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CHAPTER 1

INTRODUCTION

The set A of all arithmetic functions forms an integral domain under addition
and convolution, see [1] and [9]. It was proved by Cashwell-Everett [2], see also
[3], that A is indeed a unique factorization domain. In this thesis we consider two
properties of arithmetic functions, factorization and independence.

Rearick [7] pointed out that since the set of non-units in A is an ideal which is
not principal, A is not a principal ideal domain and so not a Euclidean domain.
Without the Euclidean algorithm, the problem of factorizing arithmetic functions
becomes quite difficult. The first real attempt was due to Rearick [7] who did
so by introducing the notion of standard forms and devised methods to obtain
factors of arithmetic functions whose norms are of simple shapes.

Rearick’s technigue made use of a derivative-like operator to set up differential-
like equations whose roots are the sought after factors. Later in [5], these results
were simplified and put under. a-more natural setting by replacing the derivative-
like operator with a true derivation, called p-basic derivation ([8]).

In Chapter III, we carry on the investigations of [7] and [5]. In the first part,
we derive two theorems providing sufficient primality criteria based on functional
values. These conditions are more desirable than their counter-parts in [7] and
[5], where the conditions there, despite being both necessary and sufficient based
on the forms of the functions themselves, seem harder to check. The second
part is the crux of this chapter. We prove our main factorization theorem which

leads to an algorithm exhibiting certain differential technique of finding factors



of arithmetic functions. The proof is conceptually similar to those in [7] and [5].
Finally, examples showing various possibilities are worked out.

In fact, the ring of arithmetic functions is isomorphic to the ring of Dirichlet
series. In Shapiro-Sparer[10], a systematic investigation of algebraic independence
of Dirichlet series is made. A thorough study of this paper leads us to results in
Chapter IV which either extend or simplify certain results in [10]. These results
include:

(i) A Dirichlet series =(s), with arithmetic function ¢ non-vanishing at in-
finitely many prime values of n as coefficients, does not satisfy any algebraic
differential difference equation.

(ii) For an arithmetic function & which is completely multiplicative and non-
vanishing at all primes and = being its corresponding Dirichlet series, if an arith-
metic function f satisfies differential equation over C[¢], then its corresponding
Dirichlet series F' is a power series in log =.

(iii) For a normalized Dirichlet series = as in (ii), any polynomial in log = is
not algebraic over C[=Z].

(i), (ii) and (iii) extend the case £(n) = 1, for all n € N, of Riemann zeta
function, in [10] and (i) is indeed an old result of Ostrowski[6].

(iv) For a normalized Dirichlet series Z which is multiplicative at two distinct
primes belonging to its support, if another Dirichlet series F' is C-algebraically
dependent on Z, then F' can be uniquely represented as-a power series in log Z.

(v) For an arithmetic function z with infinite support, [supp(z)], if two arith-
metic functions are multiplicative over an infinite subset of [supp(z)] and are
C-algebraically dependent on z, then one is a rational power of the other.

Results (iv) and (v) are slight extensions of those in [10] where “multiplicative

at primes” is replaced by “multiplicative”, while their proofs clarify and simplify



certain obscurities in [10].
The last result, (vi), involves two results : the former is the algebraic indepen-
dence of most commonly encountered arithmetic functions, viz. units, while the

latter reveals relationships between norms of two dependent arithmetic functions.

AOUUINBUINT )
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CHAPTER II

PRELIMINARIES

In this chapter notations, definitions and theorems to be used are collected.
The following symbols will be standard :
N the set of all natural numbers,

C the complex field.

2.1 Arithmetic Functions

Definition 2.1. An arithmetic function is a function from N to C. Let A denote
the set of all arithmetic functions. Addition (4) and multiplication (x), usually
called Dirichlet multiplication (or convolution) of two arithmetic functions f and

g are defined respectively by

(f+9)(n) = f(n) + g(n),
(f #9) () = Do, F@)g().

j=n
The ring (A, +, %) is an integral domain ([1],[9]), with the function I defined
by

1 ifn=1,
I(n) =

0 otherwise
being its convolution identity. Cashwell and Everett [2], see also [3], proved that

(A, +, %) is indeed a unique factorization domain.



Furthermore, A contains C via the identification of a ¢ € C with the function

¢ ifn=1,
c(n) =

0 otherwise.
Definition 2.2. A function f € A is called a unit if there exists a function g € A
such that f*g = I. It is easily verified that f € A is a unit if and only if f(1) # 0.
A nonzero function f € A divides a function h € A, written f | h, if there exists
g € A such that f*g=h, and g is also denoted by % A function h € A is called
a prime if it cannot be factored into a convolution of two non-unit functions. An
f € Ais said to be multiplicative if f(nm) = f(n)f(m) for n,m € N which are

relatively prime and is said to be completely multiplicative if f(nm) = f(n)f(m)

for all n,m € N.

Definition 2.3. The norm, N f, of a function f € A is defined as

min{n € N| f(n) £ 0} if f #0,
Nf =
o0 if f=0.

Clearly, N(fxg) =(Nf)(Ng) , N(f+g) > min{Nf, Ng} , and the units of A

are those functions whose norms-are equal to L.

Definition 2.4. A derivation d over A is a map of A into itself satisfying

d(f xg)=df xg+ f*dg, " d(cif + c2g) =crdf + cady,
where f,g are in A,and ¢;,cy are complex numbers.

Derivations of higher orders are defined in the usual manner.

Two typical examples of derivation are

(i) the p-basic derivation ,p prime, defined by

(dpf)(n) = f(np)uy(np) (v neN),



where v,(m) denotes the exponent of the highest power of p dividing m,

(ii) the log-derivation defined by

(def)(n) = f(n)logn — (Vn €N).

The derivation d is extended to the field of quotients of A by

E)_f*dh—h*df
o I*f

Remarks 2.5. 1. Each derivation annihilates all ¢ € C and all usual rules of

d(

forall f,he A, f#D0.

differentiation hold.

2. For all distinct primes p, ¢, we have d,d, = d,d,.

2.2 Standard Form

For a function f € A with Nf = s, Rearick [7] showed that there exists a

unique unit function u; € A such that
S¢(ns) == (uy * f)(ns) =1(n) (VneN).

The function Sy = uy * f is called the standard form of f, and f is said to be
in standard form if and only if f(ns) = I(n) for all n € N.

The first lemma confirms the uniqueness of standard form.

Lemma 2.6. Let f be in A — {0},and let Sy be its standard form.Then f is in

standard form if and only if f = S}.
Proof. See [5], Lemma 1. O

Clearly, to find factors (upto unit factors) of any arithmetic function, it suffices

to assume that it is in standard form.

Remark 2.7. If f € A is in standard form with N f = p®, then N(d;f) = p>7t,

foralli=1,...,a.



Lemma 2.8. Let f,eg,eq,...,¢e, be in Awith e, # 0.Let d be a derivation on
A If

Z €; * fl = O

i=0
and de; =0 (i =0,...,m), then df = 0.

(Here f% denotes f x f x---* f (i terms)).
Proof. See [5], Lemma 2. O

Lemma 2.9. Let p;,...,p, be distinct primes, and d,,,...,d, be their corre-
sponding p;-basic derivations. Let f be in A, having norm N f = p{* .- p&, with

Qi,...,q, positive integers. Then f is in standard form if and only if
dot---dy f(n) =aql...apll(n) (VneN).
Proof. See [5], Lemma 3. O

Rearick [7] proved that for A, f, g € A such that h = f * g and the norms of
f and g being powers of the same prime , if among h, f, g two are in standard
form, then so is the third. This result does not hold if the norms involved are not
powers of the same prime. The next lemma shows a necessary condition for the
convolution of two functions whose norms are not powers of the same prime to be

in standard form:

Lemma 2.10. Let f,g € A be in standard form with N f = p®, Ng = ¢°, where
p, q are distinct primes, and «, 3 are positive integers. If déf =0(=1,...,0)

or ddg=0(j=1,...,a)then h= fxg is in standard form with Nk = p*¢”.

Proof. Let h = f * g. Then Nh = p®¢”. Since

a f
o « 6 i 11 a—7g —1
gan =3 () (st « iz

§=0 i=0



and d,f =0 foralli=1,...,0, then
dsd’h = §:< >wf*daﬂﬁg
_§:<> frBldeT

= dof % Bl = !B

Similarly, if d/g = 0 for all j = 1,..., «, we have d2d2h = o!B!I | and the result

follows from Lemma 2.9. O

2.3 Independence

Definition 2.11. Let £ be a subring of A. For r > 1, we say that fi, fo,..., f. €
A are algebraically dependent over £ if there exists P € Elxy,...,x,]\{0} such

that

fla"'?fr Za(z *fl *qurzoa

and is said to be algebraically mdependent over £ otherwise.

