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Chapter 1

Introduction

There are many investigations of stochastic dynamics of surface growth and interface fluctuations
[Barabasi and Stanley, 1995; Krug, 1997; Pimpinelli and Villain, 1998; Michely and Krug, 2004;
Evans et al. 2006; Pelliccione and Lu, 2008]. Persistence is one of the quantities studied in those
investigations. The persistence concept has been used to analyze dynamical fluctuations of
various systems such as the simple diffusion [Majumdar et al. 1996; Majumdar, 1999], random
acceleration [Majumdar, 1999], random walk [Sire et al. 2000], many body nonequilibrium
systems [Bray et al. 2013] and a general smooth stationary temporal signal [Sire, 2007; Sire,
2008]. Krug and co-workers were the first to apply the persistence concept to the problem of
fluctuations in non-equilibrium surface growth dynamics [Krug et al. 1997; Kallabis et al. 1999].
Since then, there have been many analytical and numerical studies of the persistence probability
in surface growth phenomena [Toroczkai et al. 1999; Constantin et al. 2004; Constantin et al.
2007, Bray et al. 2013]. Persistence properties of interface fluctuations have been studied
experimentally as well [Dougherty et al. 2002; Dougherty et al. 2003; Constantin et al. 2003;
Conrad et al. 2007]. The persistence probability provides a quantitative characterization of the
dynamics of fluctuations in these stochastic systems.

The persistence probability of step fluctuations (fluctuations that is perpendicular to the
growth direction) on the vicinal surface is investigated analytically and experimentally
[Constantin et al. 2007, Conrad et al. 2007]. Some experiments pointed out that step fluctuation
on the vicinal surface of Si(111) [Lyubinetsky et al. 2002] and Al/Si(111) [Dougherty et al. 2004]
can be explained by the Edwards-Wilkinson equation [Edwards and Wilkinson, 1982] which is
the equation that describes the Family model [Family, 1986]. Another interesting problem is the
persistence behavior of the height fluctuation in the growth direction of the Family model, which
can be compared to results from other models and from experiments.

In this dissertation, the steady-state temporal persistence probabilities of the height
fluctuation in discrete growth models are studied. The persistence probability is defined as the

probability that the height fluctuation h(t) of the growing film does not return to its initial value



h, over a specified time interval t [Krug, et al. 1997; Majumdar, 1999]. The height fluctuation
h(t) is the height at a site measured from the average height of the film at time t, so its value
can be both positive and negative integers including zero. The initial height h, is the height
fluctuation at the initial time {;, which is taken to be in the steady-state regime in our study. The
persistence probability is divided into positive persistence probability F’+S (t) , i.e., the probability
that the height fluctuation remains larger than h, throughout time t, and negative persistence
probability pS (t), i.e., the probability that h remains smaller than h, during the interval t.
Previous studies [Krug et al. 1997; Constantin et al. 2004] have shown that after averaging over
all values of h,, the positive and negative persistence probabilities are the same for models with
up-down symmetry such as the Family [Family, 1986] and the larger curvature (LC) [Kim and
Das Sarma, 1994; Krug, 1994] models, while they differ in models without up-down symmetry.
The persistence probability usually decays with time as a power law with an exponent that
depends on the model being considered. The exponents for the positive and negative persistence
probabilities averaged over the initial height are the same for each growth model with up-down
symmetry, whereas they have different values for models in which this symmetry is not present.
In this work, we investigate the dependence of the persistence probabilities on the choice
of the initial height in the Family and LC models. Using numerical simulations, we analyze how
the positive and negative persistence probabilities change when the value of the initial height is
changed. For any nonzero value of the initial height h, (measured from the average height of the
interface), the positive and negative persistence probabilities are not equal to each other. The up-
down symmetry of the interface in these models implies that the positive (negative) persistence
probability for a positive value of the initial height h, must be equal to the negative (positive)
persistence probability for a negative value of the initial height with magnitude equal to h, . Our
numerical results show that the positive persistence probability for negative initial heights (and
equivalently, the negative persistence probability for positive initial heights) exhibits power-law
decay in time if the magnitude of the initial height is larger than the saturation width of the
interface. The exponent that characterizes this power-law decay is found to be distinct from the
one that describes the power-law decay of the persistence probability averaged over the initial
height. This exponent decreases as the magnitude of the initial height h, is increased. The

negative (positive) persistence probability for negative (positive) initial height does not exhibit



power-law decay in time. We present qualitative arguments that provide a rationalization of these
results obtained from simulations.

We have also studied the scaling behavior of the persistence probability as a function of
h,, the system size L, and the discrete sampling time Ot (the time interval between two
successive measurements used to calculate the persistence probability). Persistence probabilities
are known to be influenced by the discrete sampling time [Majumdar et al. 2001; Ehrhardt et al.
2002]: the probabilities increase as the discrete sampling time increases. For the (1+1)-
dimensional Family model, the steady-state persistence probability, after averaging over all
values of the initial height, was found to scale with t/L* and Ot/L’ [Constantin et al. 2004]
where Z is the dynamical exponent that characterizes the nonequilibrium dynamics of the growth
process of the model. In this work, we perform a similar scaling analysis on (1+1)-dimensional
Family and (1+1)/(2+1)-dimensional LC models and show that the persistence probability for a
particular value of the initial height h; is a function of the scaling variables h, /L, t/L*, and
Ot/ ", where o is the roughness exponent that describes the dependence of the interface width
in the steady-state on the system size.

Another part of this dissertation is motivated by technological application in fabrication
of nanostructures and high-technology devices which has been broadly developed in recent years
[Mugarza and Ortega, 2003; Hongsith et al. 2005; Conrad et al. 2007; Jnawali et al. 2009;
Thongkham et al. 2010; Bhoomanee et al. 2011; Sakdanuphab et al. 2011; Wongsaprom and
Maensiri, 2013]. Thin film growth on patterned crystalline surfaces has, therefore, been
investigated for the application. Kinetic roughening of thin films grown on crystalline surfaces
has been widely studied in experiments [Hegeman et al 1995; Redinger et al.2008; Jnawali et al.
2009; Dimastrodonato et al. 2012]. The evolution of the film interface can be directly observed in
experiments using scanning tunneling microscopy (STM). Films are often grown on structures
that are not perfectly flat. It is, therefore, important to understand how the growth of thin films is
affected by the presence of initial rough patterns on the substrate.

In thin film growth simulations, a flat substrate is the initial pattern considered in most
investigations [Krug et al. 1997, Das Sarma and Punyindu, 1999, Constantin et al. 2004].
Patterned substrates have recently received considerable interest and have been studied
theoretically [Krug, 1999; Krug, 2004; Evans et al. 2006; Nguyen et al. 2009], numerically

[Hontinfinde et al. 1998; Nurminen et al. 2000; Constantin et al. 2007; Kanjanaput et al. 2010;



Tang et al. 2010; Chatraphorn and Chomngam, 2012; Lin et al. 2012; Marques et al. 2012;
Mondal and Sengupta, 2012; Bergamaschini et al. 2012; Asgari and Moosavi, 2012; Hedayatifar
et al. 2012] and experimentally [Hegeman et al 1995; Giesen, 1997; Rousset et al. 1999;
Dougherty et al. 2002; Lyubinetsky et al. 2002; Dougherty et al. 2003; Mugarza and Ortega,
2003; Dougherty et al. 2004; Conrad et al. 2007; Redinger et al.2008; Jnawali et al. 2009; Nguyen
et al. 2009; Persichetti et al. 2009; Dimastrodonato et al. 2012]. Effects of a patterned substrate
on a growing thin film can be explicitly observed from surface morphology and the change of
some statistical properties such as the interface width and the correlation functions [Krug, 1997;
Nurminen et al. 2000; Nguyen et al. 2009; Kanjanaput et al. 2010; Chatraphorn and Chomngam,
2012].

In this work, we investigate how shape and size of the initial pattern as well as substrate
roughness affect films grown from the Family model. In experiments, one of the benefits in using
a patterned substrate is that the deposited atoms can stick on the rough substrate more tightly than
on a flat substrate because atoms can form lateral bond with the substrate at the step edge. The
patterns of interest are the vicinal and triangular substrates. There are many experimental
researches on film growth on vicinal surfaces with many purposes. Examples of these works are
study of the step-step interaction [Giesen, 1997; Persichetti et al. 2009], surface stress [Rousset et
al. 1999], electronic properties of lateral nanostructures [Mugarza and Ortega, 2003], and
fluctuations of step edges [Dougherty et al. 2002; Lyubinetsky et al. 2002; Dougherty et al. 2003;
Dougherty et al. 2004; Conrad et al. 2007]. As a result, a theoretical study on effects of vicinal
substrate on statistical properties of a growing film may help us to better understand real film
fabrication processes. The triangular or tent-shape pattern is chosen to compare the results with
the vicinal substrate. Another reason is that the triangular substrate has periodic boundary
condition which can be studied analytically. Simulation results can then be compared with
theoretical results in this case. Statistical properties of interest in this work are the interface width,
the critical exponents, the transient persistence probability and the height-height correlation
functions.

Our results show that the statistical properties of the growing film are different from
those obtained from growth on a flat surface when a film is grown on a patterned surface. A
question naturally arises in this context: how long does the initial pattern influence the

morphology of the growing film? To answer this question, the “healing time” t,, which is the



time when the initial pattern on the substrate no longer has any effect on the growing film
[Hedayatifar et al. 2012], is investigated. The dependence of {, on various factors, such as the
characteristics of the original pattern on the substrate and the lateral size of the interface, are
studied using simulations. Two different growth models — the Family [Family, 1986] and the Das
Sarma-Tamborenea (DT) [Das Sarma and Tamborenea, 1991] models — are considered here. Two
patterned substrates investigated in this dissertation are a relatively smooth tent-shaped triangular
substrate and an atomically rough substrate with single-site pillars or grooves. We find that the
healing time of the Family and DT models on a Lx L triangular substrate is proportional to L,
where Z is the dynamical exponent of the models. For the Family model, we also theoretically
analyze the time evolution of the nearest-neighbor height difference correlation function in this
system. A continuum description based on the linear Edwards-Wilkinson equation is used in this
analytical work. The correlation functions obtained from the continuum theory and simulations
are found to be consistent with each other for the relatively smooth triangular substrate. For
substrates with periodic and random distributions of pillars or grooves of varying size, the healing
time is found to increases linearly with the height (depth) of pillars (grooves). We show explicitly
that the simulation data for the Family model grown on a substrate with pillars or grooves do not
agree with results from the calculation based on the continuum Edwards-Wilkinson equation.
This result implies that a continuum description does not work when the initial pattern is
atomically rough. The observed dependence of the healing time on the substrate size and the
initial height (depth) of pillars (grooves) can be understood from the details of the diffusion rule
of the atomistic model. The calculated healing time for both Family and DT models is found to
depend on how the pillars and grooves are distributed over the substrate.

