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CHAPTER I

INTRODUCTION

1.1 Introduction

A common practice in designing a feedback system in which the plant consists of components

described by non-rational transfer functions, is to replace the non-rational functions with rational

approximants so that well-developed computational tools for rational systems can be utilized. The

approach may fail to give satisfactory results if the approximant is not chosen appropriately. Hence,

conditions for ensuring the design obtained from using the approximant gives satisfactory results

for the original system are required. To this end, a number of researchers have been prompted to

investigate and/or develop methods for approximating a non-rational transfer function by a rational

one. For example, Gibilaro and Lees [14] and Zakian [27] investigated methods for simplifying

transfer functions using moment approximants, whereas Lam [16] reduced models of delay systems

using Padé approximants for exponential functions. In addition, Gu et al. [15] used a method based

on Fourier transform techniques. A number of references can be found in the literature concerning

how to obtain rational approximants (see, for example, [14–16, 27] and the references therein).

The approach of replacing non-rational transfer functions with rational approximants in the

design process is useful especially when computational tools for non-rational transfer functions are

not readily available. However, it may fail to give satisfactory results for the original system if the

approximants are not sufficiently close to the original models. In order to ensure that the design

carried out with the approximants is valid for the original system, a criterion of approximation needs

to be explicitly taken into account in the formulation of the design problem.

Consider the two-input two-output feedback system shown in Figure 1.1 and described by

ui = ki1 � e1 + ki2 � e2

ei = fi − gi1 � u1 − gi2 � u2

⎫⎬
⎭ , i = 1, 2 (1.1)

where G(s) � [Gij(s)]2×2 is the plant transfer matrix and K(s,p) � [Kij(s,p)]2×2 is the controller

transfer matrix characterized by a design parameter vector p ∈ R
N . Let e � [e1, e2]

T and u �

� K(s,p) G(s)� � � �
�

f e u+

−

Figure 1.1: The two-input two-output feedback system given in (1.1).



2

[u1, u2]
T be the error and the control vectors of the system, respectively, and gij : [0,∞) → R and

kij : [0,∞) → R denote the impulse responses of Gij(s) and Kij(s,p), respectively. The symbol �

denotes the convolution; that is, for functions x : [0,∞) → R and y : [0,∞) → R,

(x � y)(t) =

∫ t

0
x(t− λ) y(λ) dλ, t ≥ 0.

The vector f � [f1, f2]
T is the input vector of the system where f1 and f2 are known only to the

extent that each of them belongs to the sets P1 and P2, respectively. In this work, P1 and P2 are

assumed to be the sets of input signals whose magnitude and whose slope satisfy certain bounding

conditions.

Define the performance measures êi and ûi for i = 1, 2.

êi � sup
f1∈P1,f2∈P2

‖ei‖∞ and ûi � sup
f1∈P1,f2∈P2

‖ui‖∞ (1.2)

where êi and ûi are sometimes called the peak values of ei and ui, respectively. The problem inves-

tigated here is to determine a design parameter p ∈ R
N such that the following design criteria are

satisfied.

ê1(p) ≤ E1 and ê2(p) ≤ E2. (1.3)

û1(p) ≤ U1 and û2(p) ≤ U2. (1.4)

where Ei and Ui are specified bounds. It should be noted that the design criteria (1.3) and (1.4) are

equivalent to the fact that |ei(t)| and |ui(t)| do not exceed the bounds Ei and Ui for all t ≥ 0 whenever

f1 ∈ P1 and f2 ∈ P2.

Following previous work ( [24,29,32–34], and also the references therein), it is readily appreci-

ated that in solving inequalities (1.3) and (1.4) by numerical methods, one needs computational tools

for stabilizing and obtaining the time-responses of the systems. Moreover, it is noted that for various

cases of the possible set Pi, the peak outputs ei and ui are found to be functionals defined implicitly

in terms of the system’s time-responses. Once the time-responses are obtained, the methods devel-

oped in [24, 29, 32–34] can be used to compute the peak outputs. Evidently, for lumped-parameter

systems, one can solve inequalities (1.3) and (1.4) easily by using computational tools developed for

rational systems, which are readily available and well-established, in conjunction with the methods

for computing the peak outputs mentioned above.

Zakian [30] derives a criterion of approximation for the case of single-input single output

(SISO) feedback systems (see Section 2.1 for further details) in which the plant transfer function

G(s) is replaced by a rational approximant G∗(s) during the design process. The criterion provides

simple sufficient conditions to ensure that the controller obtained through the use of the approximant

G∗(s) still gives satisfactory results for the original system in the sense that the original design criteria

(2.6) are satisfied. Zakian’s criterion of approximation has been employed in the design of delayed

control systems [4, 5] for SISO systems. Based on the criterion, the theory of majorants were derive
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( [31, 33, 34]). and were employed to design robust control systems in [6, 23]. The derivation of the

criterion of approximation and the theory of majorants for multi-input multi-output (MIMO) feedback

systems is still an open question.

So far, the design problem defined inequalities of the form (1.3) and (1.4) can be solved by

numerical method for the case of MIMO lumped-parameter feedback systems or, by using Zakian’s

criterion of approximation, SISO distributed-parameter feedback systems (See [24, 29] and the ref-

erences therein for details on this). As suggested by Arunsawatwong [3], the design problem for the

case of general MIMO distributed-parameter feedback systems is still an open question.

In this regard, it is the intention of this thesis to extend the criterion of approximation to the

case of MIMO systems that can be used to design general distributed-parameter MIMO feedback

systems. Then base on the criterion for MIMO systems, the theory of majorants will be investigated

for the case of two-input two-output systems.

1.2 Objectives

1. To study Zakian’s criterion of approximation and extend it to 2× 2 feedback systems.

2. Based on the obtained results, to develop a practical method for designing a controller for

2 × 2 feedback systems where the non-rational plant transfer matrix is replaced by rational

approximants during the design process.

3. To develop inequalities for designing 2 × 2 feedback systems where the plant has parametric

uncertainties.

4. To illustrate the effectiveness of the developed methods by carrying out numerical examples.

1.3 Scope of Thesis

1. To extend Zakian’s theory of majorants to 2× 2 feedback systems.

2. The design requirement is to ensure that all the errors and all the controller outputs lie within

prescribed bounds for all time in the presence of any input whose magnitude and whose slope

do not exceed respective bounds.

3. To develop a practical method for designing a controller for 2× 2 feedback systems subject to

inputs satisfying bounding conditions so as to ensure that the design criteria (1.3) and (1.4) are

fulfilled.

4. To develop inequalities for designing a robust controller for 2 × 2 feedback systems subject to

inputs satisfying bounding conditions so as to ensure that the design criteria (1.3) and (1.4) are

fulfilled.
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5. To design robust controllers for 2 × 2 feedback systems where the plant transfer matrix has

parametric uncertainties.

1.4 Methodology

Sufficient conditions for ensuring (1.3) and (1.4) in terms of inequalities are developed, thereby

providing surrogate design criteria that are in keeping with the method of inequalities. That is to say,

the obtained criteria are inequalities that can be solved in practice.

1.5 Expected Outcomes

1. Readily computable inequalities for designing a 2 × 2 feedback system described by a non-

rational transfer matrix so that the criteria (1.3) and (1.4) are satisfied.

2. Readily computable inequalities for designing a robust controller for 2 × 2 feedback systems

with uncertainties so that the criteria (1.3) and (1.4) are satisfied.

3. Numerical examples demonstrating the effectiveness of the developed methods.

1.6 Achievements

The contributions of this thesis are as follows:

• First and foremost, we develop a practical method for designing a controller for non-rational

MIMO feedback systems subject to inputs satisfying bounding conditions on magnitude and

slope. Zakian’s criterion of approximation for SISO systems is extended not only to the case

of 2 × 2 systems but also to the case of MIMO systems where the non-rational functions in

the plant transfer matrix are replaced by rational approximants throughout the design process.

Accordingly, the obtained criterion enables ones to solve the design problems (1.3) and (1.4)

for non-rational systems by using only computational tools for rational systems.

• Second, based on the criterion of approximation for MIMO systems, the inequalities for de-

signing a robust controller for 2 × 2 feedback systems subject to inputs satisfying bounding

conditions are developed.

1.7 Thesis Outline

The structure of the thesis is as follows. Chapter 2 reviews the criterion of approximation

and the theory of majorants for SISO systems. Chapter 3 presents the application of the theory of

majorants for SISO systems. Chapter 4 extends the criterion of approximation to the case of MIMO
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systems. To illustrate the usefulness of the criterion, a numerical design of a binary distillation column

is carried out. Chapter 5 extends the theory of majorants to the case of 2 × 2 systems. Finally, the

thesis is concluded in Chapter 6.



CHAPTER II

RECAP OF THE THEORY OF MAJORANTS FOR SISO SYSTEMS

2.1 Zakian’s Criterion of Approximation

Consider the scalar feedback system described by

u = e � k

e = f − g � u

⎫⎬
⎭ (2.1)

where G(s) denotes the plant transfer function and K(s,p) denotes the controller transfer function

with the design parameter p ∈ R
N (see Figure 2.1). The responses e and u are the error and the

control of the system, respectively, and g and k denote the impulse responses of G(s) and K(s,p),

respectively.

Suppose that f is a possible input (i.e., input that can happen or is likely to happen in practice)

and is known only to the extent that it belongs to a set P, to be called a possible set. Accordingly,

P contains all possible inputs. In this work, the set P are subset of L∞, which denoted the set of all

bounded functions defined on [0,∞).

Note, in passing, that there are different models of the possible set P which have been investi-

gated by many researchers. For example, the set P given by

P = {f : ‖f‖∞ ≤ M∞ and ‖ḟ‖∞ ≤ D∞} (2.2)

was considered by [8, 29, 34], while the set P given by

P = {f : ‖f‖2 ≤ M2 and ‖ḟ‖2 ≤ D2} (2.3)

was considered in [2, 17]. Recently, the set P given by

P = {f : ‖f‖2 ≤ M2, ‖ḟ‖2 ≤ D2, ‖f‖∞ ≤ M∞} (2.4)

has been considered in [24]. For the characterization of the above sets P and their implications,

see [17, 24, 34] and the references therein.