We say that fiis algebraic over E|fa, ..., fi] if f1, f2, ..., f, are algebraically
dependent over £.

An infinite subset B of A is said to be algebraically independent over a subring
& of A if for any » >-1, f1,. . f. € B are algebraically independent over .

We shall make use of the following results from [10]

Lemma 2.12. Let £ be a subring of A. If f € A is such that there exists
a derivation d over A which annihilates all of £ and d(f) # 0, then f is not

algebraic over £.

Definition 2.13. Given fi,..., f, € A and derivations di,...,d, over A, the



Jacobian of the f; relative to the d; is the determinant

T(frs .o, fo)du, .., dy) = det(di(f;)).

For ease of writing , when the derivations d; (i = 1,...,n) are the p;-basic

derivations instead of J(fi,..., f./dps- .., dp,.) we write J(f1,..., fr/D1,-- - D).

Theorem 2.14. Let fi,..., f, € Aand dy,...,d, be distinct derivations over A
which annihilate all elements of the subring €. If J(f1,..., f./di,...,d,) # 0,

then fi,..., f, are algebraically independent over £.
The condition of this theorem is not sufficient as seen in the following example.

Example 2.15. Let u(n) =1 for all n € N.

Then [ and u are algebraically independent over C, see [10], but for any primes

p#q,

I(np)v,(np) w(np)vy(n 0 vp(n
HTufp.q)(n) = (np)vp(np) ulnp)v,(np)| ()| _
L(ng)vy(ng) ulng)ry(ng)|” |0 vq(nq)



CHAPTER III

FACTORIZING ARITHMETIC FUNCTIONS

In this chapter we carry on the investigations of factorizing arithmetic func-
tions in [7] and [5]. In Section 3.1, we derive two theorems providing sufficient
primality criteria based on functional values. Section 3.2 is the crux of this chap-
ter. We prove our main factorization theorem (Theorem 3.6) which leads to an
algorithm exhibiting certain differential technique of finding factors of arithmetic

functions.

3.1 Some Prime Characterizations

Note first that if N f = prime p, then f is a prime. Rearick ([7], see also
[5]) derived the following necessary and sufficient condition for a function & , in

standard form with norm p?, p prime , to be a prime arithmetic function.

Proposition 3.1. Let h € A be in standard form with Nh = p?. Then h is a

prime if and only if (dh)*—4h is not a square.

Evidently, this proposition is not easy to use. We propose simpler sufficiency

tests in the next two results.

Theorem 3.2. Let h € A be in standard form with Nh = p?, p a prime. Assume

that (d,h)* —4h # 0. If [(d,h)* — 4h](n?) =0 for all n > p, then h is a prime.

Proof. Assume that h is not a prime. Let g = (d,h)* — 4h. By Proposition 3.1,

g is a square, i.e. g = f* f for some f € A. Since h is in standard form and
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Nh = p? then N(dyh) = p. Thus N(g) > min {N(d,h)?, N(—4h)} = p*.

But g(p Z dyh(i)d,h(j) — 4h(p*) = 0, so Ng > p? yielding Nf > p, say
Nf=p+k flo]r_gome kE>1.

Thus g((p + k)* Z f(7) = f(p+k)f(p+ k) # 0, which is a contra-

=(p+k)?
diction. O

The condition [(dh)? —4h](n?) =0 for alln > p cannot be improved, as seen

in the next example.

Example 3.3. Let p and ¢ be prime numbers such that p < q.

1 if n=p, 1 ifn=porgq,
Define f(n) = and g(n) =

0 otherwise 0 otherwise.
1 if n = p? or pgq,
Let h = f*g. Then Nh = p* | h(n) =
0 otherwise,
T = T
dph(n) = h(np)vy(np) =1 ifn=q,

0 otherwise,

( 2 ifn=1,
and djh(n) = h(np?)vy(np)vp(np?) =

0 otherwise.

Thus d>h(n) = 2!1(n). By Lemma 2.9, % is in standard form and not a prime,

but [(d,h)? — 4h)(¢?) = 1 # 0.

Lemma 3.4. Let h € A with h = f % g, where f,g € A are non-units. If there

exist m,p € N with m <min(N f, Ng), p prime not dividing m, then h(mp) = 0.

Proof. h(mp) Z f(@) Z f(pi)g m

ij=m ij=m
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Theorem 3.5. Let h € A be a non-unit with Nh = p{*---p%, where p; <
. < p, are primes and aq,...,qa, € N.

(i) If there exists a prime g # py, ..., p» such that h(q) # 0, then h is a prime.

(ii) If there exist primes ¢; # g2 such that ¢; < p; and h(q1q2) # 0, then h is a

prime.

Proof. Suppose that h = f x g is a nontrivial factorization. Then N f, Ng > 1. (i)
follows from Lemma 3.4 by taking m = 1, p = ¢ and (ii) follows from Lemma 3.4

by taking m = q; , p = q>. O

3.2 Factorization Theorems

Theorem 3.6. Let h € A and p be the smallest prime divisor of Nh with highest
exponent a. Assume that

(i) there is an integer b > a such that d?h # 0, and d%*'h = 0, and

b
—1)*
(ii) the polynomial P(f;h) = Z ( k') ¥« d];h has a non-unit root f; € A.
k=0 -

Then f; is a divisor of h of norm p, in standard form.

Proof. Assume that P(fi;h) = 0. Define the arithmetic function

1L itn=yp
rp(n) =

0 otherwise.

Then r, is in standard form with d,r, = I. Writing P(f;;h) as a polynomial in

fi —1p, we get

b b

1k
OZP(fl;h):Z kll) dyhx (fi = rp+1p)* Z

k=0 ’ i=0

fl_Tp)7

k
where C; = Z k") rp * dk“h We have () = dbh # 0, d,Cp, = db“h =0 and

forallO<z<b—1 d,C; = 0. By Lemma 2.8, d,(f; —r,) =0, s0o dpfy = I.
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Since P(f1;h) = 0, f1 divides the constant term of P(f;;h), which is h. Then
N f, divides Nh. Since 1 = I(1) = d,fi1(1) = fi(p) and p is the smallest prime
divisor of Nh, then Nf; < p,so Nf; =1 or p. As f; is a non-unit, it follows that

N fi = p, so fi is in standard form. O

Definition 3.7. Let p be a prime and @ € N. An arithmetic function A is said to
have the factorizable condition with respect to p* (F.C. wrt. p®) if it satisfies the

two conditions (i) and (ii) of Theorem 3.6.

The following theorem gives an algorithm for factorizing an arithmetic function

h under certain condition via Theorem 3.6.

Theorem 3.8. Let iy € A with Nhy = p{'---pom, where py < ... < p,, are
primes and aq, ..., q,, € N.
Step 1 : Assume that Ay satisfies F.C. wrt. p{" with a non-unit root fi;.

h h
If — satisfies F.C. wrt. p¢*~t determine whether —1f’ where f15 is a root of
11 11 * J12

h
P(f, —1), satisfies F.C. wrt. p{* 2. If so, continuing this process, we recursively
11

f

obtain
hy hy hy
hl ) e ) -+ 5 Y AR - )
Jiu o fu* S Jin ko fia
h
where f1 ;41 is anon-unit root of P(f, —1) Then proceed to step 2.
b Jinx ok f
Step 2 : Let hy = — L Assume that h, satisfies F.C. wrt. ps? with
Jink: ok fia, h
a non-unit root fo;. If —2 satisfies F.C. wrt. p5?7! | determine whether —27
Ja1 Ja1 * fao
where fyy is a root of P(f, f—2), satisfies F.C. wrt. p$2~2. If so, continuing this
21
process, we recursively obtain
hQ hQ hQ
h2 Y a ) - ) AR -~ 5 )
Jor © far* fao Jor %+ % foq,
ho

where f5 ;41 is a non-unit root of P(f ). Then proceed the next step.

7f21*"'*f2i
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In general, to start step j + 1,

h] hj

hy, =L, ., —t
’ fjl fjl*"'*fjaj
must be recursively obtainable.

Finally at the last step m, we need only determine divisors upto the one before

hm~1
last. Let h,, =
" fm71,1 O, fm~1,am71

. Assume that h,, satisfies F.C. wrt. pom

h
with a non-unit root f,;. If —= satisfies F.C. wrt. p®»~! determine whether

h 2. h i
—"—— where f,2 is a root of P(f, =), satisfies F.C. wrt. p2=~2. If so,
fml * fm? fml
continuing this process, we recursively obtain
n A S L b b
"4 fml 7 fml*me , ' fml*"'*fm,amfl ’

. . RN
where fp, ;41 is a non-unit root of P(f, ————) and

h Jm1* =2 % [
H= o is the last divisor of h,, of norm p,,.

fml koeee ok fm,am—l

After step m, then hy = fi11 %% fio %% f, * -+ % fr 0, —1* H is the prime

factorization of hy.