The overview of the dissertation is as follow: In this chapter, we described literature
review of persistence probability and patterned substrate growth. In chapter 2, we present
quantities of interest and details of discrete growth models used in our study. The scaling
concepts as well as the three critical exponents are introduced. The persistence probability and its
exponent are described. The definition of the discrete sampling time, the (generalized) height-
height correlation function and the nearest-neighbor height difference correlation function is also
included in this chapter. The discrete limited mobility growth models considered in this study are
also defined. The models consist of up-down symmetric models, which are the Family [Family,

1986] and the larger curvature (LC) [Kim and Das Sarma, 1994; Krug, 1994] models, and up-



down asymmetric model which is the Das Sarma-Tamborenea (DT) [Das Sarma and Tamborenea,
1991] model. The continuum equations that describe the models in asymptotic limit and the
universality class, including values of critical exponents of considered models are also presented.

Simulation work on effects of discrete sampling time and system size on the persistence
probabilities is discussed in chapter 3. In this chapter, we consider the case of average value of
h,. We extend the dimension of the substrate in the Family model to verify that the scaling
relation found in Constantin et al. [Constantin et al. 2004] is still valid in (2+1)-dimensions. In
addition, we obtain the same scaling relation for another up-down symmetric model i.e. the LC
model, as well as the up-down asymmetric DT model (with finite size limited values of the
dynamical exponent). All models have been studied in both one and two dimensional substrates.

In chapter 4, effects of the initial height on the persistence probability, specifically for
models with up-down symmetry, are investigated. A particular value of h, is considered in this
chapter and the clear power-law decay of Pf (—|h0|,t) (and equivalently, of pS (+|h0| ,t)) is
obtained when |h0| =W, where W, is the saturation width. The new parameter «x is presented
and the scaling variable hy/L” is found to be presented in the scaling relation.

We study effects of patterned substrates on the Family model in chapter 5. In this work,
characteristics of some statistical properties of a film grown on triangular and vicinal substrates
are studied. Substrate size and tilt angle are varied. It is found that the interface width and the
correlation function increase as the roughness of the pattern is increased. The new scaling
exponents are calculated and anomalous scaling is obtained. The transient persistence probability
does not show a power-law relation when the initial surface is sufficiently rough. The initial
rough surface also causes multifractal behavior in the model.

The healing time of thin films simulated by the Family and the DT models on patterned
substrate are investigated in chapter 6. We find that the healing time for the triangular pattern
scales with L’ and can be explained from a continuum description. For the pillar/groove pattern,
the healing time is found to depend linearly on the height (depth) of the pillars (grooves) and to be
insensitive to the substrate size L . We show that these features are consequences of the details of
the atomistic diffusion rules of models. Therefore, these features cannot be explained from a
continuum description. Moreover, the calculated healing time for both Family and DT models is
found to depend on how the pillars and grooves are distributed over the substrate.

Finally, we conclude all of our results in chapter 7.



Chapter 11

Quantities of Interest and Models

In this chapter, we describe the definition of quantities of interest used in our study. The discrete

growth models, the continuum equations as well as the universality class are also discussed.

2.1 Quantities of Interest

2.1.1 Interface Width and Scaling Concepts

During the growth process, random deposition process causes fluctuations in the surface height.
The kinetic roughness during the growth process can be characterized by the interface width, W ,
[Barabasi and Stanley, 1995] which is the root-mean-squared height fluctuation of the growing

film:

1/2

W (L, =<(h(F,t))2> @.1)

where h is the height fluctuation, I is the position or site on the surface and t is the growth
time measured in units of monolayers (MLs). One monolayer is the time when N atoms are
deposited on a substrate with n sites. The brackets represent an average over all sites and
different realizations of the stochastic growth process. There are three critical exponents
(a, B,7) that classify the universality class of a model. The universality class describes the
asymptotic properties of the model. Two models that have the same sets of critical exponents
belong to the same universality class and have the same growth properties in the asymptotic limit.
The critical exponents can be extracted from the interface width. The increase of the interface
width with time in the transient state (t << L where z is the dynamical exponent) due to the
noise fluctuation is described by W ~ t” where [ is the growth exponent. As time increases,
atomic diffusion on the surface creates correlation among lateral sites and the correlation length
increases with time. The growing film reaches its steady-state when the correlation length equals
the substrate size. In the steady-state (t >> L?), the interface width becomes constant which is

called W,. The value of the saturation width depends on the size of the system. Another

exponent describing the dependence of the saturated interface width with the substrate size is



called the roughness exponent & where W, ~ L“ . The time that the system reaches the steady-
state is called the saturation time f; which scales with the substrate size, t, ~ L, where Z is the
dynamical exponent. The roughness of the film surface stops increasing when t reaches t,. From
different behaviors of the interface width between two region, W scales with t and L, and can

be written in the form

t
W~L"f| —|, .
(Ej 22

where f is the scaling function whose form depends on scaling regimes i.e.

f(x)= x? for x <<1 03
constant for x >> 1. '

From simulation, the critical exponents can be obtained from WS ~L* W~ t” and ts ~ L%, or

the collapse of the scaling curves W / L and W /t” as a function of t/ L*.

2.1.2 Persistence Probabilities of Models with and without Up-Down Symmetry

Starting from an initial time {;, the persistence probability of site I at time interval t,
p(r,t,,t, +t) is the probability that the height fluctuation at that site, h(r,t), does not return to
its initial value h(r,t,) over a specified time interval t. In another word, the persistence

probability is the probability that the sign of h(r,t) does not change throughout the time interval.
p(r ty,t, +t) = Prob[h(r,t,+t") = h(r,t,) vt':0<t'<t]. (2.4)
The persistence probability P(t) is the average of p(r,t,,t, +t) over all sites on the substrate:
P(t)=(p(r.ty,t, +1)). 2.5)
P(t) is found to decrease as a power law with time [Krug, et al. 1997; Majumdar, 1999]:
P(t) oct™ (2.6)

where @ is the persistence exponent whose value is model-dependent.
There are two types of persistence probability. The first is the transient persistence
probability = (t), which is the persistence probability in the early stage of the growth process

starting at t,= 0. The second is the persistence probability in the long-time steady-state of the



growth process starting at t) >>1 . It is called the steady-state persistence probability ps (t).
Each type consists of the positive persistence probability P, (t) which is the probability that h
remains larger than N, and the negative persistence probability P (t) which is the probability
that h remains smaller than h; over time t. The transient persistence probability decays with
time as a power law [Krug, et al. 1997], F’iT (t) o< 4 , where 6" is the transient persistence
exponent. The steady-state persistence probability also scales with the same function but with the
steady-state persistence exponent 8° as PJ (t) oc e

It was pointed out by Krug, et al. [Krug, et al. 1997] that the steady-state exponent, 6° ,
is related to the growth exponent, f3, as B=1-6° =1-6° for linear models such as the
Family and the LC models. For nonlinear models such as the Das Sarma-Tamborenea model (DT

model), the relation was found to be £ = max[1— Hf - (9?] [Constantin et al. 2004].

2.1.3 Discrete Sampling Time

The discrete sampling time Ot is the time interval between two successive measurements used to
calculate a quantity. Some physical quantities such as the persistence probability vary with the
value of the discrete sampling time. In computer modeling of thin film growth, all time-dependent
quantities are computed at every time steps separated by a discrete interval and the smallest
possible value of ot is 1 deposited layer. In experiments of thin film fabrication, the time used to
measure the persistence probability is also a discrete quantity. Studying effects of the discrete

sampling time helps compare the results between experiments and numerical simulations.

2.1.4 Height-Height Correlation Function
The correlation between two sites on the film surface can be characterized by the height-height

correlation function, G(Ar,t), defined as [Krug, 1994]

G(Ar,t)=<(h(F+AF,t)—h(F,t))2>m 2.7

where AI’:|AF| is the distance between the two sites. In systems with normal scaling,
G(Ar,t) ~ Ar” for small Ar when « is the roughness exponent — the same exponent as
obtained from W, scaling, while G(Ar,t) saturates to a constant for large Ar. In some cases,
the roughness exponents obtained from G and W, are different. Those are the cases with
anomalous scaling. The exponent from G is called the local roughness exponent while the one

from W, is the global roughness exponent.



10

Some complicated systems also exhibit multifractality. To investigate this, generalized

correlation function, Gq (Ar,1), defined as [Krug, 1994]
_ - - q 1/q
Gq(Ar,t):<\h(r +AF,t) —h(F,1)| > (2.8)

where ( is the moment of the correlator, is usually calculated. When Ar is small, Gq ~Ar. A
system is said to be self-affine when ¢, does not depend on (. On the other hand, a system is
multifractal when ¢, is (—dependent demonstrating that different moments of correlations
scale with different exponents. It has been shown [Punyindu, 2000] that films grown with the
Family model on flat substrates have normal scaling while those grown from the DT model have

both anomalous scaling and multifractality in both one and two dimensional substrates.

2.1.5 Healing Time and the Nearest Neighbor Height Difference Correlation

Function

Studying effects of the initial pattern on a growing thin film, the main goal is to search for “the
healing time t, ”, the time when statistical properties of the growing films are no longer effected
by the patterned substrate [Hedayatifar et al. 2012]. Several quantities can be used to identify the
healing time. One such quantity is the nearest neighbor height difference correlation function, G,

defined as

%

o(t)=(|H (Ft)=H(F.O )", 29)

where H (F,t) is the height of site ' at time t, I is the position of a nearest neighbor of site
r. t, is defined as the time at which & of a film grown on a patterned substrate becomes equal

to that of a film grown on a flat substrate.

2.2 Discrete Limited Mobility Growth Models

Numerous discrete growth models have been used in studies of thin film growth process via
computer simulations. In this work, we study three discrete models. These are the Family model

[Family, 1986], the larger curvature (LC) model [Kim and Das Sarma, 1994; Krug, 1994] and the



(b)

(c)

Figure 2.1Diagrams showing diffusion rules of (a) the Family model, (b) the LC model and (c)

the DT model.
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Das Sarma-Tamborenea (DT) model [Das Sarma and Tamborenea, 1991]. In all models, the
deposited atoms are allowed to diffuse to one of their nearest neighbors depending on the

diffusion rule of the model after a random deposition (see Figure 2.1).

2.2.1 Family Model

The diffusion rule of the Family model [Family, 1986] states that after deposition, the deposited
atom searches for a site with the minimum height from its nearest neighboring sites. From Figure
2.1(a), if an atom is deposited at position A, C, F or G, it will move in the direction of the arrow
in order to minimize its height. However, if an atom is deposited at position B, D or E, it will
stick at the deposition site. In the case that there are more than one sites that have minimum
height, the deposited atom chooses one of them by random. The diffusion rules lead to very
smooth films [Family, 1986]. A typical morphology grown from the Family model is shown in
Figure 2.2. It is explicitly seen from the morphology that the Family model has up-down

symmetry i.e. the morphology is statistically unchanged when the film is turned upside-down.

2.2.2 Larger Curvature Model

For the larger curvature (LC) model [Kim and Das Sarma, 1994; Krug, 1994], the deposited atom
searches for the site that the local curvature has the largest value as shown in Figure 2.1(b). For
one dimensional substrate, the local curvature of the site 1 is H(i+1)+H(i—1)—2H(i) and
the local curvature of the site (I, ) for two dimensional substrate is
H@{+L ))+HG-1 j))+H®U, j+)+H(, j-1)—4H(, j). If there are more than one
neighbors whose value of the local curvature is largest (atom G in Figure 2.1(b)), one of them is
chosen with equal probability. A typical morphology grown from the LC model shown in Figure
2.3 presents the mound formation of the model. Similar to the Family model, the up-down

symmetry can be seen from the morphology of the LC model.

