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CHAPTER I
INTRODUCTION

1.1 Prologue

Let G and K be graphs with G a subgraph of K. A G-decomposition of K,
or a (K, G)-design, is a partition of the edge set of K into subgraphs isomorphic
to G. A (K,,G)-design is also known as a G-design of order v.

One of the better studied problems in (G-designs is the case when G is a cycle.
Necessary and sufficient conditions for the existence of C),-designs of order v were
found about a decade ago by Alspach and Gavlas [8] and by Sajna [40]. Necessary
and sufficient conditions for the existence of a G-design of order v when G is a
2-regular graph of order at most 10 are found in [5]. For a general 2-regular graph
G of order n, the problem of finding necessary and sufficient conditions for the
existence of a G-design of order v is far from settled. It is expected however that
for such a G, there will exist a G-design of order v for all v =1 (mod 2n). This has
been confirmed when G is bipartite (see [19] and [10]), when G is almost-bipartite
[15], when G is rC,, where m is odd [22], and when G has two components (see [2],
[11] and [14]). If in addition n is odd and (G, v) ¢ {(C4UC5,9), (C3UC3UCs, 11)},
then a G-design of order v for all v =n (mod 2n) is likely to exist.

A well-known problem on decompositions of complete graphs into 2-regular
graphs is the Oberwolfach Problem. Let G be a 2-regular graph of odd order n.
The problem of determining whether there exists a G-decomposition of K, is
known as the Oberwolfach Problem. This problem was settled in 1989 by Alspach,
Schellenberg, Stinson, and Wagner [9] in the case when all the components of G
are isomorphic to the same cycle. More recently, Traetta [43] settled the case
when G consists of two components. The general problem however is far from

settled. For example, very little is known when G consists of three components



(see [13] for some known results).

It is easy to see that Kop,ipn can be decomposed into K(ori1)xn and 2k + 1
copies of K,,. Let G of odd order n be a 2-regular graph. Notice that if there is
a G-decomposition of K, and a G-decomposition of K (gj41)xn, then there is a G-
decomposition of Kop,1p. If G = C3, a popular construction for G-decompositions
of Kgi13 is known as the the Bose construction for Steiner triple systems.

This dissertation is organized as follows. The first chapter is the introduction
including all definitions and notations of graphs used frequently in this disserta-
tion, and also the definitions of graph decompositions and graph designs.

Chapter 2 is dedicated to a brief survey of the literature. It begins with Steiner
triple systems. The Bose construction, a well-known construction for Steiner
triple systems of order 3 (mod 6), is presented. We then discuss decompositions
of complete graphs and of complete multipartite graphs into 2-regular graphs.
We also give an overview of the Oberwolfach problem which is concerned with
determining whether there exists a G-decomposition K,, where G is a 2-regular
graph of odd order n. Finally, a-labelings of bipartite graphs are discussed.

The next chapter contains our main results. We first show how the Bose
construction for Steiner triple systems of order 6k + 3 can be naturally extended
to obtain C),-decompositions of Ks,;., for all odd n > 5 and all positive integers
k. We then show that if G of odd order n is a 2-regular almost-bipartite graph or is
the vertex-disjoint union of three odd cycles, then there exists a G-decomposition
of K(or+1)xn for every positive integer k. If G consists of only two components,
we combine the G-decomposition the K (g4 1)x, result with Traetta’s result on the
Oberwolfach problem to show that there exists a G-decomposition of K, for all
v =n (mod 2n) unless G = Cy U C5 and v = 9. We also show that there exists
a G-decomposition of Kjy9, for all integers k& > 3. Furthermore, when G is the
vertex-disjoint union of three odd cycles, we find a G-decomposition of Kog,11
for all positive integers k # 2. Our research has resulted in three research papers
([17], [31], and [30]). In particular, the results on the decompositions of complete

multipartite graphs into the vertex-disjoint union of three odd cycles will appear



in the Australasian Journal of Combinatorics [31].
Finally, the last chapter contains the summary of our results and several related

open problems are presented.

1.2 Definitions and notation

A graph G is an ordered pair (V(G), E(G)), where V(G) is a finite set of
objects called vertices and E(G) is a set of 2-element subsets of V(G), called
edges. We will refer to V(G) as the verter set of G and to F(G) as the edge set
of G. The order and the size of G are |V (G)| and |E(G)|, respectively.

If e = {u,v} is an edge of a graph G, we say that u and v are the endvertices
of e and that v and v are adjacent. In this case, we also say that u and e are
incident, as are v and e. Furthermore, if e; and ey are distinct edges of G incident
with a common vertex, then e; and ey are adjacent edges. It is often convenient
to denote an edge by wv or vu rather than by {u,v}. The degree of a vertex v in
a graph G is the number of edges in GG that are incident with v, which is denoted
by deg. v or simply by degwv if G is clear from the context. A vertex of degree 0
is called an isolated vertex in G. We write G — e (G — u) for the subgraph of G
obtained by deleting an edge e (a vertex u).

It is customary to define or describe a graph G' by means of a diagram in which
each vertex of G is represented by a point (often drawn as a small circle or some
similar object) and each edge e = {u,v} of G is represented by a line segment
or curve that joins the points corresponding to u and v. We then refer to this
diagram as the graph G itself. There are occasions when we are only interested
in the structure of a graph defined by a diagram and the vertex set of the graph
is irrelevant. In this case, we refer to the graph as an unlabeled graph. The two
graphs in Figure 3.4 are examples of such unlabeled graphs.

The union of graphs Gy, ..., Gy, written G{U- - - UG}, is the graph with vertex
set ij V(G;) and edge set LkJ E(G;). The graph obtained by taking the union of
graf)?s G and H with disjoiznztlvertex sets is the disjoint union. The vertex-disjoint

union of r copies of a graph GG will be denoted by rG.



A graph G is a subgraph of a graph H if V(G) C V(H) and E(G) C E(H); in
such a case, we also say that H contains G as a subgraph. Whenever a subgraph
G of a graph H has the same order as H, then G is called a spanning subgraph of
H. The complement G of a graph G is the graph with vertex set V(G) defined
by {u,v} € E(G) if and only if {u,v} ¢ E(G).

A graph G is reqular of degree r if degv = r for each vertex v of G. Such
graphs are called r-regular. A graph is complete if every two of its vertices are
adjacent. A complete graph of order n is therefore (n—1)-regular and has size (}).
We denote this graph by K,,. The first graph in Figure 1.3 is Kjg, the complete
graph of order 8.

An isomorphism from a simple graph G to a simple graph H is a bijection
f:V(G) — V(H) such that {u,v} € E(G) if and only if {f(u), f(v)} € E(H).
We say G is isomorphic to H, written G = H, if there is an isomorphism from G
to H.

U1 U5
U1 U2

. V4 Ve

VAT

Uy us U7 U3

G H

Figure 1.1: Isomorphic graphs

A path is a graph whose vertices can be ordered so that two vertices are
adjacent if and only if they are consecutive in the list. A path is empty if it
contains only one vertex and thus no edges. Note that a nonempty path starts
with a vertex of degree 1 and ends with a vertex of degree 1. These two vertices
are called the endpoints of the path. All other vertices between the first and the
last vertex of a path have degree 2. If the first vertex in a path G is u and the
last vertex is v, then G is called a u-v path or a path from u to v. A path with n
vertices is often denoted by P,.

We denote the directed path with vertices xg, x1, ..., xr, where x; is adjacent



to xi41, 0 < i < k—1, by (2o, 21,...,2,). The first vertex of this path is x,
the second vertex is x1, and the last verter is xy,. If Gi = (zo,z1,...,2;) and
G2 = (Yo, 1, - - -, yx) are directed paths with x; = yo, then by G; + G2 we mean
the path (2o, z1,...,2j,y1,Y2, -, Yk)-

A cycle is a graph with an equal number of vertices and edges whose vertices
can be placed around a circle so that two vertices are adjacent if and only if they
appear consecutively along the circle. The number of vertices in a cycle is called
its length. The cycle with n vertices is denoted by C, or n-cycle. We sometimes
denote the cycle with vertex set {x1, s, ..., z,} and edge set {{z;, z;11}: 1 <i <
n— 1} U{x,,x1} by (z1,29,...,2,). We note that (z1,z2,...,2,) + (Tp, 1) =
(x1,29,...,x,). A cycleis even if its length is even; otherwise, it is odd. Figure 1.2
shows the path P5 and the cycle Cj.

A vertex u is said to be connected to a vertex v in a graph G if there exists a
u-v path in G. A graph G is connected if every pair of its vertices is connected.
A graph that is not connected is disconnected. The relation “is connected to” is
an equivalence relation on V(G). The subgraphs of G induced by the resulting

equivalence classes are called the components of G.

Ps Cs

Figure 1.2: A path and a cycle

A spanning subgraph of a graph G is a referred to as a factor of G. A k-
regular factor is called a k-factor. A spanning cycle in a graph G is also called a
Hamiltonian cycle in G.

A graph G is k-partite, k > 1, if V(G) can be partitioned into into k subsets
Vi, Va, ..., Vi (called partite sets) such that every element of E(G) joins a vertex
of V; to a vertex of V}, @ # j. Note that every graph is k-partite for some £;
indeed, if G has order n, then G is n-partite. If GG is a 1-partite graph of order n,



then G = K,,. For k = 2, such graphs are called bipartite graphs, and for k = 3
they are are called tripartite graphs. A non-bipartite graph G is almost-bipartite
if G contains an edge e whose removal renders G bipartite. For example, cycles
of odd length are almost-bipartite.

A complete k-partite graph G is a k-partite graph with partite sets Vi, Vs, ..., Vi
having the added property that if u € V; and v € V;,i # j, then {u,v} € E(G).
If |Vi| = n;, then this graph is denoted by K(ni,na,...,nk) or Ky ny  n,- (The
order in which the numbers nq,na, ..., ny are written is not important.) Note that
a complete k-partite graph is complete if and only if n; = 1 for all ¢, in which case
it is Ki. A complete bipartite graph with partite sets V; and Vs, where |V;| = r
and |Va| = s, is then denoted by K(r, s) or more commonly K, ;. We will denote
the complete multipartite graph with r» > 3 partite sets of order s each by K, ;.
The complete bipartite graph K34 and the complete tripartite graph Ksy4 are

shown in Figure 1.3.

— e
A XA
PRI
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W
&

K, K3y

Figure 1.3: A complete graph, a complete bipartite graph and a complete multi-
partite graph

1.3 Graph decompositions and graph designs

A decomposition of a graph K is a set I' = {G1, Gy, ..., G} of subgraphs of
K such that the edge sets of the graphs G; form a partition of the edge set of
K. If GG; is a Hamiltonian cycle, then the decomposition is called the Hamiltonian

decomposition. If each G is isomorphic to a subgraph G of K, such decomposition



is called a G-decomposition of K or a (K,G)-design. A (K,,G)-design is also
known as a G-design of order v. The study of graph decompositions is known as
the study of graph designs or simply as the study of G-designs. For recent surveys
on G-designs, we direct the reader to [3] and [12].

A popular tool for finding (K, G)-designs is through the use of graph labelings.
A labeling of a graph G is an assignment of integers to the vertices of G subject
to certain conditions. Graph labelings were first introduced by Rosa in the late
1960s. Rosa [37] showed that certain basic labelings of a graph G with n edges
yielded G-decompositions of Ky, ;. Additionally, other stricter labeling yielded
G-decomposition of Ko, for all positive integers k. A survey of various of Rosa-
type labelings that summarize some of the related results can be found in [18].
For a comprehensive look at general graph labelings, we direct the reader to a
dynamic survey on the topic by Gallian [21]. We will focus on one of the labelings

defined by Rosa [37] for bipartite graphs in Section 2.6.



CHAPTER 11
REVIEW OF THE LITERATURE

In this chapter, we give a brief survey of the literature for results related
to decompositions of complete graphs and complete multipartite graphs into 2-
regular graphs. We begin by looking at Steiner triple systems and one of the
popular constructions for them and some of its generalizations. Next, we discuss
decompositions of complete graphs and of complete multipartite graphs into 2-
regular graphs. We also discuss the Oberwolfach problem and some of the recent
progress made on it. Finally, we discuss a-labelings which we will use in obtaining

our results.

2.1 Steiner triple systems

A Steiner triple system of order v is an ordered pair (S, 7)), where S is a finite
set of v points or symbols, and T is a set of 3-element subsets of S called triples,

such that each pair of distinct elements of S occurs together in exactly one triple

of T.

Example 2.1. If S = {0,1,2,3,4,5,6} and 7 = {{0,1,3},{1,2,4}, {2, 3,5},
{3,4,6},{4,5,0},{5,6,1},{6,0,2}}, then (S, T) is a Steiner triple system of order
7.

Note that a Steiner triple system of order v is equivalent to a C'3-decomposition
of K,.

Steiner triple systems were evidently defined for the first time in 1844 by
W.S.B. Woolhouse [44]. In 1847, T.P. Kirkman [32] proved that a Steiner triple
system of order v exists if and only if v = 1 or 3 (mod 6). In 1939, R.C. Bose

published a construction for a Steiner triple of order v = 3 (mod 6) that is much



simpler than the one given by Kirkman. In this construction, he made use of idem-
potent commutative quasigroups. We will refer to this construction as the Bose

construction. Our work can be viewed as an extension of the Bose construction.

2.2 The Bose construction

Let N denote the set of nonnegative integers. Let n € N and Z,, the group of
integers modulo n. If a and b are integers, we denote {a,a +1,...,b} by [a,b] (if
a > b, then [a,b] = @).

A quasigroup of order q is a pair (@, o) where @ is a set of size ¢, say Q = [1, ],
and o is a binary operation on () such that for every pair of elements a,b € @,
the equations a o x = b and y o @ = b have unique solutions. The quasigroup is
tdempotent if i o i = i for every i € @ and it is commutative if i 0 j = j o4 for
all 7,5 € ). Note that in such a quasigroup, if a # b, then a, b, and a o b are
distinct. It has long been known that an idempotent commutative quasigroup of
order ¢ exists if and only if ¢ is odd (see [34]). The Bose construction is described
as follow:

Let v = 6k + 3 for some positive integer k, and let (@), o) be an idempotent
commutative quasigroup of order 2k + 1, where @ = [1,2k + 1]. Let S = Z3 x Q,
and define 7 to contain the following two types of triples:

Type 1: For 1 <i<2k+1,{(0,7),(1,7),(2,0)} € T.

Type 2: For 1 <i<j<2k+1,{(0,),(0,7), (1,20} {(1,4),(1,7),(2,i0)},

{(27Z)7 (27])7 (072 O])} € T
Then (S,7) is a Steiner triple system of order 6k + 3.

Example 2.2. We will use the Bose construction to produce a Steiner triple
system (S, 7)) of order 15. Let (@, o) be the idempotent commutative quasigroup
of order 5 shown in Figure 2.1. Let S = Z3 x [1, 5] and let 7 contain the following



35 triples:

Type 1: {{(0,1),(1,1),(2,1)},{(0,2),(1,2),(2,2)},{(0,3), (1,3), (2,3)},
{(0,4), (1,4),(2,4)},{(0,5),(1,5),(2,5)}}

Type2: i=1,7=2 1=1,7=3
{(0,1),(0,2),(1,102=15)} {(0,1),(0,3),(1,103=2)}
{(1,1),(1,2),(2,102=15)} {(1,1),(1,3),(2,103=2)}
{(2,1),(2,2),(0,102=5)} {(2,1),(2,3),(0,103=2)}

1=1,7=4 1=1,7=5
{(0,1),(0,4), (1,104 =3)} {(0,1),(0,5), (1,105 =4)}
{(1,1),(1,4), (2,104 =3)} {(1,1),(1,5),(2,105=4)}
{(2,1),(2,4),(0,104 =3)} {(2,1),(2,5),(0,105=4)}
1=2,7=3 1=2,7=4
{(0,2),(0,3), (1,203 =4)} {(0,2),(0,4),(1,204=1)}
{(1,2),(1,3),(2,203=4)} {(1,2),(1,4),(2,204=1)}
{(2,2),(2,3),(0,203=4)} {(2,2),(2,4),(0,204=1)}
t 9BUIRAD 1=3,7=4
{(0,2),(0,5), (1,205 =3)} {(0,3),(0,4),(1,304=15)}
{(1,2),(1,5),(2,205=3)} {(1,3),(1,4),(2,304 =5)}
{(2,2),(2,5),(0,205=3)} {(2,3),(2,4),(0,304 =5)}
1=3,7=25 1=4,7=5
{(0,3),(0,5), (1,305 =1)} {(0,4),(0,5), (1,405 =2)}
{(1,3),(1,5),(2,305=1)} {(1,4),(1,5),(2,405=2)}
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(0,1)

(0,2)e (03)e (0.4)» (0,5)®

1LD® 1,2°% 1,3* 1,9°* 1,5)°

=N AN R RN
DO [ (O | = | |
TN = |0 [ |t

W [ [ b [or [

UL = W N |0
L KSR NI K O i

20°% (22)% 23)* 249°* 25)°

Figure 2.1: An idempotent commutative quasigroup of order 5 and one triple from

the Bose construction of a Steiner triple system of order 15.