� K(s,p) G(s)� � � �
�

f e u+

−

Figure 2.1: The scalar feedback system given in (2.1).
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� K(s,p) G∗(s)� � � �
�

f e∗ u∗
+

−

Figure 2.2: The nominal system for (2.1).

In connection with the possible set P, define the performance measures ê and û as follows.

ê � sup
f∈P

‖e‖∞ and û � sup
f∈P

‖u‖∞. (2.5)

Note that for the possible set P, ê and û are the peak error and the peak control of the system (2.1).

Methods for computing such peak values in association with the possible sets described by (2.2),

(2.3) and (2.4) are readily available. See [17, 24, 34] and the references therein for the details of the

methods. It is worth noting at this point that in computing the peak values ê and û, one needs to

compute the time-responses of the system.

Assume that the design problem for the system (2.1) is to determine a design parameter p such

that the following design criteria are satisfied.

ê(p) ≤ Emax and û(p) ≤ Umax, (2.6)

where the bounds Emax and Umax are specified.

Let G∗(s) be an approximant of the original plant transfer function G(s). In connection with

the system (2.1), the nominal system (see Figure 2.2) is described by

u∗ = e∗ � k

e∗ = f − g∗ � u∗
(2.7)

where e∗ and u∗ are the error and the control of the nominal system, respectively, and g∗ be the

impulse response of G∗(s). Let ê∗ and û∗ denote the peak values of e∗ and u∗, respectively, for the

possible set P. That is to say,

ê∗ � sup
f∈P

‖e∗‖∞ and û∗ � sup
f∈P

‖u∗‖∞. (2.8)

Let μ denote the approximation index and be defined by

μ � ‖w‖1

where w : [0,∞) → R is the inverse Laplace transform of W (s) given by

W (s,p) =
K(s,p)

1 +K(s,p)G∗(s)
[G(s)−G∗(s)] .

Now it is ready to state the main theorem on the criterion of approximation.
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Theorem 2.1. [30] Suppose that the nominal system (2.7) is stable in the sense that ê∗ < ∞ and

û∗ < ∞. Let μ < 1. Then the original design criteria (2.6) for the system (2.1) are satisfied if the

following inequalities hold.

ê∗

1− μ
≤ Emax and

û∗

1− μ
≤ Umax. (2.9)

Furthermore,
ê∗

1 + μ
≤ ê ≤ ê∗

1− μ
and

û∗

1 + μ
≤ û ≤ û∗

1− μ
.

Since the approximant G∗(s) is a rational function, the nominal system (2.7) is finite-dimensional.

In this case, the computation of ê∗ and û∗ can be readily carried out and the solution of inequalities

(2.9) is easily obtainable (see, for example, [24,34]). When tools for stability analysis and computing

time-responses for non-rational systems are not available, inequalities (2.9) becomes more computa-

tionally tractable than the original design criteria (2.6).

Following the method of inequalities [30, 32–35], it is readily appreciated that in solving in-

equalities (2.9) by numerical methods, it is necessary that a search algorithm should start from a point

p ∈ R
N such that μ(p) < ∞, ê∗(p) < ∞ and û∗(p) < ∞. In this connection, the following

theorem provides a practical and useful sufficient condition that enables the algorithm to start from

an arbitrary point in R
N .

Define Λ as the set of all of the finite poles of the transfer function

F (s)

U∗(s)
=

K(s,p)

1 +K(s,p)G∗(s)

where F (s) and U∗(s) are the Laplace transforms of f and u∗, respectively.

Theorem 2.2. [30,32,33] Assume that G∗(s) and K(s) are rational transfer functions. Then μ < ∞
if the two conditions hold.

(a) ‖z‖1 < ∞, z � g − g∗.

(b) Reλ(p) < 0 for all λ(p) ∈ Λ.

It is clear from Theorem 2.2 that with appropriate approximant G∗(s), condition (a) is always

satisfied. Consequently, condition (b) provides a useful inequality for computing a point p satisfying

μ(p) < ∞ that is always soluble by numerical methods. This is because Reλ(p) < ∞ for every

p ∈ R
N .

From Theorems 2.1 and 2.2, it readily follows that the solution of inequalities (2.6) involves

three phases of computation as follows.

• Phase I : With a starting point, find p0 satisfying

max
λ∈Λ

Reλ(p0) ≤ −ε (2.10)

where 0 < ε � 1 is given.
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• Phase II: By starting from p0, find p1 satisfying

max
λ∈Λ

Reλ(p1) ≤ −ε

μ(p1) < 1.

⎫⎪⎬
⎪⎭ . (2.11)

• Phase III: By starting from p1, find p satisfying both the design criteria (2.9) and the inequality

μ(p) < 1.

Since the plant transfer function G(s) in Figure 2.1 is uncertain, which is known only to the

extent that is belongs to a set G, a difficulty arises because μ depends on G ∈ G. Zakian [31, 33, 34]

suggests replacing μ by its upper bound that is easier to compute. This upper bound can be called a

majorant.

2.2 Majorants for Vague Systems

Suppose that the plant transfer function G(s) in Section 2.1 is uncertain and is known only to

the extent that is belongs to a set G. Then the design criteria (2.6) become the design criteria given by

sup
G∈G

ê ≤ Emax and sup
G∈G

û ≤ Umax. (2.12)

From Theorem 2.1, it easy to see that

sup
G∈G

ê ≤ ê∗

1− sup
G∈G

μ
and sup

G∈G
û ≤ û∗

1− sup
G∈G

μ
.

Upon noting the computational difficulty, Zakian [31, 33, 34] proposes to replace sup
G(s)∈G

μ by a majo-

rant μa given by

μa � A|σ∗
ss|+B ‖σ∗ − σ∗

ss‖1 (2.13)

where σ∗ is the unit-step response of the control u∗, σ∗
ss is the steady-state value of σ∗, and the

constants A and B are given by

A � sup
G∈G

‖z‖1

B � sup
G∈G

{|z(0)| + ‖ż‖1}

⎫⎪⎪⎬
⎪⎪⎭ , z � g − g∗. (2.14)

Now, in applying Theorem 2.1, it is ready to state the main theorem on the majorants.

Theorem 2.3. Suppose that the nominal system (2.7) is stable in the sense that ê∗ < ∞ and û∗ <

∞. Let μa < 1. Then the design criteria (2.12) for the system (2.1) are satisfied if the following

inequalities hold.
ê∗

1− μa
≤ Emax and

û∗

1− μa
≤ Umax. (2.15)

Proof. See [31, 33] for details.
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Following Theorem 2.2 in Section 2.1, the following theorem provides a sufficient condition to

ensure that μa(p) < ∞.

Theorem 2.4 ( [30, 32, 33]). Assume that G∗(s) is a rational transfer function. Then μa < ∞ if the

two conditions hold.

(a) ‖z‖1 < ∞,

(b) Reλ(p) < 0 for all λ(p) ∈ Λ,

where Λ is the set of all of the finite poles of the transfer function

U∗(s)
F (s)

=
K(s,p)

1 + F (s,p)G∗(s)
.

Proof. See [31, 33] for details.

In the same way, from Theorems 2.3 and 2.4, it readily follows that the solution of inequalities

(2.9) is the three phases of computation in Section 2.1 if μ is replaced by μa.



CHAPTER III

APPLICATION OF ZAKIAN’S MAJORANTS TO ROBUST

CONTROLLER FOR HYDRAULIC FORCE CONTROL SYSTEMS

3.1 Introduction

In modern industry, the precision of mechanical positioning systems is important in automation

process. Such positioning systems are usually driven by electric, hydraulic or pneumatic actuators.

For heavy load application, hydraulic actuators are more attractive because they possess a high force-

to-weight ratio and fast response time and also because they are able to maintain their loading capacity

indefinitely. However, uncertainties in hydraulic actuators limit their use in high precision application

with a simple closed-loop controller. Under different operating conditions, the flow and the pressure

coefficients, which characterize fluid flow into and out of the value, can vary. The uncertainty in the

valve characteristic causes the variation of the valve dynamics. Furthermore, the value of the bulk

modulus can vary significantly owing to changes of the oil temperature, the pressure and the air inside

the cylinder. See, e.g., [11, 20] and the references therein for details on this.

The control design for hydraulic force control systems, especially in high precision application,

is a challenging problem and has been investigated by many authors. For example, Niksefat and

Sepehri [20] applied the quantitative feedback theory (QFT) to the design of robust force control

of hydraulic actuators. Marusak and Kuntanapreeda [19] designed an analytical model predictive

controller for force control of an electrohydraulic actuator.

This chapter presents the design of a robust controller for a hydraulic force control system, in

which the parametric uncertainties are due to the variations of environmental stiffness and pressure

sensitivity gain of the value. The principal design objective is to ensure that, for all possible inputs

(that is, inputs that happen or are likely to happen in practice), the error and the control signals always

stay within their prescribed bounds despite all uncertainties. When the objective is fulfilled, one can

fully ensure that the control system will operate with high precision as required and the components

of the system will not be damaged.

The design problem is formulated using Zakian’s theory of majorants stated in Chapter 2 and

other theories developed by Zakian and his group ( [24,33–35] and the references therein). It may be

noted that the theory of majorants can be used effectively to formulate the design problem when the

principal design objective of the chapter is taken into account. As a result, the problem is expressed

explicitly as a set of inequalities that can readily be solved in practice.
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3.2 Hydraulic Actuator Model

In a hydraulic actuator, the control input signal controls the spool displacement of valve that

controls the flow of fluid from pump to the actuator. This flow builds a pressure difference that is

proportional to the sensed force. For the detail on this, see [20].

Since hydraulic systems are highly nonlinear, a linear model of a hydraulic actuator that is

obtained from linearization about an operating point will be used in the subsequent design. Following

[20], the transfer function of the hydraulic actuator is given by

F (s)

U(s)
=

ksp
(τs+ 1)

[
Kske(Ai +Ao)

(Kp + Cs)(mas2 + ds+ ke) + (A2
i s+A2

os)

]
(3.1)

where F (s) and U(s) are the Laplace transforms of the sensed force f and the input control voltage

u, respectively.