2.2.3 Das Sarma-Tamborenea Model

For the Das Sarma-Tamborenea (DT) model [Das Sarma and Tamborenea, 1991], the deposited
atom diffuses to one of the nearest neighboring sites in order to increase its bond and stops
moving when the number of bond is greater than one (see Figure 2.1(c)). For example, atoms A
and D have only one bond and each has only one neighbor with a larger number of bonds so they
move in the direction of the arrows. Atoms C and G choose one of the neighbors by random

because both left and right neighbors offer more bonds. Atoms B and F do not move because they
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Figure 2.2 A morphology of the (2+1)-dimensional Family model at t =10° MLs of the system
size LxL =500x500 sites.
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Figure 2.3 A morphology of the (2+1)-dimensional LC model at t =10° MLs of the system size
Lx L =100x100 sites.



Figure 2.4 A morphology of the DT model at t =5x10° MLs of the system size
L x L =200 x 200 sites.

15
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already have 2 bonds at the deposition site. Finally, atom E does not move because it cannot
increase bond after moving. As can be seen in Figure 2.4, the morphology of the DT model shows
round top surface and deep grooves which is obviously different when the film is turned upside-

down. As a result, the DT model does not have up-down symmetry.

2.3 Continuum Growth Equation

All models studied here are conserved growth model which means that the number of atoms is
constant i.e. all deposited atoms are incorporated on the substrate to create the whole film. The
continuum growth equation described the particle conservation law can be written as

oh(F,t - = ~
%:—V-J + (7, t) (2.10)

where J is the particle current and # represents uncorrelated non-conserved noise. The current

—

J is assumed to be a gradient of K' [Kim and Das Sarma, 1994] as

J=-VK. @.11)
The form of the function K depends on models and the symmetry of the field. For surface
growth phenomena, K can be written in the form of h, V°h, (Vh)zn where N=1,2,3....

The Family and the LC models are described by linear growth equations. The linearity
indicates that the models have up-down symmetry which means the morphology looks the same
when it undergoes a transformation of h — —h (see Figures 2.2 - 2.3). For the Family model, the
continuum growth equation that describes long-time properties of the model is the Edwards-
Wilkinson (EW) equation [Edwards and Wilkinson, 1982] with K = V2h :

oh(r,t _ R
%:Vzvzh(r’t)“?(r,t) 2.12)

while the LC model is described by the Mullins-Herring (MH) equation [Mullins, 1957; Herring,
1950] with K =—v,V*h:

oh(r,t . -
%:—wv“h(f,t)ﬂv(r,t) (2.13)
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when v, and v, are constants.

The DT model, on the other hand, is believed to be described by a nonlinear growth
equation which indicates that the model does not have up-down symmetry. The DT model is more
realistic for MBE growth study. The DT model has been studied extensively in the literature
[Punyindu and Das Sarma, 1998; Brendel et al. 1998; Das Sarma et al. 2002; Punyindu and Das
Sarma, 2002; Krug, 1994; Dasgupta et al. 1997] because it has features that cannot be explained
by simple scaling arguments based on a continuum description [Krug, 1994; Dasgupta et al.
1997]. The (1+1)-dimensional DT model is believed to be described by the nonlinear MBE
growth equation with infinite terms [Krug, 1994; Das Sarma et al. 1996; Dasgupta et al. 1996;

Dasgupta et al. 1997; Krug, 1997]:

oh(r.H) _ —v,V*h(F, 1)+ 4,V (Vh) + b VAV +5(F, 1) @2.14)

0 n=4,68,...
where 4,, and 4, are constants. It has been shown [Das Sarma et al. 2002] that the higher order
terms with N >4 have very weak influence in the (1+1)-dimensional DT model. As a result, the
model can be approximately described by the nonlinear fourth order equation. For the (2+1)-
dimensional DT model, it is described by the following continuum equation [Das Sarma et al.

2002]:

DED V(0 ) vV + Y V2 (V) 40D, 215)

0 n=1,2,3,..
It can be seen that, asymptotic behaviors of the same growth model may differ when the systems

have different substrate dimensions.

2.4 Universality Class

Discrete growth models can be classified by the set of critical exponents (&, ,Z) used to
defined the universality class. The universality class describes asymptotic properties of the kinetic
roughness of a growth process. Two models that have the same set of («, f#,Z ) are said to be in
the same universality class and have the same asymptotic behaviors.

The Family model has been extensively studied [Edwards and Wilkinson, 1982; Family,

1986; Barabasi and Stanley, 1995; Castez et al. 2004; Roéthlein et al. 2006] and found to
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asymptotically belong to the EW universality class in which the associated critical exponents

2-d 2—d
obtained from Eq. (2.12) are [Edwards and Wilkinson, 1982] o = > p= 2 and Z=2

. The LC model has also been thoroughly studied [Kim and Das Sarma, 1994; Krug, 1994;

Barabasi and Stanley, 1995; Krug et al. 1997]. The critical exponents for the LC model that

4-d _ 4-d
belongs to MH universality class are [Barabasi and Stanley, 1995] o = 5 = 3 and

Z =4 . In these equations, d is the dimension of the substrate.
The (1+1)-dimensional DT model belongs to the MBE universality class and the

associated critical exponents are [Barabasi and Stanley, 1995; Das Sarma and Tamborenea, 1991]

:4—d’ﬂ:4—d g 87
3 8+d

determined [Das Sarma et al. 2002] by the noise reduction technique [Punyindu and Das Sarma,

a However, the (2+1)-dimensional DT model is

1998] to belong to the generic EW universality class where the critical exponents are

azzgd,ﬂzzgd and Z=2.

In addition, it was well-established that all models studied here when the film is grown
on a flat substrate obey the Family-Vicsek scaling relation [Family and Vicsek, 1985] i.e.
S =al z. The scaling relation implies that only two independent exponents are required.

In this dissertation, sets of (e, f,Z) for each model are obtained from our
simulations. Figures 2.5-2.10 show the scaling collapse of W /L* versus t/L* and W /t”
versus t/L° from different system sizes L for all models in both one and two dimensional
substrates. The critical exponents are the values that lead to the best data collapse. For the (1+1)-
dimensional Family model shown in Figure 2.5, we obtain the same values of the critical
exponents as those from the EW equation: (0.5, 0.25, 2). For the LC model, we obtain (
1.5, 0.375, 4) and (1, 0.25, 4) for one and two dimensional substrates
respectively. These are consistent with theoretical values (see Figures 2.7-2.8).

However, in simulations, transient conditions, finite size effects and crossover effects can
cause differences in values of the critical exponents. For instant, growth from initially flat
substrate leads to small nonzero values of & and f for (2+1)-dimensional Family model which,
according to the EW equation, the interface width should saturate immediately. The values of
critical exponents found from the collapse of the scaling curve in Figure 2.6 are (0.08, 0.04, 2)
instead of the theoretical values of (0, 0, 2). Moreover, our results show that the DT model has

strong dependence on the system size. For the (1+1) and (2+1)-dimensional DT models, the
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critical exponents for limited substrate size in this work are (see Figures 2.9-2.10)
(1.30, 0.375, 3.25) and (0.5, 0.19, 2.6) respectively. These are different from those
obtained from the continuum equations. Besides, there are crossover effects of the growth
exponent from £ =0.25 to £ =0.19 for (2+1)-dimensional DT model. As a result, the early-
time data for different values of £ do not exhibit a scaling collapse. Even if the universality
class of the nonlinear DT model is known, the model is still not completely understood due to the
existence of the higher order terms and the very long transient regime in two dimensional
systems.

Another interesting point for models belonging to the EW universality class in two dimensional
substrates is that the critical exponents are ¢ =0, =0 and Z=2. This means that the
scaling function of the interface width is logarithmic [Barabasi and Stanley, 1995]. It can be seen
from results of the (2+1)-dimensional Family model shown in Figure 2.11(a). When we plot W
as a function of t in a semi-log scale, W scales logarithmically with t in the early time range

and can be fit with
W (t, L) = p'log(t —1) + const (2.16)

for t<<L’. We then consider the saturation part of the interface width by plotting
At,L)=p'log(t—1)—W (t,L) as a function of t/L° where Z=2. We found that A
saturates in the early time range and it scales logarithmically with t/L® in the late time range.
The collapse of all plots shown in Figure 2.11(b) shows that A scales with L and t. The scaling
form of A(t,L) is

t
Alt,L)~ f (Fj (2.17)

Comparing with the scaling form of the interface width W (t,L) ~ L* f (t/ LZ), the critical
exponents of models belonging to the EW universality class in two dimensional substrates are
a =0(log), B =0(log) and Z =2 which are consistent with those obtained from the EW

equation.
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Figure 2.5 Scaling plots showing the data collapse of (1+1)-dimensional Family model for five

system sizes. The best collapse is obtained when & = 0.5, =0.25 and z=2.
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Figure 2.6 Scaling plots showing the data collapse of (2+1)-dimensional Family model for five

system sizes. The best collapse is obtained when o =0.08, #=0.04 and z=2.
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Figure 2.9 Scaling plots showing the data collapse of (1+1)-dimensional DT model for five

system sizes. The best collapse is obtained when & =1.30, =0.375 and z =3.25.
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Figure 2.10 Scaling plots showing the data collapse of (2+1)-dimensional DT model for five

system sizes. The best collapse is obtained when « = 0.5, £=0.19 and z=2.6.
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Chapter 111
Effects of Discrete Sampling Time and System Size on

Persistence Probabilities

3.1 Persistence Probabilities of Models with and without Up-Down

Symmetry
The positive and negative persistence probabilities after averaging over all values of the initial
height of the Family and the DT models grown on two dimensional flat substrates are found to
have a power-law decay with time. Figure 3.1 shows the transient and steady-state persistence
probabilities of the two models. The system size used for the Family model is L x L =500x500
sites while that used for the DT model is Lx L =100x100 sites. The transient persistence
probabilities (t, = 0) shown in Figure 3.1(a) decrease with time as a power law at late times for
both models. The persistence exponents of the Family model, calculated from the slopes of the
curves, are &) ~5.31 and @' ~5.31. The positive and negative persistence exponents are
equal to each other for this model with up-down symmetry, so are the persistence probabilities at
each time instant. The large value of the transient persistence exponents of the Family model
indicates that the persistence probabilities of the model decrease rapidly with time. For the
transient region of the DT model, the persistence exponents are 6! ~2.82 and ' ~2.39. It
can be seen that for the model without up-down symmetry, the positive persistence exponent is
not equal to the negative persistence exponent. Moreover, by comparing the value of the positive
and negative persistence probabilities at the same time, it can be seen from Figure 3.1(a) that they
are not equal to each other. In this region, the initial heights for all sizes are zero. The almost-flat
morphology of the Family model leads to the rapid zero-crossing of the height fluctuation. As a
result, the transient persistence exponents of the Family model is larger than those of the DT
model i.e. the transient persistence probabilities of the Family model decrease faster than those of
the DT model as can be seen in Figure 3.1(a).