In terms of graphs, we note that the triples of Type 1 in T form a Cs-
decomposition of (2k 4+ 1) K3 and the triples of Type 2 form a C3-decomposition
of K(ar11)x3. Since all edges of Kgpy3 can be separated into edges of (2k + 1) K3

and edges of K(or41)x3, we have the desired result.

2.3 The quasigroup with hole construction

A variation on the Bose Construction makes use of quasigroups of even order
with holes of size two. For an integer k > 3, let @ = [1,2k]| and for i € [1, k],
let h; = {2i — 1,2i}. Let H = {hy,hs,...,hx}. In what follows, all elements
h; € H are called holes. A quasigroup with holes H is a quasigroup (@, o) of order
2k in which for each h; € H, we have (h;,0) is a subquasigroup of (Q,0). It is
known that for every k > 3, there exists a commutative quasigroup (@, o) of order
2k with holes H (see [34]). Commutative quasigroups of order 2k with holes H
are used to construct Cs-decompositions of Ky for every integer £ > 3. This
Cs-decompositions of K¢ is then combined a C3-decomposition of K7 to obtain
a Steiner triple system of order 6k + 1.

Let k£ > 3 be an integer and for ¢ € [1, k], let h; = {2i—1,2i} and g; = Z3 X h;.
Let Q = [1,2k] and H = {hy, ha, ..., h}. Let (Q, o) be a commutative quasigroup
of order 2k with holes H. Let S = {oo} U (Z3 x [1,2k]). For 1 < i < k, let T;

consist of the triples in a Steiner triple system of order 7 on the symbols {oo} Ug;.
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Consider the following:

k
(1) let 7" =|J 7, and,

i=1

(2) for 1 <i<j <2k {i,j} ¢ H, let T" contain the triples {(0,4), (0, ), (1,i0 )},
{(1,4),(L,5),(2,i0)},{(2,2),(2,5),(0,i0 )}
Then (S,7"UT") is a Steiner triple system of order 6k + 1.

Example 2.3. We will use the quasigroups with hole construction to produce a
Steiner triple system of order 19. Fori € [1,3], let h; = {2i—1,2i} and g; = Zzxh;.
Let @ = [1,6] and H = {hy, ho, h3}. Let (Q),0) be the commutative quasigroup
of order 6 with holes H shown in Figure 2.2. Let S = {oco} U (Z3 x [1,6]). For
i € [1,3], let T; consist of the triples from a Steiner triple system of order 7 on the

3

symbols {oo} U g; and let 77 = | 7;. Then each 7; contains the following triples:
=1

{(27 2i — 1)7 (07 22)7 (27 2Z>} {OO, (27 22)7 (17 2i — 1)}

(

{(1,24), (2,2i), (0,2 — 1)}

For 1 <i < j <6, with {i,j} ¢ H, let T” contain the following triples:

i=1,7=3
{(0,1),(0,3),(1,103=5)}

{(1,1),(1,3),(2,103=5)}
{(2,1),(2,3),(0,103=05)}

i=1,j=4
{(0,1),(0,4),(1,104=06)}
{(1,1),(1,4),(2,104 =6)}
{(2,1),(2,4),(0,104 =6)}
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{(0,2),(0,4), (1,204 = 5)} {(0,2),(0,5), (1,205 = 4)}
{(1,2),(1,4), (2,204 =5)} {(1,2),(1,5),(2,205 = 4)}
{(2,2),(2,4),(0,204 =5)} {(2,2),(2,5),(0,205 =4)}
i=2,j=6 i=3,j=5
{(0,2),(0,6), (1,206 = 3)} {(0,3),(0,5), (1,305 = 1)}
{(1,2),(1,6), (2,206 = 3)} {(1,3),(1,5),(2,305 =1)}
{(2,2),(2,6),(0,206 = 3)} {(2,3),(2,5),(0,305 =1)}
1=3,7=6 i=4,j=6
{(0,3),(0,6), (1,306 =2)} {(0,4),(0,6), (1,406 = 1)}
{(1,3),(1,6),(2,306=2)} {(1,4),(1,6), (2,406 = 1)}
{(2,3),(2,6),(0,306 =2)} {(2,4),(2,6),(0,406 =1)}.

Then (S, 7" UT") is a Steiner triple system of order 19.

ol1 2 345 6
0,1)e (0,2 0,3

1l1]2|5]6(3]|4 (0.1)e (0:2)e  (0,3) (0,6) @

o2l2]1]6|5]4]3

3156134112 ° ° ° ° °
1 1Y o 1,3)® (14 1,5)® (1,6

e s Talal =18 (L,H™ (1.2)" (1,3)7 (1.4) (1,5)% (1,6)

50314]1]2]5]6 e

6lal3]2]1]6]5 2,)® (22)* (23)® 24  (25° (2,6)®

g1 92 93

Figure 2.2: A commutative quasigroup of order 6 with holes and one triple from

the corresponding C3-decomposition of Ksyg.

2.4 Decompositions of complete graphs and complete mul-
tipartite graphs into 2-regular graphs
The problem of investigating decompositions of complete graphs into 2-regular

graphs is one of the more popular problems in the study of G-designs. Perhaps
the oldest such problem is the study of Cs-decompositions of K,. It dates back
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to 1844 (see [44]) and later became known as the study of Steiner triple systems
(see Chapter 2.1). In 1847, T.P. Kirkman [32] proved that there exists a Cjs-
design of order v if and only if v = 1 or 3 (mod 6). It was not until the early
1960’s that researchers began investigating other C),-decompositions of complete
graphs. Anton Kotzig and Alex Rosa are credited with publishing some of the
earliest such investigations (see for example [33], [38], and [39]). Over the next
three decades, several others made significant contributions to the general problem
(see for example [29] and [27]). The problem of finding necessary and sufficient
conditions for the existence of a C),-design of order v was settled completely a
little over a decade ago by Alspach and Gavlas [8] and by Sajna [40]. Necessary
and sufficient conditions for the existence of a G-design of order v are found in [5]
when G is a 2-regular graph of order at most 10. For a general 2-regular graph
G of order n, the problem of finding necessary and sufficient conditions for the
existence of a G-decomposition of K, is far from settled. It is expected however
that for such a G-decomposition will exist for all v =1 (mod 2n). This has been
confirmed when G is bipartite (see [19] and [10]), when G is almost-bipartite [15],
when G is rC,, where m is odd [22], and when G has two components (see [2], [11]
and [14]). If in addition n is odd and (G,v) ¢ {(Cy U C5,9), (C3U C3 U C5, 11)},
then a G-design of order v for all v = n (mod 2n) is likely to exist. The case
v =n is known as the Oberwolfach problem (see Section 2.5).

In recent years, numerous authors have investigated C,,-decompositions of com-
plete multipartite graphs. Particular focus has been placed on C3-decompositions
of complete multipartite graphs. Such decompositions fall under the umbrella of
the study of group divisible designs (see [23] for a summary). The problem of
Cyi-decompositions of the complete bipartite graph K,,,, was settled completely
by Sotteau in [41]. In [36], Piotrowski settled the problem of G-decompositions
of K, , when G is a 2-regular bipartite graph of order 2n. In [35], Liu settled the
problem of kC),-decompositions of K, in the case when km = rs. We are not
aware of any work that has been done on G-decompositions of complete multipar-

tite graphs when G is a 2-regular graph with non-uniform components and the
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complete graph is not bipartite.

2.5 The Oberwolfach problem

Let t be a positive integer. For ¢ € [1,¢], let r; > 1 and m; > 3 be integers.
Let n = rymy + romg + --- + rymy;. Let G be the 2-regular graph of order n
consisting of the vertex-disjoint union ryC,,, UroCy,, U- - -Ur.Cy,,. The Oberwolfach
problem OP(m7',m3?, ..., m;") is a problem of determining whether there exists
a G-decomposition of K, if n is odd or of K,, — I, where [ is a 1-factor, if n is
even. The Oberwolfach problem was posed by G. Ringel in 1967 at a meeting in

Oberwolfach, Germany. It was first mentioned in the literature in [24].

Example 2.4. A solution to OP(3,4) looks as follows, where the vertices of K
are labeled 0,1, ...,6.

15t 2-factor | 2" 2-factor | 3" 2-factor
(O, 1, 4> <0, 2 5> (O, 3, 6>
(2,3,5,6) | (3,4,6,1) | (4,5,1,2)

It is known that OP(3,3), OP(3,3,3,3), OP(4,5) and OP(3,3,5) have no so-
lutions (see [13]). The followings are some of the known results on the Oberwolfach

problem.
Theorem 2.5. The following Oberwolfach problems all have solutions.
(i) OP(m') for allt > 1 and m > 3 (see [9)]);
(ii) OP(m',my?,...,m;") for rymy + romg + -+« + rymy < 17;
(iii) OP(3%,4) for all odd k > 1 (see [16]);
(iv) OP(3%,5) for all even k > 4 (see [42]);
(v) OP(r¥,n —kr) forn > 6kr — 1,k > 1,7 > 3;

(vi) OP(r,n—r) for3<r <9 andn >r+3 (see [26]);
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(vii) OP(r,r,n —2r) forr =3,4 and n > 2r + 3 (see [26]);

(viii) OP(2ry,2r9,...,2ry) for allr; > 2 and 1y + 19+ -+ - + 1) 0odd (see [25]);
(ix) OP(r,r+ 1) and OP(r,r +2) forr > 3;
(x) OP(2r +1,2r +1,2r +2) forr > 1;
(xi) OP(3,4r,4r) forr > 1;

(xii) OP(4%,2r +1) for k>0 and r > 1;

(xiii) OP((4s)k,2r +1) for k>0 and r > 1;

Although the general problem is far from settled, Traetta [43] recently settled

the case when G has two components.

Theorem 2.6. Let a > 2 and b > 1 be integers and let n = 2a 4+ 2b+ 1. There
exists a (Coq U Copyq)-decomposition of K, if and only if (a,b) # (2,2).

2.6 a-Labelings

In 1967, Rosa [37] introduced a hierarchy of labelings of simple graphs. We
use one such labeling in our approach. Let G be a bipartite graph with n edges
and vertex bipartition {A, B}. An «a-labeling of G is an injection f : V(G) — N
such that

o fla)< f(b)<nforallaec Aandbe B,

o {lf(w) =S {u,v} € E(G)} = [1,n].

For every such a-labeling, there necessarily exists an integer A, called the critical
value of the a-labeling f, such that max(A) = A and min(B) = X + 1.

Rosa [37] showed that if G has an a-labeling, then there exists a G-decomposition
of Ko,iy1 for all positive integers k. Moreover, a-labelings can be used to obtain
decompositions of complete bipartite graphs. For example, if a bipartite graph G

of size n admits an a-labeling, then there exists a G-decomposition of K, ,, (see
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0 1 2 3 0 1 4 6 5 2
8 7 5 4 12 11 10 7 8 9

Figure 2.3: A a-labeling of G where G = Cs or Cs U Cg

[28]). In [37], Rosa showed that if a 2-regular bipartite graph G of size n admits
an a-labeling, then we must have n =0 (mod 4).

In [37], Rosa determined when an even cycle admits an a-labeling.
Theorem 2.7. C,, has an a-labeling if and only if n =0 (mod 4).

In [2], Abrham and Kotzig settled the corresponding result for the union of

two even cycles.
Theorem 2.8. Cy, Uy, has an a-labeling if and only if 2n+2m =0 (mod 4).

Because we are concerned with 2-regular graphs, we note the following results

on a-labelings.
Theorem 2.9. The following 2-reqular bipartite graphs admit a-labelings.
(i) rCy if and only if r # 3 (see [1]).

(ii) Com, U Com, U Copy if and only if 2my + 2mq +2mz = 0 (mod 4) (see [20]).



CHAPTER III
MAIN RESULTS

In this chapter, we use novel extensions of the Bose construction for Steiner
triple systems to show that there exist a G-decomposition of Koxy1)xn for every
positive integer k and a G-decomposition of Kj/y9, for every integer &' > 3 where
G is a 2-regular almost-bipartite graph of odd order n. We obtain similar results
when G consists of three odd length cycles. In Section 3.1, we focus on the case
when G as a single cycle. We also show that there exists a C,-decomposition of
K, for all v =n (mod 2n). In Subsection 3.3.1, we concentrate when G has only
two components. Additionally, we find a G-decomposition of K, for all v = n
(mod 2n). In Subsection 3.3.2, we consider the case when G consists of any
number of even cycles and one single odd cycle. Finally, in Subsection 3.3.3, we
consider the case when G consists of three odd cycles. In the last case, we also

obtain a G-decomposition of K, for all v =1 (mod 2n), except when v = 4n + 1.

3.1 On extensions of the Bose construction

We begin with some sufficient conditions for the existence of a G-decomposition
of Kpt1yxn and of Kjsyo, for all integers £ > 1 and & > 3. These ideas make
use of extensions of the Bose construction for Steiner triple systems.

Let n > 3 be an odd integer and let £ be a positive integer. Let K(ox11)x, have
vertex set Z, X [1, 2k + 1] with the obvious vertex partition. For i € [1, k], let h; =
{2i—1,2i} and g; = Z,xh;. Let H = {hq, ha, ..., h}. Let V(Kyxan) = Z, x[1, 2k|
with the vertex-set partition {g¢i1,g2,...,gx}. For r < s, if e = {(i,7),(j,s)} is
an edge in Kopi1yxn O in Ky, define the length of e to be j — i if j > 4;
otherwise the length of e is n + (j — ). Thus, between any two parts, there are

edges of lengths 0,1,...,n—1. We will often write —; for edge length n — j when
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n is understood. Therefore, between any two parts, there are edges of lengths

0,+1,42,..., 1,

Let K be a subgraph of the graph with vertex set Z, x [1,2k + 1]. For a

positive integer ¢, the graph K + ¢ has vertex set {(i + ¢, z2) : (i,2) € V(K)} and
edge set {{(i +£,7), (j + £,5)} : {(i,7), (J, )} € E(K)}.

Lemma 3.1. Let G of odd order n be a 2-reqular almost-bipartite graph and let
e € E(G) be such that G — e is bipartite. Let G' = G — u where u € V(Q) is
incident to e. Let P of size £ < n — 2 be the component of G' that is a path.
Let K, have vertex set Z, x [1,2] with the obvious vertex partition. Assume
that there exists an embedding of G' in K, , with one edge of each length in
[—(n —1)/2,(n — 1)/2] ~ {£z} for some z € [1,(n — 1)/2] and such that the
endpoints of P are (j,1) and (j,2) for some j € [0,n — 1]. Then there exists a

G-decomposition of Kopi1yxn for every positive integer k.

Proof. Let k be a positive integer and let V(K (op11yxn) = Zn x [1,2k + 1] with the
obvious vertex partition. Let (@), o) be an idempotent commutative quasigroup of
order 2k 4+ 1, where @ = [1, 2k + 1].

Fix rand swith 1 <r < s <2k + 1. Let G

TS

and P, s be the embeddings
(as in the hypothesis of the lemma) of G’ and P, respectively, in the subgraph
of K(ak41)xn With vertex set Z, x {r,s} and the obvious vertex partition. Let
(7,7) and (7, s) denote the endpoints of P, ; and let z be as in the hypothesis. We
construct from G _ a graph G, s, isomorphic to G, by adding the edges {(j,7), (j+
z,ros)} and {(j, ), (j + 2,7 05s)} at the endpoints of P,,. Let Gy, = {G,, +x:

0 < <n—1}. Note that G, contains n distinct copies of G. Moreover, in the

*
T,8

subgraph of K(ori1)x, With vertex set Z, x {r,s}, G contains all the edges of
length i for all i € [—(n —1)/2,(n —1)/2] \ {%=z}.