The meanings of the parameters in the transfer function of the actuator are as follows. Param-

eters ke and d represent damping and stiffness of the environment, Ks and Kp are the flow and the

pressure sensitivity gains of the valve, respectively, C is the approximant of the volume of fluid to the

effective bulk modulus of the fluid, ma represents the mass of the hydraulic piston, Ai and Ao are the

piston effective areas, τ and ksp are gains describing the valve dynamics. The nominal values of the

parameters used in the subsequent design are given in Table 3.1.

Parameter Nominal Value Parameter Nominal Value

ke 75 (kN/m) ma 20 (kg)

Ks 0.375 (m3/pa.s) Ai 0.00203 (m2)

Kp 2.5× 10−12 (m/s2) Ao 0.00152 (m2)

C 1.5× 10−11 (m3/pa) ksp 0.0012 (m/V)

d 700 (N/m/s) τ 35 (ms)

Table 3.1: Nominal values of parameters of the transfer function ( [20]).

Parameter ke depends on the variation in the environmental stiffness of the system, whereas

Kp depends on the supply pressure of hydraulic actuator and the orifice area gradient ( [20]). During

the operation of the hydraulic actuator, the parameters ke and Kp may change. Therefore, in the

following, assume that ke and Kp are parametric uncertainties within the ranges [50, 100] kN/m and

[0, 5 × 10−12] m2/s, respectively.

The frequency responses of the plant for different environmental stiffness and pressure sensi-

tivity gains of the valve are shown in Figure 3.1 for ke ∈ [50, 100] kN/m and for Kp ∈ [0, 5× 10−12]

m2/s.
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Figure 3.1: The frequency responses of Gp(s) with uncertainties in ke and Kp.

�H(s,p) K(s,p) G(s) ∈ G� � � � �
�

f∗ f e+

−
u

Figure 3.2: Two–degree-of–freedom feedback control system.

3.3 Design Formulation

In this section, the two-degree-of-freedom control configuration shown in Figure 3.2 is used

where H(s,p) is the prefilter transfer function, K(s,p) is the controller transfer function, p ∈ R
N

is the design parameter to be determined. To this end, let K(s) and H(s) be characterized by

K(s,p) =
p4s

2 + p5s+ p6
(s+ p1)(s2 + p2s+ p3)

H(s,p) =
p10(p7s+ 1)

(p8s+ 1)(p9s+ 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

where p = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10]
T ∈ R

10 is the design parameter vector to be deter-

mined.

In our early study, it has been found that the one-degree-of-freedom control configuration is

not appropriate. This is because a sufficiently high loop gain is required in order to make the error

fulfill the control objective. However, such a loop gain makes the control system not robust to be

against the uncertainties in ke and Kp.

The main control objective is to ensure that during the operation, the absolute values of the

error e and the control u do not exceed 105 N and 0.1 V, respectively, in the presence of all input
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f∗ ∈ P∞ given by

P∞ =
{
f∗ | ||f∗||∞ ≤ 1000 and ||ḟ∗||∞ ≤ 1000

}
. (3.2)

Accordingly, the design problem is to find a value of p that satisfies

μa(p) ≤ 0.99

ê∗(p)/(1 − μa(p)) ≤ 105 N

û∗(p)/(1 − μa(p)) ≤ 0.1 V

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (3.3)

3.4 Numerical Results

A design solution is obtained from simultaneously solving inequalities (3.3) by a numerical

search algorithm called the moving-boundaries-process (MBP). The detail of the algorithm can be

found in [34], [35].

By conducting numerical searches in the range [50, 100] kN/m for ke and the range [0, 5 ×
10−12] m2/s for Kp, we find that

A = 9.431 × 106 at ke = 100 kN/m and Kp = 0 m2/s

and

B = 2.2976 × 104 at ke = 50 kN/m and Kp = 0 m2/s.

The plots of ‖z‖1 and |z(0)|+‖ż‖1 versus ke and Kp are given in Figures 3.3 and 3.4, which confirm

the obtained numerical results.

After a number of iterations, the MBP algorithm locates a design solution

p = [99.0580, 4.2871 × 103, 9.6540 × 104, 0.2580, 58713,

1.8897 × 10−6, 1.5712 × 10−3, 0.2268, 0.2000, 0.1000]T .

The corresponding performance measures are

μa = 0.1376

ê∗/(1− μa) = 100.4894 N

û∗/(1− μa) = 8.1271 × 10−5 V

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

To verify the design, a simulation is carried out for the case in which the control system is

subject to a test input f̂ , which is generated randomly so that their magnitude and slope satisfy (3.2).

The waveform of f̂ and the corresponding responses e and u are displayed in Figure 3.5 for ke ∈
[50, 100] kN/m and Kp ∈ [0, 5 × 10−12] m2/s. Clearly, the design objectives are satisfied.
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3.5 Conclusions

This chapter presents the design of a robust controller for a hydraulic force control system, in

which the uncertainties are in the parameters ke and Kp. The design objective is to ensure that the

magnitudes of the error and the control output signal always stay within their prescribed bounds for

all time and for any input in the set P∞ in spite of all uncertainties. The design problem is formulated

using Zakian’s majorants [31] in conjunction with other theories in Zakian’s framework [24, 33–35],

and consequently is expressed explicitly as a set of inequalities that can be solved in practice by

numerical methods.
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0 20 40 60 80 100
−1000

0

1000

time (sec)

0 20 40 60 80 100
−200

0

200

time (sec)

0 20 40 60 80 100
−2

0

2
x 10

−4

time (sec)

f̂
e

u

Figure 3.5: Responses e and u to f∗ for ke ∈ [50, 100] kN/m and Kp ∈ [0, 5 × 10−12] m2/s.



CHAPTER IV

CRITERION OF APPROXIMATION FOR MIMO FEEDBACK

SYSTEMS

This chapter presents an extension of Zakian’s criterion of approximation [30] in which the

plant is a non-rational MIMO feedback system.

4.1 Introduction

Consider the multi-input multi-output (MIMO) feedback system described by

ui =

n∑
j=1

kij � ej

ei = fi −
n∑

j=1

gij � uj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, i = 1, 2, . . . , n (4.1)

where G(s) � [Gij(s)]n×n is the plant transfer matrix and K(s,p) � [Kij(s,p)]n×n is the con-

troller transfer matrix characterized by a design parameter p ∈ R
N (see Figure 4.1). Let e �

[e1, e2, . . . , en]
T and u � [u1, u2, . . . , un]

T be the error vector and the control vector of the sys-

tem (4.1), respectively. Also let kij : [0,∞) → R and gij : [0,∞) → R denote the inverse Laplace

transforms of Gij(s) and Kij(s,p), respectively.

Suppose that the input vector f � [f1, f2, . . . , fn]
T is known only to the extent that each

element fi : [0,∞) → R belongs to the possible set Pi where Pi ⊆ L∞ for all i = 1, 2 . . . , n and

L∞ is the set of all bounded functions. In this connection, define the Cartesian product of the possible

sets as

P � P1 × P2 × . . .× Pn.

Define, for the system (4.1), the vectors of performance measures

ê � [ê1, ê2, . . . , ên]
T and û � [û1, û2, . . . , ûn]

T (4.2)

where êi and ûi denote the peak values of ei and ui, respectively, associated with the space P given

� K(s,p) G(s)� � � �
�

f e u+

−

Figure 4.1: The MIMO feedback system given in (4.1).



18

by

êi � sup
f∈P

‖ei‖∞ and ûi � sup
f∈P

‖ui‖∞. (4.3)

Let x 
 y denote a componentwise inequality between vectors x and y. The design problem

is to find p such that the following design criteria are satisfied.

ê 
 E (4.4)

û 
 U (4.5)

where the bound vectors E � [E1, E2, . . . , En]T and U � [U1,U2, . . . ,Un]
T are specified. It should be

noted that the criteria (4.4) and (4.5) are equivalent to the fact that, for every i, |ei(t)| and |ui(t)| are

within the bounds Ei and Ui, respectively, for all time t whenever f ∈ P .

4.2 Main Results

This section derives the criterion of approximation for the system (4.1). To this end, let

G∗(s) � [G∗
ij(s)]n×n be a rational approximant matrix of G(s) Then replacing G(s) with G∗(s)

yields the resulting system which is called a nominal system (see Figure 4.2) and described by

u∗i =
n∑

j=1

kij � e
∗
j

e∗i = fi −
n∑

j=1

g∗ij � u
∗
j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, i = 1, 2, . . . , n (4.6)

where e∗ � [e∗1, e∗2, . . . , e∗n]T and u∗ � [u∗1, u∗2, . . . , u∗n]T are the error vector and the control vector

of the nominal system (4.6), respectively, and g∗ij : [0,∞) → R denotes the inverse Laplace transform

of G∗
ij(s).

For the nominal system (4.6), define

ê∗ � [ê∗1, ê
∗
2, . . . , ê

∗
n]

T and û∗ � [û∗1, û
∗
2, . . . , û

∗
n]

T

where ê∗i and û∗i denote the peak value of e∗i and u∗i , respectively, given by

ê∗i � sup
f∈P

‖e∗i ‖∞ and û∗i � sup
f∈P

‖u∗i ‖∞. (4.7)

� K(s,p) G∗(s)� � � �
�

f e∗ u∗
+

−

Figure 4.2: The nominal system for (4.1).
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Define

X(s) = [Xij(s)]n×n � [I +G∗(s)K(s)]−1 (4.8)

Z(s) = [Zij(s)]n×n � G(s)−G∗(s) (4.9)

W(s) = [Wij(s)]n×n � X(s)Z(s)K(s) (4.10)

V(s) = [Vij(s)]n×n � K(s)X(s)Z(s) (4.11)

M = [μij ]n×n, μij � ‖wij‖1 (4.12)

N = [νij ]n×n, νij � ‖vij‖1 (4.13)

where wij and vij are the inverse Laplace transforms of Wij(s) and Vij(s), respectively. The fol-

lowing results provide useful mathematical expressions for upper bounds and lower bounds of êi and

ûi.