The persistence probabilities in the steady-state region are shown in Figure 3.1(b). The
initial time t, is larger than the saturation time of the system i.e. t; = 10° MLs for the Family

model while t; = 6x10° MLs for the DT model. For the Family model, the steady-state
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persistence exponents are §° ~0.98 and 6° ~0.98. We observe that for the Family model,
6. =6 for both regions. We also obtain similar results for the larger curvature model, another
up-down symmetric model. As a result, for models with up-down symmetry, the positive
persistence exponent is equal to the negative persistence exponent in both regions. Like the
persistence exponents, the positive and negative persistence probabilities are approximately equal
to each other when they are compared at the same time. For the DT model, the positive and
negative persistence exponents are Hf ~0.77 and 6° ~0.88. Like the transient region, the
positive and negative persistence exponents are not equal to each other due to the effect of the up-
down asymmetry of the model. Similar results are found for the persistence probabilities. Our
results for these models are consistent with results by Constantin et al. [Constantin et al. 2004].

By comparing the value of the persistence probabilities between the two models at the
time t =t +1, the persistence probabilities of the DT model are larger than those of the Family
model. As the definition of the persistence probability, the persistence probability of a site I,
p(r), is zero when the height fluctuation of the site I is equal to that at the initial time t, . The
average of the persistence probability over all sites, P, will be large when the morphology of the
film is very different from the initial pattern (flat substrate in this case). The morphology of the
DT model is rougher than that of the Family model; as a result, P(t, +1) of the DT model is
larger.

By comparing the persistence exponent between transient and steady-state regions in the
same model, it is found that @" > 6° which means that P decreases with time more rapidly

than P° . In the steady-state region (t, >>1,), the roughness is the largest: there are many sites

that the initial value of the height fluctuation, |ho , is much larger than the average value (0).
After one monolayer of atoms is deposited, most of these sites will have |h(t0 +l)| < |h0| and the
difference between values of the height fluctuation and h, becomes larger as t increases in the
early time range, so these sites take long time for their height fluctuation to return to h,. As a
result, P° decreases slower than P' , therefore 87 > 6° .

For the steady-state exponent, 6°, it was pointed out by Krug, et al [Krug, et al. 1997]

that @° for models with up-down symmetry is related to the growth exponent, S as

0°=0°=1-p. (3.1)
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For (2+1)-dimensional Family model, £ =0. Our results for the Family model agree with this
relation which is 6° =~ 0.98 ~1. For models without up-down symmetry, Constantin, et al.
[Constantin, et al. 2004] pointed out that the smaller persistence exponent is related to the relation
of Eq. (3.1). For (2+1)-dimensional DT model with  =0.19 (see Figure 2.10), our results are
approximately consistent with Eq. (3.1) with Hf ~0.77.

The effects of the initial time on the steady-state persistence probabilities are also
studied. Numerical results of the DT model for the system of size L x L = 200x 200 sites using
different values of {; show that the choice of t, is not very significant (except for a very small
t, ) to the calculated steady-state persistent exponents as shown in Figure 3.2. Similar results are
obtained from the Family model. This means that we can choose the value of initial time to be

less than the saturation time in order to get the results more quickly.

3.2 Effects of System Size and Discrete Sampling Time on Persistence

Probability

In this section, we consider results for the average steady-state persistence probabilities p* (t)
which is the average of P’ (t) and P® (t) We determine the dependence of P®(t) on the
discrete sampling time Ot and the sample system size L for the Family, the LC and the DT
models grown in one and two dimensional substrates. Similar results are obtained from all

models. To avoid repetition, only results from a selected model are shown for each plot.

3.2.1 Effects of Sample System Size on Persistence Probability

In the study of effects of the substrate size on the persistence probability, we observe that the
persistence exponent increases as the system size is decreased. Figure 3.3 shows the plots of
pS (t) of (1+1)-dimensional DT model for different system sizes with the same sampling time.
It can be seen that all plots show a good power-law decay for relatively small value of t;
however, the decay rate of pS (t) for small sample is greater than that for large sample. The
reason is that when t approaches {,the fluctuations at time t; +1 is completely uncorrelated
with the fluctuations at time t [Constantin et al. 2004]. As a result, the decay of the persistence
probability becomes faster when t =1t which occurs earlier for smaller size of the substrate.

When considering the same range of t, the decay rate of the persistence probability as well as the
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value of the persistence exponent increases with the decrease of L .

Moreover, the growth exponent f decreases when L is decreased because the system
of smaller size reaches steady-state faster. The crossover region from power-law growth of the
interface width to a constant saturated width, which occurs earlier, causes smaller value of f3.

The ways P° and @° depend on L as mentioned above preserve the relation Hf =0°=1-4.

3.2.2 Effects of Discrete Sampling Time on Persistence Probability

The study of effects of the sampling time on the persistence probability shows that the sampling
time strongly affects the value of persistence probabilities. Figure 3.4 show the plots pS (t) of
(2+1)-dimensional Family model for different values of discrete sampling time with the same
system size. All plots decay with a power-law behavior. At a particular value of t, pS (t) is
found to increase as Ot is increased. The reason is that when Ot is large, there are sites that the
height fluctuation actually returns to its initial value already but the fluctuation then becomes
larger or smaller than the initial value again. If these returning events occur within a short period
of time which is smaller than Ot , they cannot be measured and those sites are still counted for
p* (t) . The number of undetectable crossing events is smaller when the time interval between
two successive measurements (5t) is small. However, as we observe from Figure 3.4, the

persistence exponents computed from the slopes of the graph are not affected by ot.

3.2.3 Scaling Relation for the Persistence Probability on Sampling Time and

System Size.

The average steady-state persistence probability pS (t) for a system of size L with sampling
time Ot of (1+1)-dimensional Family model has been investigated to be a function of t/L* and
Ot/ L* [Constantin et al. 2004]. We expect a similar behavior for P®(t) measured in other
models and also for (2+1)-dimensional systems. The value of 6t and L are chosen in such a way
that the ratio St/ L is kept as a constant for each model. For up-down symmetric models, linear
theory that describes large scale behavior of the model has been used successfully in the
calculation of the exact value of the critical exponents. For the Family model, the dynamical
exponent is found to be Z = 2 (Family, 1986), while z = 4 for (1+1)- and (2+1)-dimensional LC

model [Kim and Das Sarma, 1994; Krug, 1994]. On the other hand, the nonlinear DT model is
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still not completely understood. Our results show that the DT model has strong system size
dependence. For the (1+1) and (2+1)-dimensional DT models, the dynamical exponents for
limited substrate size in this work are Z=3.25 and Z = 2.6 respectively (see Figures 2.9 -
2.10).

In this work, the expected scaling variables are t/L?, and St/ L*. We measure P° (1)
for three different values of L and Ot while the value of St/ L are fixed. As shown in Figure
3.5(a), different L and Ot yield very different P° versus t plots in the (1+1)-dimensional LC
model. Despite the difference in the values, P° from all systems show very good power-law
behavior for relatively small value of time, t <t with the same slope. When PS is plotted
against the scaled t/ St axis, data from all three systems with the same value of St/ L* collapse
into the same curve as shown in Figure 3.5(b). The same collapse is obtained for (2+1)-
dimensional LC, the Family and the DT models. Figure 3.6 shows scaling collapse of (1+1)-
dimensional DT model with Z=3.25. These results lead to the scaling relation for the
dependence of the steady-state persistence probability on the system size and sampling time. The
expected scaling relation of P (t, L, 5t) is the same scaling form as Constantin et al.
[Constantin et al. 2004], that is

PS(t, L, dt) = f(Li%j (32)
when the scaling function is (X, y) ~ rad where X <<1 and y <<1 is a constant, where &°

is the steady-state persistence exponent. The same scaling relation is obtained for all models.
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Chapter IV
Effects of Initial Height on the Steady-State Persistence

Probability

We investigate here the dependence of the steady-state persistence probabilities on the initial
height, h0 . The models used are the (1+1)-dimensional Family and (1+1)/(2+1)-dimensional LC
models. For the (2+1)-dimensional Family model, the film surface is very smooth and there are
very small numbers of different values of ho available for the simulation. This makes it
unsuitable for a study of the dependence of P° on h, . The positive and negative persistence
probabilities for a fixed nonzero value of h, are expected to be different from each other even for
models with up-down symmetry. Qualitative information for the behavior of the positive and
negative persistence probabilities for a fixed nonzero value of h, may be obtained from the

following considerations.

4.1 Distribution of the Height Fluctuations

In the up-down symmetric models considered here, the distribution of the values of the height
fluctuation h is symmetric about zero. This distribution is Gaussian for the continuum growth
equations appropriate for the Family and LC models. The discrete values of h obtained from
simulations of these two models are also found to satisfy a Gaussian distribution with a high
degree of accuracy. Figure 4.1 shows the distribution of h of the (1+1)-dimensional Family
model. The persistence probabilities for a fixed value of the initial height N, are closely related to
the statistics of the time intervals between successive instances when the height h at a site
crosses the value h, during its evolution over a long time interval T . The positive (negative)
persistence probability is obtained from the statistics of the intervals during which h remains
larger (smaller) than h;. The numbers of positive (h > h;) and negative (h < hy) time intervals
in total time T are the same. However, for all positive values of N, the sum of the positive
intervals, which is proportional to the probability that h is larger than h,, is smaller than the

sum of the negative intervals, which is proportional to the probability that h is smaller than hy .
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So the typical positive intervals are shorter than the negative ones for positive values of N, .This
implies that the positive persistence probability should decrease faster in time than the negative
persistence probability for positive values of the initial height h,. Also the symmetry of the
distribution of h in up-down symmetric models considered here implies that the positive
(negative) persistence probability for positive N, should be the same as the negative (positive)
persistence probability for negative initial height, -h,. Numerical results for these persistence

probabilities are presented in the next section.

4.2 The Dependence of the Persistence Probability on the Initial Height

For both models, the positive and negative steady-state persistence probabilities, along with the
persistence exponents are found to be approximately equal after averaging over all values of h, .
These results from the (1+1)-dimensional LC model can be seen in Figure 4.2.

We now present the results for the positive and negative steady-state persistence
probabilities for different values of N, . The initial time of each model is chosen to be larger than
the saturation time of the model: t, > t,. The range of the values of h(t,) =h, is determined by
the value of the saturation width W, ~ L , which characterizes the roughness of the steady-state
interface. Large values of the saturation width make it possible to use a larger number of initial
heights.

Figure 4.3 shows plots of Pf (+ |h0| ,t) , the positive persistence probability for positive
values of h,, versus t for the (1+1)-dimensional Family model. It can be seen that the plots do
not show any sign of a power-law decay for any value of h. Similar behavior is seen for

F’_S (—|h0| , '[) , the negative persistence probability for negative h0 . Both (1+1) and (2+1)-
dimensional LC models also exhibit similar behavior.