(

1 if n = 223252,

Example 3.9. Define h(n) = ¢2 ifn =2.3352

\ 0 otherwise.

Then Nh = 223252, First we will find divisors of A of norm 2. We have
2 ifn:2-3252,

2 if n = 3252,
doh(n)' =42 ifn =352,  d3h(n)=

0 otherwise,

0 otherwise,
\

and dsh(n) =0 for all n € N.

2
—1)* 1
Consider P(fih) =) ( k') fF%dih =0. Then h = f % dyh — 5f2 % d2h.
k=0 ’
To find a divisor of h via Theorem 3.6, it suffices to determine a root f; of

P(f,h) = 0. We begin this process by investigating for each n, possible values of
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fi(n).
EDHlO:iKS%?):-—%fﬂlfd?d3%?)::—fﬂlf,wegm:ﬁ(U::O
From 1 = h(223%5%) = f1(2)dah(2 - 3%5%) — %d%h(3252)f1(2)2

=2A(2) - 1(2)%,
we get f1(2) = 1.
From 0 = h(3'5%) = fi(3)dsh(375%) - dBh(3%5°) i (3)"

=2/(3)=H(3)%,
we get f1(3) =0 or 2.
From 0 —h(4 - 3%5%) — fi(6)doh(2- 3%5%) + f1(4)dah(3°5?)
L BUETNRAE)A ) +2£(2)16)

= 2f1(6) +2/1(4) —2/1(6) — 2f1(3) f1(4),
we get f1(4) = 0.
For n > 4, assume that fi(k) =0, whenL.< k<n—1, k # 2,3.
From 0 = h(n3"5%) = 2f1(n) = 24(3) fulm), we set fi(n) = 0.

1if n =2,
1-ifn=2,
Thus fi(n) = or fi(n) =42 ifn=23,

0 otherwise

0 otherwise.
Clearly, both functions are roots-of P(f,h). By Theorem 3.6, f; is a factor of h.
L ifn=2,
Case 1: fi(n) =

0 ‘otherwise.

/

1 ifn=2-3%?2

h
LetH:f—-ThenH(n)z 2 ifn = 3352,
1

0 otherwise,
\

1 if n = 3252,
dyH(n) = and d3H(n)=0 for all n € N.

0 otherwise,
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k!

By using the same procedure, another divisor fy of H, of norm 2 and in standard
(

1
—1)*
Consider P(f; H) = (1) fFsdiH =0. Then H = f % dyH.
k=0

1 ifn=2,

form is defined by fo(n) =q¢2 ifn =3,

\ 0 otherwise.

(

1 ifn =2,

Case 2: fi(n) =<9 ifn =3,

0  otherwise.
\

I Te—ifep = 2 8252,
Let H, = 7 Then Hy(n) =
! 0 otherwise,

1 if n = 3%5°
doHy(n) = and d3H(n) =0 for alln € N.

0 otherwise,

1
—1)*
Consider P(f; Hy)= > ( k,) fP s dfH, = 0. Then Hy = f * dyH;.
k=0 )

As before, if a non-unit root fy exists, then f5 is a divisor of Hy, of norm 2, in

1 ifn=2,
standard form and fy(n) =

0" otherwise.

In any case , h has two factors of norm 2, in standard forms, namely,
(

1 ifn=2,
1 ifn=2,
fi(n)= and  fo(n) = 42 ifn =3,
0 otherwise

|0 otherwise.
Next we find divisors of A of norm 3.
" Then G(n) = 1 ifn =3 LGl = 9 ifn=3.5
Ji* [z

0 otherwise, 0 otherwise,

Let G =
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2 if n =52,
d3G(n) = and dih(n) =0 for allm € N.
0 otherwise,
. ~ (D Lo, p
Consider P(g; G) = Z 1 Y % dsG = 0. Then G = g x d3G — 59 * ds;G.
k=0

As before, if a non-unit root g; exists, then g; is a divisor of G, of norm 3, in

INS A F
standard form and ¢;(n) =

0 otherwise.

a 1] = 3=,
Let G; = —. Then Gi(n) =
9 \
0 otherwise,
1 if n =52,
dsGi(n) = and d3Gy(n) =0 for all n € N.

0 otherwise,
~ (U
Consider P(g;Gy) = Z Tgk * d§G1 = 0. Then G, = g * d3G1.
k=0 !
As before, if a non-unit root gs exists, then g, is a divisor of GGy, of norm 3, in
1 ifn=3,
standard form and gs(n) =
0 otherwise.

We see that g1 = ¢y are two factors of norm 3 of GG, and so of h.

It remains to find factors of A of norm 5.

1 fif n =52 2 ifn =5,
Let T = . Then T'(n) = dsT'(n) =
g1 * g2 . .
0 otherwise, 0. otherwise,
2 ifn=1,
d2T(n) = and d2T(n) =0 for alln € N.
0 otherwise,
~ (-1 !
Consider P(t;T) = Z o t* «d5T = 0. Then T =t * dsT — 5752 * d2T.

k=0
As before, if a non-unit root t exists, then ¢ is a divisor of T" of norm 5, in
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1 ifn=>5,
standard form and t(n) =

0 otherwise.

T 1 ifn:5,
Let v = 7 Then v(n) =

0 otherwise.

We get t = v as two factors of norm 5 of T, and so of h. Since the norms of
f1, f2, 91, g2, t, and v are primes, all of them are primes in A. It can be directly

checked that h = f; * fo* g % go xt * v is the unique prime factorization of h.

The next example gives the case where the hypothesis of Theorem 3.6 fails but

we can show directly that h is a prime.

(
1 if n =6, 10,35,

Example 3.10. Let i(n) =<5 ifn>35:n # prime and 2 1 n,

§ 0 otherwise.

1 ifn=3,5,
Then doh(n)= and d2h(n) =0 forall n € N.

0 otherwise

Suppose f; were a root of P(f, h) = i (_lj)kfk xdsh = 0. Then h = f, * dyh.
0="h(3-7)= fi(T)d2h(3) = f1(7) and 1 = h(5-7) = f1(7)d2h(5). = f1(7), which
is a contradiction. Thus P(f, h) has no root.

To show that A has no divisor of norm 2, suppose on the contrary that f is a
divisor of norm 2 of h in A. Then h = f % g for some g € A, with Ng = 3, so
£(2) £0, g(3) £ 0 and (1) = g(1) = g(2) = 0.

Since 0="h(2-7) = f(2)g(7) and f(2) # 0, we get g(7) = 0.
1 = h(57) = £(7)g(5) implies £(7) 0.
Thus 0 # f(7)g(3) = h(3-7) = 0 which is a contradiction. Therefore h has no
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divisor of norm 2, which immediately implies that h has no divisor of norm 3

either, and hence A must be a prime.

The last example illustrates the case where Theorem 3.8 is not applicable at
the first step. But if we ignore it, and skip to the next prime, the technique in

Theorem 3.8 might enable us to determine a factor whose norm is the next prime.

(

2 ifn=12,

Example 3.11. Let h(n) =<1 ifp =15 Then Nh =273,

\ 0 otherwise.

4 if n =6, Nl n\=—"a
doh(n)= dsh(n)=
0 otherwise, 0 otherwise,

and d3h(n) = 0 for all n € N.

ko dk =0.

2
Suppose that f; were a root of P(f, h) = Z k'
k=0

Lo, 5
Then h = fl*dgh—§f1 * dsh
From 0= h(3) = ~2f(1)%, we get fi(1) = 0.

1
But 1 = h(15) = —édgh(?))[z f1(1)fi(5)] = 0, so it 'is a contradiction. Thus
P(f,h) has no root. This shows that the algorithm in Theorem 3.8 cannot be

applied in searching for a divisor of h of norm 2. Ignoring the smallest prime, we

find

(

2 ifn =4,

dsh(n) =11 ifn=5  and dizh(n)=0forallneN.

0 otherwise
\

1
—1)*
Consider P(g,h) = Z ( k;') g" * dih = 0. Then h = g * dsh.
k=0 ’

1 ifn=3,
As before, we get g(n)=

0 otherwise.
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;

2 ifn=4,

h
Let G = E Then G(n) =< 1 if n =25,

0 otherwise.
\

Since Ng = 3, g is a prime. Since NG =4 and G(5) # 0, then G is a prime by

Theorem 3.5. Hence h = g x GG is its prime factorization.

Example 3.11 leads to the following immediate consequence whose proof is a

slight modification of that of Theorem 3.6 and so it is omitted.