Lemma 4.1. Suppose that ê∗i < ∞ for i = 1, . . . , n. Let (I −M)−1 exists and all of its elements are

positive. Then it follows that

(I +M)−1ê∗ 
 ê 
 (I −M)−1ê∗. (4.14)

Proof. Using equations (4.1), (4.6), (4.8), (4.9) and (4.10), one can verify that

Ei(s) = E∗
i (s)−

n∑
j=1

Wij(s)Ej(s) (4.15)

where Ei(s) and E∗
i (s) are the Laplace transforms of ei and e∗i , respectively, due to the input f .

Consequently,

ei(t) = e∗i (t)−
n∑

j=1

(wij � ej)(t) (4.16)

and then

‖ei‖∞ ≤ ‖e∗i ‖∞ +

n∑
j=1

‖wij � ej‖∞

≤ ‖e∗i ‖∞ +
n∑

j=1

‖wij‖1‖ej‖∞.

Thus, by using (4.12), one obtains

‖ei‖∞ ≤ ‖e∗i ‖∞ +
n∑

j=1

μij‖ej‖∞. (4.17)

From equations (4.3), (4.7) and (4.17), it follows that

êi ≤ ê∗i +
n∑

j=1

μij êj . (4.18)

It is easy to see from (4.2), (4.12) and (4.18) that

ê 
 ê∗ +Mê. (4.19)
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By using (4.12) and (4.16), we have

‖e∗i − ei‖∞ ≤
n∑

j=1

μij‖ej‖∞. (4.20)

From the identity

e∗i (t) = [e∗i (t)− ei(t)] + ei(t),

one obtains

‖e∗i ‖∞ ≤ ‖e∗i − ei‖∞ + ‖ei‖∞
and (4.20) implies that

‖e∗i ‖∞ ≤
n∑

j=1

μij‖ej‖∞ + ‖ei‖∞.

Hence,

ê∗ 
 Mê+ ê. (4.21)

Now, if (I −M)−1 exists and all of its elements are positive, then (4.19) and (4.21) imply that

(I +M)−1ê∗ 
 ê 
 (I −M)−1ê∗.

Lemma 4.2. Suppose that û∗i < ∞ for i = 1, . . . , n. Let (I −N)−1 exists and all of its elements are

positive. Then it follows that

(I +N)−1û∗ 
 û 
 (I −N)−1û∗. (4.22)

Proof. From the definition of νij in (4.13), the proof can be completed by the technique used in

Lemma 4.1.

Now, it is ready to state the main theorems in this section.

Theorem 4.1. Suppose that ê∗i < ∞ for i = 1, . . . , n. Let (I−M)−1 exists and let all of its elements

be positive. Then the original design criteria (4.4) for the system (4.1) are satisfied if

(I −M)−1ê∗ 
 E . (4.23)

Proof. The theorem readily follows from Lemma 4.1.

Theorem 4.2. Suppose that û∗i < ∞ for i = 1, . . . , n. Let (I−N)−1 exists and let all of its elements

be positive. Then the original design criteria (4.5) for the system (4.1) are satisfied if

(I −N)−1û∗ 
 U . (4.24)

Proof. The theorem readily follows from Lemma 4.2.
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From Theorems 4.1 and 4.2, we can see that the upper bounds of êi and ûi are expressed in

terms of the matrices M, N and the peak values ê∗i and û∗i of the nominal system (4.6). It is important

to note that when the system (4.1) becomes the scalar system (2.1), the conditions in Theorems 4.1

and 4.2 turn out to be identical to those in Theorem 2.1 in Chapter 2.

Since G∗(s) and K(s) are rational matrices, tools for stability analysis and computing time-

responses are readily available for the case of the nominal system (4.6). Hence, when such tools for

the non-rational system (4.1) are not available, inequalities (4.23) and (4.24) are more computationally

tractable than the original design criteria (4.4) and (4.5). For this reason, (4.23) and (4.24) are called

the surrogate design criteria.

4.3 Finiteness of ê and û

Following the method of inequalities [29,30,32,33,35], it is readily appreciated that in solving

inequalities (4.23) and (4.24) by numerical methods, a search algorithm needs to start from a point

p ∈ R
N such that êi(p) < ∞ and ûi(p) < ∞ for all i. In this regard, the following proposition

provide useful sufficient conditions for ensuring that êi < ∞ and ûi < ∞ for all i.

Proposition 4.1. Consider the original system (4.1) and the nominal system (4.6). Suppose that

{AG∗ , BG∗ , CG∗ , 0} and {AK , BK , CK ,DK} are state-space realizations of G∗(s) and K(s), re-

spectively. Let Λcl denotes the set of all the eigenvalues of the closed-loop state transfer matrix

Acl =

⎡
⎢⎣ AK −BKCG∗

BGCK AG∗ −BG∗DKCG∗

⎤
⎥⎦ .

Then êi < ∞ and ûi < ∞ for all i = 1, 2, . . . , n if the following conditions hold.

(a) Reλ(p) < 0 for all λ(p) ∈ Λcl.

(b) (I −M)−1 and (I −N)−1 exists and all of their elements are positive.

Proof. Condition (a) is a well-known result of bounded-input bounded-output (BIBO) stability for

rational systems. It implies that ê∗i < ∞ and û∗i < ∞ for any bounded input. Therefore, it follows

from (4.14) and (4.22) that if conditions (a) and (b) hold, then êi < ∞ and ûi < ∞ for all i =

1, 2, . . . , n.

Consider condition (b) in Proposition 4.1. The finiteness of M and N is necessary for existence

of (I −M)−1 and (I −M)−1. Therefore, a search algorithm should find a point p such that M and

N are finite before finding p that satisfying condition (b).

The following lemmas provide sufficient conditions for ensuring that M and N are finite.

The following notation will be used in Lemmas 4.3, 4.4 and Theorem 4.3. For given integers

i, j, k and l, define

αkl
ij (p) � max

λ∈Λkl
ij

Reλ(p)
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where Λkl
ij denotes the set of all the poles of the function Kij(s)Xkl(s). Let zkl be the impulse

response of Zkl(s).

Lemma 4.3. Assume that G∗(s) and K(s) are rational matrices. Then μij < ∞ if the two conditions

hold.

(a) ‖zkl‖1 < ∞, ∀ k, l = 1, 2, . . . , n.

(b) αik
lj (p) < 0, ∀ k, l = 1, 2, . . . , n.

Proof. It is easy to see from (4.8), (4.9) and (4.10) that

Wij(s) =

n∑
k=1

n∑
l=1

Klj(s)Xik(s)Zkl(s).

From the definition of μij in (4.12), one can easily see that

μij =

∥∥∥∥∥
n∑

k=1

n∑
l=1

L−1
{
Klj(s)Xik(s)Zkl(s)

}∥∥∥∥∥
1

. (4.25)

Evidently, KljXim is a proper rational function of s for any i, j, k, l = 1, 2, . . . , n. Thus,

Klj(s)Xik(s) = aiklj +Rik
lj (s) (4.26)

where aiklj is a constant and Rik
lj is a strictly proper function of s. Then it follows from (4.25) and

(4.26) that

μij ≤
n∑

k=1

n∑
l=1

|aiklj | · ||zkl||1 + ||riklj � zkl||1

where riklj denotes the impulse response of Rik
lj (s). By a well-known result (see, for example, [13]),

it follows that if ||riklj ||1 < ∞ and ||zkl||1 < ∞, then ||riklj � zkl||1 < ∞. Condition (b) is necessary

and sufficient for ||riklj ||1 < ∞ for all k, l = 1, 2, . . . , n.

Lemma 4.4. Assume that G∗(s) and K(s) are rational matrices. Then νij < ∞ if the two conditions

hold.

(a) ‖zlj‖1 < ∞, ∀ l = 1, 2, . . . , n.

(b) αkl
ik(p) < 0, ∀ k, l = 1, 2, . . . , n.

Proof. It is easy to see from (4.8), (4.9) and (4.11) that

Vij(s) =

n∑
k=1

n∑
l=1

Kik(s)Xkl(s)Zlj(s).

From the definition of νij in (4.13), the proof can be completed by the technique used in Lemma

4.3.

Now it is ready to state the main theorem for the finiteness of the matrices M and N.

Theorem 4.3. Assume that G∗(s) and K(s) are rational matrices. Then all elements of M and N

are finite if the two conditions hold.
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(a) ‖zkl‖1 < ∞, ∀ k, l = 1, 2, . . . , n.

(b) αpq
kl (p) < 0, ∀ k, l, p, q = 1, 2, . . . , n.

Proof. The theorem readily follows from Lemmas 4.3 and 4.4.

From above, the solution of inequalities (4.23) and (4.24) involves three phases of computation

as follows. Define

[μ†
ij] � (I −M)−1

[ν†ij] � (I −N)−1

⎫⎪⎬
⎪⎭ , i, j = 1, 2, . . . , n.

• Phase I : With an arbitrary starting point, find p0 satisfying

αpq
kl (p0) ≤ −ε, ∀ k, l, p, q = 1, 2, . . . , n.

where 0 < ε � 1 is given.

• Phase II : By starting from p0, find p1 satisfying

αpq
kl (p1) ≤ −ε, ∀ k, l, p, q = 1, 2, . . . , n,

μ†
ij(p1) > 0, ∀ i, j = 1, 2, . . . , n,

ν†ij(p1) > 0, ∀ i, j = 1, 2, . . . , n.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (4.27)

• Phase III : By starting from p1, find p satisfying the design criteria (4.23), (4.24), and inequal-

ities (5.28).

4.4 Majorants for MIMO Feedback Systems

The original definition of a majorant for the case of SISO feedback systems is defined as fol-

lows.

Definition 4.1 ( [31]). Suppose that Π ⊆ R
N and there is a function φ : RN → [0,∞] such that

φ(p) < ∞ ∀p ∈ Π.

A function φ̂ : Π̂ → [0,∞] is said to be a majorant of φ if the following conditions are satisfied.