We next present results for the positive persistence probability for negative initial
heights, Pf (—|h0| ,t) , and the negative persistence probability for positive initial heights,

pS (+|h0| ,t). Figure 4.4 shows plots of Pf (—|h0|,t) of (1+1)-dimensional Family model for

different |hO , compared with that of the average over all values of hy i.e. F’+S (t) The dotted

line represents the slope of the plot for the averaged probability which is Hf =1- /. One can

see from this figure that for values of |h0| that are substantially smaller than the saturation width
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Figure 4.4 Positive steady-state persistence probabilities for different negative values of the initial

height and averaged persistence probability for the (1+1)-dimensional Family model of system

size L =200 sites (t, = 10° MLs) with W, =312.
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W, =312 (e.g. for |h0| =1 and |h0| = 2), the P+S (_|ho| ,'[) plots do not exhibit clear power-
law decay. The departure from power-law behavior occurs at late times when the plots exhibit a
rapid decay. On the other hand, P+S (—|ho|,'[) shows clear power-law decay with exponents
smaller than (1— p ) for |h0| =5 and 6, which are larger than W,. These results suggest a
crossover in the time-dependence of |:’+S (—|h0|,t) as |h0| is changed across W, . The plot for
h, =0, for which the positive and negative persistence probabilities are the same, exhibits
power-law behavior with exponents close to (1— ﬂ) at short times, but a much faster decay at
longer times. This behavior suggests that the decay of the persistence probability for hy =0 is
not described by a power law.

The most important feature of the results shown in Figure 4.4 is the power-law decay of
F’+S (—|h0|,t) (and equivalently, of P° (+|h0| ,t)) for |h0| Z W, . This behavior is clearly shown
in Figure 4.5 where F’+S (—|h0| , t) and P_S (+ |h0| ,t) for the (1+1) dimensional Family model are
plotted versus time in a double-log scale for a value of |h0| that is slightly larger than W, . Both
plots collapse into the same straight line, corresponding to power-law decay over 3 decades in
time, with an exponent ~ 0.68 that is clearly different from (1— p ) =0.75. Figure 4.6 shows
the Pf‘ (—|h0|,t) versus t plots for the (1+1)-dimensional Family model for three different
values of |h0|. For any value of |h0| =W,, the graph shows a good power-law decay. Similar
results are found for the (1+1) and (2+1)-dimensional LC models (see Figures 4.7-4.8). These
figures show the most important result of our study: the persistence probabilities F’+S (—|h0|,t)
and P° (+ |h0| ,t) exhibit power-law decay in time for |h0| = W,, and the exponent that describes
this power-law decay decreases as the initial height |h0| increases. When we plot the exponents
0° versus |h0|/ W, for each model, the obtained graph is a straight line with a negative slope as
shown in the insets of Figures 4.6-4.8. From these plots, it can be concluded that the persistence

exponent decreases linearly with |h0 | TW, :

s [y
0; = —k| — |+ constant 4.1)
+ W,
where x is a parameter that describes how fast the persistence exponent decreases with the initial
value of the height fluctuation. The parameter x depends on the model being considered.

We found #x =0.074+0.003 for the Family model while x =0.046%+0.002 and
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Figure 4.5 F’+S (—|h0| ,t) and P° (|h0| ,t) of the (1+1)-dimensional Family model of system size

L =1,000 sites with W, = 7.
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Figure 4.6 Positive steady-state persistence probabilities for different negative values of the

initial height with |h0| /W, =21, W, = 7.0 for the (1+1)-dimensional Family model of system

size L =1,000 sites (t, = 5x10° MLs). Inset: persistence exponent as a function of |ho| / W, .
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Figure 4.7 Positive steady-state persistence probabilities for different negative values of the initial
height with |ho| /W, >1, W, ~56.6 for the (1+1)-dimensional LC model of system size

L =150 sites (t,; =2 x10° MLs). Inset: persistence exponent as a function of |ho | W, .
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Figure 4.8 Positive steady-state persistence probabilities for different negative values of the initial

height with |ho| /W, >1, W, = 7.6 for the (2+1)-dimensional LC model of system size
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x =0.044+0.002 for the (1+1) and (2+1)-dimensional LC models respectively. Interestingly,
the values of x for the (1+1) and (2+1)-dimensional LC models agree with each other within the

error bars. Since the saturation width is proportional to L", the persistence exponent is a function

of |h0|/ L ie. 0° ~ (mj
+ L

These results may be qualitatively understood from arguments similar to those described
at the end of Section 4.1. Let us assume, without any loss of generality, that h, > 0. As
discussed in Section 4.1, the positive persistence probability for N, > 0 must decay faster in time
than the negative persistence probability. The difference between the behavior of the positive and
negative persistence probabilities should increase as N, is increased. Also, the temporal decay of
the negative persistence probability should be slower for larger values of N, because the typical
length of negative excursions increases as h, is increased. In particular, for hy >>W,, the
height fluctuation at a site is expected to take a very long time to return to its initial value after a
departure in the negative direction. This suggests that p* (+ |h0| ,t) decays as a power law with
exponent close to zero for h, >> W, . By continuity, a power-law decay of ps (+|h0| , t) is also
expected for other large values of Ny . The exponent for this power-law decay should decrease
with increasing h, because the negative persistence probability decays more slowly for larger
values of Ny . For hy =0, on the other hand, our numerical results suggest that the decay of the
persistence probability is not described by a power law. By continuity, the persistence
probabilities for h, <W,, for which the positive and negative persistence probabilities are not
very different from each other, are not expected to exhibit power-law decay in time.

The observation that the positive persistence probabilities for hy >0 do not exhibit
power-law decay in time may be rationalized from the requirement that the averaged positive
persistence probability, which is a weighted sum of the positive persistence probabilities for all
values (positive, negative and zero) of N, must decay in time as a power law with exponent
(l— p ) . The argument is as follows. In the sum that determines the average positive persistence
probability P° (t), the probabilities P° (+|ho|,t) and P? (—|h0|,t) appear with the same
weight. We have argued above that Pf (—|h0| ,t) - P (+|h0| ,t) should exhibit a power-law
decay with exponent smaller than (1— o) ) if |h0| is large. If Pf (+|ho|,'[) also decays as a

power law with a different exponent, then it would be very difficult to satisfy the requirement that
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the sum of |:’+S (+|h0|,t) and Pf (—|h0|,t), averaged over |h0| with Gaussian weights, must
yield a quantity that decays in time as a power law with exponent (1— o) ) . On the other hand,
this requirement can be satisfied if |:’+S (+|h0| ) t) does not decay as a power law. For example, if
F’+S (—|h0|,t) ~t7 with < (1—ﬂ), then the average of |:’+S (—|h0|,t) and Pf (+|ho|,'[)
would decay as A it P (+|h0|,t) ~ 2t =% which represents a decay that is faster
than a power law. Although this form cannot be valid at very long times (it would give a negative
value if t is sufficiently large), it does provide a qualitatively correct description of the actual
time-dependence of F’+S (+|h0| ,t), shown in Figure 4.3, for roughly 3 decades in time. The non-
power-law behavior of P° (ho,t) for small values of |h0| would also help in making the
averaged positive persistence probability decay as a power law with exponent (1— g ) .

As noted above, the persistence probabilities F’_S (+|h0|,t) and Pf (—|h0| ,t) are
expected to decay very slowly in time, with the decay exponent approaching zero, if |h0| is much
larger than W,. The behavior of the persistence probabilities for such large values of |ho| is
difficult to study in simulations because of poor statistics. This is because the occurrence of
values of |h0| >> W, is extremely rare. Our data for such values of |h0| are consistent with the
expectation of the decay exponent approaching zero. This result implies that the dependence of
the decay exponent on |h0| given in Eq. (4.1) is valid only for values of |h0| that are not much

larger than W, .

4.3 Scaling Behavior of the Persistence Probability

We have studied the effects of finite system size (L) and discrete sampling time (Jt) on the
steady-state persistence probabilities for different initial heights. We now study the average
persistence probability, P° (|h0|) which is the average of P’ (—|h0| ,t) and P° (|ho| ,t). The
scaling variables are expected to be t/L’, ot/L and h, /W (L) where W,(L)oc L is the
saturation width of the interface. We measure the average steady-state persistence probabilities
for three sets of values of L and St. These values are chosen so that we have the same values of
|h0|/ W, and St/ L in all three cases. From our results, the plots of P® (t) versus t/ 5t exhibit
a good scaling collapse and power-law decay with exponents that depend on |h0|/ W, . The

scaling plots for the Family model are shown in Figure 4.9. This power-law dependence occurs
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when |h0|/ W, = 1. Similar results are obtained for the LC model (see Figures 4.10-4.11). These

results imply the following scaling form for the dependence of the average steady-state

persistence probability P* (t,L,ét,|h0|) on the initial height |h0| :

PS (t,L,0t,|ny|) = f [Li%@j (42)

where f (Xl, X2,X3) ~ X{Hs(m for X, <<1, X, <<land X;=1.
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Figure 4.9 Average persistence probability of the (1+1)-dimensional Family model for different

initial height, different substrate sizes and different discrete sampling times with the same ratio of

|h0|/ L* ~1.61 and ot/ L* ~2.5x107°. (a) Average persistence probabilities versus time.

(b) Finite size scaling of P° (t,L,ét,|h0|) .
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Figure 4.10 Average persistence probability of the (1+1)-dimensional LC model for different
initial height, different substrate sizes and different discrete sampling times with the same ratio of
|ho|/ L* ~1 and St/ L* ~4.8x107". (a) Average persistence probabilities versus time.

(b) Finite size scaling of P® (t,L,ét,|h0|) .
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Figure 4.11 Average persistence probability of the (2+1)-dimensional LC model for different
initial height, different substrate sizes and different discrete sampling times with the same ratio of

|ho|/ L* ~1.05 and St/ > ~1.6x107". (a) Average persistence probabilities versus time.
(b) Finite size scaling of P® (t,L,ét,|h0|) .



Chapter V
Effects of Patterned Substrate on Thin Films Simulated by

Family Model

In this chapter, effects of the substrate pattern on statistical properties of the growing film grown
by the (2+1)-dimensional Family model are studied. The patterns of interest here are the
triangular and vicinal substrates with varying size L and tilt angle ¢ as shown in Figure 5.1. The
substrate size Lx L is varied from L =100 to 600 sites and substrate angle ¢ ranges from 0
to 27°. Periodic boundary condition is performed along the triangular substrate whereas free

boundary condition is used for the vicinal substrate.

5.1 Effects of Patterned Substrate on Interface Width and Critical

Exponents

For models in which the roughness of the film surface is very small such as the Family model, the
initial pattern strongly effects morphology and other kinetic properties of the film. From the
definition of the interface width, W measures the deviation of the film surface from the initial
substrate. When the film is grown on a flat substrate, W is the standard deviation of the height.
For the Family model, the diffusion rules lead to very smooth surface so W is very small when
the film is grown on a flat substrate (see Figure 5.1). However, W becomes larger when the film
is grown on a patterned surface. This is because the growing surface becomes smoother than the
initial pattern resulting in larger deviation of the grown surface from the initial height. Figure 5.2
(a) shows the interface width as a function of time for the flat and triangular substrates with
various substrate angle ¢ of the system size L = 600 sites. The plots of the triangular substrates
show relatively small values of W at early times because the morphologies at that time still
carry the shape of the initial pattern. At larger time, the surface becomes smoother leading to the
increase in W . Finally, W becomes constant when the system reaches the steady-state. The

larger the tilt angle ¢, the rougher the initial substrate, and the larger the saturation width W, .
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Figure 5.1 The triangular (left) and vicinal (right) substrates with the tilt substrate angle ¢ .
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Figure 5.2 Interface width of the Family model grown on the triangular substrate with

(a) L =600 sites and various tilted angle @ , (b) with ¢ = 27° and various substrate size L .
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Figure 5.2 (b) shows the interface width as a function of time for the flat and triangular substrates
for various substrate size L of the system with tilt angle @ =27°. The initial roughness increases
with L resulting in the larger value of W, for large L. For the vicinal substrate, we obtain the
same results as those of the triangular substrate.