Proposition 3.12. Let h € A with Nh = p{'---pdm, where p; < ... < pp,
are primes and ai,...,a, € N. Suppose that p, < p? , h has no factor of

norm pp, and there is an integer b > ay such that dg2h # 0, and dgjlh =0. If

b .
—1)*
P(f;h) = E %f’“ * d]’;h has a non-unit root f; € A, then f; is a divisor of
k=0 '

h of norm ps, in standard form.
It is natural to ask whether the converse of Theorem 3.6 holds. The last
theorem shows that it does with an extra condition, which also reveals that our

proposed factorization technique applies to a particularly large class.

Theorem 3.13. Let h € A. If f; € Ais a divisor of A of norm p, in standard form,

and db( ) =0 for some positive integer b, then f}-is a root of the polynomial

S

fh:Z k' *dk

h
Proof. Writing h = f1 % g for some g € Aie. g= f—, we get dgg = 0. Since f; is
1

in standard form with norm p, then

dih = fixdig+kd)'g (k€N).

1 1
Thus Eff * d];h = kﬂd';g + IF % dl;_lg. Summing from £ = 1 till

1
k! (k+1)!
k = b, the result is obtained. O



CHAPTER IV

INDEPENDENCE OF ARITHMETIC FUNCTIONS

In Shapiro-Sparer [10], a systematic investigation of algebraic independence
of Dirichlet series is made. A thorough study of this paper leads us to results in
this chapter which either extend or simplify certain results in sections 3,4,5 and

7 of [10].

4.1 Differential Difference Equations over C

We first recall some definitions.

Definition 4.1. A (formal) Dirichlet series is an expression of the form

F(s)=Y_ ! f;j), Fln)€C.

The set (D, +, +) of all Dirichlet series equipped with addition and multiplica-

tion is isomorphic to (A, 4, *), through the map

Py

n=1

(see [2],[3]). Through this isomorphism, any algebraic relations from one setting
have corresponding counterparts in the other, which allows us to refer to both

interchangably, and we often do so without further ado.

Definition 4.2. Let Z be a Dirichlet series. A Dirichlet series F' is C-algebraically

dependent on Z, written F € C[Z], if F and Z are algebraically dependent over

—_— —_—

C, and F is properly C-algebraically dependent on Z if F' € C[Z]\C := C[Z]
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If we define a derivation over D in the same way as A, then we may also regard

the derivation d over A, also as a derivation over D via

S iI0)

ns
n=1

The results in this section are based on the study of the third section of Shapiro-

Sparer [10].

Theorem 4.3. Let £ € A be such that £(p) # 0 for infinitely many primes p. Let
& be a subring of A having the property that given any finite subset £* C &, for
all sufficiently large primes p, the derivations d,, annihilate all of £*. Then for any
sequence of complex numbers (7;);~1, with distinct real parts, and any sequence

of integers (¢;);>1 (not necessarily distinct), the functions

fij(n) = &(m)n" (logn)"
are algebraically independent over £.

Proof. Suppose that the assertion is false, i.e. there is a finite subset of {f;;}
which are algebraically dependent over £. For ease of writing, we may assume
that this set is {fi1,..., fu}. Let & (C &) be the finite set of all coefficients in
this algebraic relation. By hypothesis, for all sufficiently large primes p, each d,
annihilates all of £, and so each d, annihilates all of £ = (£*), the subring of £
generated by £*. Thus fi1,..., fu are algebraically dependent over £'. If we can

choose primes p;; among these so that

J(fi1s - fu/pras - om) # 0,

then Theorem 2.14 implies that fiq, ..., fi are algebraically independent over &’,
which is a contradiction and the desired result will follow.
We may assume without loss of generality that —s < ¢; < s for all j €

{1,...,1}, where s is a fixed positive integer, and rewrite the above set as
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{fijlie{l,....k},je{—s,...,s}} instead of {fi1,..., fu}-
Let T = (2s + 1)k. For any sequence of sufficiently large primes, p; > py > ... >

pr, each £(p;) # 0, we have

J(n) = J(fr—ss- s frss oo fromsso oo fos/P1s oo p7) (M)
= det(d,,,(fi;))(n)
= det(fi;(1pm) 0y, (1P))
= det(§(mprn)(npm)" (108 nPm) Uy, (7Pm)),
where m =1,...,T;i €4{1,.. . k};j € {-s,...,5}.

Putting n = 1, we have

J(1) = det(&(pm) oy (l0g pin)’)) = &E(p1) - - - &(pr) det(p)); (log pm)),

and consider
J(1)
E(pr)--- f(pT)

Note that a typical term in the expansion of the determinant defining J* is of

J = det(p}: (log pm)’).

the form
t(p, 7, j) = ipqm (10gp1)j1p£“2 (logpQ)jQ 4 'pTTMT(IOgPT)jTy

where 1, ..., pur € {1,. 00k} iy g € {—58;+. ., S}

We may assume that Re(ry) > Re(r2) > ... > Re(rg). In the first row , the
column which has the unique largest absolute value is pi* (logp1)®, so we exchange
the first column with this column. In the second row, we consider the column
which has the next unique largest absolute value (after the first column) and
exchange the second column with this column. Continue this process. We claim
that in the final determinant, by choosing p; > ps > ... > pr sufficiently large

the term with largest absolute value is the main diagonal term

(8)2 . .

Y = ana - - arr = pi*(log pl)spg)z(log P2) ‘Pgr)T(long)(s)T7
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where (7);, (s); denote the diagonal exponents. Let

a.i = aljla/2j2 . aTjT = p?l (logpl)ﬂl t p’?“T (long>BT

be any term in the determinant expansion. There are three possibilities.

(i) If 1 # a1 (Re(ry) > Re(aq)), then choosing p; sufficiently large in comparison
with other p;’s, we see that pj' >> pj" which leads to [Y| > [a;].

(i) If 71 = aq,s > By, then as in (i), (logpy)® >> (logp)” and so [V > |qy.
(iii) If ry = aq, s = (1 (i-e. both terms arise from the expansion of the (1,1) term),
repeating the same arguments as above we see that the next largest term must

come from the main diagonal.

Furthermore, we can even choose the primes p; > ... > pr so large that
t(@i,g)| 1 ..
(p’;‘y) < for each t(p,i,j) #Y.
J* 3 1
Thus v = 1+ ((T" — 1)terms each with absolute value < ﬁ) # 0.

This shows that there are sets of primes such that J* # 0, yielding J(1) # 0, as

required. O

Theorem 4.3 reduces to Theorem 3.3 of [10] when &(n) = u(n) = 1 for all

n € N. By the same proof as in Theorem 4.3 we also have the following result :

Theorem 4.4. Let £ € A be such that £(p) # 0 for all sufficiently large primes p.
Let & be a subring of A having the property that given any finite subset £* C &,
there are infinitely many primes p, whose derivations d,, annihilate all of £*. Then
for any sequence of complex numbers (r;);>1, with distinct real parts, and any

sequence of integers (¢;);>1 (not necessarily distinct), the functions

fij(n) = §(n)n" (log n)"

are algebraically independent over £.
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Since for each prime p, d, annihilates all elements of C, from Theorem 4.3, we
easily deduce

Corollary 4.5. Let £ € A be such that {(p) # 0 for infinitely many primes p.
Let (r;);>1 be a sequence of complex numbers with distinct real parts, and (¢;);>1

a sequence of integers (not necessarily distinct). Then the functions
fij(n) = &(n)n"(log n)",
for all distinct (r;, t;), are algebraically independent over C.

Corollary 4.6. Let Z(s) = Z@, where & € A is such that {(p) # 0 for
nS
=1
infinitely many primes p. Let r;,2 = 1,..., L be complex numbers with distinct

real parts, and m;,j =1, ..., L any nonnegative integers. Then the functions
E(mj)(s_ri)> Z.7j€ {LaL}
are algebraically independent over C.

Proof. This follows readily from Corollary 4.5, noting that

[ee]

2m(s —r) = Z (_Z)s#(n)(log n)™.

A rephrasing of Corollary 4.6 is :

Corollary 4.7. Let E(s) = Z@, where €A is such that §(p) # 0 for
nS
n=1
infinitely many primes p. Then Z(s) does not satisfy any nontrivial algebraic

differential difference equation over C.

4.2 Functions Which Are Algebraic Over C|Z]

The results in this section are based on the study of the forth section of

Shapiro-Sparer. In this section we assume ¢ € A to be completely multiplicative,
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with £(p) # 0 for all primes p and = Zf being its corresponding

Dirichlet series. Let f € A be algebraic over C[g]. By Theorem 2.14, for every

pair of primes p # g,

dpf dp
J(f.&/p.q) = =
dof dg€
ie.
dpf * dg§ = dgf * dp&. (4.1)

Let S be the set of solutions of equation (4.1) and C[¢] denote the set of elements

of A algebraic over C[¢]. Then C[¢] C S.

Theorem 4.8. The functions in S are precisely those functions f € A whose

corresponding Dirichlet series are of the form

S cby
n=1 =0
where
)
¢V = 4.3
£p1---p) (43)
is independent of the choice of the v distinct primes pi,...,p,.