(A1) φ(p) ≤ φ̂(p) ∀p ∈ Π̂

(A2) Π̂ ⊆ Π

(A3) Suppose that there is a sequence S of points inΠ̂ such that φ(p) converges to zero. Then, for the

same sequence S, φ̂(p) also converges to zero.

(A4) The function φ̂ can be calculated more easily than φ.

Now the definition of a majorant for the case of vector-valued functions is defined as follows.
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Definition 4.2. Suppose that Π ⊆ R
N and there are functions φi : R

N → [0,∞], i = 1, 2, . . . ,m,

such that

φi(p) < ∞, for i = 1, 2, . . . ,m, ∀p ∈ Π.

A function φ̂ � [φ̂1, φ̂2, . . . , φ̂m]T is said to be a majorant vector of φ � [φ1, φ2, . . . , φm]T if the

following conditions are satisfied.

(B1) φi(p) ≤ φ̂i(p), for i = 1, 2, . . . , n ∀p ∈ Π̂

(B2) Π̂ ⊆ Π

(B3) Suppose that there is a sequence S of points in Π̂ such that φi(p) converges to zero for all i.

Then, for the same sequence S, φ̂i(p) also converges to zero for all i.

(B4) The functions φ̂i can be calculated more easily than φi for all i.

The following propositions show that the upper bounds derived in Lemmas 4.1 and 4.2 are

majorants of ê and û, respectively.

Proposition 4.2. The function (I −M)−1ê∗ is a majorant vector of ê.

Proof. From the result in Proposition 4.1, if ê∗i < ∞ for all i and (I − M)−1 exists and all of its

elements are positive, then condition (B1) in Definition 4.2 is satisfied.

Since ê∗i < ∞ for all i and (I − M)−1 exists and all of its elements are positive, then ê is

always not greater than (I − M)−1ê∗. Hence, these conditions are sufficient for ensuring that ê is

finite. Then condition (B2) in Definition 4.2 is satisfied.

Consider inequalities (4.14) in Lemma 4.1. If ê converges to zero, then ê∗ will converge to

zero and then, if (I − M)−1 > 0, the upper bound (I − M)−1ê∗ also converges to zero. Hence,

condition (B3) in Definition 4.2 is satisfied.

Since the approximant G∗(s) and the controller K(s,p) are rational, ê∗ are easily obtainable.

When tools for computing time-responses for non-rational systems are not available, the upper bound

(I − M)−1ê∗ can be calculated more easily than ê. Therefore, condition (B4) in Definition 4.2 is

satisfied.

Proposition 4.3. The function (I −N)−1û∗ is a majorant vector of û.

Proof. The proof can be completed by the technique used in Proposition 4.2.

4.5 The Criterion of Approximation for 2× 2 Feedback Systems

This section states the criterion of approximation for 2 × 2 feedback systems. This was pub-

lished in [10] and can be seen as a special case of Theorems 4.1 and 4.2.

Theorem 4.4. [10] Suppose that ê∗1 < ∞ and ê∗2 < ∞. Let μ11 < 1, μ22 < 1 and det(I −M) > 0.

Then the original design criteria (4.4) for the system (4.1) are satisfied if the following hold.

(1− μ22)ê
∗
1 + μ12ê

∗
2

det(I −M)
≤ E1 and

(1− μ11)ê
∗
2 + μ21ê

∗
1

det(I −M)
≤ E2. (4.28)
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Theorem 4.5. [10] Suppose that û∗1 < ∞ and û∗2 < ∞. Let ν11 < 1, ν22 < 1 and det(I −N) > 0.

Then the original design criteria (4.5) for the system (4.1) are satisfied if the following hold.

(1− ν22)û
∗
1 + ν12û

∗
2

det(I −N)
≤ U1 and

(1− ν11)û
∗
2 + ν21û

∗
1

det(I −N)
≤ U2. (4.29)

Theorems 4.4 and 4.5 can be seen as a special case of Theorems 4.1 and 4.2 in Section 4.2.

From Lemmas 4.1 and 4.2, one obtains

ê ≤ (I −M)−1ê∗ and û ≤ (I −N)−1û∗.

For 2× 2 systems, it is easy to see that

(I −M)−1ê∗ =
1

det(I −M)

⎡
⎣1− μ22 μ12

μ21 1− μ11

⎤
⎦
⎡
⎣ê∗1
ê∗2

⎤
⎦ .

Consequently,

ê1 ≤ (1− μ22)ê
∗
1 + μ12ê

∗
2

det(I −M)
and ê2 ≤ (1− μ11)ê

∗
2 + μ21ê

∗
1

det(I −M)
.

Similarity, for û1 and û2, it is easy to verify that

û1 ≤ (1− ν22)û
∗
1 + ν12û

∗
2

det(I −N)
and û2 ≤ (1− ν11)û

∗
2 + ν21û

∗
1

det(I −N)
.

Hence, it can be readily seen that Theorems 4.4 and 4.5 are equivalent to Theorems 4.1 and 4.2,

respectively, for the cases 2× 2 systems.

The following theorem provides useful sufficient conditions for ensuring that the matrices M

and N are finite.

Theorem 4.6. [10] Assume that G∗(s) and K(s) are rational matrices. Then all elements of M and

N are finite if the two conditions hold.

(a) ‖zkl‖1 < ∞, ∀ k, l = 1, 2.

(b) αpq
kl (p) < 0, ∀ k, l, p, q = 1, 2.

From Theorems 4.4, 4.5 and 4.6, it readily follows that the solution of inequalities (4.28) and

(4.29) involves three phases of computation as follows.

• Phase I : With an arbitrary starting point, find p0 satisfying

αpq
kl (p0) ≤ −ε, ∀ k, l, p, q = 1, 2.

where 0 < ε � 1 is given.

• Phase II : By starting from p0, find p1 satisfying

αpq
kl (p0) ≤ −ε, ∀ k, l, p, q = 1, 2.

μ11(p1) < 1 and μ22(p1) < 1

ν11(p1) < 1 and ν22(p1) < 1

det(I −M) > 0 and det(I −N) > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (4.30)
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• Phase III : By starting from p1, find p satisfying the design criteria (4.28), (4.29), and inequal-

ities (4.30).

4.6 Numerical Examples

In this section, the linearized model of a binary distillation column is obtained from lineariza-

tion about an operating point [25]. The plant transfer matrix G(s) is given by

G(s) =

⎡
⎢⎢⎣

12.8e−s

16.7s + 1

−18.9e−3s

21.0s + 1

6.6e−7s

10.9s + 1

−19.4e−2s

14.4s + 1

⎤
⎥⎥⎦ . (4.31)

Let K(s, p) take the form

K(s, p) =

⎡
⎢⎢⎣

p1(p2s+ 1)(p3s+ 1)

s(p4s+ 1)
p9

p10
p5(p6s+ 1)(p7s+ 1)

s(p8s+ 1)

⎤
⎥⎥⎦ .

where p � [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10]
T is a design parameter. Assume the inputs f1 belongs

to the set P where

P � {f1 : ‖f1‖∞ ≤ 0.2 and ‖ḟ1‖∞ ≤ 0.2}. (4.32)

For simplicity, let f2 = 0. It may be noted that if f2 is not zero, one can use the principle of

superposition to compute the peaks due to both inputs f1 and f2.

Suppose that the plant transfer matrix G(s) is replaced by a strictly proper rational approximant

matrix G∗(s). Here, we replace e−τs with its [1/2] Padé approximant1; that is

e−τs ≈ 1− τs/3

(τs)2/6 + 2τs/3 + 1
.

Then the resultant approximant matrix G∗(s) is given by

G∗
11(s) =

−25.6(s − 3)

(16.7s + 1)(s2 + 4s+ 6)

G∗
12(s) =

37.8(s − 1)

(21.0s + 1)(3s2 + 4s + 2)

G∗
21(s) =

−13.2(7s − 3)

(10.9s + 1)(49s2 + 28s+ 6)

G∗
22(s) =

19.4(2s − 3)

(14.4s + 1)(2s2 + 4s + 3)
.

The impulse responses of the original system and the nominal system are shown in Figure 4.3.

The main control objective is to ensure that, during the operation,
1The [M/N ] Padé approximant to a function h(s) is defined as a rational function P (s)/Q(s) where P and Q are

polynomials of degree M and N , respectively. See, e.g., [5] for the details.
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Figure 4.3: Comparison of the impulse responses of G(s) and G∗(s).

• the top product deviation e1 stays within ±0.38 mol%,

• the bottom product deviation e2 stays within ±0.20 mol%,

• the deviation of the reflux rate u1 stays within ±0.10 lb/min,

• the deviation of the reboiler rate u2 stays within ±0.05 lb/min.

Accordingly, the principal design criteria can be expressed as

ê1 ≤ 0.38, ê2 ≤ 0.20, û1 ≤ 0.10, û2 ≤ 0.05. (4.33)

In this work, inequalities (4.33) are solved by using the MBP algorithm (See [34, 35] for the

detail of the MBP algorithm). Alternatively, other algorithms for solving a set of inequalities may be

used (see [22] and the references therein). In addition, the nominal peaks ê∗i and û∗i associated with

the possible set (4.32) are computed by the method developed in [14].

To verify the design, a simulation is carried out for the case in which the control system is

subject to a test input f = [f̂1, 0]
T , which is generated randomly so that its magnitude and slope

satisfy (4.32). The waveform of the test input f̂1 is shown in Figure 4.4.
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Figure 4.4: The waveforms of the test input f̂1 and its derivative.

4.6.1 Design without the criterion of approximation

In this part, the nominal system (4.6) is designed without the criterion of approximation. A

controller is obtained by solving the design criteria

ê∗1 ≤ 0.38 mol%, ê∗2 ≤ 0.20 mol%,

û∗1 ≤ 0.10 lb/min, û∗2 ≤ 0.05 lb/min.

After a number of iterations, the MBP algorithm locates a design solution resulting in

K11(s,p) =
0.213s2 + 0.1892s + 0.04204

s(0.1015s + 1)

K12(s,p) = 0.08298

K21(s,p) = −0.01224

K22(s,p) =
−0.724s2 − 0.4234s − 0.05974

s(0.05371s + 1)

(4.34)

and the corresponding performance measures are

ê∗1 = 0.3726 mol%, ê∗2 = 0.0626 mol%,

û∗1 = 0.0860 lb/min, û∗2 = 0.0352 lb/min.