Let C ={G,s+x:1<r <s<2k+1,0 <z <n-—1} and note that C contains

(2k+1

A )n distinct copies of G. We will show that every edge of K(r41)xn appears

on some copy of G in C. Let e = {(i,r), (j, s)} with r < s be an arbitrary edge of
Kok 41)xn- Let t' be the unique solution to r ot’ = s and let &' = min{r,#'} and

f" = max{r,t'}. Let t” be the unique solution to sot” = r and let o = min{s, t"}
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and " = max{s,t"}. If j —i € [-(n —1)/2,(n — 1)/2] \ {£z}, then e belongs

to G5 + x for some z with 0 < 2 < n—1. If j —¢ = 2z, then e belongs to

Gy p+x where 0 <o <n-—1. If j —i = —z, then e belongs to Gy g» + = where

0 <2 <n—1. Since every edge of K(op+1)xn appears on some copy of G in C and

2k+1)
2

since C contains ( n distinct copies of G, it follows that C is a decomposition

of K(ok41)xn into copies of G. O

Lemma 3.2. Let G of odd order n be a 2-reqular almost-bipartite graph and let
e € E(G) be such that G — e is bipartite. Let G' = G — u where u € V(G) is
incident to e. Let P of size { < n — 2 be the component of G' that is a path. Let
K, have vertex set Z, x [1,2] with the obvious vertex partition. Assume that
there exists an embedding of P in K, , with one edge of each length in [—(n —
1)/2,(n—1)/2] ~{xz} for some z € [1,(n —1)/2] and such that the endpoints of
P are (j,1) and (j,2) for some j € [0,n—1]. Then there exists a G-decomposition
of Kixon for every integer k > 3.

Proof. Let k > 3 be an integer and let @ = [1,2k]. For i € [1,k], let h; = {2i —
1,2i} and g; = Zpxh;. Let H = {hy, ho, ..., hy}. Let V(Kgxon) = Zyx[1, 2k] with
the vertex-set partition {g1, g2, ..., gr}. Let (@, 0) be an idempotent commutative
quasigroup of order 2k with holes H.

Fix r and s with 1 < r < s < 2k and {r,s} ¢ H. Let G,  and P, be
the embeddings (as in the hypothesis of the lemma) of G' and P, respectively,
in the subgraph of Kjyo, with vertex set Z, x {r,s} and the obvious vertex
partition. Let (j,7) and (j, s) denote the endpoints of P, and let z be as in the
hypothesis. We construct from G, ; a graph G, isomorphic to G, by adding the
edges {(j,7), (j +z,r0s)} and {(j,s),(j + 2,7 0 s)} at the endpoints of P, .

We proceed in the same fashion as in the proof of Lemma 3.1. Let C =
{Gs+x:1<r<s<2k{rs} ¢ Hand0 < x < n — 1} and note that
C contains (22k)n distinct copies of GG. For the proof that every edge of Kjyop
appears on some copy of GG in C, we proceed in the same fashion as the proof of

Lemma 3.1. 0

Next, we prove a lemma about the existence of paths with certain edge lengths
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in K, .

Lemma 3.3. Let n > 3 be an odd integer and let x < n be a positive inte-
ger. Let K, , have vertex set Z, X [1,2] with the obvious vertex partition. For
positive integers dyi,ds, ..., dy_q1 with di < dy < -+ < dp_1 < (n —1)/2, there
exists an embedding of a path P of size 2o — 1 in K, , whose edges have lengths

0,+dy, £ds, ..., £dy—1. Furthermore, V(P) C [0,d,—1] x [1,2].

Proof. 1f z = 1, let P be the path consisting of the edge {(0, 1), (0,2)}. Otherwise,

k—1

for k € [1,z—1], define v, = Z(—l)idx_l_i. Note that since d; < dy < -++ < dy_1,
i=0

we have that v1 > v3 > -+ and vy < vy < ---. Consider the path of size

x — 1 given by P’: (0,1), (v1,2), (v, 1), (v3,2), ... where P ends with (v,_1,2) if
x —1is odd or (v,_1,1) if # — 1 is even. Observe that the lengths of the edges
on P’, in the order encountered, are d,_i,d,_o,...,d;. Next consider the path
P":(0,2), (v1,1), (v2,2), (v3,1),... where P” ends with (v,_y,1) if x — 1 is odd or
(vg—1,2) if z—1 is even, and observe that the edges on P”, in the order encountered,
are —d,_1,—d,_o,...,—d;. Construct the path P from the paths P’ and P” by
adding the edge from (v,_1,1) to (v4—1,2) in K, ,,. Note that P has size 2z —1, the
edges of P have lengths 0, +-d;, £ds, ..., +d, 1, and V(P) C [0,d, 1] x [1,2]. O

(0,1) (1,1) (2,1) (3,1) (5,1)

(5,2) (3,2) (2,2) (1,2) (0,2)

Figure 3.1: A path P of size 9 whose edges have lengths 0, £1, 2, +4, 5.

Theorem 3.4. For all odd integers n > 3, there exists a C,-decomposition of

Kor1)xn for all positive integers k and of Ky xon for all integers k' > 3.

Proof. Label the vertex set of K, ,, with the elements of the set Z, x [1, 2] with the

obvious vertex bipartition. It is sufficient to show that there exists an embedding
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of a path P of size n —2 in K, , with one edge of each length in [—(n—1)/2, (n —
1)/2]~{=£z} for some z € [1, (n—1)/2] and such that the endpoints of P are (j, 1)
and (7, 2) for some j € [0,n—1]. By Lemma 3.3, there exists an such embedding of
a path P of size n—2 using the edge lengths in [—(n—3)/2, (n—3) /2] with endpoints
(0,1) and (0,2). In the lemma we would use dy = 1,dy = 2,...,dmn-32 =
(n—3)/2,s0 V(P) C[0,(n—3)/2] x[1,2]. Thus, by Lemma 3.1 and Lemma 3.2,
we conclude that there exists a G-decomposition of Kap41)xn for every positive

integer k and a G-decomposition of Kj/ya, for every integer k' > 3. O

It has long been known that if n > 3 is odd, then there exists a C,,-decomposition

of K,,. This result is often credited to Walecki (see [4] for details).

Theorem 3.5. For any odd integers n > 3, there exists a C,-decomposition of

K,.

By combining the results from Theorem 3.4 and Theorem 3.5, we obtain the

following previously known result (see [29]).

Theorem 3.6. There exists a C,-decomposition of Kopnin for all odd integers

n > 3 and all positive integers k.

Proof. Observe that Kopnin = (2k + 1)K, U K(2541)xn for all positive integers k.
By Theorem 3.5, there exists a C,,-decomposition of K, and hence of (2k 4+ 1)K,
and by Theorem 3.4, there exists a C),-decomposition of Kpy1)xn. The result

follows. L

Example 3.7. We give an example of a Cs-decomposition of Kis.
Let Ki5 have vertex set Zs x [1,3]. For each i € [1,3], there exists a Cs-
decomposition of the Ky with vertex set Zs x i (by Theorem 3.5.) Then for each

i € [1,3], we have two copies of C5 as follows:

((0,4), (1,9), (2,12), (4, 1), (3,1)), ((0,2), (2,2), (3,2), (1,0), (4, ).

Thus we have a Cs-decomposition of 3Kj.
It remains to find a Cs-decomposition of the complete multipartite subgraph

Ksy.5. Let Q = [1,3] and let (@, o) denote a commutative idempotent quasigroup
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of order 3 in Figure 3.2. For fixed r and s with 1 <r < s <3, Let P, ; denote the
path ((0,7),(1,s),(1,7),(0,s)). We construct a 5-cycle G, s from P, by adding
the edges {(0,7),(2,705s)} and {(0,s),(2,705)}. Let Gy, ={G,s + 1 : 2 € Zs}.
The 5-cycle G2 + 1 is shown in Figure 3.2. Then the cycles in G7, UGT 3 UGS 4

give a Cs5-decomposition of K3x5. The 5 copies of C5 in G7 , are listed below:

((0,1),(1,2),(1,1),(0,2), (2,102 = 3)),
(1,1),(2,2), (2,1),(1,2), (3,102 = 3)),
((2,1),(3,2),(3,1),(2,2), (4,102 = 3)),
((3,1), (4,2), (4,1),(3,2), (0,1 02 = 3)),
((4,1),(0,2),(0,1),(4,2),(1,1 02 = 3)).

Since K5 = 3K5 U K543, we have a Cs-decomposition of Kis.

(0,1)e (0,2)e (0,3)®

N W (N
W || W

W N = |0
N | W= [~

Figure 3.2: An idempotent commutative quasigroup of order 3 and one copy of a

Cs from the corresponding of Cs-decomposition of Kis.

Before proceeding with the remainder of our results, we need some additional

notation.

3.2 Additional notation

We denote the directed path with vertices xg, x1, ..., 2, where x; is adjacent

to xi41, 0 <@ < k—1, by (xg,21,...,2). The first vertex of this path is x,
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the second vertex is xq, and the last verter is xy,. If Gi = (zo,21,...,2;) and
G2 = (Yo, Y1, - - -, y) are directed paths with x; = yo, then by Gy + G we mean
the path (xo,21,...,25,Y1,Y2, -, Yk)-

For the remainder of this chapter, we consider only subgraphs of a complete
bipartite graphs K, ,, with vertex set [0,m — 1] x [1,2] and the obvious vertex
bipartition. Furthermore, if m, n, and i are integers with m < n, we denote
{(m,),(m+1,7),...,(n,0)} by [(m,i),(n,i)]

Let P(k) be the path with k edges and k+1 vertices given by ((0,1), (k, 2), (1, 1),
(k—1,2),(2,1),(k —2,2),...,([k/2], [k/2] — |k/2] 4+ 1)). Note that the set of
vertices of this graph is AU B, where A = [(0,1), (|k/2],1)], B = [(lk/2] +
1,2), (k,2)], and every edge joins a vertex of A to one of B. Furthermore, the set

of lengths of the edges of P(k) is [1, k.

(2,1) (3,1)
) (5,2) 9,2) (8,2) (7,2)
P(6) P(9)

Figure 3.3: Examples of the P(k) notation

Now let a be a nonnegative integer and b be an integer such that |b| < |k/2]+1,
and let us add (a,0) to all the vertices of A and (b, 0) to all the vertices of B. We
denote the resulting graph by P(a,b, k). Note that this graph has the following

properties.

P1 P(a,b, k) is a path with first vertex (a, 1) and second vertex (b + k,2). Its
last vertex is (a + k/2,1) if k is even and (b+ (k + 1)/2,2) if k is odd.
P2 Each edge of P(a,b,k) joins a vertex of A" = [(a,1),([k/2] + a,1)] to a
vertex of B' = [([k/2] +1+b,2), (k+b,2)].
P3 The set of edge lengths of P(a,b,k) is [b—a+ 1,0 —a + k.
Now consider the directed path Q(k) obtained from P(k) replacing each ver-
tex (i,7) with (k —i,3 — j). The new graph is the path ((k,2),(0,1),(k —
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1,2),(1,1),...,(lk/2], |k/2] — [k/2] +2)). The set of vertices of Q(k) is AU B,
where A = [(0,1), ([k/2] — 1,1)] and B = [([k/2],2),(k,2)], and every edge
joins a vertex of A to one of B. The set of edge lengths is still [1, k].

We again add (a,0) to the vertices of A and (b,0) to vertices of B, where a is
nonnegative integer and b is an integers with |b| < [k/2]. We denote the resulting

graph by Q(a,b, k). Note that this graph has the following properties.

Q1 Q(a,b, k) is a path with first vertex (k +b,2). Its last vertex is (b + k/2,2)
if k is even and (a+ (K —1)/2,1) if k is odd.

Q2 Each edge of Q(a, b, k) joins a vertex of A’ = [(a,1), (a+ [k/2] —1,1)] to a
vertex of B' = [(b+ [k/2].2), (b + k., 2)].

Q3 The set of edge lengths of Q(a,b, k) is [b—a+ 1,b —a+ k.

For ease of notation, we henceforth use i, and is to denote the vertices (i, r)

and (i, s), respectively.

4, 91 61 71 21 31 61 71
11, 109 97 132 125 115 109

P(4,5,6) Q(2,6,7)

Figure 3.4: Examples of P(a,b, k) and Q(a,b, k)

3.3 A (G-decomposition of K41)x, and of Ko,

Let A and B be finite subsets of the integers. If max(A) < min(B), we will
write A < B. We define A < B, A > B, and A > B analogously. Let K, , have
vertex set Z, X [1,2] with the obvious vertex partition. We prove three lemmas
about the existence of an embedding of C,, with certain edge lengths in K, ,, to
use in Subsection 3.3.1 and Subsection 3.3.2. The constructions depend on the

congruence class of m modulo 8.
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Lemma 3.8. Let n > 11 and m > 10 be integers such that n is odd, m = 2
(mod 8), and m/2 < (n —1)/2. Let K, , have vertex set Z, x [1,2] with the
obvious vertex partition. If m = 8t + 2, then there exists an embedding of a cycle
C of size m in K, , with one edge of each length in £[2,4t + 2]. Furthermore,
V(C) C 0,4t +2] x [1,2].

Proof. To embed a cycle C of size m in K, ,, let
C=G+ G+ Gs+ Gy + ((4t + 2)1, (2t + 1)2,0),
where

P(0,2t + 1,2t + 1),

(
Q(t+2,t+3,2t —1),
P(2t+1,0,2t — 1),

(

G
G
Gy
Gy

QBt+2,—(t+1),2t+1).

We then show that Gy + Go + G5 + Gy + ((4t + 2)1, (2t + 1), 01) is a cycle of size
m. Note that by P1 and Q1 the first vertex of GG; is 01, and the last vertex is
(3t 4 2)o; the first vertex of Gy is (3t + 2), and the last vertex is (2t + 1);; the
first vertex of Gi3 is (2t + 1)1, and the last vertex is ¢;; the first vertex of Gy is
t1, and the last vertex is (4t + 2);. For 1 <i < 4, let A; and B; denote the sets
labeled A’ and B’ in P2 and Q2, we compute

Ay = 1[04, 4], By = [(3t + 2)2, (4t + 2)4],
Ay =[(t+2)1, (2t + 1)4], By = [(2t + 3)2, (3t + 2)4],
Az =[(2t + 1)1, (3t)4], Bs = [ta, (2t — 1)4],

Ay = [(3t +2)1, (4t + 2)4], By = [09, t3].

Thus,
A1<A2§A3<A4&HdB4§B3<B2§B1.

Note that V(G1)NV (G2) = {(3t+2)2}, V(G2)NV(G3) = {(2t+1):1}, and V(G5)N
V(G4) = {t2}; otherwise, G; and G, are vertex-disjoint for ¢ # j. Therefore,
G1+ Gy + G+ Gy + (4t +2)1, (2t + 1)2,07) is a cycle of size m.
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Next, let F; denote the set of edge lengths in G; for 1 < i < 4. By P3 and

Q3, we have edge lengths

Ey = [2t + 2,4t + 2],
E, = [2,21],
Eg — [—2t, —2],

By = [—(4t +2),—(2t + 2)].

Moreover, the path ((4t+2);, (2t +1)9,01) consists of edges lengths —(2¢t+ 1) and
2t + 1. Thus, C has edge lengths £[2, 4t + 2]. O

Figure 3.6: The cycle C where ¢t = 2 in Lemma 3.8

Lemma 3.9. Let n > 15 and m > 14 be integers such that n is odd, m = 6
(mod 8), and m/2 < (n —1)/2. Let K, ,, have vertex set Z, x [1,2] with the
obvious vertex partition. If m = 8t + 6, then there exists an embedding of a
cycle C' of size m in K, , with one edge of each length in £[1,4t 4+ 4] \ {£2}.
Furthermore, V(C) C [0,4t + 4] x [1,2].
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Proof. To embed a cycle C of size m in K, ,, let
C=G1+ G+ ((2t+3)s, (2t +2)1, (2t + 1)2) + Gz + G4+ ((4t +4)1, (2t + 2)2,07),

where

P(0,2t + 2,2t + 2),

Q(2t +4,2,2t — 1),

G (

Go=P(t+1,t+3,2t —1),

Gs (

Gy = P(3t+3,—(t+2),2t +2).