(¢, is called the v-value of %)

Proof. We note first that-(see {1];Theorem 11.14)

]
08 Z ns logn ’

n=

where A is the Mangoldt function defined by

logp if n = p™ for some prime p and m € N,

A(n) =

0 otherwise.
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Then
=Gy 6 [ EmA)
;0 V! (log Z) _VZ:OV! ; n*logn

13 ns 7 logny) - (logn,)
—2 1 ny-ny=n v
= W<y n;>2

0, (Z 2 (10g E>”> =3 % (log 2)d, 1055)

V:O I/:l
P9 ) v (A=
72 (log £)” —_
Vz:; (v —1)! =
=\ ~ ¢, .
== log =)”
(E);@—w(og )

Hence, we have

Since

- f(n) _ (bO - 5(”) (bl/ A(nl) B A(”V)
25 T e 2 |2 Do) e |
A ey n;>2

for any £ > 1 and primes py, ..., pg, the coefficients of (p;---pg)~° in both sides
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are
B o Alpi,) - Apiy)
f(pl . pk) - £(p1 . pk)gp N pz_pl._pk (logp“) e (logpzk)
= (P = € P
Then ¢ = fpr---p) depends only on k.

E(p1--- )

Conversely, we show that (4.2) and (4.3) hold for all f € S.

Step 1. f € S is equivalent to the assertion that

f(np)vy(np) NN e
D) f(n)u(n) (4.4)

is independent of the prime p.

First we write (4.1) in a Dirichlet series representation as follows,

(dpF)(dZ) = f: M) (Zf ngq) vq ng )
= Z Mpn—w> £(q) (Z f(n)ZZ(n(J)>

qs

Then
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— f(p)up(np) [ f(np)v,(np) f(n)vy(n)
<:>n; {(p)n® (; ) n’ )

(n,p)=1

_ i f(ngq) Uq nq Z f(n Uq nq) I Z f(n::q(n)
n=1 g (n,g)=1
- f(n f(n Up . - f(nQ)Uq(nQ) _ - f(n)vq(n)
=2 T Z ‘; w2 w
— f(npf)(zp)(np _ e L (mﬁ)&;}(nq) ~ Fm)uy(n)
= Fnp)op(np) _ f(n)uy(n) is independent of p.
¢(p)
Step 2. For any prime p and o > 1,
f@?) Fla1---q)
€A~ e Ty
where Hpo ,, is a constant depending only on a,v, and ¢y, . . ., g, are distinct primes

all unequal to p.

a—1

Let ¢; be a prime not equal to p. Taking n = p*~' ¢ = ¢; in (4.4), we obtain

F@*) o) i amiy pramty _ SO0 ) o ory 6
D) fE* o) = (@) S g, (7).
Then
af(p®) a1y S q)
WDTLAVEIT IS T
a\ __ _l a—1 lg(p)
Fr*) = (1= 2)Em) (") oz{(ql)f( 1) (4.5)
Thus
&)
f(p) = f(ql)f((h)
By (4.5), we have,
F2) = e ) + - ((;?)ﬂpql)



Let go # p,q1 be a prime. Taking n = ¢;,q = ¢ in (4.4), we obtain

fpar)vp(par) o (g = 10192V (0e) "
O fla)vp(qr) = () f@1)vg(q1)
and so,
_ &)
f(pCh) = g(qg)f(%%)-
Thus

Assume that

and

Oé

%Jrl
Z f qz -

Q'L+1
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where H;a_lw and ¢; are constants depending only on «,v, and ¢1,...,q, are
distinct primes all'unequal to p. We have
1 e 1 &(p) —1
) — (] — = a—1 _— a
F") =0 =)&) ™) ag(ql)f(p )
a—1
¥ _ P ACIRRRD))
= (40 D PEPETH DL Hpesr,
( a)()( >; ™ @ q)
1 5(29) G zf(QI “q; 1)
— =)D )Z =
aélq L] €(q2 -+ qit1)
- f<QI e QV)
= £(0") Y Hy
)2 g
where  Hpa, is a constant depending only on a,v, and qi,...,q are distinct

primes all unequal to p.

Step 3. Ifqy,...,q, are distinct primes and ¢, . .., ¢, are distinct primes, then

fla-q)  fld-q)

Eq-q)  &a--q)
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First taking n =q,---q, ,p = q,,q = q, in (4.4), we obtain

flay--a) _ flada)
£(q,) ¢(a)

and so

!

flaa) _ flaa) _ fldg.9)

faa) &) 8a)  &la) - 8(g1)é(a)
Next, taking n = ¢, ---q, @, P = 4, -4 = Gy—1 in (4.4), we obtain

- a,a) a4 oq1a)

£(q,-1) §(qu-1)

q,) fd - qaw) a4 0-10)

Eqy---q) E(d) - &g, DE(a)  &(d)) &g _0)E(q-1)E(q)

fla-a)  flaq)
L a) &@q)

Repeating this process, we have

By steps 2 and 3, we have

%) Jag
g(pa) — ;Hpa,u¢ua (46)

where ¢, is the v-values of g, depending only on v.
Step 4. We wish to extend (4.6) and prove that for all n > 1,

fy=¢&m) Y Hauby,
v=w(n)

where w(n) is the number of distinct prime factors of n , Q(n) the number of
prime factors of n counting multiplicities , ¢, is the v-values of g depending only
on v, and H,, a constant depending on n, v.

Let 1 < n = mp* ! be such that (m,p) =1, a > 1. Let ¢, # p be a prime

such that (¢;,m) = 1. By (4.4),

f(mp®)v,(mp®)
£(p)

oc—l)

— f(mp® oy (mp™T)

_ flmp ) ug (mp® ) ~
B 5((11) f(mp
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and so
) . l m a—1 l g(p) m a—1
fmp®) = (1= =)&) f( ) af’(ql)f( Q) (4.7)
Then
Fmp) = £ fomgy)

By (4.7), we have

o) = 361 mp) 4 5= sy =5 5 foma) + 5 22 f(p).

Let g2 be a prime such that ¢z # p, ¢, and (¢, m) = 1. By (4.4),

f(mp(h)vp(mpfh)_ - :f(m(J1Q2)qu(m(J1Q2)_ mav. (m
5(}7) f( ql) p( Ch) €(q2) f( ql) 112( Q1)
and so
LA
f(mPQ1)—§(q2)f( 7142)-
Then

om?) = 60) (b 31700 ).

L
2 f(‘h) 2 5(‘11(]2)

Assume that

mp*l) &= maqic - q,
( 571 ) ZZHpa_lyf( 9 Q)
et o Y& )
and
1 ol
f( ZC f mCh “Git1)
" Qit1) ’
where H;a_l , and ¢; are constants depending on a—1,v and ¢y, .. . , g, are distinct

primes all unequal to p such that (m,q;) = 1 for all i. We have,

Flmp®) = (1 - §>£<p>f<mpal> . §<§>)f<mpalq1>
1 m(h p*) - f mqi - Giv1)
a Z H, P qy) ; “ " Qit1)

Z m(h CIV)

qy)
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where Hy , is a constant depending on «, v.

Ifn= - - pp¥ where py, ..., py are primes, then
k(1) (1)
: pk qq qu1)
f(p1 = Z H L 1
b E(q() -g4))
ai ) ap (1) (1) (2) (2)
Ay efa JO5 oy )
= £(p1)E(p5?) Z Hpoq, Z Hpo ),
| | | 7 R £(q§) q£1>)§(q§ )
Fse gl d el )
pl p2 Z Z H 1 1 H 2 2
i f(q(l) P g

f(q(l) (1) (k) (k)>

— . Z ZHQ o 1 Qo gy T Gy
Pt k’%vzcg(q(l) o & ())'

=1 y=l “Qui gy Qo

Let v = v1 + - 4+ 1, and qgl) e ql(,i) o q(k) q,(,k) = ¢1---q,. From step 3, we

flar--qv)
JUIRER
the above equation is

have that depends only on v, and so the coefficients of this term in

Hoy= >0 Hygn o Hyey,,
Vit +Vp=U

vi>1

a constant depending only on v and n. Then for n > 1,

n) Y. Huoy,

=w(n)
where w(1) =0 =Q(1) and H, o= 1.

Step 5. From step 4, we have that

R)Y | Hyugs =€) Hisdy,
v=w(n) v=0

where H,, =0 if v <w(n) or v > Q(n). Then

SIS S =30y W s
n) o

To calculate the Dirichlet series Z 3 H,,,v=0,1,..., which are independent
n=1

of the ¢, (in fact independent of f ), it suffices to calculate them for special f.