The responses e1, e2, u1 and u2 of the nominal system and the original system are displayed in

Figures 4.5 and 4.6, respectively.

The simulation results in Figure 4.6 show that the responses of the original system oscillate;

that is, the system is unstable. From this example, it is seen that the design can give a failure when

the system is designed without the criterion of approximation.

4.6.2 Design by using the criterion of approximation

Now the criterion of approximation is used. Following Theorems 4.4, 4.5 and 4.6, a controller

is obtained by solving the design criteria

max
λ∈Λpq

kl

Reλ(p0) ≤ −10−6 ∀k, l, p, q = 1, 2 (4.35)
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Figure 4.5: Responses of the nominal system using controller (4.34).

μ11(p) ≤ 0.5, μ22(p) ≤ 0.5,

ν11(p) ≤ 0.5, ν22(p) ≤ 0.5,

− det(I −M) ≤ −0.5, − det(I −N) ≤ −0.5

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.36)

(1− μ22)ê
∗
1 + μ12ê

∗
2

det(I −M)
≤ 0.38 mol%

(1− μ11)ê
∗
2 + μ21ê

∗
1

det(I −M)
≤ 0.20 mol%

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.37)

(1− ν22)û
∗
1 + ν12û

∗
2

det(I −N)
≤ 0.10 lb/min

(1− ν11)û
∗
2 + ν21û

∗
1

det(I −N)
≤ 0.05 lb/min

⎫⎪⎪⎬
⎪⎪⎭ (4.38)

Inequalities (4.35) ensure the finiteness of M and N, whereas (4.36) ensure that êi and ûi are finite

for all i. Inequalities (4.37) and (4.38) are sufficient conditions for ensuring that the design criteria

(4.33) are satisfied.
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Figure 4.6: Responses of the original system using controller (4.34).

By using the MBP algorithm, a controller K(s,p) with

K11(s,p) =
0.03238s2 + 0.0533s + 0.007084

s(0.3652s + 1)

K12(s,p) = 0.03657

K21(s,p) = −0.00922

K22(s,p) =
−0.2561s2 − 0.1073s − 0.01

s(20.73s + 1)

(4.39)

is found and the corresponding performance measures are

μ11(p) = 0.0357, μ12(p) = 0.0497,

μ21(p) = 0.1055, μ22(p) = 0.0767,

ν11(p) = 0.0855, ν12(p) = 0.0671,

ν21(p) = 0.0397, ν22(p) = 0.0387,

(1− μ22)ê
∗
1 + μ12ê

∗
2

det(I −M)
= 0.3798 mol%,

(1− μ11)ê
∗
2 + μ21ê

∗
1

det(I −M)
= 0.1991 mol%,
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Figure 4.7: Responses of the original system using controller (4.39).

(1− ν22)û
∗
1 + ν12û

∗
2

det(I −N)
= 0.0376 lb/min,

(1− ν11)û
∗
2 + ν21û

∗
1

det(I −N)
= 0.0186 lb/min.

The responses e1, e2, u1 and u2 of the original system are displayed in Figure 4.7. The peak

values of e1, e2 ,u1 and u2 in response to f̂1 are 0.3791 mol%, 0.1547 mol%, 0.0343 lb/min and

0.0094 lb/min, respectively. Clearly, the design objectives are satisfied.

4.7 Conclusions and Discussion

This chapter derives a criterion of approximation for n × n feedback systems where the non-

rational plant transfer matrix is replaced by a rational approximant during the design process and

the system is subject to the possible inputs satisfying bounding conditions on their magnitude and

slope. The design objective is to ensure that the error peaks ê1, ê2, . . . , ên and the control peaks

û1, û2, . . . , ûn always stay within the error bounds E1, E2, . . . , En and the control bounds U1,U2, . . . ,

Un, respectively. For a chosen rational approximant matrix, the criterion provides useful sufficient

conditions that are expressed as inequalities that can be solved in practice. When the plant and the

control transfer matrices become scalar transfer functions, the results obtained in the paper turns out

to be identical to Zakian’s criterion of approximation for SISO systems. To illustrate the usefulness
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of the results, a controller design for a binary distillation column is carried out successfully by using

the criterion in conjunction with the method of inequalities.

Although the system used in the numerical example to demonstrate the theory is the time-delay

system, the theory can be used with other types of non-rational systems as well as long as the impulse

response [gij ] is obtained. For various non-rational systems that can be founded in practice, see [12].



CHAPTER V

THEORY MAJORANTS FOR 2× 2 VAGUE SYSTEMS

This chapter extends the theory of majorants for SISO vague systems to 2× 2 vague systems.

5.1 Introduction

Consider the feedback system shown in Figure 5.1 and described by

ui = ki1 � e1 + ki2 � e2

ei = fi − gi1 � u1 − gi2 � u2

⎫⎬
⎭ , i = 1, 2 (5.1)

where the plant transfer matrix G(s) � [Gij(s)]2×2 is known only to the extent that is belongs to a

set G ⊂ R
2×2(s) and K(s,p) � [K(s,p)]2×2 is the transfer matrix of the controller with the design

parameter p ∈ R
N . The vectors e = [e1, e2]

T and u = [u1, u2]
T are the error vector and the control

vector of the system (5.1), respectively, and kij : [0,∞) → R and gij : [0,∞) → R denote the

inverse Laplace transforms of Gij(s) and Kij(s,p), respectively.

Suppose that the input vector f = [f1, f2]
T is known only to the extent each element fi :

[0,∞) → R belongs to the the set Pi where Pi ⊆ L∞ for i = 1, 2.

Define, for the system (5.1), the performance measures ê1, ê2, û1 and û2 as follows.

êi � sup
f1∈P1,f2∈P2

‖ei‖∞ and ûi � sup
f1∈P1,f2∈P2

‖ui‖∞ (5.2)

where êi and ûi denote the peak values of ei and ui, respectively, for the spaces P1 and P2.

The design problem is to find p such that the following design criteria are satisfied.

sup
G∈G

ê1 ≤ E1 and sup
G∈G

ê2 ≤ E2 (5.3)

sup
G∈G

û1 ≤ U1 and sup
G∈G

û2 ≤ U2 (5.4)

where the bounds E1, E2, U1 and U2 are specified by designers.

� K(s,p) G(s) ∈ G� � � �

controller plant

�

f e u+

−

Figure 5.1: The two-input two-output feedback system given in (5.1).
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� K(s,p) G∗(s)

controller plant

� � � �
�

f e∗ u∗
+

−

Figure 5.2: The nominal feedback system for (5.1).

5.2 Main Results

Let G∗(s) � [Gij ]2×2 be an approximant matrix of G(s), then replacing G(s) with G∗(s)

yields the resulting system which is called a nominal system (see Figure 5.2) and described by

u∗i = ki1 � e
∗
1 + ki2 � e

∗
2

e∗i = fi − gi1 � u
∗
1 + gi2 � u

∗
2

⎫⎬
⎭ , i = 1, 2 (5.5)

where e∗ = [e∗1, e
∗
2]
� and u∗ = [u∗1, u

∗
2]
� are the error vector and the control vector of the nominal

system (5.5), respectively, and g∗ij : [0,∞) → R denotes the inverse Laplace transform of G∗
ij(s).

Define, for the nominal system (5.5), the performance measures ê∗1, ê∗2, û∗1 and û∗2 as follows.

ê∗i � sup
f1∈P1,f2∈P2

‖e∗i ‖∞ and û∗i � sup
f1∈P1,f2∈P2

‖u∗i ‖∞ (5.6)

where ê∗i and û∗i denote the peak values of e∗i and u∗i , respectively.

In the same fashion as in Chapter 4, define

X(s) = [Xij(s)]2×2 � [I +G∗(s)K(s)]−1 (5.7)

Z(s) = [Zij(s)]2×2 � G(s)−G∗(s) (5.8)

W(s) = [Wij(s)]2×2 � X(s)Z(s)K(s) (5.9)

V(s) = [Vij(s)]2×2 � K(s)X(s)Z(s) (5.10)

M = [μij]2×2, μij � ‖wij‖1 (5.11)

N = [νij]2×2, νij � ‖vij‖1 (5.12)

where wij and vij are the inverse Laplace transforms of Wij(s) and Vij(s), respectively.

The following lemmas are the results have been published in [9]. The lemmas provide upper

bounds of ê1, ê2, û1 and û2.

Lemma 5.1. If μ11 < 1, μ22 < 1 and det(I −M) > 0, then it follows that

ê1 ≤ (1− μ22)ê
∗
1 + μ12ê

∗
2

det(I −M)
, (5.13)

ê2 ≤ (1− μ11)ê
∗
2 + μ21ê

∗
1

det(I −M)
. (5.14)

Proof. The result readily follows from Lemma 4.1 in Chapter 4.
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Lemma 5.2. If ν11 < 1, ν22 < 1 and det(I −N) > 0, then it follows that

û1 ≤ (1− ν22)û
∗
1 + ν12û

∗
2

det(I −N)
, (5.15)

û2 ≤ (1− ν11)û
∗
2 + ν21û

∗
1

det(I −N)
. (5.16)

Proof. The result readily follows from Lemma 4.1 in Chapter 4.

By noting that μij and νij depend on G(s) ∈ G, the following results is readily obtained from

Lemmas 5.1 and 5.2.

Proposition 5.1. Suppose that ê∗1 < ∞ and ê∗2 < ∞. Let μ11 < 1, μ22 < 1 and det(I −M) > 0

for any G(s) ∈ G. Then the design criteria (5.3) for the system (5.1) are satisfied if the following

inequalities hold.