The effects of the patterned substrate on the interface width lead to the change in the
critical exponents that may alter the scaling relation of the model. To investigate this, the critical
exponents « , 3, and Z are studied. In chapter 2, the scaling plots of W /L* vs t/L’ (a) and
W /t? vs t/L* are used to determine the values of the critical exponents. In this chapter, we
study patterned substrates in which the initial roughness is different for different L. We,
therefore, calculate the exponents directly from the particular interface width curve. The growth
exponent is determined by the slope in the early time of the W vs L plot in the logarithmic
scale. Using a fixed value of ¢ =27", the growth exponent £ in both the vicinal and triangular
substrates is found to vary with the roughness of the substrate as shown in Table 5.1. The
roughness exponent & and dynamical exponent Z are calculated from slope of double log plots
of W, vs L and t, vs L as can be seen in Figure 5.3. Like S, « changes with the initial
roughness. The results in Table 5.1 and Figure 5.3(a) indicate that f and « of the patterned

substrate are larger than those of the flat substrate (# =0, & = 0) due to the initial roughness.

Table 5.1 The growth exponents of the Family model on patterned substrates with ¢ =27°.

The substrate size
AR Pl R B
100x100 0.68 0.66
200x 200 0.71 0.69
300x300 0.72 0.71
400x 400 0.73 0.72
500x500 0.74 0.73
600 x 600 0.74 0.73

Moreover, when the Family model is grown on a sufficiently rough patterned substrate,

e.g. the substrate with ¢ = 27", the growth exponent computing from the Family-Vicsek scaling
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Figure 5.3 (a) The saturation width and (b) the saturation time for systems with triangular and

vicinal substrates.
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relation using & and Z in Figure 5.3 is £ = 0.5 which does not equal the value obtained from
the interface width versus time plot directly (see Table 5.1). As a result, three independent
exponents rather than two are required, and their relation is not consistent with the Family-Vicsek

scaling relation.

5.2 Effects of Patterned Substrate on Persistence Probability

From our results, the transient persistence probability does not show power-law decay with time
if the film is grown on a sufficiently rough substrate. Our results show that the pattern has a very
weak effect on whether the positive and negative persistence probabilities will be equal at a
particular time, but it strongly effects the value of pT (t). When ¢ is increased, width of the flat
terraces on the substrate decrease and it is easier for a deposited atom to move to one of the step
edges. The number of sites that deposited atoms are left in the middle of a terrace - sites that the
height fluctuation returns to the initial value - becomes smaller leading to larger value in PT.
Figure 5.4 shows the transient persistence probability of films grown by the Family model on flat
and triangular substrates. The plots show that the bigger the angle, the larger the persistence
probabilities (more persist sites) at a particular time 1. The same results are seen in systems with
vicinal substrates.

Another effect the pattern has on PT can be seen at large t when = (t) does not decay
to zero but converts to a nonzero constant for cases with large ¢ . This is because the tilted initial
surface creates a specific direction in the substrate and majority of deposited atoms end up in the
“lower” sites due to the Family diffusion rule. As more and more layers are deposited, along the
tilt direction of the triangular substrate, the height fluctuations near the edges of both sides of the
film increase on the average, while those near the middle of the film decrease on the average. As
a result, |:’+T for sites near the substrate edges remains non-zero for a long time while P_T
remains non-zero for sites in the middle. For the vicinal substrate, P+T remains non-zero for the
initially lower sides whereas P" remains non-zero for the initially higher sides.

The persistence exponents are also affected by the substrates. From Figure 5.4, it can be

seen that 6" <0 . The reason is that, in a rough surface, range of the initial height is ve
flat g g g ry

pattern

large and it takes more time for the persistence probability to become zero for sites with large

o
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Figure 5.4 (a) Positive and (b) negative transient persistence probabilities of the Family model

grown on the flat and triangular substrates for various @ .
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As can be expected, the patterned substrate does not have any effect on the steady-state
persistence probability and steady-state persistence exponent because any evidence of the initial

pattern no longer exist by the time the film reaches the steady-state.

5.3 Effects of Patterned Substrate on Correlation Functions

The height-height correlation function is calculated in two directions i.e. the flat direction G, and
the tilted direction Gy . For the Family model, we can clearly see different behavior between the
correlation functions calculated in different direction in the early times. Figure 5.5 shows the plots
of G, and G, of the Family model grown on flat and triangular substrates with L =600 sites
and varying @ . As shown in Figure 5.5(a), G, of the triangular substrates with all values of @
shows the same behavior as that of a flat substrate, and all plots collapse into the same curve.
However, Gy of the triangular substrates, in Figure 5.5(b), continue to show power-law behavior
up to the largest Ar used. Moreover, the value of Gy increases as ¢ is increased due to the
large value of height difference caused by the very rough substrate. Interestingly, slopes of these
plots, which are local roughness exponents at a certain ¢ , range from 0.94 when ¢ =27" to
0.82 when ¢ =3". The value obtained here for ¢=27" (o =0.94) differ from the global
roughness exponent of o =1.0 shown in Figure 5.3 revealing anomalous scaling in the systems.

The same results are obtained for the vicinal substrate.

Finally, the multifractality of the Family model grown on two dimensional patterned
substrates is investigated via the study of the generalized correlation G0| . Figure 5.6 shows the
plots of Gq in the tilted direction of the Family model grown on flat and vicinal substrates with
L =500 sites and @ =27 using  =1—4. For a flat substrate (see Figure 5.6(a)), the value of
&, is the same for all (. However, Gq for patterned substrate in Figure 5.6(b) show strong
dependence of &, on Q revealing profound multifractality in the Family model grown on

patterned substrates. For the triangular substrate, our results exhibit similar multifractal behavior.
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Chapter VI
Healing Time for the Growth of Thin Films on Patterned

Substrates

The main goal of this chapter is to study effects of patterned substrate and investigate how long
the initial pattern influences the growing film. The linear Family model and the more complicated
nonlinear DT model grown on two dimensional substrates are used in this chapter. The first
pattern considered here is a tent-shaped triangular substrate of varying slope and size. The initial
substrate is tilted by angle ¢ in the y-direction as shown in Figure 6.1(a). By definition, the size
of the triangular pattern depends on the size of the substrate which means that the initial
roughness increases as the substrate size is increased. The other pattern of interest is one
consisting of pillars or grooves of varying size but constant areal density (see Figure 6.1(b)).
Unlike the triangular substrate, the size of the pillars and grooves do not vary with the substrate
size. We consider both the situations of periodic and random distributions of the pillars and
grooves on the substrate. Pillars (grooves) with random height (depth) are also studied. Periodic
boundary condition is used in all systems. In addition to simulations, we carry out analytical
calculations for the Family model for both types of initial pattern, using the continuum EW
equation.

The nearest-neighbor height difference correlation function G defined in chapter 2 is
used to identify the healing time {, . The healing time is defined as the time at which ¢ of a film

grown on a patterned substrate becomes equal to that of a film grown on a flat substrate.

6.1 Triangular Pattern

As more and more layers are deposited, influence of the initial pattern decreases. This can be seen
from the morphology of the film surface at different times. When t <<t, , the surface (Figure
6.2(a)) clearly shows the shape of the initial pattern. As the growth time increases, the

morphology (Figure 6.2(b)) becomes smoother due to surface diffusion; however, characteristics
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(a)

[I [| I] } hpillar } hgroove

(b)
Figure 6.1 (a) The tent-shaped triangular substrate with substrate angle ¢ , (b) the substrates with

pillar (left) and groove (right).
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Figure 6.2 Morphologies of the Family model on a triangular substrate with L =600 sites at (a)
t=1000<t,, (b) t=10,000 <t,,and (c) t=100,000> t,.
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of the initial pattern are still visible. When t >t , the morphology of the film (Figure 6.2(c))
is indistinguishable from that of a film grown on a flat substrate, indicating that the initial
patterns no longer have any effect on the grown film after the growth time exceeds the healing
time.

The healing times of the Family and DT models grown on triangular substrates have been
obtained from our simulations. Control variables are the angle of the substrate and the substrate
size. First, the substrate size is fixed at Lx L with L =600 sites for the Family model and
L =100 sites for the DT model while the tilt angle is varied from ¢ =0’ (flat substrate) to
@ =27". The values of ¢ considered here correspond to the following values of the slope of the
initial pattern: 0,1/20, 1/10, 1/5,1/4 and 1/2 (for a discrete model, the slope must be of
the form m/n where m and n are integers). The nearest-neighbor height difference correlation
functions in the tilt direction (o(t) = o, (t)) are calculated. The plots of o(t) for the Family
model grown on substrates with different values of ¢ (Figure 6.3(a)) show relatively large
values of ¢ at early times. This is due to the initial width of the patterned substrate. When more
layers are deposited, atomic diffusion leads to a decrease in the interface roughness. This
effectively reduces the value of ¢ at late times. Finally, at t,, the value of ¢ becomes equal to
that of a film grown on an initially flat substrate. Note that the plots for small value of ¢ show
oscillations in the early time range due to layer-by-layer growth on substrates with small tilt. An
increase in @ causes the value of o to increase in the early time range. This is because &
measures the height difference between nearest neighbors which increases when the slope of the
substrate is increased. Substrates with larger initial values of ¢ need more time for the initial
characteristics of the interface to be healed. So, as expected, the value of t, increases with¢.
Similar results are obtained from the DT model. It should be mentioned that the values of t,
cannot be determined very accurately from the simulations because this requires finding the time
at which two fluctuating quantities (¢ for flat and patterned initial states) become equal.

In order to find the dependence of t, on substrate size, the tilt angle is then fixed at 27°
while the substrate size is varied from L =100 to 600 sites for the Family model and from
L =60 to 160 sites for the DT model. For the triangular substrate with any substrate size (see
Figure 6.3(b) for the results for the Family model), the initially roughness of the surface causes
large values of o in the early time range. As U increases, the interface becomes smoother

because atoms diffuse in order to minimize their heights. As a result, the value of & is reduced
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and it becomes equal to that for a flat substrate at t =1, . When L is increased, the value of & in
the early time range increases. This is because for the same tilt angle, the substrate roughness
increases with the value of L. The larger initial roughness takes more time to recover, so t,
increases with L. It should be noted that all plots reach a constant value of ¢ when t 21, . We
can, therefore, conclude that the healing time in this case is close to the saturation time (the time
beyond which the interface width becomes essentially constant) for the patterned initial states.

From our results for the Family model, we find that the ratio t, / L*(Z=2) is constant
for each ¢ . For ¢=27", t, /L* = 0.1, which is nearly the same as the value of t, / L’ of this
model when {, is the saturation time [Constantin et al. 2004]. The scaling relation between the
healing time and the substrate size is then investigated by rescaling the time axis in the & vs. t
plot by a factor of L*. We find that the data for triangular substrates show a good scaling collapse
for relatively large values of 1. The early-time data do not exhibit a scaling collapse because the
behavior at early times is determined primarily by the initial pattern. The points corresponding to
the healing time fall on approximately the same spot as can be seen in Figure 6.4. From the data
collapse for various substrate sizes, the scaling description for the healing time is determined to
be t, ~ L*. Since the saturation time t. also scales with the substrate size as t, ~ L*, a linear
relation between t, and t is implied.