Taking f(p) = y&(p) and f multiplicative will suffice for this propose.
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Lemma 4.9. If for all primes p, % =y, a constant, f is multiplicative, and
p
f €S8, then
o f(n) o
S = =)y
n=1

Proof. From (4.5),

100 =€ (0= Dty LT
=) (18 gty )
eyt

= ¢(p) Fp*).

Using (4.5) repeatedly, and continuing this process, lead to

1) = s S () () s

o a—1 1
:f(pa)H(M) :§<pa)(05+y—1).
j=1 : “
Then
i S i £e') (see 1], Theorem 11.7)
1 prime p j=0 P
< S §(pj)(j+y—1)
prime p J;O P J
L — &(p!) b j(_y)
prime p ]ZO pjs ( 1) |
Y9N eI
: (1—®> ) (Zl ”7:> S Er
O
By Lemma 4.9,
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Since m = y for all primes p and f multiplicative, then ¢, = M =y".
£(p) Ep1---py)
Thus
o E(n) S Y s
DY Hu =Y o =Y (logE(s))”
v=0 n=1 n=1 v=0 "~
Therefore,

Hence for any f € S,

=
=

.‘.pl/
E(pr-+py)
b1, Pv- [

The next corollary follows from the proof of Theorem 4.8.

Corollary 4.10. If f € A is algebraic over C[£], then f(1) = ¢o a constant and

for n > 2,

o, Alny) -+ A(n,)
f(n)=£&(n) Z 7 Z (logny) - - - (logn,)

logn ni--nNy=n
1<v< log 2 n;>2

where ¢, is the v-value of i and A is the Mangoldt function.

Theorem 4.11. Let f be a multiplicative function. The following assertions are

equivalent:

1. f and & are algebraically dependent over C.

f(p)
2. )

= ¢ is a constant for all primes p, ¢ is rational and

Bene)

p*||n
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Proof. First we show that (1) = (2). Assume that f and £ are algebraically

dependent over C. By Theorem 4.8,

f(p)
£(p)

a constant for all primes p and by the proof of Lemma 4.9,

Bl

and F(s) = (2(s))¢,where F'is the corresponding Dirichlet series of f. By multi-

BV

p*||n

=¢ =

plicativity of f and &,

It remains to show that ¢ is rational. Since I’ and = are algebraically dependent

over C, then

:Z Z% =RRd — Z Z% =kt (4.9)

k=0 ;=0 k=0 4=0
where ai; € C, not all zero. Consider for all k, 7,

(E(S))k+cj — H (1 1£(p)> H Z ( k"’ C] > 1)l€(p)

ls
prime p ps prime p =0 p
_ (1 RGeS cjs)f(pl) L (et ;J T DEwE) )
P1 2lpy
. . . 2
" (1+ (k+CJS)5(p2) N (k+CJ)(k+§i+1)£(p2) +) ‘o
b3 2lp3

For primes py, ..., p;, the coefficient of (p;--+p) "¢ in (Z(s))**9 is

(bt ci)'élpr) - &lp) = (k+ci)'€lpr- - p).

Then the coefficient of (py ---p;) in (4.9) is

> agilk+ci)E(pr--p) =0
kg
(k.)#(0,0)

Since &(p1---pi) # 0, then Z arj(k + ¢j)t = 0. If ¢ is not rational ,
Py
(k) £(0.0)
then the k + ¢j are all distinct and via the non-vanishing of the Vandermonde



37

determinant all ai; = 0 , which is a contradiction. Hence c is rational.

(2)=-(1) : Since

then

X wfa+c—1
Fot) =) (*F )
a
for all primes p and o > 1. By the proof of Lemma 4.9, we have F(s) = (2(s))°.
Assume that ¢ = ;’ where 7, ¢ € Z. Since (2)" = Z" = 0, then E and E° (= F)

are algebraically dependent over C, so f and £ are algebraically dependent over

C. O

Since £(1) = 1 and &(2) # 0, then N(§ — 1) = 2, so £ — 1 is a prime in A.
Then the principal ideal ® = (£ — 1) is a prime ideal in D. Since

)_(1—5)2_(1—5)3__”
2 3
:—(1—E)<1+ - +~~):(E—1)-U,

[1]

log=Z2=—(1—

where U is a unit in D, then log = is associated to Z — 1 (in the arithmetic of D

but not in that of C[Z]).

Theorem 4.12. The set-S consists of the local integers in (C[Z])s, the ®-adic

completion of C[=], & =(=— 1)

Proof. (=) An element of S has the corresponding Dirichlet series of the form

> Plionzy =3 % (Z - w‘)

=0 v=0 j=1
o
v —_ l
:E —E (= —1
v! w( )
v=0 >v
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where the calculations are carried out in the ®-adic norm, and the last expansion
is clearly a local integer of (C[Z])e.
(<) Conversely starting with an integral element of (C[Z])e , we have

Zal(E o 1)l _ Zal(elogE _ l)l _ (Z (logV‘E)u B 1)

=0 =0 =0

- i log E)tti
— a;
=k 1 vl
- = (log2)* & Al
=) M doa D), ol
=1 =1 vty =
7 Z bx(log E)*
A=0
which is in & [l

4.3 Functions Which Are Not Algebraic over C[Z]

In this section we assume f € A to be completely multiplicative, with £(p) # 0

for all primes p and = Z £n) being its corresponding Dirichlet series. From
n=1

the beginning of section 2, we know that every element of A which is algebraic

over C[¢] is in' §; yet the converse is not true-as we now show that there are

elements of & which are not algebraic over C[¢]. We begin with
Theorem 4.13. logE is not algebraic over C[Z].

Proof. Suppose that log = is algebraic over C[Z]. Then

I J
Z Z aij Z(logZ)? = 0, (4.10)
i=0 j=0

where a;; € C,ar; # 0. Consider

== (S7) (S5)

m=
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s s ] (e s Ao
B [s ms (logmy) - - (logm;)
=1 l1-1;=1 m=2 mi--m;=m J
l1,.ey 1;>1 MLyeeny mj>1
(€0 — £(m)
o (Z s Dy Z ms Am
=1 m=2
1
= — l DA,
> 3 eletm)D
_ Z 5(7:) Dyl
n=2 n Im=n
A(my) -+ A(m;)
where D, = land A, = T
l llgz m1~;—m (logmy) - - - (log my)
W li>1 M1 ooy >1
For k sufficiently large and py, ..., p primes, the coefficient of n=* = (py -+ - py)~*
n Z'(log =) is
Alqr) - Ag;
o) D Didm=€pim) o0} Do ) (10( 1;...(1<(>J).)
lm=p1--px Upvy vy )=P1+ Dk Q1§ =Pvy Py, &q1 &4;
= Ope—prem > S Yoo

l(pul Py ):pl"‘

Ih-l;=l

Q1@ =Pvy Py,
Ly, i >1 ’

kN i
=&(p1- - pr) (j.)]!l(k 7 (4.11)
Case(i) I = 0. Now (4.10) reduces to
J
Goj (log E)] = 07
=0
where ag; # 0. Then
J J
el
j=0 =2
J 00
§(n) A(ny) - - - Any)
= , . 4.12
202 2 Togm) - (ogn) 41
j= n= i
N yeeny n]->1
Let pi,...,ps be primes. The coefficients of (p;---py)~* in (4.12) are
_ A(Ql) T ‘A(CIJ) _ |
0=aps&(p1--ps) Y, Togq) - (ogqs) aos€(p1 - prs)JL

q1-qj=pP1"PJ
qﬂe{pla"'va}
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Since J! # 0 and £(p; -+ - ps) # 0, then apy = 0, which is a contradiction.

Case(ii) I # 0. The coefficient of (p; -+ - pg)~* in (4.10) is

I1,J ]{j 1,J ]{}

(1) #0.0) J (1) A0.0)
and since £(py -+ -px) # 0, then

I L
S i (;) =0, (4.13)

(4,5)#(0,0)
k

In (4.13), the coefficient of a;; equals i(k_j)<
)

) il ~ i~k as k — oo. Thus as
k — oo,
i(k=3) (’?)j! Eii(k=9) & pli=d) (k=)

J ~
J(k=J) (?)J! T RIf=d) T & [(k—J)

=exp{(k —j)logi+ (j — J)logk — (k — J)log I}

~ exp{klog % + O(logk)}

which tends to 0 if 7 < [.

Also, if 7= 1,5 < J, the above gives

(k=) (551

—] % . . . . 2l % . _ )
17 (51 exp{(J —j)logi+ (j — J)logk} ~exp{(j — J)logk +0O(1)} =0
Thus in (4.13), the coefficient of a;; dominates as k — oo and we have a contra-

diction. ]
Corollary 4.14. For any ); € C[Z], j =0,...;R, R > 0, if

F = Qj(log E)ja

M-

Jj=0

where Qg # 0, then F is not algebraic over C[=].

