decompositions of Kv for all v ≡ n

(mod 2n).
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(ii) If G of order n consists (or contains) of an odd number of odd cycles, find

G-decompositions of K(2k+1)×n and of Kk′×2n for all positive integers k and

k′ ≥ 3. Also, find G-decompositions of Kv for all v ≡ 1 or n (mod 2n).

(iii) If G of order n is the vertex-disjoint union of one even cycle and one odd

cycle, find G-decompositions of Kv for all odd v that satisfy v(v − 1) ≡ 0

(mod 2n).

(iv) Investigate the Oberwolfach problem for three odd cycles and for almost-

bipartite 2-regular graphs.
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[25] R. Häggkvist, A lemma on cycle decompositions, Ann. Discrete Math. 27
(1985), 227–232.

[26] A. J. W. Hilton and M. Johnson, Some results on the Oberwolfach problem,
J. London. Math. Soc. 64 (2001), 513–522.

[27] D. G. Hoffman, C. C. Lindner and C. A. Rodger, On the construction of
odd cycle systems, J. Graph Th. 13 (1989), 417–426.

[28] C. Huang and A. Rosa, Decomposition of complete graph into trees, Ars.
Combin. 5 (1978), 23–63.

[29] B. Jackson, Some cycle decompositions of complete graphs, J. Combin. In-
form. System Sci. 13 (1988), 20–32.



75

[30] U. Jongthawonwuth, S. I. El-Zanati, and R. C. Bunge, On decompos-
ing complete multipartite graphs into 2-regular almost-bipartite graphs,
preprint.

[31] U. Jongthawonwuth, S. I. El-Zanati, and C. Uiyyasathian, On Extending the
Bose Construction for Triple Systems to Decompositions of Complete Mul-
tipartite Graphs into 2-regular Graphs of Odd Order, Australas. J. Combin.
to appear.

[32] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math.
Journal B2 (1847), 191–204.

[33] A. Kotzig, On decompositions of complete graphs into 4k-gons, Mat.-Fyz.
Cas. 15 (1965), 227–233.

[34] C. C. Lindner and C. A. Rodger, Design Theory , Second Edition, Discrete
Mathematics and its Applications, CRC Press, Boca Raton, FL, 2009.

[35] J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Com-
bin. Theory Ser. A 101 (2003), 20–34.

[36] W. L. Piotrowski, The solution of the bipartite analogue of the Oberwolfach
problem, Discrete Math. 97 (1991), 339–356.

[37] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs
(Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and
Dunod Paris (1967) 349– 355.

[38] A. Rosa, On Cyclic decompositions of the complete graph into (4m+2)-gons,
Mat.-Fyz. Cas. 16 (1966), 349–352.

[39] A. Rosa, On the cyclic decompositions of the complete graph into polygons
with an odd number of edges, Casopis Pest. Math. 91 (1966), 53–63.
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