ê∗1 + sup
G∈G

μ12ê
∗
2

(1− sup
G∈G

μ11)(1 − sup
G∈G

μ22)− sup
G∈G

μ12 sup
G∈G

μ21
≤ E1

ê∗2 + sup
G∈G

μ21ê
∗
1

(1− sup
G∈G

μ11)(1 − sup
G∈G

μ22)− sup
G∈G

μ12 sup
G∈G

μ21
≤ E2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (5.17)

Proof. Taking the supremum over the set G on the both sides of (5.13) yields

sup
G∈G

ê1 ≤ sup
G∈G

[
(1− μ22)ê

∗
1 + μ12ê

∗
2

(1− μ11)(1− μ22)− μ12μ21

]

≤ supG∈G [(1 − μ22)ê
∗
1 + μ12ê

∗
2]

infG∈G [(1− μ11)(1 − μ22)− μ12μ21]

≤
(1− inf

G∈G
μ22)ê

∗
1 + sup

G∈G
μ12ê

∗
2

(1− sup
G∈G

μ11)(1− sup
G∈G

μ22)− sup
G∈G

μ12 sup
G∈G

μ21

≤
ê∗1 + sup

G∈G
μ12ê

∗
2

(1− sup
G∈G

μ11)(1− sup
G∈G

μ22)− sup
G∈G

μ12 sup
G∈G

μ21
.

In the same way by taking the supremum over the set G on the both sides of (5.14), it can be shown

that

sup
G∈G

ê2 ≤
ê∗2 + sup

G∈G
μ21ê

∗
1

(1− sup
G∈G

μ11)(1− sup
G∈G

μ22)− sup
G∈G

μ12 sup
G∈G

μ21
.

This completes the proof of the proposition.

Proposition 5.2. Suppose that û∗1 < ∞ and û∗2 < ∞. Let ν11 < 1, ν22 < 1 and det(I − N) > 0

for any G(s) ∈ G. Then the original criteria (5.4) for the system (5.1) are satisfied if the following
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inequalities hold.

û∗1 + sup
G∈G

ν12û
∗
2

(1− sup
G∈G

ν11)(1− sup
G∈G

ν22)− sup
G∈G

ν12 sup
G∈G

ν21
≤ U1

û∗2 + sup
G∈G

ν21û
∗
1

(1− sup
G∈G

ν11)(1− sup
G∈G

ν22)− sup
G∈G

ν12 sup
G∈G

ν21
≤ U2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (5.18)

Proof. Use Lemma 4.2 and the same technique used in Proposition 5.1.

Define

Akl � sup
G∈G

‖zkl‖1, zkl � gkl − g∗kl,

Bkl � sup
G∈G

{|zkl(0)|+ ‖żkl‖1}.

Upon noting the computational difficulty owing to supremal operations over the set G, M is replaced

by M̃ � [μ̃ij ]2×2,

μ̃ij �
2∑

k=1

2∑
l=1

(
Akl|σ̄ik

lj |+Bkl||σik
lj − σ̄ik

lj ||1
)
, (5.19)

where σik
lj is the unit-step response of

(
KljXik

)
(s) and σ̄ik

lj is the steady-state value of σiklj .

Now it is ready to state the main theorem on an upper bound for the error peak vector.

Theorem 5.1. Suppose that ê∗1 < ∞ and ê∗2 < ∞. Let μ̃11 < 1, μ̃22 < 1 and det(I − M̃) > 0. Then

the original design criteria (5.3) for the actual system (5.1) are satisfied if the following inequalities

hold.
ê∗1 + μ̃12ê

∗
2

det(I − M̃)
≤ E1 and

ê∗2 + μ̃21ê
∗
1

det(I − M̃)
≤ E2. (5.20)

Proof. It follows from (5.9) that

Wij(s) =
2∑

k=1

2∑
l=1

Klj(s)Xik(s)Zkl(s).

Hence, wij(t) is given by the input-output relation

wij(t) =
2∑

k=1

2∑
l=1

{
zkl(0)[σ

ik
lj (t)− σ̄ik

lj ]+∫ t

0
żkl(t− τ)[σik

lj (τ)− σ̄ik
lj ]dτ + σ̄ik

lj zkl(t)
}
.

(5.21)

By a well-known result (see, for example, [13]) that

||x ∗ y||1 ≤ ||x||1||y||1, (5.22)

it follows from (5.7)–(5.9) and (5.11) and that

sup
G∈G

μij ≤
2∑

k=1

2∑
l=1

{
sup
G∈G

[|zkl(0)|+ ‖żkl‖1
]‖σik

lj − σ̄ik
lj ‖1

+ sup
G∈G

‖zkl‖1|σ̄ik
lj |

}
.

(5.23)
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Then it is easy to see from (5.19) that

sup
G∈G

μij ≤ μ̃ij.

Therefore, by using the result in Proposition 5.1, if inequalities (5.20) hold, then the original design

criteria (5.3) are satisfied.

Similarly, the matixN is replaced by a majorant Ñ � [ν̃ij ]2×2 where

ν̃ij =
2∑

k=1

2∑
l=1

(
Alj |σ̄kl

ik|+Blj ||σkl
ik − σ̄kl

ik||1
)
. (5.24)

The main theorem on the majorants for the control peak vector is stated as follows.

Theorem 5.2. Suppose that û∗1 < ∞ and û∗2 < ∞. Let ν̃11 < 1, ν̃22 < 1 and det(I − Ñ) > 0. Then

the original design criteria (5.4) for the actual system (5.1) are satisfied if the following inequalities

hold.
û∗1 + ν̃12û

∗
2

det(I − Ñ)
≤ U1 and

û∗2 + ν̃21û
∗
1

det(I − Ñ)
≤ U2. (5.25)

Proof. Use the results in Proposition 5.2 and the technique used in Theorem 5.1.

5.3 Finiteness of Approximation

Following the method of inequalities [30, 32, 33, 35], it is necessary that a search algorithm

should start from a point p ∈ R
N such that μ̃ij < ∞ and ν̃ij < ∞ for i, j = 1, 2. In this connection,

the following lemmas provide useful sufficient conditions for ensuring that μ̃ij < ∞ and ν̃ij < ∞.

Let αkl
ij denotes the abscissa of stability of the denominator of Kij(s)Xkl(s), which is defined

by

αkl
ij � max{Re s : Dkl

ij (s) = 0} (5.26)

where Dkl
ij (s) is the denominator of Kij(s)Xkl(s).

Lemma 5.3. Assume that G∗(s) is a rational transfer matrix with time delay. Then μ̃ij is finite if the

following two conditions hold.

(a) ||zkl||1 < ∞ for k, l = 1, 2

(b) αik
lj < 0 for k, l = 1, 2.

Proof. From the result in [1], it is known that retarded delay differential systems are BIBO stable if

and only if α < 0, where α denotes the abscissa of stability of the characteristic function f(s), which

is defined by

α � max{Re s : f(s) = 0}.
Condition (b) implies that the transfer function Xij(s)Kkl(s) is BIBO stable for all k, l = 1, 2. Then

it follows that |σ̄iklj | < ∞ and ||σik
lj − σ̄ik

lj ||1 < ∞ for all k, l = 1, 2. Therefore, from the definition of

μ̃ij in (5.19), conditions (a) and (b) imply that μ̃ij < ∞.
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Lemma 5.4. Assume that G∗(s) is a rational transfer matrix with time delay. Then ν̃ij is finite if the

following two conditions hold.

(a) ||zlj ||1 < ∞ for all l = 1, 2

(b) αkl
ik < 0 for all k, l = 1, 2.

Proof. Use the definition of ν̃ij in (5.24) and the same technique as in Lemma 5.3.

Now it is ready to state the main theorem that provide useful sufficient conditions for ensuring

that μ̃ij < ∞ and ν̃ij < ∞ for i, j = 1, 2.

Theorem 5.3. Assume that G∗(s) is a rational transfer matrix with time delay. Then μ̃ij and ν̃ij are

finite for all i, j = 1, 2 if the following two conditions hold.

(a) ||zkl||1 < ∞ for all k, l = 1, 2

(b) αpq
kl < 0 for all k, l, p, q = 1, 2.

Proof. It readily follows from Lemmas 5.3 and 5.4.

From Theorems 5.1, 5.2 and 5.3, it readily follows that the solution of inequalities (5.3) and

(5.4) involves three phases of computation as follows.

• Phase I : With an arbitrary starting point, find p0 satisfying

αpq
kl (p0) ≤ −ε for all k, l, p, q = 1, 2 (5.27)

where 0 < ε � 1 is given.

• Phase II : By starting from p0, find p1 satisfying (5.27) and

αpq
kl (p1) ≤ −ε

μ̃11(p1) < 1 and μ̃22(p1) < 1

ν̃11(p1) < 1 and ν̃22(p1) < 1

det(I − M̃) > 0

det(I − Ñ) > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5.28)

• Phase III : By starting from p1, find p satisfying (5.27), (5.28) and both the design criteria

(5.20) and (5.25).
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5.4 Numerical Example

In this section, the linearized model of a binary distillation column is obtained from lineariza-

tion about an operating point [25]. The plant transfer matrix G(s) is given by

G(s) =

⎡
⎢⎢⎣

k1e
−s

16.7s + 1

k2e
−3s

as+ 1

k3e
−7s

10.9s + 1

k4e
−2s

14.4s + 1

⎤
⎥⎥⎦ . (5.29)

where k1 ∈ [11.6, 14.0], k2 ∈ [−20.8,−17.0], k3 ∈ [6.0, 7.2] and k4 ∈ [−21.4,−17.4].

Let the controller K(s, p) take the form

K(s, p) =

⎡
⎢⎢⎣

p1(p2s+ 1)(p3s+ 1)

s(p4s+ 1)
p9

p10
p5(p6s+ 1)(p7s+ 1)

s(p8s+ 1)

⎤
⎥⎥⎦ (5.30)

where p � [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10]
T is a design parameter.

Assume the inputs f1 belongs to the set P where

P � {f1 : ‖f1‖∞ ≤ 0.2 and ‖ḟ1‖∞ ≤ 0.2}. (5.31)

For simplicity, let f2 = 0. It may be noted that in case that f2 is not zero, one can use the principle of

superposition to compute the peaks due to both inputs f1 and f2.

The main control objective is to ensure that, during the operation,

• the top product deviation e1 stays within ±0.50 mol%,

• the bottom product deviation e2 stays within ±0.30 mol%,

• the deviation of the reflux rate u1 stays within ±0.10 lb/min,

• the deviation of the reboiler rate u2 stays within ±0.20 lb/min.