Corollary 4.15. Any Dirichlet series of the form

— ¢
7oﬁ(log:) , N>0

is not algebraic over C[Z].
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Corollary 4.16. For any nonzero rational number ¢, the value ¢, = vc” in (4.2)

gives a Dirichlet series which is not algebraic over C[=Z].

Proof.
oo I/CV oo l/
5 oy = 35 o)
v=0 v=1
o y
—~ clog:Z J(log:)
v=0
= (clog Z)(exp(clogE)) = (clog =)=°.
Since log = is not algebraic over C[Z], the series is not algebraic over C[Z]. O

Theorem 4.17. log = is not algebraic over C[=, Z°] for any ¢ € C.

Proof. If ¢ is rational this is precisely Theorem 4.13. Thus we may assume that
¢ is purely complex or irrational. Suppose that log = is algebraic over C[=, =¢].

Then
> e T (log D) =0,

gkl

where a;i; € C, not all zero. Thus

0=> au <Z %UO@ 5)”) (log E)’

7.k, v=0
+ ck: )
= Z Akl Z ( kek)” (log Z)"*
7.kl v=0
v+1
(j + ck: -
- Z oy Z Z " logn
7.kl
(J+ Ck £(n A(na) - - A(ny)
= . 4.14
% e VZO Z n1~~ﬂ;l=n (1Og nl) e (1Og nl/-l—l) ( )

n;>1

For m sufficiently large and py,...,p, primes, the coefficient of (p;---p,)~° in



42

(4.14) is

_ (j + ck)™! Algr) -+ Algm)
0 — %f(m S D)@k (m —=1)! ql...q;I...pm (logq1) - - - (log gm)

¢ €{P1,-Pm}

(5 + ck)mt
! ; M m =)

Since &(py -+ -py) # 0, then
— (7 ek)™
= Z ajklwm!.
Jkl
Since the term j =k = [ = 0 does not appear (for k sufficiently large) and c is

purely complex or irrational, then the j+ ck are all distinct and nonzero. Setting

a;u(i + ck) ™ = aju

m!
m(m—1)~--(m—l+1):mzﬂ(m), Py(m) =1
j+0k:)\jk,

we see that all sufficiently large integers m satisty

0= Z Ozjkl)\%Pl(m) = Z )\?}ﬂ Z ozjklPl(m).
ik l

J.k,l

Since the A, are distinct and not equal to 0, it-follows that , for all j, k,

for all integers m.

If m =0, then Py(0) =1, 5(0) =0 for all I > 1, and so
L
0= Z ajuPi(0) = ajo.
1=0
If m =1, then Py(1) =1= Pi(1), (1) =0 for all [ > 1, and so

L
0= Z ajP(1) = ajro + g1 = Qg
1=0
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For 1 <r < L, assume that o, = 0 for t < r. Then P,(r) = r! and F(r) = 0,

and so
0= E i B(r P.(r)aje = rlaje, e o =0.

Thus ajp = 0 for all [ = 1,...,L. Since j + ck # 0 for (j,k) # (0,0), then
L
ajr = 0 for all (j,k) # (0,0). Therefore 0 = Z apor(log ), so log Z is algebraic

1=0
over C[Z], which is a contradiction. O

Remarks 4.18. 1. The above arguments can be applied to prove that log = is
not algebraic over C[Z“, ..., E] for complex ¢y, ..., ;.
2. As a consequence of Theorem 4.17, Corollary 4.16 is also

valid for ¢ irrational.

Definition 4.19. f € A is locally v-multiplicative if for any v distinct primes

D1, - -+ Py, We have

fr--pu) = f(p1) - f(p)

Theorem 4.20. If f € A is algebraic over C[¢], and locally v-multiplicative for

all sufficiently large v, then f = £°— b, ¢ rational, b =1 — f(1).

Proof. Since f € C[¢] .S, by Theorem 4.8,

() o o
X = e
n=1 v=0
where ¢, = % is independent of the choice of the v distinct primes
P1--Dv
f(p)

P1,...,p,. Then = ¢ = ¢, a constant, for all primes p. Since f is v-

&)

multiplicative for all sufficiently large v, there exists an N € N such that for all

n>N,
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Thus
. f(n) _ - v —\V
> = (lgE)
n=1 v=0
N 0o ¢
= ¢y + Z —"j(log =)+ Z —l'/(log =)
v=1 v v=N-+1 v
N Qb 00 v
= f()+>_ —Alog=E)" + > —(logE)"
=il 14 v=N+1
Since

v=0 v=1
and let b =1— f(1), then
) ool ez S o D)
b+ T —F=A ) )+ gD+ Y —(logE)
=1 % v=N+1

053 =3 (32 O sy )

where a; € C[=Z, =], not all zero.

If N > 1, then log E is algebraic over C[=, Z¢], which is a contradiction.

Thus
—fn) -
b = =
+ ; F ]
SO
ns
n=1

Since ZE° Z +b € C[Z], then

o —j=ck :'+ck .] + Ck) —\v
0= E Ak =T = E Ak =/ E Ajk E (log ._) N
4.k g,k v=0 !
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where a;, € C, not all zero.
If ¢ is purely complex or irrational, by the proof of Theorem 4.17, a;; = 0 for all

7, k, which is a contradiction. Hence f = £° — b, where ¢ is rational. O

4.4 Log-series expansion

Let A; be the subset of A consisting of f € A with f(1) = 1.

Definition 4.21. Let p be a prime. We say that z is multiplicative at p (also are

refered to as locally multiplicative), written 2z € M,,, if
z(mp®) = z(m)z(p®),
for each o, m € N, gue.d.(m,p) = 1.

Note that multiplicative functions are multiplicative at p, for each prime p.

Definition 4.22. For f € A, define the support of f to be supp(f) = {n € N :
f(n) # 0} and define [supp(f)] to be the smallest set of primes which generates a

subsemigroup of the positive integers containing supp(f).

The proof of the next lemma is taken from Lemma 7.1 in [10], while the

condition is weakened.

Lemma 4.23. Let z € Aj be such that [supp(2)] contains at least two primes
and Z being its corresponding Dirichlet sereis. Let p,q € [supp(2)], p # q. If

z € M, N M,, then there does not exist an integer [ > 1 such that
Z=1+H,

for any Dirichlet series H.
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Proof. Suppose that Z = 1+ H! for some [ > 1 and some Dirichlet series H with

corresponding h € A. Then
d,Z = IH"'d,H.

Since z € M,,, we have

— (a+1)z(p") z(m)
d,Z =
’ ; (p°)° mz::l m?
(pym)=1
~ (a+ D) 7 2(0%)
—
<a§ (p?)? >/(; (p“)s>
e a+1
Now H and 1+ H' being relatively prime implies H divides Z (a+ (1)2)(]9 >,
pCL S
a=0
i.e.
g 1 a+1
b (P (;f)(f ) _wa, (4.15)

a=0

for some Dirichlet series G, whose arithmetic counterpart is g,,.
= (a+ 1)z(p*t

DI
g (r*)

for all a,m € N. This yields p ¢ [supp(z)], which is a contradiction. Thus

= 0, then z(p”) = 0 for all @ > 1, and so z(p*m) = 0

o0 1 a+1

Z (a +()z)(p ) # 0. Since h(1) = 0, then let n,m both > 1 be the smallest
pa S

a=0

integers such that both h(n) and g,(m) are nonzero (if m exists).

The coefficient.of (nm)~* on the right side of (4.15) being nonzero gives nm = p*
for some ¢ >'0. Thus n-= p®for some a >0 (if m does not exist, then g, = I,
so n=p°). Since n depends only on H,if this also holds for ¢, then p® = n = ¢*
for some a,b > 0, yielding a contradiction. Consequently, this can only hold for
p, and so z(¢?) = 0 for all b > 1. By local multiplicativity z(¢gm) = 0 for all

b,m € N, implying ¢ ¢ [supp(z)], a contradiction. O

Theorem 4.24. Let z € A; with Z being its corresponding Dirichlet series.
Assume that Z — 1 is not an [-th powers of a Dirichlet series for any [ > 1. If

f € A is C-algebraically dependent on z, then its corresponding Dirichlet series
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can uniquely be written under the form

F= ZO —(log 2)"
where ¢, € C.

Proof. See [10], Theorem 7.1 O

Lemma 4.23 and Theorem 4.24 together give the following theorem.

Theorem 4.25. Let z € A; be such that [supp(2)] contains at least two primes
and Z being its corresponding Dirichlet series. Assume that z € M, N M, for
some p,q € [supp(z)], p #q. If f € A, is C-algebraically dependent over z, then
we have uniquely the representation

F= i VT log Z)”

v=0
where ¢, € C.
Theorem 4.25 slightly improves Theorem 7.2 of [10] by weakening the “multi-

plicative” condition to that of “local multiplicative at two primes”.