For the DT model, we find that the results exhibit strong system-size dependence for the
relatively small values of L used in our simulations (our simulations for the DT model are
restricted to smaller systems because the healing time in the DT model is much larger than that in
the Family model with the same value of L ). Effective critical exponents for the limited range of
substrate sizes considered in this work, obtained from finite-size scaling collapse of W /L*
versus t/L* and W /t? versus t/L* plots for different L are « =05, f=0.19 and
Z = 2.6 (see Figure 2.10). In addition, the saturation value of ¢ depends weakly on L for the
values of L used in our simulations. As a result, a scaling collapse of the data, similar to that for
the Family model (Figure 6.4) is not possible for the DT model. However, it is possible to check
whether the power-law scaling relation between t, and L remains valid. A plot of t, as a
function of L (see Figure 6.5) shows that t, ~ L* with Z =~ 2.6. Thus, it can be concluded that
for the triangular substrate, the healing time scales with L® for both the models studied here. It is

clear from a comparison of the results shown in Figures 6.3 and 6.5 that the healing time of the
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Figure 6.4 Data collapse for ¢ of the Family model on a triangular substrate with substrate angle

@=27" for various substrate sizes.
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Figure 6.5 Power-law dependence of the healing time on the substrate size of the DT model with

2=2.6=%0.1.
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DT model is much larger than that of the Family model simulated with the same conditions. This
is a consequence of the characteristically rough morphology of the DT model.

To study effects of patterned substrate theoretically, the nearest-neighbor height
difference correlation function of the Family model grown on the triangular substrate is calculated
analytically from a continuum description. The continuum equation describing the large scale

behavior of the Family model is the EW equation [Edwards and Wilkinson, 1982]:

OH (7, 1)
ot

where v is a constant representing surface tension and #7(F,t) is the noise arising from

= yW2H (7, t) + (1), 6.1)

random fluctuations in the deposition process. To solve the linear EW equation, the discrete

Fourier decomposition [Krug, 1997] is used and the height profile H is written as
L L

2 2

Hxy,t)= Y > H(n,,n,,t)e ™m0t (6.2)
L

L
=——n,=———

n
] 2, %e

with the inverse transform denoted by H (n,, ny,t) . The general solution of the EW equation in

Fourier space is written as

—4r?v(nz+n))t t  Az’v(ni+nd)u

H(n,n,t)=e £ H(nX,ny,0)+jefﬁ(nx,ny,u)du , o (6.3)
0

where H (n,,n,,0) is the Fourier transform of the height profile at the initial time, H(F,0).

The noise in this model is uncorrelated and has zero mean:

(n(x, y, On(x',y', ) = Do(x = x)a(y — y)a(t -t

~ ~ ! ! A D ! ! !
(i, 0y, DA, 1)) = 50, +m)a(n, + 1o -1). (64

where D is a coefficient indicating the strength of the noise. The height difference correlation

function (G ) is defined as

G(AF,t) = <\H (F + AF,t) - H (r,t)\2>%. ©6.5)



74

Replacing Egs. (6.2) and (6.3) in Eq. (6.5), the height difference correlation function is found to
be the sum of a “smooth” term, G™™" (Ay,1), and a “rough” term, Groun (Ay,t) [Nguyen et al.
2009]:

(G(Ay,1)) =(G*™ (ay, 1)) +(G™" (ay,1)) . (6.6)

These two terms have the following expressions in our case:

L L
(Gsmooth (Ay,t))2 :% i i ‘H (n ny,O)‘2 e—8n2vt(nf+n§)/L2 (l—COS(ZEnyAy/ L))

M= ny ==
2
(6.7)
(G rough (Ay, t) )2
L L
2 2 2 4002 02712
= ooy o )(1—e‘8” A )(1—008(27myAy/L))- o

Ne=0n

X

y

L
E y %

— %n
The smooth term depends on the initial height profile or the shape of the substrate with the
exponential decay function representing the effect of the surface tension v . This term decays
with time which means that the initially rough patterned surface is smoothened by the surface
tension. On the other hand, effects of the noise D are represented in the rough term. This term
indicates that, growing from a flat surface, the interface becomes rough due to the fluctuations
from the noise. The theoretical form of the nearest-neighbor height difference correlation
function in the tilt direction (G(t) =0, (t):G(Ayzl,t)) as a function of time for the

triangular substrate is then determined as

o(hy) = (G (ay =1.1))" +(G™ (ay =L1))’ 69)

while & for the flat substrate is given by
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o(H, =0)=G"™""(Ay =1t). (6.10)

Comparing the results of our simulation with those of the analytical calculation, the plots
for the numerical and analytic results for ¢ for the same initial roughness are found to collapse
into the same curve for D 1.7, v~ 0.63 for all substrate sizes of interest. Figure 6.6 shows
such a plot for L =200 sites with two different values of ¢ . The healing time t, corresponds to
the value of t at which the smooth term in Eq. (6.7) becomes smaller than the resolution in the
measurement of the nearest-neighbor height difference correlation function & . It is clear from the
structure of Eq. (6.7) that this time should be proportional to L?. The form of Eq. (6.7) also
implies that the healing time t, for a fixed value of L should increase linearly with the logarithm
of the slope of the initial pattern. Our numerical results are consistent with this prediction.

We have checked that for the Family model, the healing time of an inverse triangular (V-

shaped) substrate is identical to that of a triangular substrate with the same slope.

6.2 Pillar/Groove Pattern

In this section, the healing time of the Family and DT models grown on substrates with pillar and
groove patterns is studied. For both models, the substrate size is varied from L =100 to 500
sites. For each L, the height/depth of the pillars/grooves is varied from 100 to 500 atomic
units. The plots of o(t) from films grown on substrates with periodic arrangements of pillars
(Figure 6.7(a)) and grooves (Figure 6.7(b)) are qualitatively similar to that for the films grown on

and h show relatively large

triangular substrates. The ¢ —1 plots for any value of hpiIIar groove

values at early times due to the initial roughness of the patterned substrate. The value of ©
decreases at late times due to the diffusion of deposited atoms. For both models, the healing time

and h are increased as shown in the plots for the DT model in

t, increases when hpi”ar groove

Figure 6.7. The reason is that the roughness of the initial substrate is proportional to the height
(depth) of pillars (grooves). The rougher the initial pattern, the longer is the time needed for the
correlation function to be healed. Our DT results show that {, for pillars is larger than that for
grooves with depth equal to the height of the pillars. This is because the DT morphology
generally exhibits rounded top surfaces and deep grooves [Dasgupta et al. 1997]. The healing

time for grooves is smaller than that for pillars because grooves occur naturally in the
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Figure 6.6 Simulation results for the Family model, compared with the analytic results for ¢ for

flat (@ =0") and triangular (@ =14") substrates for L =200 sites.
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size is L =500 sites.
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morphology of films grown according to the diffusion rule of the DT model. This difference
reflects the lack of up-down symmetry in the DT model and is related to the fact that the
continuum equation that is believed to describe the coarse-grained behavior of the DT model is
nonlinear.

For the Family model, whose continuum description yields the same results for substrates
with pillars and grooves (because they are related to each other by the h — —h transformation),
our simulations show the surprising result that the healing behavior is different for substrates with
pillar and groove patterns (see Figure 6.8). We find that the healing time for grooves is smaller
than that for pillars. These results establish that a continuum description (the EW equation)
cannot describe growth on a substrate with pillars/grooves.

Similar to the triangular substrate cases, the healing time in the DT model is larger than
that in the Family model simulated with the same conditions.

We have also studied the effects of the distribution of the pillars and grooves on the
healing time. Figure 6.9 shows a comparison between the DT results for periodically (or
uniformly) distributed and randomly distributed grooves with the same areal density. The healing
time for the random case is observed to be larger than that for the periodic case. Similar plots are
obtained for substrates with pillars. This is because a random distribution of the elements
(grooves or pillars) of the pattern on the substrate can cause some regions of the substrate to have
a high density of the elements. Films on densely patterned substrates require more time for the
correlation function to be restored. As a result, the dense regions in the random distribution case
cause [, to be larger than that for the periodic case. Similar results are obtained for the Family
model.

The small kink seen in Figure 6.7(a) is observed only for the DT model in all ¢ —1 plots
for substrates with pillars of the same height. When the areal density of the pillars equals

0.0025, there is one pillar of height h_ . in every | x| section of the square lattice where

pillar

| = 20 sites. According to the DT diffusion rules, atoms deposited at the pillar sites move to one
of the nearest-neighbor sites whereas atoms deposited at the nearest-neighbor sites of the pillar do
not diffuse because they already have a lateral bond. The height at pillar sites should be close to

h

vitlar after the deposition of t monolayers, and the heights at the nearest-neighbor sites should

be close to 5t/ 4. The heights at other sites evolve as if the initial substrate were flat. So, the

value of G after the deposition of T monolayers should be given by
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Figure 6.8 o of the Family model grown on a substrate with a periodic arrangement of pillars

and grooves with h

pillar

=h

groove

=500, for L =100 sites. The areal density of grooves is

0.0025.
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Figure 6.9 o of the DT model grown on substrates with periodic and random arrangements of

grooves of depth h, .. =400 and 500 .The areal density of grooves is 0.0025. The substrate

size is L =500 sites.
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1 5.) t)’ &
G(t)E T 4(hpillar—ztj +12(Z\J +(2|2—16)sz (t) ) (6.11)

where G (t) is the correlation function of the film grown on a flat substrate. The formula is

valid until t ~ 4h /'5 when the heights of the nearest-neighbor sites become comparable to

pillar
that of the pillar site and atoms deposited at the pillar site do not always move to the nearest

neighbors. The kink seen in Figure 6.7(a) is at the crossover timet ~ t, = 4h /5. As shown

pillar
in Figure 6.10, the simple approximate formula of Eq. (6.11) provides an accurate description of
the simulation data for times up to this crossover time. For the initial pattern with grooves, such a
crossover does not exist because the evolution of isolated grooves according to the DT diffusion
rules is very different for that of isolated pillars. This difference is discussed in detail in Dasgupta
et al. 1997.

Since the crossover time depends on h the kink should not be expected when the

pillar »
height of the pillars is chosen randomly. Figure 6.11 shows o —1t plots for a substrate with
pillars of uniform height and one with pillars of random height with the average equal to the
height in the uniform case. For the random case, the crossover in each | x| section occurs at a
different time, leading to a smooth correlation function curve. The healing time in the random
case is larger because pillars with heights larger than the average value take longer to heal.