We then show that G| + G5 + ((2t += 3)2, (2t + 2)1, (Qt + 1)2) +G3+ Gy + ((4t +
4)1, (2t 4+ 2)2,01) is a cycle of size m. Note that by P1 and Q1, the first vertex
of G1 is 01, and the last vertex is (¢ + 1);; the first vertex of Gy is (¢t + 1), and
the last vertex is (2t + 3)9; the first vertex of G5 is (2t + 1)9, and the last vertex

is (3t + 3);; the first vertex of Gy is (3t +3);, and the last vertex is (4¢ +4);. For
1 <1 <4, let A; and B; denote the sets labeled A" and B’ in P2 and Q2, we

compute
Ar = (01, (t+ D)l By = [(3t +4)2, (4t + 4)2],
Ay = [(t+ 1)1, (2t)4], By = [(2t + 3)2, (3t 4 2)4],
Az = [(2t +4)1, (3t + 3)4], Bs = [(t +2)3, (2t 4 1)a],
Ay = [(3t +3)1, (4t + 4)4], By = [0g, t5].

Thus,

A1§A2<A3§A4andB4<Bg<BQ<Bl.

Note that V(G1)NV (Gz) = {(t+1)1}, and V(G3)NV (G4) = {(3t+3)1}; otherwise,
G, and G, are vertex-disjoint for ¢ # j. Therefore, Gi + G + ((2t + 3)2, (2t +
2)1, (2t +1)9) + G+ G4+ ((4t + 4)1, (2t + 2)2,04) is a cycle of size m.

Next, let E; denote the set of edge labels in G; for 1 <i < 4. By P3 and Q3,
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we have edge lengths

Ey = [2t + 3,4t + 4],
Ey = [3,2t + 1],
Ey = [—(2t+1),-3),

Ey=[—(4t+4),—(2t +3)].

Moreover, the path ((2t + 3)a, (2t + 2)1, (2t 4+ 1)2) consists of edges lengths 1 and
—1, and the path ((4t +4)1, (2t 4+ 2)2,01) consists of edges lengths —(2¢ + 2) and
2t + 2. Thus, C has edge lengths £[1, 4t + 4] \ {£2}. O

00 11 20 31 4 6; 8 91 107 113 124

62 129 115 102 8 72 5y 49 25 1y 0,

62 129 112 102 8 72 5y 4 25 1y 0y

Figure 3.8: The cycle C where t = 2 in Lemma 3.9

Lemma 3.10. Let n > 5 and m > 4 be integers such that n is odd, m = 0
(mod 4), and m/2 < (n —1)/2. Let K, , have vertex set Z, x [1,2] with the
obvious vertex partition. If m = 4t, then there exists an embedding of a cycle C
of size m in K, , with one edge of each length in £[1,2t]. Furthermore, V(C) C
0,2t + 1] x [1,2].
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Proof. To embed a cycle C of size m in K, ,, let
C=G1+ Gy + ((2t + 1)1, 15,04),
where

G1=P(0,2t + 1,2t + 1),

Go=Q(t+2,t+3,2t —1).

We then show that G1 + Gs + ((2t 4+ 1)1, 12,04) is a cycle of size m. Note that by
P1 and Q1 the first vertex of G is 01, and the last vertex is (¢ + 1)o; the first
vertex of Go is (t 4 1)a, and the last vertex is (2t + 1);. For i <i <2, let A; and
B; denote the sets labeled A’ and B’ in P2 and Q2, we compute

Ay = [0, (t = 1), By = [(t + 1)2, (2t)2],
A2 == [(t+2)1,(2t—|—1)1], BQ == [22,(t+1)2]
Thus,
Al < A2 and By < Bj.

Note that V/(G1) NV (Gsy) = {(t + 1)1} otherwise, G; and G are vertex-disjoint.
Therefore, G + Go + ((2t + 1)1, 15,0;) is a cycle of size m.
Next, let E; denote the set of edge labels in G; for 1 <7 < 2. By P3 and Q3,

we have edge lengths

By =[2,21],

By =[-(2t —1),~1].

Moreover, the path ((2t + 1)1, 15,01) consists of edges lengths —2¢ and 1. Thus,
C' has edge lengths £[1, 2¢]. O

3.3.1 G consisting of one even cycle and one odd cycle

Let G of odd size n be the vertex-disjoint union of one even cycle and one

odd cycle. In this section, we will show how to construct a G-decomposition of
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0,0 1. 4 51

Figure 3.10: The cycle C' where ¢t = 2 in Lemma 3.10

K op41)xn for all positive integers k and of Ky, for all integers £’ > 3. To obtain
these results, it suffices to show that there exists an embedding of GG that satisfies
the statements in Lemma 3.1 and Lemma 3.2. Furthermore, if we combine these
results with the results in Theorem 2.6, we obtain a G-decomposition of K, where
v =n (mod 2n), unless G = C,UC; and v = 9. Furthermore, we obtain necessary

and sufficient conditions for a G-decomposition of K, when n is a prime power.

Lemma 3.11. Let G be vertex-disjoint union of a cycle C' of size m and a path P
of size 20 — 1 where m,{ > 0 are integers and m is even. Let n =m +2(+ 1 and
let K, have vertex set Z, x [1,2] with the obvious vertex partition. Then there
ezists an embedding of G in K,,,, with one edge of each length in [—(n—1)/2, (n—
1)/2] N~ {£z} for some z € [1,(n — 1)/2] and such that the endpoints of P are 0y
and 0,.

Proof. Let n = m+ 20+ 1 and V(K,,) = Z, x [1,2] with the obvious vertex

partition. We proceed by cases depending on the congruence class of m modulo 8.

Case 1. Suppose m = 2 (mod 8). Let m = 8t + 2 for some positive integer ¢. By
Lemma 3.8, there exists an embedding of a cycle C' of size m with edge lengths

+[2,4t + 4] in K,,,,. Furthermore, V(C) C [0, 4t + 2] x [1,2].



32

We next give an embedding of P of size 20 — 1 in K,,,. If £ = 1, then by
Lemma 3.3, there exists an embedding of a path P* of size 1 using edge length
0 with endpoints 0; and 0y. Let P = P* 4 (4t + 3) with endpoints (4t + 3); and
(4t + 3)2. Note that 4t + 3 < 8t +5 = n. Thus, the edge set of G has one edge of
each length i € [—(4t 4+ 2),4t + 2|~ {£1} =[-(n—1)/2,(n — 1)/2] ~ {£1}.

Suppose that ¢ > 2. By Lemma 3.3, there exists an embedding of a path P*
of size 2¢ — 1 using edge lengths {—1,0,1} U £[(4t + 3), (n — 3)/2] with endpoints
0; and 0y. In the lemma we would use dy = 1,dy =4t +3,...,dy—1 = (n — 3)/2,
so V(P*) C[0,(n—3)/2] x[1,2]. Let P = P*+ (4t + 3) with endpoints (4t + 3),
and (4t + 3)2. Then V(P) C [4t + 3,(n — 3)/2 + (4t + 3)] x [1,2]. Note that
(n—3)/2+4(4t+3) = (n+m+1)/2 = (2n—2¢)/2 < n and P is vertex disjoint from
C'. Thus, the edge set of G has one each of each length i € [—(n—3)/2,(n—3)/2],
except the edge lengths +(n —1)/2. Figure 3.11 shows an embedding of C' and P
in K,, wheret=1and ¢ =2 .

01 11 31 51 63 T8 9 15

32 62 Ha 1o 09 152 92 82 7o
Figure 3.11: An example of C' and P in case 1 of Lemma 3.11

Case 2. Suppose m =6 (mod 8). Let m = 8¢+ 6 where ¢ is nonnegative integer.
Case 2.1. t = 0. Let C* = (01, 32, 21, 02, 31, 25) be an embedding of C. Its
edge lengths are 3,1, -2, -3, —1, 2.

We next give an embedding of P of size 2¢ — 1 in K,,,. If { = 1, then by
Lemma 3.3, there exists an embedding of a path P* of size 1 using edge length 0
with endpoints 0; and 0,. Let P = P* + 4 with endpoints 4; and 45. Note that
4 <9 =n. Thus, the edge set of G has one edge of each length ¢ € [—3, 3], except
the edge lengths +4.

Suppose that ¢ > 2. By Lemma 3.3, there exists an embedding of a path
P* of size 2¢ — 1 using edge lengths {0} U +[4, (n — 3)/2] with endpoints 0,
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and 0y. In the lemma, we would use d; = 4,dy = 5,...,di—1 = (n — 3)/2, so
V(P*) C[0,(n—3)/2] x [1,2]. Let P = P* + 4 with endpoints 4; and 45. Then
V(P) C [4,(n — 3)/2 + 4] x [1,2]. Note that (n —3)/24+4 = (n+5)/2 =
(2n — 20+ 2)/2 < n since ¢ > 1, and P is vertex disjoint from C. Thus, the edge
set of G has one each of each length i € [—(n — 3)/2, (n — 3)/2], except the edge
lengths +(n — 1)/2. Figure 3.12 shows an embedding of C' and P in K, ,, where
t=0and ¢ =>5.

01 27 34 4, 57 67 10; 114

29 35 09 115 102 62 H2 44
Figure 3.12: An example of C' and P in case 2.1 of Lemma 3.11

Case 2.2. t > 1. By Lemma 3.8, there exists an embedding of a cycle C
of size m with edge lengths £[1,4¢ + 4] \ {£2} in K,,,. Furthermore, V(C) C
(0,4t + 4] x [1,2).

We next give an embedding of P of size 2¢ — 1 in K, ,. If { = 1, then by
Lemma 3.3, there exists an embedding of a path P* of size 1 using edge length
0 with endpoints 0; and 0y. Let P = P* 4 (4t + 5) with endpoints (4t + 5); and
(4t + 5)2. Note that 4t +5 < 8t +9 = n. Thus, the edge set of G has one edge of
each length i € [—(4t +4),4t + 4] ~ {£2} = [-(n — 1)/2, (n — 1)/2] ~ {£2}.

Suppose that ¢ > 2. By Lemma 3.3, there exists an embedding of a path P*
of size 2¢ — 1 using edge lengths {—2,0,2} U £[4¢ + 5, (n — 3)/2] with endpoints
0; and 0,. In the lemma we would use dy = 2,dy = 4t +5,...dy_1 = (n — 3/2),
so V(P*) C[0,(n—3)/2] x [1,2]. Let P = P*+ 4t + 5 with endpoints (4t + 5);
and (4t + 5)s. Then V(P) C [4t + 5,(n — 3)/2 + (4t + 5)] x [1,2]. Note that
(n—3)/24(4t+5) = (n+m+1)/2 = (2n—2()/2 < n and P is vertex disjoint from
C'. Thus, the edge set of G has one each of each length i € [—(n—3)/2, (n—3)/2],
except the edge lengths £(n —1)/2. Figure 3.13 shows an embedding C' and P in
K, , where t =1 and ¢ = 3.
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4q 71 9, 167 18;
4o 8 Ty Do 1o 185 162 99

Figure 3.13: An example of C' and P in case 2.2 of Lemma 3.11

Case 3. Suppose m = 0 (mod 4). Let m = 4t for some positive integer t. By
Lemma 3.10, there exists an embedding of a cycle C' of size m with edge lengths
+[1,2t] in K, ,,. Furthermore, V(C) C (0,2t + 1] x [1,2].

We next give an embedding of P of size 2¢ — 1 in K,,,,. If { = 1, then by
Lemma 3.3, there exists an embedding of a path P* of size 1 using edge length
0 with endpoints 0; and 0y. Let P = P* + (2t 4+ 2) with endpoints (2t + 2); and
(2t +2)5. Note that 2t +2 < 4t + 3 = n. Thus, the edge set of G has one edge of
each length i € [—2t, 2t], except the edge lengths +(2¢ + 1).

Suppose that ¢ > 2. By Lemma 3.3, there exists an embedding of a path P*
of size 2¢ — 1 using edge lengths {0} U £[2¢ + 1, (n — 3)/2] with endpoints 0; and
02. In the lemma we would use dy =2t + 1,do =2t +2,...,dy_1 = (n — 3)/2, so
V(P*) C[0,(n —3)/2] x [1,2]. Let P = P*+ (2t + 2) with endpoints (2t + 2);
and (2t + 2)s. Then V(P) C [2t +2,(n — 3)/2 4+ (2t + 2)] x [1,2]. Note that
(n—3)/24+(2t+2) = (n+m+1)/2 = (2n—2¢)/2 < n and P is vertex disjoint from
C'. Thus, the edge set of G has one each of each length i € —(n—3)/2, (n—3)/2],
except the edge lengths £(n — 1)/2. Figure 3.14 shows an embedding of C' and P

in K, , where t =2 and ¢ = 5. O
0, 17 41 b5 61 71 8 137 144
1o 49 39 25 145 139 83 79 69

Figure 3.14: An example of C and P in case 3 of Lemma 3.11
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Theorem 3.12 is obtained by combining the results from Lemma 3.11 and
Lemma 3.1 to show that there exists a G-decomposition of K (gj41)x, for all posi-
tive integers k. Also, by combining the results from Lemma 3.11 and Lemma 3.2

to prove the existence of a G-decomposition of Kj/yo, for all integers &’ > 3.

Theorem 3.12. Let G be a 2-regular graph of odd order n consisting of exactly two
cycles. Then there exists a G-decomposition of K (ari1)xn for all positive integers

k, and of Ky xan for all integer k' > 3.

By combining the results from Theorem 2.6 and Theorem 3.12 we obtain the

following theorem.

Theorem 3.13. Let G be a 2-reqular graph of odd order n consisting of exactly
two cycles. There exists a G-decomposition of K, for all v =n (mod 2n) unless

G=C,UC5 andv=29.

Proof. In [5], it is shown that there exists a (Cy U Cs)-decomposition of K, if
and only if v = 1 or 9 (mod 18) and v # 9. For all other G, let v = 2kn + n.
Observe that K, = (2k + 1)K, U K (2k41)xn. By Theorem 2.6, there exists a G-
decomposition of K, and hence of (2k + 1)K, and by Theorem 3.12, there exists

a G-decomposition of K(ary1)xn. The result follows. O
If n in Theorem 3.12 is a power of a prime, then we have the following corollary.

Corollary 3.14. Let G be a 2-reqular graph of odd order n consisting of exactly
two cycles. If n is a prime power, then there exists a G-decomposition of K, if

and only if v=1 orn (mod 2n), unless G = Cy,UC5 and v = 9.

Proof. The necessary conditions for the existence of a G-decomposition of K,
are n|v(v — 1)/2 and v > n is odd. If n = p*, where p is prime, then we have
2pFv(v —1) and v > p* is odd. Since v and v — 1 are relatively prime, either p*|v
or pFlv — 1. Thus, v = 1 or p* (mod 2p*).

It is known that there exists a G-decomposition of K, for all v =1 (mod 2n)
(see [11] and [5]). By Theorem 3.13, there exists a G-decomposition of K, for all
v=n (mod 2n) unless G = C; U C5 and v = 9. The result follows. O
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3.3.2 (G consisting of any number of even cycles and one

odd cycle

In this section, we extend the idea of the construction in Subsection 3.3.1 to
prove that there exists a G-decomposition of K(ar41)xy for all positive integers k&
and of Ko, for all integers k' > 3 where G of size n is an almost-bipartite graph
consisting of any number of even cycles and one odd cycle. For this construction,
we need to use the properties of a-labelings of even cycles to get a new labeling.

Let M; be a bipartite graph of size m;, with a-labeling f;, critical value A;,
and vertex bipartition {A;, B;} for all i such that 1 < ¢ < w. Let M of size m be
a disjoint-union of w bipartite graphs, M; of size m; where ¢ = 1,2,... w. That

is, M = My UMyU---U M, with size m = mq + mo + - -+ + my,.

Lemma 3.15. For 1 <1 < w, let M; be a bipartite graph of size m; that admits

an a-labeling with critical value \;. If Ay > A[%Hl > Ao > )\[%"4_2 > ---, then

—
NS
=
g

i=1 i=[%]+1

Proof. Let k = w if w is even and let k = (w 4+ 1)/2 if w is odd. Then by the
hypothesis, \; > )‘[%Hl > Ay > /\[%Hg > ... > \.. Hence we have both of the

following:

El w
0< A = Apzp Ao — Apzpe + o+ (D" A =D A = Y\
=1

i=[§1+1
and
w E
0< Az — Ao+ Apepe — g+ (D" 2= D> N = > A
i=[%27+1 i=2
Therefore,
E w w Kl
0> N =D Ni=X—| D h—= D M| <h<m.
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Lemma 3.16. For 1 <1i < w, let M; be the bipartite graph of size m; with vertex
bipartition {A;, B;} that admits a-labeling f; with critical value \; = max(fi(Ai))

such that Ay > )\(%]+1 > Ay > )\[%]+2 > ... Let M = M{UM,U---U M,
w (5] w

and m = > m;. Let Ay, = |J A; and Ar = |J A; and define By and Bgr
i=1 i=1 =241

analogously. Let a,b, c,d be integers such that 0 < a < ¢ and b,d € [a, ], and let

n=m+c+d+ 1. Define a labeling function f: V(M) — |a,n — 1] by

(

Filv) + i(A T+ vEACA,:
]:
:H—l
f(v) = i1 e w
fi(v) + Z()\ + )+“+Z mj+ Y mj+c, veB;CB;
Jj=1 Jj=i+1 J=l51+i

w i—[¥4] i
fl(v)+2()\]+1)+b+ z m,; + Z mj—l—d, vE B; C Bg.