4.5 Rational powers

Lemma 4.26. Let.z € A\{0}. For f € A, if f is properly C-algebraically

dependent over z, then [supp(f)] = [supp(z)].

Proof.. Since f € C[2] , then z € C[f] . First we prove that [supp(z)] C [supp(f)].
Suppose not. There is a p € [supp(z)]\[supp(f)], and so z(pm) # 0 for some
m € N. From d,z(m) = z(pm)v,(pm) # 0, we get d,z # 0. Since p ¢ [supp(f)],
then f(np) = 0 for all n € N, implying d,f(n) = f(np)vy(np) = 0 for all n € N,
and so dpf = 0. Therefore d’; f =0 for all £ € N, which induces d,g = 0 for all
g € C[f]. By Lemma 2.12, z ¢ W, which is a contradiction. The other inclusion

[supp(f)] C [supp(z)] is proved similarly. O



48

Note that if f € A\{0} is (properly) C-algebraic over z € A\{0} and [supp(z)]
is infinite then [supp(f)] is also infinite.

The next theorem strengthens Theorem 7.3 of [10] by lessening the “multiplica-
tive” condition to that of “local multiplicative” and the proof given here corrects

certain gaps in the original proof of [10].

Theorem 4.27. Let z € A; be such that [supp(z)] is infinite. Assume that

there is an infinite subset S C [supp(z)] such that = € ﬂ M,. Let f € Ay be
pES
C-algebraically dependent over z. If f € m M, then f = 2¢, where c is rational.
pES

Proof. Let p € S. Then z € M, and z(p®m) # 0 for some a,m € N, and
(p,m) = 1. Thus 0 # z(p“m) = z(p*)z(m), i.e. z(p*) # 0. Let a, be the smallest

such positive value of a. Let F' be the corresponding Dirichlet series of f. Since

f € Clz], by Theorem 4.25,

a4
where ¢, € C. Then
o0 oo 5 o oo Z . 1 j
> ffl? =Y illogZ)” = Z@(Zsu,v)( i Yy
n=1 v=0 v=0 Jj=v
- 7 S(]) V)
T ;(Z ) 1) ; by |

where s(j,v) are the Stirling numbers of the first kind ([4],p.282).

Since S is infinite, for any py,...,pr € S, we have
a o = s(J,v)
o) =)0 Y Am) () Y b
T=1 =L PR v<j J:

k .
—prepY Y Z@S(?ly)-

j=1 ny--n;=T1--T} v<j
ap;

T; =pP;
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ﬁEPZZIfjj ap: j{j<¢u S50 )S(k. )

P Jj=v

=Z%%:m
v=1

where S(k, j) are the Stirling numbers of the second kind ([4],p.150,p.281).

Thus for all primes p € S, f_gp% = @1 = ¢, a constant. Since f,z € M, N...N
z(p®r
M, , then
b = LOIEB) ) f™) _ o=
2(p ) 2(py") - 2(p™)
and so

00 g Sad, W/ loo Z)"
F = Z gb—(log 2)" = Z o8 A =exp(clog Z) = Z°.
Since F' € C[Z], there are a,; € C , not all zero, such that

0= Z a4, 2" = Z a,; 2"+
- Zam Z e CJ) (log Z)".

v=0

Equating the coefficients of (py™* - - - pzp *)=%, where p; € S, using the same reason-

ing as before we obtain

Z ap;(r + cj)* = 0.
75J
If ¢ is purely complex or irrational , then r 4 ¢j are all distinct not equal to zero,

and this implies a,; = 0 for all r,j, a contradiction. Hence c is rational and
f=z- O]
Using Theorem 4.27, an improvement of Theorem 7.4 in [10] is as follows :
Theorem 4.28. Let z € A; be such that [supp(z)] is an infinite set. Assume
that f1, fo € A; are properly C-algebraically dependent over z. If there exists an

infinite subset S C [supp(z)] such that fi, fo € ﬂ M, then f, is a rational power

of fl-

peES
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Proof. Since f1, fo € C[2]', by Lemma 4.26, [supp(f1)] = [supp(2)] = [supp(f2)].

Since f, € C[z] and z € C[fy] , then f, € C[fi] . By Theorem 4.27, f, = f¢ for

some rational c. OJ

4.6 Dependence of Non-Units

Note that for a fixed prime p, and F' = Z o)
nS

Tl

J

6P {: dpf(n) _ i f (npzlvsp(np)

nS
n="1 Tie=]

y = f(np)vp(np) S f(n>Up(n)
y 4 (pfp)y. N, (n/p)*

n=1
(n,p)=1

4 Z f(nﬁ}p(n)'

Lemma 4.29. If fq,..., f, € A are such that for all sets of r distinct primes

D1y, Pr, We have

J(fl,...,fr/pl,...,p»,-) :O,

then  det(v,,(Nf;)) =0.
Proof. This is a speacial case of Lemma 8.8 in‘[10]. O

The next theorem gives an interesting information about dependence of non-

units and norms of elements in A.

Theorem 4.30. The set of nonzero non-unit arithmetic functions whose norms

are pairwise relatively prime is algebraically independent over C.

Proof. Let r € N and fi,..., f. be nonzero non-unit arithmetic functons whose

norms are pairwise relatively prime. Then Nf; > 1 for all : = 1,...,r. Note that
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for each prime p , d, annihilates all of C. Suppose that fi,..., f, are algebraically

dependent over C. By Theorem 2.14, for all sets of primes py, ..., p., we have

‘](f17~--af7"/p17---apr> =0.

By Lemma 4.29, det(v,,(N f;)) = 0. Thus there exist integers ay, ..., a,, not all

zero, such that for all primes p,

Z ajUP(ij) v

and so

0= ayup(Nfy) =w, (N i)™ - - (N £,)*).

=1

Then (N f1)* -+ (N f.)% = 1. Since N f1,..., N f, are pairwise relatively prime,

this is impossible. O

For an f € A, let n’ be the smallest integer greater than N f such that f(n') #

0. Define Ny f =n'. If n’ does not exsit, define N1 f = N f.

Theorem 4.31. Let f,g € A be nonzero such that (Nf)(Nrg) # (N1f)(Ng). If
f and ¢ are algebraically dependent over C , then

(i) there exist integers xg, 22, not both zero, such that (N f)*(Ng)*? = 1;

(ii) there exist integers yi, ya, not both zero, such that (N f)¥'(Nyg)¥2 = 1; and

(iii) there exist integers 21, z2, not both zero, such that (NV; f)*'(Ng)* = 1.

Proof. For ease of writing, let Nf =n*, N1 f =n/, Ng =m*, Nyg =m/. If n’ = n*,
then (iii) is equivalent to (i). If m’ = m*, then (ii) is equivalent to (i). We may
assume that n' # n*,m’ # m*, so f(n*), f(n'),g(m*),g(m’) all # 0. Assume
that f and g are algebraically dependent over C. Let p, ¢ be distinct primes and

F. G be the corresponding Dirichlet series of f, g, respectively. By Theorem 2.14,
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J(f7 g/p7 Q) = 0, and so

d,F d,G
0=J(F,G/p,q) =
d,F d,G
f(n*)vp(n*) f(n)vp(n') g(m*)vp(m*) f(m)vp(m')
N C@m e ) G e )
f(n*)vg(n*) f(n")vg(n’) g(m*)vg(m*) f(m")vg(N1g)
o T T ) Cggr t e T
f(m*)vp(n*)  g(m*)vp(m*) F(n*)vp(n*) Q(M’)lvp(m’) f(n’gvp(n’) g(m*)vp(m*)
_| (/) (m*/p) | (/2) (mffp)* | | (/p) (m*/p) +R
F(n*)vg(n*)  g(m*)vg(m*) f(n*)ug(n*)  g(m')vg(m') f(nvg(n')  g(m*)vg(m*)
(n*/q)® (m*/q)® (n*/q)® (m'/q)® (n'/q)® ((m*/q)®

F(*)g(m*)(pg)> |Uu(n?) - vp(m=) | f(n*)g(m)(pqg)® [vp(n") vp(m)
(n*m*)s s

vg(n) vg(m?)

where R is the sum of remaining terms all of whose denominators are greater than

1oy *0n/
(m)s and (n—ﬁ)S Since f(n*), f(n'), g(m*),g(m’) are all # 0 and n*m’ #
pq pq

n'm*, then

vg(n*)  vg(m*) Vg(n™) vy (m') vg(n')  vy(m”)

vp(n*) p(m*)
From ‘ vgln) vy(m”)

= 0, we deduce that there exist x1,x9 € Z, not all zero, such
that for all primes r, ziv,(n*) + 2u,.(m*) = 0, i.e. v.((n*)*1(m*)*?) = 0, which
renders (N f)*(Ng)* = (n*)*(m*)* = 1.

The remaining assertions follow analogously by using the other two determinantal

values. O
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