The dependence of the healing time on the size of the initial pattern and the substrate size
is also investigated. We find that the healing time depends strongly on the height (depth) of the

pillars (grooves). We obtain a linear dependence for both periodically distributed and randomly

distributed pillars. For the DT model, the healing time, measured from the crossover time t__ is

plotted as a function of h

with t, —t ~12.2h

pillar 10 Figure 6.12. The results show a good linear relation in both cases

when the pillars are randomly distributed and t, —t. ~6.9h . for

pillar

periodically distributed pillars. Since the crossover time t, is itself proportional to h the

pillar »

healing time 1, in these cases is proportional to h . Similar behavior is observed in systems

pillar
with grooves. For the Family model, we obtain similar results except that there is no kink in the
o —1 plots (see Figure 6.13). However, with the same density of pillar, we find that the shape of

the correlation function as well as the healing time do not depend on L. Figure 6.13 shows that
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Figure 6.10 Comparison of the simulation result for ¢ for the DT model on a substrate with a

periodic arrangement of pillars with h = 500 with the approximate result given in Eq (6.11).
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Figure 6.13 o of the Family model grown on a substrate with a periodic arrangement of pillars,

for two different substrate sizes L =100 and 500 sites. The areal density of pillars is 0.0025.
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the o—1 plots for films grown on substrates with a periodic arrangement of pillars with

h =100 for two systems with L =100 and 500 sites collapse into the same curve. We

pillar
find similar behavior for a random distribution of pillars, as well as for both periodic and random
distribution of grooves.

The theoretical calculation of the Family model grown on a pillar substrate is studied
using the EW equation. The plots for analytic results are found to disagree with the simulation
results for the same initial roughness as can be seen in Figure 6.14. For the analytic calculation,
the correlation function decreases with time as an exponential decay while that of the simulation
results decreases linearly with time. We can conclude that the healing time cannot be predicted by
the continuum description when the initial pattern is atomically rough and does not extend with
the size of the substrate.

The healing properties of the Family model grown on a substrate with pillars/grooves can
be studied analytically in the continuum limit using the EW equation. The calculation is
essentially the same as that described above in the context of growth on a triangular substrate.
The only change in Eq.(6.7) is that the values of the Fourier components H (n,, ny,O) of the
initial height profile are now different from those for a triangular substrate. For a periodic
arrangement of pillars, the values of N, N, for which H (n,, ny, 0) is not zero are determined by
the periodicity of the initial arrangement. In this case, the healing behavior in the continuum
description is expected to be essentially independent of the system size. For a random
arrangement of pillars, other Fourier components of the initial height profile should be nonzero
and the healing behavior should exhibit some dependence on the system size. A comparison of
the analytic result with that obtained from simulations for the same initial roughness (see Figure
6.14) shows that the two sets of results are very different from each other. In the analytic
calculation, the correlation function decreases with time as an exponential decay and it reaches
the value obtained for a flat substrate at a time that is much shorter than the healing time obtained
in the simulation. The simulation result for ¢ decreases linearly with time for small values of .
The time-dependence of ¢ found in the simulation may be understood from the diffusion rule of
the Family model, using arguments similar to those use earlier for the DT model. In the initial
stage of the healing process, an atom deposited at a pillar sites moves to one of the nearest-
neighbor sites because these sites have lower heights. An atom deposited at one of the nearest-

neighbor sites can diffuse to one of its neighboring sites if that site has a lower height. So, unlike
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the behavior in the DT model, atoms deposited at the nearest-neighbor sites of a pillar site diffuse
in a way that is similar to the diffusion of atoms on a flat substrate. Arguments similar to those
used earlier for the DT model then lead to the following approximate expression for the time

dependence of & for t <h ...

0('[) = [2—::'2(4(hpi”ar —t)z +(2|2 —4)02f (t))}% (6.12)

As shown in Figure 6.14, this approximate expression provides a good description of the
simulation data. This argument also implies that the healing time should be nearly equal to hpillar
in this case. The simulation results are consistent with this prediction. In the case of a groove, an
atom deposited at the site of the groove stays there and atoms deposited at the four nearest-
neighbor sites move to the site of the groove because it has a lower height. Thus, the depth of the

groove initially decreases by 4 units on the average after the deposition of each monolayer. This

leads to the following approximate expression for ¢ for t <h, .. /4.

o(t)= [%(4(%%& —4t)2 +(2I2 —4)62f (t))}% : (6.13)

As shown in Figure 6.14, the simulation data for the healing of grooves are well-described by this
expression which implies that t, ~ hy, ... /4.

These results show explicitly that the healing behavior of the Family model on substrates
with pillars or grooves cannot be understood from a coarse-grained continuum description. An
analytic treatment similar to that described above for the Family model cannot be worked out for
the DT model because the growth equation believed to be appropriate for the DT model is
nonlinear. For this reason, an explicit comparison between analytic and simulation results is not
possible for the DT model. However, we believe that the conclusion that a continuum description
does not provide a correct account of the healing process for substrates with pillars or grooves
applies to the DT model also. As noted earlier, the healing time of the DT model on a substrate
with pillars or grooves is proportional to the height (depth) of the pillars (grooves), similar to the

behavior found for the Family model. We also found also that some of the features observed in

the simulation results for the DT model, such as the kink in the 6 —1 plots for substrates with
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pillars, arise from atomistic details of the diffusion rules which would be lost in a continuum
description. These results indicate that simple scaling theories based on a coarse-grained
continuum description of the healing process do not provide a correct account of the behavior of

the DT model grown on substrates with pillars or grooves.
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Figure 6.14 Comparison of the simulation result for ¢ for the Family model on a substrate with a
periodic arrangement of pillars and grooves with h ... =Ny, =100, L =100 sites with the
approximate result given in Egs. (6.12) and (6.13), and the analytic result obtained from a

continuum description. The areal density of pillars equals 0.0025.



Chapter VII

Conclusion

In our detailed study of the persistence probabilities, we found that different values of the
sampling time and the system size lead to different results of the persistence probabilities. When
the system size is decreased, the persistence exponent increases. Increasing value of the sampling
time leads to the increase of persistence probabilities. However, the value of the sampling time
does not affect the persistence exponents. By keeping the ratio St/ L’ constant, the scaling form
for the Family, the LC and the DT Models can be written in terms of t/L* and &t/ L°. That is
PS(t,L,ot) = f (yz ,5y ) ), where the scaling function decays as a power law with #L" with

an exponent corresponding to models. This relation is valid for t/L* <<1 and ot/ L* <<1.

Our numerical study of the dependence of the steady-state temporal persistence
probabilities for three discrete growth models with up-down symmetry on the choice of the initial
height h, leads to the important conclusion that the positive persistence probability for negative
initial heights, Pf’ (—|h0| ) t) and equivalently, the negative probability for positive initial
heights, P° (+|ho| ,'[) decay in time as a power law under the condition |h0|/ W, = 1. The other
two persistence probabilities do not show any indication of power-law decay. The persistence
exponent that describes the power-law decay of Pf (—|h0|,t) and P° (+|h0|,t) decreases with
|h0 | /W, and the observed behavior is consistent with a linear dependence 0n||’1O | /W . Our study,
thus, provides strong numerical evidence for the existence of a new set of persistence exponents
for the simple growth models considered here. We also show that the persistence probability for a
fixed initial height h, is a function of the scaling variables t/L*, 5t/ L* and||‘1O |/ L”.

Although our numerical study provides strong evidence for the power-law decay of
Pf (—|h0|,t) and P® (+|ho| ,'[) for |h0|/ W, =1, true power-law behavior and the existence of
the associated persistence exponents can be established only from exact analytic work. We have
presented interesting arguments that provide a qualitative understanding of our numerical results,
but these arguments are by no means exact. Analytic studies of persistence probabilities are
usually carried out for continuum systems. Continuum growth equations that are appropriate for
describing the long-time, large-scale behavior of the discrete growth models considered here are

well known. However, analytic studies of the persistence probabilities for these growth equations
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are difficult because the exponent [ for all these systems is less than 1. The persistence
probabilities considered in our work are closely related to the statistics of the interval between
successive zero-crossings of the stochastic variable N(t)-h, . For growth equations with S <1,
the density of zero crossings of this stochastic variable is infinite — once this variable crosses zero,
it immediately crosses zero again many times within a short time interval. For this reason, the
persistence probabilities for these growth equations are not mathematically well-defined in the
truly continuum limit. This does not pose a problem for defining and studying persistence
probabilities in simulations and experiments because there is always a finite sampling time
between two successive measurements of the variable under consideration. However, this
mathematical problem makes exact analytic studies of persistence probabilities in these systems
quite difficult. Development of methods for performing such studies would be most welcome.

The models considered here exhibit up-down symmetry, which implies that the persistent
exponents associated with Pf (—|h0| ,t) and P° (+|ho| ,t) are the same. This would not be true
for growth models that do not exhibit up-down symmetry such as the DT model. Our results
suggest the existence of two sets of new persistence exponents, associated with Pf (—|ho| , t) and

PS (+|ho| ,'[) for such models. It would be interesting to check this from simulations of growth
models without up-down symmetry.

In the early times when effects of the initial pattern is still strong, plots of the interface
width, the transient persistence probability for large substrate slope, and the correlation function
in the tilted direction show different scaling behavior from that of growth on a flat substrate. The
substrate pattern also results in the breakdown of the Family-Vicsek scaling relation of the critical
exponents. Our investigations in the height-height correlation functions of different moments also
show that films grown with Family model on patterned substrates exhibit both anomalous scaling
and multiscaling behavior in contrast to the standard scaling in systems with flat substrates.

Several properties of growing films are affected by patterns on the substrate.  The
healing time, defined as the time when the influence of the pattern disappears, depends on the
characteristics of the initial pattern, the size of the substrate, and the nature of the dynamics that
governs the growth of the film. We have studied these dependences for two atomistic models of
film growth. The influence of the initial pattern appears prominently when the roughness of the

initial substrate increases. In our case, this corresponds to increasing the angle ¢ for the
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triangular substrate and increasing the height (depth) of pillars (grooves) for the pillar (groove)
pattern. Our results show that for relatively smooth initial patterns such as the triangular substrate,
the healing time scales with substrate size as L’. The healing time is thus proportional to the
saturation time for growth on a flat substrate. From a comparison of the numerically obtained
nearest-neighbor height difference correlation function of the Family model grown on a triangular
substrate with the analytic results obtained for the EW equation, the values of the noise strength
D and the surface tension v in the EW equation are found to be D ~1.7, v~0.63. For
atomically rough initial patterns such as those in substrates with single-site pillars or grooves, the
healing time increases linearly with the size (height or depth) of the initial pillars or grooves.
Random distribution in the height and/or the position of the pillars or grooves on the substrate
increases the healing time. Some of the features of the healing process in this case are found to be
inconsistent with the predictions of continuum theory and consequences of the atomistic details of
the diffusion rules. Therefore, in contrast to the triangular substrate, simple scaling relations
derived from a coarse-grained continuum description do not provide a correct description of the
healing process on atomically rough substrates with tall pillars and deep grooves. In retrospect,
this conclusion is not very surprising. Substrates with single-site pillars (grooves) with large
heights (depths) contain sites at which the nearest-neighbor height difference is much larger than
unity. A continuum description based on the assumption that the height variable varies smoothly
across the substrate is less likely to work in this situation. Our results bring out explicitly the
shortcomings of a continuum description of the healing process on substrates with tall pillars and
deep grooves and show that the healing behavior in these situations must be understood from the
atomistic details of the diffusion rules. These observations illustrate the complexity of the
process of healing of the initial pattern in film growth on patterned substrates. We anticipate that
our study will motivate further investigations of this process using more realistic models of film

growth.
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