\ j=it+1 j=1 J=I%]+1

—_

Then both fla,us, and fla,us, are injective. Furthermore, f(AL) N f(Bgr) =
@ = f(Ar) N f(BL).

Proof. First, we consider f|a,up,). For 1 <i < [¥], we have

—

min(f(A;)) =0+ - (Aj+1) +a,

J=1

(5]

i1
max ( f(B;)) :mi+2()\j+ +a+ Z m; + Z m; + c.
j=1

J=itl J=151+i

Note that

min(f(A4;)) = a and max(f(Bi)) =m+c+a<m+c+d+1=n
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For 1 <i < [¥] —1, we have

[y

max(f(4;)) =X+ )Y N+1)+a= Z()\j +1)+a—1=min(f(Ai1)) — 1,

i—1 (51

min(f(Bi)) =N+ 1)+ ) N+ +a+ > mj+ i m; + ¢

j=1 j=i+1 J=l51+i

7 [51 w
=> N+ Dta+ (D mit+maa)+ (> my+mpz) +c
j=1 j=i+2 J=[%]+i+1
= (M + > i+ D+at Y mi+ D> my+c)+mpzg

Jj=1 Jj=i+2 J=lg1+i+1

= max(f(Bit1)) + myuey.

Moreover,
(%741
max(f(Arz))) =Arz1 + Y (N +1) +a
j=1
(%71 w
< (e +1)+ N+D+at > mitc
j=1 =T2T4%]
=T Ea w
=M+ + Y (D +a+ > omi+ Y myte
j=1 F=T2141 j=%1+%]
= mm(f(B[ww))
Hence,

a < f(Ar) < f(A2) <+ < f(Arg)) < f(Brey) < f(Brgy—1) <---

Next, we consider f|a,up,. Note that for [§] 41 < i < w, we have

max(f(A;)) = X + Zw: (Aj+1)+0b,

Jj=i+1
w i—[5] i—1
min(f(B;)) = A+ 1)+ > (A +1)+b+ mj+ > mj+d,
j=i+1 j=1 J=[21+1
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and for [§] 41 <i<w — 1, we have
min(f(4;)) =0+ > (A +1)+b
j=it1

= (i1 + i(Aj+1)+b)+1

j=i+2

= max(f(Ai1)) +1,

i-[%]
max( f(B;) ml—i—z (A +1) +b+2m]+ Zm]—i-d

j=i+1 J=l51+1
w +1— ’—21
=mi+ (D QD+ i+ D) +b+ (D my—mipa_pu)+
j=i+2 j=1
( Z m; — mi) +d
J=lg1+1
w i+1- |—
= (i + D+ + +b+2m]—l— Zm]+d — M2
J=i+2 g1+l

= Hlin(f(Bi—l—l)) —Mit1-127.

Moreover,

max(f(Ayp)) = A + Zw: (Aj+1)+0b

J=i+1
w w—f%? w—1
<Qut D+ D N+D+b+ > my+ Y my+d
j=it1 j=1 j=1
= min(f(Bw))

Also, observe that
min(f(A,)) =b> a and max(f(B,)) <m+b+d<m+c+d+1=n.

Hence,

a < f(Ay) < f(Ap-1) < < f(Are) < f(Brey) < f(Breyjge) < -
< f(By) <n—1.
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Since for each i € [1,w] the a-labeling f; is injective, f is also injective on each

A; and B;, and the first result follows. Finally, consider

[51-1 51
max(f(AL)) —max(f(A[uq)) = Are1+ Z N+1)+a=T[%] —1+Z)\j+a.
j=1 j=1
(3.1)
By Lemma 3.15, we have
max(f(AL)) < ’7%—‘ — 1+ mi + Z )\j +a
J=I51+1
< Arwypr+mn+ ([$] =1+ Z Aj)+b+d
i=l51+1
<Armpptmt Y G+D+b+d
j=[21+1
(F1+D-151  (51+D)-1
= Argie A Z (Aj+1) +b+ Z m]—i— Zm]er
j=I51+1 g1+

= min(f(B[%Hl)) = min(f(Bg)).

Similarly,
min(f(BL)) = min(f(B(%ﬂ)
[

= Az + 1) + N+D+at Y mi+ > myte
=TT =2

= Az + 1)+ (2] -1+ N)+ta+ > omit Y myte
J

j=1 =[141 =148
1] w
[214) N+at Y my+e
i=1 J=I21+1%)

Thus,

(5]

min(f(B)) = min(f(Bju1)) = [% ]—i—Z)\ +a+ Z m; + ¢, (3.2)
J=l5 145 ]
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and by Lemma 3.15,

min(f(Br)) > [%] + Z Aj+a+ Z m; + ¢
j=%1+1 J=I1+1%]
> > (D +at Y omyte
j=1%1+1 =51+
>( ) NH+D+ Oz +1) +b
j=I%1+2
> Ay + Z N +1)+0b
j=I%1+2

= max (f(Arz141)) = max(f(Ag)),
and thus the second result follows. O

Example 3.17. We illustrate the results from Lemma 3.16 here.

Let M = M; U My U Mz where M; = Cg U Cq, My = Cs and M3 = (5. In this
example, m = 32 and w = 3. By Theorem 2.7 and Theorem 2.8, each M; admits
an a-labeling f; with critical value A; and vertex bipartition {A;, B;} shown as

in Figure 3.15. Note that \y = 6, Ay = 3 and A3 = 5 and A\; > A3 > \y. Let
0 1 4 6 5 2 0 1 2 3 4 5 0 1 2 3
B;
12 11 10 7 8 9 12 11 10 8 7 6 8 7 5 4
M;(Cs U C) M;(Cha) M5(Cs)

Figure 3.15: A graph M = M; U M, U M; where each of M; admits an a-labeling

A =A1UAy, A = A3, Bp =B1UBy,and B = Bs,and let a =b=4=c=d.
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Let n =32+ 4+ 4+ 1 = 41. Define a labeling function f: V(M) — [4,40] by

" i—1
filv) + > (N +1)+4, vEA U Ay;
j=1
fi(v) +4, vE As;
flv) = i—1 2 3
fz(v)+2()‘3+1)+2 mj+2m]~+8, ’UEB1UBQ;
=1 j=it+1 j=2+i
i—2
fZ(U) ij+8, ’UEBg.
\ =1

Then we have the graph M that satisfies a new labeling f as shown in Figure

3.16. We can observe that f|a,us, and f|a,up, are injective. Furthermore,

f(AL) N f(Br) = @ = f(Ar) N f(BL).

4 5 8 10 9 6 4 5 6 7 8 9 11 12 13 14
B;
40 39 38 35 36 37 32 31 30 28 27 26 23 22 20 19
M1<O6 U C(;) Ms(Cm) MZ(CS)

Figure 3.16: A labeling f of M = M; U My U Mj

Next, we show how to obtain an embedding of M in K, ,,.

Lemma 3.18. Let a, b, ¢, d, m;, m, w, M, f, A, Ar, Br, and Bg be defined as
for Lemma 3.16. Let n = m+c+d+1 and let K,,,, have vertex set Z, x [1,2] with
the obvious vertex partition. Define a labeling function f': V(M) — V(K,,) by

(

f(v), ifveAp

f(v)2, ifv € Ag;

f(v)2, ifv € Br;

kf(v)l, if v € Bp.

Then f' is an injective labeling under M. Furthermore, define f' : E(M) —
[0,m + ¢ + d] such that if e = {vi, v} € E(M), then f'(e) = f'(vs) — f'(v1) if
f'(v2) = f'(v1) and f'(e) = n+ f'(v2) = f'(v1), otherwise. Then f'(E(M)) =
lc+1,c+m).
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Proof. Recall that for 1 < i < w, the set of edge lengths f;(E(M;)) = [1,my],
because f; is an a-labeling of M;. Also, Lemma 3.16 ensures us that f” is injective.

We now consider the set of edge lengths of M under f’. Note that

B [c+ 1, ¢+ mpu], if w odd;
f(E(Mry)) =
[c+my +1,¢+my, + m(%ﬂ, if w even.
We have edge labels
) %
F(EOM) =n— | fuBE(Mw) + > mj+ Z m; +d
j=1

=I5 1+1

w w—1
:(ij+c+d+1)— Haaa+ Zm] ij~|—d

i=1 J=271+1
w w—[3]
+1)+ ij Z m; — ij (1, my]
=1 =[5+
w w“f%W w—1
=(c+1)+ ij ij—ij + [0, myy — 1] — my,
j=1 J=lgl+1

w w—1
=c+ ij—ij + [1,my] — My

j=u=T#141_j=T§1+1

=[1,my] +c+ Z m; — Z m;.

j=w—[51+1 i=[51+1

That is

[c+mpuy +1,¢+mpey +my), if w odd;

[c+ 1, ¢+ my, if w even.

Thus f/(E(M,)) > f/(E(Mps)) if w is odd and f'(E(M,)) < f/(E(Mw)) if w
is even. Next, for 1 <4 < [9] — 1, we have edge lengths

F(B(M;)) = —|—ij+ Z mJ+C

J=i+1 =13

= [1,m,~]—|—§2: m; + Z m; + c.

J=l =[]
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Note that max (f/(E(M;))) =c+ > m; =c+m.
j=1
For 1 <i < [¥] — 1, we have edge labels

(21— T2]) [91+i-1
f(EMrey4) =n— | frepn(B(Mre44) Zmﬂrzmﬁd

J=l51+1
w [F1+i—1
:(ij+(c+d)+1)— (1, mw HZ—I—ZmJ—i—Zm]qLd
=1 j= 2141
w 7 ’— 1+i-1
=(c+1)+ Z Zm] Zm] — 1, mpey4]
Jj=1 Jj=1 J=[51+1
w 7 [5]+i-1
>—m; S Yy — Z m; mrwy — 1] = mpeyy;
j=1 j=1 41

(%) +i-1

=c+ ij — Z m; | + [Lm[%Hz’] MY+

j=itl =[]+
w [51+i

= [Lmpyyp e+ Z ik Z myj.

j=itl =21+

Since
51 w 41 w
St 33w Some S g,
j=it+1 J=[%7+i j=i+1 J=[2]+i+1
= Z m; + Z m; | + mrw)y
Jj=i+1 J=l51+i+1
w W‘H
=D m Z m; + g,
j=i+1 wigy
we have
F(E(M;)) = [1,m] + maX(]?I(E(M[%Hi)))-
Since
w [5]+i (5] w
D mi— Z my= | 2 my b |+ D migy
j=i+1 21+1 j=i+1 J=l51+i+2
[

= mj + Z mrwyy; + Mit,
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we have
f_/(E(M[%Hi)) = [Lm(%Hi] + max(f/(E(MH-l)))‘

Therefore, all edge lengths of M are distinct because

ct+m > f(E(M)) > f(E(Mpg14)) > f(E(Ms)) > f(E(Mg:2)) > -+
> fI(B(My)),

where k& = [¥] if w is odd and k = w if w is even. Note that
min (f(E(My))) = c+ 1.

Since f'(E(M;)) N f'(E(M;)) = @ for all i # j, and |[E(M)| = m, we have
F(E(M))=c+1,c+m] O

Example 3.19. We illustrate the results from Lemma 3.18 here.

Let M = M; U My U Mz where M, = Cg U Cy, My = Cg and M3 = C15. Then
M is the same graph in Example 3.17 and all vertices of each M; were labelled as
the graph on the top in Figure 3.17. Let a, b, ¢, d, m;, m, n, w, f, Ar, Ag, Br,
and Bpr be defined as for Example 3.17. Recall that m = 32, w = 3, n = 41, and
a=b=4=c=d Let V(K1) = Zs % [1,2] with obvious vertex partition.
Define a labeling function f’': V(M) — V(Ky1.41) by

(

f(U)l, lf NS AL - Al U AQ,
f(v)e, ifveAr= As;

f(’l))g, if v € BL = Bl U BQ,

f(U)l, ifUGBR:Bg,

\
By using the labeling f’, we can embed M in Ky 41 as Figure 3.17. Observe that
f" is an injective labeling under M. Furthermore, define f' : E(M) — [0, 40] such
that if e = {v1,v0} € E(M), then f'(e) = f'(va) — f'(v1) if f/(v2) > f'(v1) and
f'(e) = n+ f'(vy) — f'(v1), otherwise. Then f'(E(M)) = [5,36].

In Corollary 3.20, we give bounds on the labels of the graph M that is embed-
ded in K, .



4 8 10 9 6 4 5 6 7 8 9 11 12 13 14

5

A; I E 1 I f 1

B;

40 39 38 35 36 37 32 31 30 28 27 26 23 22 20 19
Ml(Cﬁ U Cﬁ) Mg(clg) MQ(Cg)

44 51 8 104 91 61 321 314 307 28y 271 264 114 124 134 144

S

402 392 382 352 362 372 42
M, (Cs U Cy)

@

Figure 3.17: An embedding of M = M; U M, U Ms in K4 41 by using the labeling
f‘/

Corollary 3.20. Leta,b,c,d, m;, m, w, M, Ay, Ar, By, Bgr, f, and f" be defined
as for Lemmas 3.16-3.18, and n =m + c+d+ 1. Let v = max{f'(AL), ['(Ar)}
and y = min{ f'(Br), f'(Br)}. Then f'(M) C ([a, 2] U [y,n —1]) x [1,2].

Proof. Let K, , have vertex set Z, x [1,2] with the obvious vertex partition.
Recall that f: V(M) — [a,n — 1] and f': V(M) — V(K,,) such that f' = f.
Since f(AL) < f(Br) and f(Ag) < f(Bg), we have max (f'(A.)) < min (f'(By))
and max (f'(Ag)) < min (f'(Bg)). Moreover, in the last part of the proof of

Lemma 3.16, we showed that
max (f(Ag)) < min (f(Bg)) and max (f(Ag)) < min (f(BL)).
Thus,
max (f'(Ar)) = max ((f(A)) < min ((f(Br))1) = min (f'(Br))

max (f'(Ag)) = max ((f(Ag))2) < min ((f(Br))2) = min (f'(BL)).

We conclude that x < y, thus the result follows. O]
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In the next corollary, we give exact values for the x and y from the the proofs of

Lemmas 3.25-3.27. The exactly values of = and y are shown in the next corollary.

Corollary 3.21. Let a,b,c,d, m;, m, w, M, Ay, Ar, B, Br, [ and f' be defined
as for Lemmas 3.16-3.18, and n = m +c+d+ 1. Let x and y be defined as for
Corollary 3.20. Then

(5] w
r = max{ |5 ] —i—Z)\j—l—a—l, 9]+ Z A +b—1},
j=1 j=rg1+1

51 w
min{[$]+ > Aj+a+c 9]+ X A+b+d+mi}, if w odd,
B i=1 j=(Z7+1
y= 4] w
min{[ 5]+ X Ajtat+ct+my |5+ D A +b+d+mi}, if w even.
= =141
Proof. Since ' = f, we can investigate = and y from the function f. From
equations (3.1) and (3.2) in the proof of Lemma 3.16, we have

51
max (f(Ar)) = max (f(A(%])) =[] -1+ Z)\j + a,

[51
min(f(BL)):maX(f(B( D) =T%] —i—Z)\ +a+ Z m; + c.
j=1 F=151+1%1
Note that

nlg

[51+

M

Aj+a+c, if w odd;
min (f(BL)) =

— .
vlg |
O

H+

/\ +a+m, + ¢, if w even.

HM

In the proof of Lemma 3.16, we have

=
IS
»
~
~
—
N
=
=
|
=
IS
»
~—
~
—
e
+
=
SN—
|
=
-
=
+
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min (f(Bg)) = min (f(Bre141)
(T$1+D-[%]  (1%1+D-1
N+1)+b+ Z mj+ Y mj+d

j= +2 J= fw 1+1

@Ms

2]+ ZA +b+d+m.
J=lF1+1

Thus,
41
r = max{[ 1+Zx\ +a—1,] %—1—2/\ +b— 1},
J=1 J=[51+1
[F] w
min{[§]+ > A; +a+cL§J+Z/\j+b+d+m1}, if w odd;
_ j=1 =l51+1
y= 41 w
min{[Z]+ > Aj+atctmy, 5]+ > A +b+d+mi}, if weven.
j=1 i=[F1+1
This concludes the proof. O

Lemma 3.22. Let M of size m be the vertezx-disjoint union of 2-reqular bipartite
graphs, each of which admits an a-labeling. Let G be the vertez-disjoint union
of the graph M and a path P of size 20 — 1, where € is a positive integer. Let
n=m+20+1 and let K,,,, have vertex set Z, x [1,2] with the obvious vertex
partition. Then there ezists an embedding of G in K, , with one edge of each
length in [—(n—1)/2, (n—1)/2] \{£z} for some z € [1,(n—1)/2] and such that
the endpoints of P are ji and jo for some j € [0,n — 1].

Proof. Let M = M;UM,U- - -UM,, such that each M; admits an a-labeling f; with
critical value \; and \; > )‘(%Hl > Ay > )\(%HQ >.--. Leta,b,c d, f, [, and f’
be defined as for Lemmas 3.16-3.18 and n = m+2(+1. Let V(K ,) = Z, x [1, 2]
with the obvious vertex bipartition, and assume that a = b =c=d = {. We will
embed G in K, , by giving embeddings of both M and P. To embed M, define a

labeling function

h: V(M) = [t,n—1], h': V(M) = V(K,,), i : E(M)— [0,n — 1]
by h = f, W = f' and i/ = f'. Then by Lemma 3.18, &’ is an injective labeling of
M and B/ (V(M)) C [¢,n — 1] x [1,2]. Furthermore h'(E(M)) = [( + 1,{ +m] =
+[l+1,m/2+ 1.
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By Lemma 3.3, there exists an embedding of P of size 2¢ — 1 by using the edge
lengths in {0} U £[1, ¢ — 1] with endpoints 0; and 0y. In the lemma, we would use
dy=1,dy=2,...,dp_y=0—1,50V(P)C[0,0—1] x[1,2].

Thus, M and P are vertex disjoint and the edge set of G has one edge of each
length i € [—(m/2 4 ), m/2 4+ (] ~ {£(}. O

Example 3.23. We illustrate the results from Lemma 3.22 here.

Let G be the vertex-disjoint union of C5, Cg, Cg, Cy, and Pys. Let M; = CgUCs,
My = Cg and M3 = (5. Then by Theorem 2.7 and Theorem 2.8, each M;
admits an a-labeling f; with critical value \; and vertex bipartition {A;, B;} (see
Figure 3.15). Then A\; > A3 > X\y. Let a, b, ¢, d, f, f' and f’ be defined as for
Lemmas 3.16-3.18. Let M = M; U M; U M3. Then G = M U Pg. Since ¢ = 2, we
havea =b=2=c=d and n=m + 2( + 1 = 41. The vertex labeling f’ of M is
shown in Figure 3.17. Let V(K41 41) = Z41 % [1,2] with obvious vertex partition.
To embed M in Ky 41, define labeling functions

h: V(M) — [4,40], h': V(M) = V(Kgua), B : E(M) — [0,40]

by h = f, ¥ = f and I/ = f'. Note that the set of edge lengths of M is
W(E(M))=[0+1,0+m]==%[l+1,m/2+ €= £[5,20].

By Lemma 3.3, there exists an embedding P of Py such that V(P) C [0, 3] x
[1,2] and with edge lengths set {0} U £[1,3]. Thus G can be embedded in Ky 41
with the edge set of G having one edge of each length i € [—20,20] \ {£4} (see
Figure 3.18).

Theorem 3.24. Let M be a 2-regular bipartite graph of order m = 0 (mod 4).
Let G be the disjoint union of M and a cycle C' of size 20+ 1 where £ is a positive
integer and n = m+2{+1. Then there exists a G-decomposition of K(ap41)xn for

all positive integers k and of Ky xa, for all integers k' > 3.

Proof. Since m = 0 (mod 4), the graph M is the union of graphs that ad-
mit a-labelings. Combine with Lemma 3.22 and Lemma 3.1, we obtain a G-
decomposition of K(g41)xn for all positive integers k. By Lemma 3.22 and

Lemma 3.2, a G-decomposition of Ky, exists for all integers &’ > 3. O



Figure 3.18: An embedding of G = C1o U Cs U Cs U Cs U Py in Kyq 41

Next, we focus on the case when the number of cycles of order 2 (mod 4) in

G is odd.

Lemma 3.25. Let M of size m be the vertex-disjoint union of 2-reqular bipartite
graphs that admit a-labeling. Let G be the vertex-disjoint union of M, a cycle C'
of sizem’ =2 (mod 4) and a path P of size 1. Let n =m+m'+ 3 and let K,,,
have vertex set Z,, X [1,2] with the obvious vertex partition. Then there exists an
embedding of G in K, ,, with one edge of each length in [—(n —1)/2,(n —1)/2] <
{£z} for some z € [1,n — 1] and such that the endpoints of P are j; and js for

some j € [0,n — 1].

Proof. Let M = M;UM,U---UM,, such that M; admits an a-labeling f; with crit-
ical value \; and vertex bipartition {4;, B;} where A\; > A2 > Ag > Areyyg >
. Leta, b cd f, f, f', Ar, Ar, By, and Bg be defined as for Lemmas 3.16—
3.18 and n = m +m/ + 3. Let V(K,,) = Z, x [1,2] with the obvious vertex
bipartition. We will embed the graph G in K, ,,, consisting of the graph M of size
m, the cycle C' of size m’' and the path P of size 1.

Case 1. Suppose that w is even. Assume that a =1 =05 and ¢ = %/ +1=d.
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Let x and y be defined as for Corollary 3.21. Then

(%1 w 5]
r = max{[¥] +Z/\j, 5]+ Z At =131 +Z/\j’
j=1 i=§1+1 i=1

51 w
y = min{[¥] +Z)\j+2+%/+mw, 5]+ Z A 242 +my )
j=1 J=lg1+1

Define a labeling function
h: V(M) = [1L,n—1),0: V(M) = V(K,,), /W : E(M) — [0,n— 1]

by h = f, ' = f" and ¥ = f’. Then by Lemma 3.18, A’ is a injective labeling
under M and W' (M) C ([1,2] U [y,n — 1]) x [1,2]. Furthermore M has a set of
edge lengths

R(E(M)) =% +2/m+ % +1] =£[% +2,2 + 2 4 1),

By Lemma 3.3, there exists an embedding of the path P of size 1 using edge
length 0 with endpoints 0; and 0,. Next, we will embed the graph M of size m
and the cycle C of size m’ by considering the congruence class of m modulo 8.

Case 1.1. Suppose that m’ = 2 (mod 8). Let m’ = 8¢ + 2 for some positive
integer ¢. Recall that M has a set of edge lengths

W(E(M))=£[% +2,2 + 2 4 1],

1% w
y=min{[2]+ Y N+ 4t +3+my, [2]+ Y A+ 4t +my + 3}
j=1 =g+

By Lemma 3.8, there exists an embedding of a cycle C* of size m’ with edge
lengths
£[2,4¢ + 2] = £[2, 2 +1].

Furthermore, V(C*) C [0,4t + 2] x [1,2]. Let C = C* + (x + 1). Then V(C) C

[ +1,4t+2+ (z+1)] x [1,2]. By using Lemma 3.15, note that 4t +2+ (z+1) =
5]

d+3+[91+ DA <uw.
j=1

/

Thus the edge set of G has one edge of each length i € [—(% + 5% + 1), % +
mp 1]\ {1}
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Case 1.2. Suppose that m’ = 6 (mod 8). Let m’ = 8¢+6 for some nonnegative
integer .

Subcase 1.2(a). t = 0. Then M has a set of edge lengths

W(E(M)) = %[5, % +4].

Recall that
51 w
y = min{[ %] +Z)\j—|—mw+5, 5]+ Z Aj +my + 5}

j=1 =121+1

To embed C of size m' in K, ,,, let C* = (01, 32, 21, 02, 31, 25). Its lengths are
3,-1,2,-3,1,~2. Let C'= C* + (2 +1). Then V(C) C [o+1,3+ (¢ +1)] x [1,2].
By Lemma 3.15, note that 3 + (x4 1) = [§] + [i] Aj+4<y.

Thus, M, C' and P are vertex-disjoint, and t]}jel edge set of G has one edge of
each length i € [—(F +4), 5 +4] \ {F4}.

Subcase 1.2(b). ¢t > 1. Then M has a set of edge lengths

W(BE(M))=£[Z +2,2 + 2 4 1],

[51 w
y = min{[¥] +Z)\j+4t+5+mw, ety Z Aj+4t+54+my}.
j=1 j=Ig1+1

By Lemma 3.9, there exists an embedding of a cycle C* of size m’ with edge

lengths is
(1,4t +4)] ~ {£2}] = £[1, 2 + 1] ~ {£2}.

Furthermore, V(C*) C [0,4t + 4] x [1,2]. Let C = C* 4+ 1. Then V(C) C
(x

[z 4+ 1,4t +4+ (z + 1)] x[1,2]. By Lemma 3.15, note that 4t + 4+ (z + 1) =

(51
4t +5+ 51+ N <w.
Jj=1

Thus the edge set of G has one edge of each length i € [—(%F + %' +1), % +
m 1]\ {+2).
Case 2. Suppose that w is odd. Let m’ = 4¢ + 2 for some positive integer ¢, and
assume that a =2 =d, b = 2t + 2 and ¢ = 4t + 2. By Corollary 3.21, we have

51 w
r = max{[¥] +Z/\j+1, 2]+ Z)\j—i—Zt—l—l},
j=1

J=l31+1
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14 w
y=min{[L]+ ) N+ 4t +4, (2] + > N +2t+4+my}
i=1 =%+

Define a labeling function
h: V(M) = [2,n—1),h: V(M) = V(K,,),) : E(M) — [0,n — 1]

by h = f, ' = f" and ¥ = f. Then by Lemma 3.18, A’ is a injective labeling
under M. Furthermore, M has a set of edge lengths

W(E(M))=[4t+3,4t +2+m] = [m + 1,2 + = + 1] U [-(Z + 2 + 1), -3).
To embed C' of size 4t + 2 in K, ,, let
C=G1+ G+ (29,11,05, (2t + 4 +m))
where

Gi=P(m+2t+4,0,2t+1),

Gy =Q(m+3t+6,—(t — 3),2t — 2).

We then show that G + G5 + (22, 14,09, (m + 2t + 4)1) is a cycle of size 4t + 2.
Note that by P1 and Q1, the first vertex of Gy is (m + 2t + 4);, and the last
vertex is (¢ + 1)g; the first vertex of Gg is (t 4+ 1)z, and the last vertex is 2. For
1<i<2 let A;(C) and B;(C) denote the sets labeled A" and B’ in P2 and Q2,

we compute

ALC) = [(m+ 2t +4)1, (m+3t +4)1],  Bi(C) = [(t + 1)a, (2t + 1)s)],
Thus,
Al(C) < AQ(C) and BQ(C) < Bl(C)

Note that V(G1) NV (Gy) = {(t + 1)2}; otherwise, G; and G are vertex disjoint.
Therefore, G1 + G5 + (22, 11,09, (m + 2t + 4)1) is a cycle of size 4t + 2.
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Next, let E;(C) denote the set of edge labels in G; for 1 <i < 2. By P3 and
Q3, we have edge lengths

Ei(C) = [~(m+2t+3),—(m+3)] = [+ 1,m],

/

Ey(C) =[—(m+4t+2),—(m+ 2t +5)] = [3, 5 —1].

Moreover, the path (22, 11,09, (m + 2t + 4)1) consists of edges lengths 1, —1, and
—(m+2t+4)=2t+1="12"
Note that in this case

min (A'(Az)) = min (K'(4;)) =2

5] w—1
max (' (By)) = my +b+ Y _mi+ Y mj+d<b+d+m=2+4+m.
=1 aerae
Also,
min (h'(Ag)) = min (W' (4,)) =b =2t + 2,
max (h'(Br)) = max (h'(B1)) =m+a+c=m+4t+4=n—1
Since

2 =min (h'(AL)) < max (h'(Bg)) < 2t + 4 +m = min (4;(C) U 45(C)),

n—1=max (h'(Bg)) > min (W' (Ag)) =2t +2 > 2t + 1 = max (B (C) U By(C)),

we have M and C' are vertex disjoint.

By Lemma 3.3, there exists an embedding of a path P* of size 1 using edge
length 0 with endpoints 0; and 0y. Let P = P* + (z + 1) with endpoints (z + 1),
and (x4 1)2. Note that 2t +2 < 4t 4+ 3 = n. Thus, the edge set of G has one edge
of each length i € [—2t,2t], except the edge lengths +(2¢ 4+ 1). Since z + 1 < y,
we have P is vertex disjoint from M and C'. Thus, the edge set of G has one edge
of each length i € [—(2 + 2 + 1), 2 + 2 + 1]\ {&2}. O

Example 3.26. We illustrate the results from Lemma 3.25 here.
Let G be the vertex-disjoint union of Cy, Cg, Cys, Cy, C4, Cy and P,. Let
M, = Cs, My = Cy, M3 = Cy, My = Cg and My = Cy. Then by Theorem 2.7, each
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M; admits an a-labeling f; with critical value \; and vertex bipartition {A;, B;}.
Figure 3.19 illustrates the a-labeling of M;. Then Ay > Ay > Ao > A5 > A3. Let
a, b, c,d, f, f', f', Ar, Ar, Br, and By be defined as for Lemmas 3.16-3.18. Let
M=MUMyU---UMs. Then G = M UC1qgU P,. Note that m’ = 10, m = 28
and ¢t = 2. Then n = m + m/ + 3 = 41. Since 10 = 2 (mod 8) and M consists of
five subgraphs M;, we need to use Case 2 in Lemma 3.25 to embed G in Ky 41.
In this case, we assume that a =2 =d, b =2t +2 =6 and ¢ = 4t + 2 = 10.

To embed M in Ky 41, define a labeling function

h: V(M) = [2,40], B': V(M) = V(Kuq), ' E(M) — [0, 40]

by h = f, ¥ = f and ' = f. Then the vertices of M are labelled as in
Figure 3.20. Note that V(M) C ([2,11] U [20,40]) x [1,2] and the set of edge
lengths of M is h'(E(M)) = [11,20] U [-20, —3].

To embed Cyg in Ky 41, let C =Gy + Gy + (22, 11,09, 361) be an embedding
of Cp where G; = P(36,0,5) and Go = Q(40,1,2). For 1 <i <2, let A4;(C) and
B;(C) denote the sets labeled A" and B’ in P2 and Q2, we compute

A (C) =[(m+2t+4)1, (m+ 3t +4)1] = [361,384],
Bi(C) =[(t+ 1)s, (2t + 1)3] = [32, 52,

Ay (C) = [(m+ 3t +6)1, (m+ 4t +4);] = {40, },
By(C) = [29, (t + 1)) = [22,32].

Then V(C) = (([36,40] U {1}) x {1}) U (([2,5] U {0}) x {2}) and the set of edge
lengths of C'is [6,10] U [3,4] U {—1,1,5}. Thus, C' is vertex disjoint from M.
Let x and y be defined as for Corollary 3.20. Then we can note that

T = max (U W(A;)) =11 and y = min (U W(B;)) =20

i=1
By Lemma 3.3, there exists an embedding P* of P, in K4; 41 with endpoints 0,
and 0q, and its edge length 0. Let P = P*+ (z 4+ 1) = P* 4+ 12 with endpoints
12, and 125. Hence, G can be embedded in Ky; 41 so that the edge set of G has
one edge of each length i € [-20,20] \ {£2}.
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0 1 2 3 0 1 2 3 0 1 0 1 0 1
8 7 5 4 8 7 5 4 4 2 4 2 4 2
M, (Cy) M4(Cs) M,(Cy) M;5(Cy) M3(Cy)

Figure 3.19: A graph M = M;UMsU- - -U M5 where each M; admits an a-labeling.

221 61 71 321 301 81 91

1 12 282 262 62 72 222 202
M, (Cy) M;5(Cy) Ms(Cy)

12,

Figure 3.20: An embedding of G = CS U OS U 04 U 04 U 04 U 010 U PQ in K41741

Lemma 3.27. Let M of size m be the vertex-disjoint union of any 2-reqular
bipartite graphs, each of which admits an a-labeling. Let G be the vertex-disjoint
union of M, a cycle C' of size m' and a path P of size 20 — 1 where m' = 2(mod 4)
and £ > 2 is an integer. Let n = m+m' + 20+ 1 and let K,,,, have vertex set
Zy, x [1,2] with the obvious vertex partition. Then there exists an embedding of
G in K, , with one edge of each length in [—(n — 1)/2,(n — 1)/2] \ {xz} for
some z € [1,(n — 1)/2] and such that the endpoints of P are j; and js for some
je0,n—1].

Proof. Let M = M;UM,U---UM,, such that M; admits an a-labeling f; with crit-
ical value \; and vertex bipartition {A;, B;} where A\; > Arwiyn > Ag > Arwygg >
... Leta,b, c, d f, f,f, AL Ag, By and By be defined as for Lemmas 3.16-
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318 and n=m+m' +20+ 1. Let V(K,,) = Z, x [1,2] with the obvious vertex
bipartition. We will embed the graph G, consisting of the graph M of size m, the
cycle C' of size m’ and the path P of size 2¢ — 1.

Case 1. m’ = 6. To embed M of size m in K,,,,, assume that a =b=c=d =

¢+ 3. Define a labeling function

h: V(M) = [(+3,n—1],h": V(M) = V(K,,), )N : E(M) — [0,n—1]

by h = f, ' = f and i’ = f’. Then by Lemma 3.18, &’ is a injective labeling
under M and h'(M) C ([( +3,z| U [y,n — 1]) x [1,2]. Furthermore M has a set of
edge lengths

WEM)={U+4m+0+3)==x[(+4,2+0+3]

Let x and y be defined as for Corollary 3.21. Then

Kl " ki
r=max{[2]+ > N +HL+2 (2] + D N+ L+ =[2T+> N +L+2,
j=1 j=1

J=131+1

(41 w
min{[$]+ > A +20+6,[5] + > A+ 2046+ m}, if w odd;
' F=51+1

—_

w
2

min{[§] 4+ > A +204+6+my, [5] + > Aj+204+6+me}, if weven.
= i=[21+1

<
I
— <

To embed C' of size 6 K, ,,, let C* = (01, 32, 21, 03, 31,29). Its edge lengths are

3,—1,2,-3,1,—2. Let C = C*+(z+1). Thgn V(C) C [x+1,3+(xw+l)] x[1,2]. By
Lemma 3.15 and £ > 2, we have 3+ (][5 | %ji] Nj+H043) = [5] +%1 Aj+0+6 <y.
By Lemma 3.3, there exists an embedél?rllg of P of size 2¢ —]flusing the edge
lengths in {0} U=+{4, ¢+ 2} with endpoints 0; and 0,. In the lemma we would use
dy=4,dy=5,....dey =(+2, 50 V(P)C[0,0+2 x[L,2].
Thus the edge set of G has one edge of each length i € [— (%% +£+3), 3 +(+
3N {0+ 3)}
Case 2. m' > 10. First we will embed a graph M in K, ,, assume that a = b =

c:dzﬁ—l—m?/.
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Let x and y be defined as for Corollary 3.21. Then

r = max{[5] + Zz\ + 0+ % —1,[%j+2)\j+€+%’—1}

j=rg1H
51
=[2T+> N+e+2 -1,
j=1
51 w
min{ [§] 4+ > A +204+m/, [F] + > A +20+m' +my}, if w odd,;
_ J=1 J=l51+1
4= 4] w
min{[§] 4+ > A +204+m' +my, [§] + > A +20+m +my}, if w even.
=1 =14

Define a labeling function

h: VIM) = [0+ n—1),h: V(M) — V(Kn.), /' : E(M) = [0,n — 1]

2

by h = f, b’ = f and b’ = f’. Then by Lemma 3.18, k' is a injective labeling
under M and K (M) C ([¢ + %, 2] U [y, n — 1]) x [1,2]. Furthermore M has a set
of edge lengths

WEM)=E+Z+10+ZT +m=£0+Z + 1,0+ % +2

For an embedding of the remaining graphs C' of size m’ and P of size 2/ — 1
in K, ,, we will consider 2 cases.
Case 2.1. m’ =2 (mod 8). Let m’ = 8t + 2 for some positive integer t. By

Lemma 3.8, there exists an embedding of a cycle C* of size m’ with edge lengths
(1,4t +2] = £[1, 2 + 1]

and V(C*) C[0,4t 4+ 2] x [1,2]. Let C = C*+ (z+1). Then V(C) C [z + 1,4t +

2+ (z+1)] x [1,2]. Note that by using Lemma 3.15, we have 4t + 2+ (x + 1) =
, 51 51
T+l (1Y 1—#2)\ 0+ =21+ 3 N\ +0+m'+1 <y. Thus, C is vertex
= j=1
disjoint from M.

By Lemma 3.3, there exists an embedding of P of size 2¢ — 1 using the edge
lengths in {—1,0,1} U £[%" + 2,¢ + ™ — 1] with endpoints 0; and 0,. In the
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lemma we would use d; = 1,dy = & +2,...,dp1 = { + m?/ — 1, s0 V(P) C
0,6+ 2 —1] x [1,2].

Thus, M, P and C' are vertex disjoint, and the edge set of G has one edge of
cach length i € [—(Z + 2 + (), 2 + 2 4 (] \ {£(Z +0)}.

Case 2.2. Suppose that m’ = 6(mod 8). Let m’ = 8¢ + 6 for some positive
integer t. By Lemma 3.9, there exists an embedding of a cycle C* of length m’
with edge lengths

1,4t + 4] N {2} = £[1, 2 + 1]\ {£2}

and V(C*) C [0,4t + 4] x [1,2]. Let C =C*+ (z+1). Then V(C) C [z + 1,4t +

44 (x +1)] x [1,2]. Note that by using Lemma 3.15, we have 4t + 4+ (v + 1) =
51 51
—+1+(H+ZA O+ = H+Z>\ +l4+m' +1<y.

By Lemma 3. 3 there exists an embeddmg of P of size 2¢ — 1 using the edge
lengths in {0} U {£2} U £[% + 2,2 + ¢ — 1] with endpoints 0, and 0,. In the
lemma we would use d; = 2,dy = 7 +2,...,dp =L+ m?, — 1, s0 V(P) C
[—(+Z —1),0+2 — 1] x [1,2].

Thus the edge set of G has one edge of each length i € £[—(2 + % + (), 2 +
m N {2+ 0 O

Example 3.28. We illustrate the results from Lemma 3.27 here.

Let G be the vertex-disjoint union of Ci4, Cia, Cs, Cg, Cs, Cy and P,. Let

M, = CgUCg, My = Cy, Mg = Ci5 and My = C;. Then by Theorem 2.7
and Theorem 2.8, M; admits an a-labeling f; with critical value \; and vertex
bipartition {A;, B;}. Figure 3.21 illustrates the a-labeling of M;. Then \; >
A3 > Ao > M. Leta, b, e, d, f, f', f', AL, Ar, By, and By be defined as for
Lemmas 3.16-3.18. Let M = M;UM; U Ms;UM,. Then G = MUC4U P,. Note
that m’ = 14, m = 36 and ¢ = 2. Then n =m + m' +2¢ + 1 = 55. Since 14 =6
(mod 8), we need to use Case 2.2 in Lemma 3.27 to embed G in K5 55. In this
case, we assume that a =b=c=d =09.

To embed M in Kps 55, define a labeling function

h: V(M) = [9,54], '+ V(M) = V(Kss55), B : E(M) — [0,54]
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by h = f, ' = f" and ¥ = f'. Then the vertices of M are labelled as in
Figure 3.21. Note that the set of edge lengths of M is h'(E(M)) = %[10,27].
Let z and y be be defined as for Corollary 3.20. Then we can observe that

z = max ( U W(4;)) =19 and y = min (U W(B;)) = 32.

i=1 =1
Note that V(M) C (]9,19] U [32,54] x [1,2].

By Lemma 3.9, there exists an embedding of a cycle C* of size 14 with edge
lengths +[1, 8]\ {2}, and V(C*) C [0,8] x [1,2]. Let C = C*+(z+1) = C*+20
be an embedding of Cy4. Note that V(C) C [20,28] x [1,2]. Thus C is vertex
disjoint from M.

Finally, by Lemma 3.3, there exists an embedding P of P, using the edge
lengths in {—2,0,2} with endpoints 0; and 02, and V' (P) C [0,2] x [1,2].

Hence, G can be embedded in K, , with edge set of G has one edge of each
length i € [—27,27] ~ {£9}.

0o 1 4 6 5 2 P ol dueag 44 5 0 1 2 3 0 1
12 11 107 8 9 1211 108768754%
M, (Cs U Cy) M;5(Ch2) My (Cs) My(Cy)

Figure 3.21: A graph M = M;UM;UM3U M, where each M; admits an a-labeling

By using the results of Lemmas 3.1-3.2, we obtain the following theorem.

Theorem 3.29. Let G be a 2-reqular graph of odd order m consisting of any
number of even cycles and only one odd cycle. There exists a G-decomposition of

Kor1)xn for all positive integers k and of Ky xon for all integers k' > 3.

Proof. Let M = My U M, U ---U M, where M; is an even cycle of size m;, and
let m = my +me +---+my. Let G = M UC,, of size n where m’ > 3 is an
odd integer. If w = 1, then G has only two components; G consists of one even

cycle and one odd cycle. Then the results follow from Theorem 3.12. Assume that
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Figure 3.22: An embedding of G = 012 U 06 U Cﬁ U Cg U 04 U 014 U P4 in K55755

w>2. If m=0 (mod 4), we are done (see Theorem 3.24). Suppose that m = 2
(mod 4). Let M* = {M; : M; C M and m; = 2 (mod 4)}. Then |M*| is odd.
Let C,, be one of the cycles in M*. The cycles in M* ~\ {C,,/} can be partitioned
into pairs of graphs that admits a-labelings. Also note that the cycles in M ~ M*
all have lengths 0 (mod 4) and thus admit a-labelings. By combining the results
of Lemma 3.1 and Lemmas 3.25-3.27, we obtain a G-decomposition of K(ap41)xn
for all positive integers k. By combining Lemma 3.2 and Lemmas 3.25-3.27, a

G-decomposition of Kjya, exists for all integers k' > 3. ]

If a G-decomposition of K, exists (i.e., if the Oberwolfach problem has a

solution in this case), then a G-decomposition of Kok, 1, will also exist.

Theorem 3.30. Let G of order n be a 2-reqular almost bipartite graph. If a G-
decomposition of K,, exists, then there exists a G-decomposition of Kopni for all

positive integers k.

Proof. Observe that Kogpypn = (25 + 1)Ky, U K(9k11)xn. Since a G-decomposition
of K, exists, a G-decomposition of (2k + 1)K, will also exist. By Theorem 3.29,

there exists a G-decomposition of K(ox41)xn. The result follows. O
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3.3.3 (G consisting of three odd cycles
Finally we consider the case where GG consists of three cycles of odd length.

Lemma 3.31. Let n > 3 be an odd integer and let m < (n — 1)/2 be a positive
integer. Let K, , have vertex set Z, x {1,2} with the obvious vertex partition.
Let dy,ds, ..., d,_1 be an increasing sequence of consecutive positive integers with
dm—1 < (n—1)/2. There exists a path P in K, ,, of size 2m — 1 whose edges have
lengths 0, +dy, £ds, ..., £d,,—1 with endpoints 01 and Os. Furthermore, V(P) C
(10,121 = 1)U [dpmor — [ 2] + 1,dm]) x [1,2].

Proof. If m = 1, let P be the path consisting of the edge {0;,02}. Otherwise,
k—1

for k € [1,m — 1], define v, = Z(—l)idm_l_,-. Note that since d;y; — d; = 1, we
=0
have vy; = j and vgj41 = dp—y — j. Thus, v,y = [F] —1if m — 1 is even and

U1 = dm—1— |5 ] +1if m—1is odd. Similarly, vy, = [5]—1or dyp_1— 5] +1
if m — 1 is odd or even, respectively.

Consider the path of size m — 1 given by P’: 01, (v1)2, (v2)1, (v3)2, . . . where P’
ends with (v,,_1)2 if m — 1 is odd or (v,,—1)1 if m — 1 is even. Thus, V(P') C
(10,121 = 1] U [dp-1 — [ 2} + 1,dp-1]) x [1,2]. Also, observe that the lengths of
the edges of P’, in the order encountered, are d,,_1,dn_2,...,d;.

Next consider the path P”: 0q, (v1)1, (v2)2, (v3)1, ... where P” ends with (v,,—1);
if m —1is odd or (v,,_1)2 if m — 1 is even, and observe that the edges on P”,
in the order encountered, are —d,,_1, —d,,_2, ..., —d;. Since P" is constructed in
the same way as P’ with the corresponding vertices lying in the opposite parts of
V(Kpn), we have V(P") C ([0, [2] = 1 U [dp-1 — [ 2] + 1,dpn-1]) % [1,2], and
V(P)NV(P") =@.

Construct the path P from the paths P’ and P” by adding the edge from
(Um—1)1 t0 (Um—1)2. Note that P has size 2m — 1, the edges of P have lengths
0,%dy, £ds, ..., +dp_1, and V(P) C ([0,[2] = 1] U [dp-1 — [ 2] + 1,dpn1]) ¥
1,2]. O

Theorem 3.32. Let G be a 2-reqular graph of order n consisting of exactly

three odd cycles. For every positive integer k, there exists a G-decomposition
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of Kok 11)xn-

Proof. Let G = Copi1 U Oy U Cyzyq Where z,y, and z are positive integers and
let n = 2x + 2y + 22 + 3. Let k£ > 1 be an integer. Label the vertex set of
K (2k4+1)xn With the elements of the group Z,, x [1,2k + 1] with the obvious vertex
partition. Let (@, o) be an idempotent commutative quasigroup of order 2k + 1,
where ) = [1,2k + 1].

Fix r and s with 1 <r < s < 2k+1. We will construct a graph G, ; consisting

of the vertex-disjoint union of the following three cycles: C, ; of size 2z + 1, C;’S
of size 2y + 1, and C,’,:S of size 2z + 1. We will consider two cases.
Case 1. G has at least two cycles of size 3. Without loss of generality, we may
assume that x = y = 1. Then the vertex sets of C, ; and C’;’s can be given by
(07, 15, 3r0s) and (3,25, 5y05), respectively. If 2 = 1, then the vertex set of C7
can be given by (4,, 4, 8,.5). Suppose that z > 2. By Lemma 3.31, there exists a
path P}, of size 2z — 1 whose edges have lengths {0} U=[5, 2z + 3]. In the lemma,
we would use dy =5, dy =6, ..., d.-1 = 2+ 3,50 V(P},) € [0,z + 3] x {r,s}
with endpoints 0, and 0,. Let B, = P} + 4. Thus P/, has endpoints 4, and 4.
Then V(P/,) C [4, 2+ 7] x {r,s}. Thus, P/, is vertex disjoint from C,, and Cj ..
Construct the cycle C7, of length 2z + 1 from the path P/, by adding the edges
{40800} and {4,, 80}

Note that in the subgraph of K (ox11)x, with vertex set Z, x {r, s}, G, contains
one edge of each length i € [—1,1]U+[5, z+3] (if z = 1, the G, 5 contains one edge
of each length i € [—1,1]). Moreover, the three edges of G, s that are incident
with vertices in Z, x {r,r o s} are all of different lengths. For instance, the

edges {0,,3,0s} in Cys, {3;,5r05} in C/ , and {4,,8,:} in CV

s » s, have lengths 3,
2, and 4, respectively, if » < r o s, and lengths —3, —2, and —4, respectively,
otherwise. Similarly, the three edges of G, s that are incident only with vertices
in Z, x {s,r o s} are all of different lengths. For instance, the edges {15, 3,0} in

Chrsy {25,505} In C, and {4, 8,05} in CV

7,87

o have lengths 2, 3, and 4, respectively,

if s < ros, and lengths —2, —3, and —4, respectively, otherwise. Figure 3.23

shows an example of C,.,, C] ; and C]/; where x =y =1 and 2z = 4.
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Next, let Gy, = {Gs +£:0 < ¢ <n—1}. Thus G contains n distinct
copies of G. Moreover, in the subgraph of Koy 1)x, with vertex set Z, x {r, s},
G* contains all edges of length i for all i € [—(n —1)/2,(n — 1)/2] \ £[2,4]. Let
C={G,s+0:1<r<s<2k+1,0<¢<n-—1} and note that C contains
(2]“; 1)n distinct copies of G. We will show that every edge of K(p41)xn appears
on some copy of G in C. Let e = {i,,js} with r < s be an arbitrary edge of
Kok41)xn- Let t' be the unique solution to r ot’ = s and let o' = min{r,#'} and
B" = max{r,t'}. Let t” be the unique solution to sot” = r and let o = min{s, ¢}
and " = max{s,t"}. If j—i € [-(n—1)/2,(n—2)/2] \ £[2,4] then e belongs to
Grs+ ¢ where 0 </ <n-—1.

Note that if j — i = 2, then e belongs to the triple {(i,7), (i — 1,t'),(j,s)}
which is a copy of Cy . if t' < r, or a copy of C], if r < t'. If j —i =3, then e
belongs to the triple {(i,7), (i +1,), (j,s)} which is a copy of C}, . if ' <, and
a copy of Cpp if r < t'. Also, if j —4 = 4, then e belongs to some copy of C7), 4.
Thus, if j —i € [2,4], then e belongs to G g + ¢ where 0 < ¢ <n — 1.

Observe that if j —i = —2, then e belongs to the triple {(j, s), (j —1,t"), (i,7)}
which is a copy of Cy  if t" < s, or a copy of C{  if s <t". If j —i = —3, then e
belongs to the triple {(j,s), (j +1,¢"), (4,7)} which is a copy of C}, , ift" < s, or a
copy of Cyn if s < t". Also, if i — j = —4, then e belongs to some copy of Cf, g
Thus, if j —i € [—4, —2], then e belongs to G g + ¢ where 0 < ¢ < n — 1. Since
every edge of K(opy1)xn appears on some copy of H in C and since C contains

(%; l)n distinct copies of G, it follows that C is a decomposition of K(a41)xs, into
0, 3 4, 5. 10, 11,
Dgros : 57"05 ; ; ; : 87‘03
1, 2, 11, 10, 5, 4,

Figure 3.23: €, €], and C]  where v =y =1 and 2 = 4

copies of G.

Case 2. G has at most one cycle of size 3. Suppose y > 2 and z > 2. By
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Lemma 3.31, there exist a path P, of size 2z — 1 using the edge lengths in
{0} U=x[y+ 2+ 3,2+ y + z + 1] with endpoints 0, and 0,. In the lemma, we
would use dy = y+2+3,do =y+2+4, ...,dy 1 =2x+y+2+1, so
V(P C (0,21 =1U[[2] +y+2z+2,24+y+2z+1]) x {r,s}. We construct
the cycle C,.; of size 2x + 1 from P, by adding the edges {0,, (y + 2).0s} and
{05, (¥ + 2)ros}-

Next, we will construct the cycle Cy | of size 2y + 1. Let P/ =G| + G5 + Gy

where

Gy = P31, 151 +3,y—-2)

. (151425, (514570 (151 4 5505, [51 4 157)0), iy — 2 odd;
2 =
(51 + 520 (15145505, (T3] + ) [51 4 552)s), i y — 2 even,
,
o JPE R BT Ry = 2), ity —2 0dd;
3 =
\Q([%} + y_;rﬁj (%1 _ %,y s 2), if y — 2 even.

If y =2, then P, =Gj = ([§1,, (5] +2)5,([5] + 3)r, [5]s).

Note that by P1, the first vertex of G} is [£],, and the last vertex is ([£]+££2),
if y—2 is odd and ([£]+%2), if y —2 is even; the first vertex of G is ([£]+%£2),
and the last vertex is [§], if y — 2 is odd. By QI, the first vertex of Gj is

([2] + 42), and the last vertex is [£], if y — 2 is even.

For i =1 or 3, let A} and B; denote the sets labeled A" and B’ in P2 and Q2
corresponding to the graph G;. Then using P2 and Q2, we compute

All = H%]m (|_§-| + L%J)T]a
By = [(T5] + 521 (151 +y + 1),
Ay = [(T51+152 1) ([51+y+1)],

By =[[$1., ([§1 + [52)))-
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Thus,
A} < A and B < Bi.

Note that V(G}) NV(Gh) = {([£] + £2),} if y — 2 is odd and V(G)) NV(GY) =
{(I%] + &2),} if y — 2 is even and, V(Gy) N V(GE) = {([2] + &), } if y — 2 is
odd and V(G5) NV(G4) = {([%] + 42),} if y — 2 is even; otherwise, G}, G5 and
GY, are vertex disjoint. Therefore, G| + G, + GY% is a path of size 2y — 1 with the
endpoints [5], and [§]s. Since V(P.,) C[[5],[5] +y+1] x {r,s}, P}, is vertex
disjoint from P, ;.

Next, let E! denote the set of edge lengths in G} for i = 1 or 3. By P3 and

Q3, we have edge lengths

Ei = [4,y+1],

Eg Y [_(y 0 1)7 _4]
Notice that the set of edge lengths in GY is {2, —1, —3}. Then construct the cycle
C, , of size 2y+1 from the path P, by adding the edges {[%] ([ 4+y+2+1)0s)
and {[5],. ([5] +y+ 2+ Dot

Finally we will construct the cycle C)/, of size 22+ 1. Let P/, = G + G5+ G5

where

Gi=Plx+y+z+2,x+2y+2+3,z—2),

(( 2x+4y+3z+5)s : ( 2x+4y+3z—l>r 7( 2x+4y+3z+1)s : ( 2x+4y2+32+5> r) . if z—2 odd;

2 2 2
=
(< 2x+2y2-|-3z+2)T ’ ( 2:c+2y2+3z+8)s 7( 2x+2y2+3z+6)r ’ ( 2x+2y2+3z+2)s) : if 2—9 even,
) P(2m+4y2+3z+5’ 21+21§+Z+5 : 2_2)7 ifz—2 Odd;
GS ==

Q ( 2x+4y+324+6 2x4+2y+2+6

5 , 5 ,2—2), if z — 2 even.

If =2, then P/, = Gj = ((x+y+4)r, (@ +y+T7)s, (x+y+6),, (z+y+4),).
Note that by P1, the first vertex of G/ is (x +y + z + 2),., and the last vertex

is (ZHALESEED) Hif 2 — 2 s odd and (EEELEEEZ) f 2 — 2 s even; the first vertex
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of G is (2HLE0) and the last vertex is (z +y + 2 + 2), if z — 2 is odd. By
Q1, the first vertex of G is (2F2LE3212) “and the last vertex is (z +y + 2z + 2),

if z — 2 is even.

For i =1or 3, let A7 and B/ denote the sets labeled A" and B’ in P2 and Q2
corresponding to the graph G7. Then using P2 and Q2, we compute

Al =[x +y+z2+2), (@+y+[Z]+1)],
By = [(z + 2y + [Z2])s, (x + 2y + 22 + 1)),
Az = [(z + 2y + [ZP]),, (v + 2y + 22+ 1),
Bi=[(x+y+z+2)(x+y+[%]+1),]

Thus,
Al < AY and BY < Bj.

Note that V(G)NV (GY) = {(z+2y+[222]),} if z—2is odd and V(GY)NV (Gh) =
{(z+y+ 2] +1),}if z—2is even and, V(G5) NV (G4) = {(z + 2y + [222]),}
if z—21is odd and V(G5) NV(GY) = {(z +y + [£] + 1)} if z — 2 is even;
otherwise, G7, G5 and G are vertex disjoint. Therefore, G + G} + GY is a path
of size 2z — 1 with the endpoints (z +y + z + 2), and (x +y + 2z + 2),. Since
V(P!) Clr+y+2z+2,2+2y+ 22+ 1] x {r,s}, P, is vertex disjoint from P,
and Py .

Next, let E! denote the set of edge lengths in G for i = 1 or 3. By P3 and
Q3, we have edge lengths

Bl =y+2,y+z—1]
Ef=[-(y+2z—1),—(y+2).

Notice that the set of edge lengths in G} is {3,1, —2}. Then, construct the cycle

11

C, , of size 2z 4- 1 from the path P;:S by adding the edges {(z +y + 2+ 2),, (v +
20+22+44) 05 and {(x+y + 2+ 2)s, (x + 2y + 22+ 4) 05}

Since (y + z)ms,(%w +y+ 24 1)0s and (x + 2y + 22 + 4),05 are different

. o e / 11
vertices, and P,.,, P/, and P are vertex disjoint, we have C,.,, C, ; and C, , are
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also vertex disjoint. Figure 3.24 shows an example of C,, C] ; and C  where

r=4,y=2and z =5.

Let Gy, = {Gys +(:0<{<n~—1}. Then G contains n distinct copies of
G and all the edges of each length i € [-(n—1)/2,(n —1)/2] N £[y+ 2,y + 2+ 2]
in the subgraph of K(opi1)xn With vertex set Z, x {r,s}. Let C = {G, s +¢:1 <
r<s<2k+1,0</¢<n-—1} and note that C contains (2k;1)n distinct copies
of G. We will show that every edge of K(a111)xn appears on some copy of G in
C. Let e = {i,, js} with r < s be an arbitrary edge of K(pi1)xn. Let ¢’ be the
unique solution to r ot = s and let o = min{r,t'} and f’ = max{r,t'}. Let t”
be the unique solution to s ot” =r and let o” = min{s, "} and 5" = max{s,t"}.
Ifj—ie[-(n—1)/2,(n—1)/2] ~ £[y + 2,y + z + 2], then e belongs to G, s + ¢
for some ¢ with 0 < ¢ <n—1. If j —i € [y+ 2,y + 2z + 2], then e belongs to
Gup +lwhere 0 <l <n—1Tj—i€[—(y+2z+2),—(y+z)], then e belongs
to Gyr gr + L€ where 0 < £ < n—1. Since every edge of K(op41)xn appears on some
2k2+1)

copy of G, s in C and since C contains ( n distinct copies of G, it follows that

C is a decomposition of Kop41)xn into copies of G. O
0, 1, 11, 12, 2 5y 13, 14, 15, 18, 19,
[ ; .; ; Tros ; ; 10r0s ; ; ; ; ; 22,05
12, 11, 1, 0, 20Rn 19, 18, 16, 14, 13,

Figure 3.24: C..,, C| and C}/  where x =4,y =2 and 2 =5

In the proof of Theorem 3.32, if we replace idempotent symmetric quasigroups
with symmetric quasigroups with holes, then we obtain a (G-decomposition of

Ko, for every integer k£ > 3.

Theorem 3.33. Let G be a 2-reqular graph of order n consisting of exactly three

odd cycles. For every integer k > 3, there exists a G-decomposition of Kiyxan.

Proof. Let G = Copq1 U Cyq U Cosyq, where ,y,2 > 1. Let k > 3 be an integer
and let @ = [1,2k]. For i € [1,k], let h; = {2i — 1,2i} and g; = Z, X h;. Let
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n = 2x+2y+2z+3 and let V(Kyx2n) = Z, X [1,2k] with the vertex-set partition
{91,92,---,9r}. Let (Q,0) be a commutative quasigroup of order 2k with holes
H.

Fix r and s with 1 < r < s < 2k and {r,s} ¢ H. We proceed in the same
fashion as in the proof of Theorem 3.32 producing the graph G, s consisting of a
cycle Cy s of size 2z + 1, a cycle Cj ; of size 2y + 1 and a cycle C/, of size 2z + 1
such that C,,, C)  and C7_ are vertex disjoint.

Note that for fixed r and s with 1 < r < s < 2k and with {r,s} ¢ H, the
set {Grs+£: 0 < ¢ <n— 1} contains n distinct copies of G and all the edges
of lengths i € [—(r+y+z2z+1),z+y+2z+1] N Ely+ 2,y + 2+ 2| in the
subgraph of Kjyo, with vertex set Z,, x {r,s}. Let C = {G,s+/(:1 <r <s<
2k,{r,s} ¢ H,0 < ¢ < n— 1} and note that C contains (22k)n distinct copies of
G. We wish to show that every edge of Kj.2, appears on some copy of G in C.
Let e = {i,, js} be an arbitrary edge of Ky2,. Without loss of generality, we may
assume r < s. If j—i € [0,z +y+z+1] N[y + 2,y + 2+ 2], then e belongs
to Gps + ¢ for some ¢ with 0 < ¢ <n—1. If j—i=[y+z2,y+2+2], thene
belongs to G4 + ¢ where t is the unique solution to rot =sand 0 < ¢ <n — 1.
If j—i=[-(y+2+2),—(y+ 2)], then e belongs to G, + ¢ where t is the unique

solution to sot =r and 0 < ¢ < n — 1. Since every edge of Kjy2, appears on

2k

) )n distinct copies of G, it follows

some copy of G in C and since C contains (

that C is a decomposition of Kjy9, into copies of G. O

Let G of order n be the vertex-disjoint union of three odd cycles. It is shown
in [7] and [6] that there exists a G-decomposition of Ky, ;. It was not known
whether a G-decomposition of Koy, exists for every positive integer k. Using
the decomposition of Ky, 1 and the result from Theorem 3.33, we can answer this

question in the affirmative for k£ > 3.

Theorem 3.34. Let G of order n be the vertex-disjoint union of three odd cycles.

There exists a G-decomposition of Kok,i1 for every positive integer k # 2.

Proof. Since there exists a G-decomposition of Ky, 1, we can assume that k > 3.

For i € [1, k], let S; be a set with 2n elements and let H; be a complete graph of
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order 2n + 1 with vertex set S; U{oco}. Let V(Kogns1) = S1USU. .. USyU{oo}.
Thus, Kogpie1 = Hi U HyU ... U Hp U Kiyo,. Since there is a G-decomposition of

H; for i € [1, k| and there is a G-decomposition of Kjya,, the result follows. [

If a G-decomposition of K, exists (i.e., if the Oberwolfach problem has a

solution in this case), then a G-decomposition of Koy, 1, will also exist.

Theorem 3.35. Let G of order n be the vertex-disjoint union of three odd cycles.
If a G-decomposition of K,, exists, then there exists a G-decomposition of Kogpik

for every positive integer k.

Proof. Observe that Koppipn = (2k + 1)Ky, U K(911)xn. Since a G-decomposition
of K, exists, a G-decomposition of (2k + 1)K, will also exist. By Theorem 3.32,

there exists a G-decomposition of K (a4 1)x,. The result follows. O



CHAPTER IV
SUMMARY AND OPEN PROBLEMS

4.1 Summary

Let G be a 2-regular graph of odd order n such that either G is almost bi-
partite or GG consists of three cycles of odd lengths. By using novel extensions
of the Bose construction for Steiner triple systems, we proved the existence of
G-decompositions of several classes of complete multipartite graphs as well as of

some complete graphs. Our results are summarized below.

(i) If G is Cy, then there exist G-decompositions of K(ori1)xs and of Kopnin

for every positive integer k, and of K}/ 9, for every integer k' > 3.

(ii) If G is almost-bipartite, then there exist G-decompositions of Ko 1)x, and

of Kj/xay for all positive integers & and & > 3.

(iii) If G is the vertex-disjoint union of one even cycle and one odd cycle, then
there exist G-decompositions of K, for all v =n (mod 2n), unless (G,v) =

(CLUC5,9).

(iv) If G consists of three odd cycles, then there exist G-decompositions of
K(ok11)xn and of Kjryo, for all positive integers k and &' > 3. We also

found G-decompositions of K, for all v =1 (mod 2n), v # 4n + 1.

4.2 Open Problems

Several open problems related to the results in this dissertation warrant further

investigation.

(i) If G is almost-bipartite of order n, find G-decompositions of K, for all v = n

(mod 2n).
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(ii) If G of order n consists (or contains) of an odd number of odd cycles, find
G-decompositions of K(gp41)xn and of Ky o, for all positive integers k and

k' > 3. Also, find G-decompositions of K, for all v =1 or n (mod 2n).

(iii) If G of order n is the vertex-disjoint union of one even cycle and one odd
cycle, find G-decompositions of K, for all odd v that satisfy v(v — 1) =0
(mod 2n).

(iv) Investigate the Oberwolfach problem for three odd cycles and for almost-

bipartite 2-regular graphs.
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