Accordingly, the design criteria can be expressed as

sup
G∈G

ê1 ≤ 0.50 and sup
G∈G

ê2 ≤ 0.30

sup
G∈G

û1 ≤ 0.10 and sup
G∈G

û2 ≤ 0.20.
(5.32)

In our early study, we assume that all the parameters in (5.29) has uncertainties. It is found that

the controller cannot be obtained by using inequalities (5.20) and (5.25) because we cannot find p

such that the design criteria (5.28) are satisfied. Hence, for checking the effectiveness of the developed

method, we have to know that the design problem has a solution or not. The design Section 5.4.1 are

set up for checking the existence of a solution of the design problem.
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5.4.1 Example 1: Design by varying the values of the parameter

For checking the existence of a solution, we will design the system with the plant (5.29) by

varying the values of the parameters k1, k2, k3 and k4. The maximum value and the minimum value

of each parameter are used to design for convenience. The values of the parameters in each case are

shown in Tables 5.1 and 5.2.

Plant G1(s) G2(s) G3(s) G4(s) G5(s) G6(s) G7(s) G8(s)

k1 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6

k2 −20.8 −20.8 −20.8 −20.8 −17.0 −17.0 −17.0 −17.0

k3 6.0 6.0 7.2 7.2 6.0 6.0 7.2 7.2

k4 −21.4 −17.4 −21.4 −17.4 −21.4 −17.4 −21.4 −17.4

Table 5.1: The values of uncertain parameters for G1(s),G2(s), . . . ,G8(s).

Plant G9(s) G10(s) G11(s) G12(s) G13(s) G14(s) G15(s) G16(s)

k1 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0

k2 −20.8 −20.8 −20.8 −20.8 −17.0 −17.0 −17.0 −17.0

k3 6.0 6.0 7.2 7.2 6.0 6.0 7.2 7.2

k4 −21.4 −17.4 −21.4 −17.4 −21.4 −17.4 −21.4 −17.4

Table 5.2: The values of uncertain parameters for G9(s),G10(s), . . . ,G16(s).

Define ê1(Gi,p), ê2(Gi,p), û1(Gi,p) and û2(Gi,p) as peak values of e1, e2, u1 and u2, re-

spectively, for Gi, i = 1, 2, . . . , 16. Now, according to the main control objective, the original design

criteria (5.32) become

ê1(Gi,p) ≤ 0.5, ê2(Gi,p) ≤ 0.3,

û1(Gi,p) ≤ 0.1, û2(Gi,p) ≤ 0.2

⎫⎬
⎭ , i = 1, 2, . . . , 16. (5.33)

In this example, a solution of the design inequalities (5.35) is obtained by using the MBP al-

gorithm (see [34, 35] for the detail of the MBP algorithm). The peak values ê1(Gi,p), ê2(Gi,p),

û1(Gi,p) and û2(Gi,p) associated with the possible set (5.31) are computed by the method devel-

oped in [24] where all the time responses use in the method are computed by employing the IMN

approximants [26, 28].

After a number of iterations, the MBP algorithm locates a design solution resulting in

K(s, p) =

⎡
⎢⎢⎣
0.1561s2 + 0.1164s + 0.01969

1.221s2 + s
0.00257

−0.00274 −
(
0.7045s2 + 0.1836s + 0.01144

2.473s2 + s

)
⎤
⎥⎥⎦ .
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Plant G1(s) G2(s) G3(s) G4(s) G5(s) G6(s) G7(s) G8(s)

ê1(p) 0.4228 0.4348 0.4145 0.4520 0.4458 0.4394 0.4283 0.4526

ê2(p) 0.2140 0.1699 0.1989 0.1588 0.2336 0.1863 0.2168 0.1732

û1(p) 0.0614 0.0230 0.0531 0.0678 0.0735 0.0637 0.0664 0.0612

û2(p) 0.1138 0.1041 0.1134 0.1097 0.1241 0.1154 0.1244 0.1206

Table 5.3: The peak values ê1, ê2, û1 and û2 for the cases of G1(s),G2(s), . . . ,G8(s).
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Figure 5.3: The waveforms of the test input f̂1 and its derivative.

The corresponding performance measures are shown in Table 5.3 and 5.4.

Plant G9(s) G10(s) G11(s) G12(s) G13(s) G14(s) G15(s) G16(s)

ê1(p) 0.4409 0.4632 0.4367 0.4799 0.4764 0.4694 0.4624 0.4853

ê2(p) 0.2265 0.1772 0.2090 0.1669 0.2473 0.1953 0.2165 0.1828

û1(p) 0.0659 0.0628 0.0602 0.0605 0.0746 0.0678 0.0688 0.0647

û2(p) 0.1188 0.1142 0.1195 0.1122 0.1293 0.1194 0.1291 0.1220

Table 5.4: The peak values ê1, ê2, û1 and û2 for the cases of G9(s),G10(s), . . . ,G16(s).

From the results in Tables 5.3 and 5.4, we can see that the design has a solution. The maximum

peak values of e1, e2, u1 and u2 are 0.4853 mol%, 0.2473 mol%, 0.0746 lb/min and 0.1291 lb/min,

respectively.

To verify the design, a simulation is carried out for the case in which the control system is

subjected to a test input f = [f̂1, 0]
T where the magnitude and the slope of f̂1 satisfy (5.31).

The waveforms the responses e1, e2, u1 and u2 are displayed in Figure 5.4 for k1 ∈ [11.6, 14.0],

k2 ∈ [−20.8,−17.0], k3 ∈ [6.0, 7.2] and k4 ∈ [−21.4,−17.4]. The maximal magnitudes of e1, e2, u1

and u2 in response to f̂1 are 0.4759 mol%, 0.2345 mol%, 0.0688 lb/min and 0.1005 lb/min, respec-

tively. Clearly, the design objectives are satisfied. Hence, we can conclude that the design problem

has a solution.
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Figure 5.4: Responses of e1, e2, u1 and u2 due to the test input f̂1.

Now, because inequalities (5.20) and (5.25) in Theorems 5.1 and 5.2 cannot be used to solve

the design problem, we will simplify the problem by reducing the plant uncertainties and relaxing the

original design criteria (5.32) in Section 5.4.2.

5.4.2 Example 2: Design by using the theory of majorants

To reduce the plant uncertainties, the plant transfer matrix considered in this case is given by

G(s) =

⎡
⎢⎢⎢⎣

k1e
−s

a1s+ 1

k2e
−3s

a2s+ 1

k3e
−7s

a3s+ 1

k4e
−2s

a4s+ 1

⎤
⎥⎥⎥⎦ (5.34)

where the design is divided into four cases as follows.

• Case I: The transfer function G11(s) has parametric uncertainties. Parameter k1 and a1 vary

10% of their nominal values.

• Case II: The transfer function G12(s) has parametric uncertainties. Parameter k2 and a2 vary

10% of their nominal values.

• Case III: The transfer function G21(s) has parametric uncertainties. Parameter k3 and a3 vary

10% of their nominal values.

• Case IV: The transfer function G22(s) has parametric uncertainties. Parameter k4 and a4 vary

10% of their nominal values.
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Parameter Nominal Value Case I Case II Case III Case IV

k1 12.8 [11.6, 14] - - -

k2 −18.9 - [−20.8,−17] - -

k3 6.6 - - [6.0, 7.2] -

k4 −19.4 - - - [−21.4,−17.4]

a1 16.7 [15, 18.4] - - -

a2 21 - [18.9, 23.1] - -

a3 10.9 - - [9.8, 12] -

a4 14.4 - - - [13.0, 15.8]

Table 5.5: Nominal values and ranges of parameters for each case.

The nominal values and the ranges of the uncertain parameters in each case are shown in Table 5.5.

For this case, the control objectives is to ensure that, during the operation,

• the top product deviation e1 stays within ±1.0 mol%,

• the bottom product deviation e2 stays within ±0.5 mol%,

• the deviation of the reflux rate u1 stays within ±0.5 lb/min,

• the deviation of the reboiler rate u2 stays within ±0.2 lb/min.

Accordingly, the new design criteria can be expressed as

sup
G∈G

ê1 ≤ 1.00 and sup
G∈G

ê2 ≤ 0.50

sup
G∈G

û1 ≤ 0.50 and sup
G∈G

û2 ≤ 0.20.
(5.35)

Suppose that the plant transfer matrix G(s) is replaced by a fixed transfer matrix G∗(s) given

by

G∗(s) =

⎡
⎢⎢⎣

12.8e−s

16.7s + 1

−18.9e−3s

21.0s + 1

6.6e−7s

10.9s + 1

−19.4e−2s

14.4s + 1

⎤
⎥⎥⎦ .

Following Theorems 5.1, 5.2 and 5.3, it is readily appreciated that the design problem is to find

a value of p that satisfies

αpq
kl (p) ≤ −10−6, ∀ k, l, p, q = 1, 2 (5.36)

μ̃11(p) ≤ 0.5, μ̃22(p) ≤ 0.5,

ν̃11(p) ≤ 0.5, ν̃22(p) ≤ 0.5,

− det(I − M̃) ≤ −0.5, − det(I − Ñ) ≤ −0.5

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.37)
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(1− μ̃22)ê
∗
1 + μ̃12ê

∗
2

det(I − M̃)
≤ 1.0 mol%

(1− μ̃11)ê
∗
2 + μ̃21ê

∗
1

det(I − M̃)
≤ 0.5 mol%

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.38)

(1− ν̃22)û
∗
1 + ν̃12û

∗
2

det(I − Ñ)
≤ 0.5 lb/min

(1− ν̃11)û
∗
2 + ν̃21û

∗
1

det(I − Ñ)
≤ 0.2 lb/min

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (5.39)

In each case, a solution of the design inequalities (5.38) and (5.39) is obtained by using the

MBP algorithm. The peak values ê∗1(p), ê∗2(p), û∗1(p) and û∗2(p) associated with the possible set

(5.31) are computed by the method developed in [24] where all the time responses in the design are

computed by employing the IMN approximants [26, 28].

To verify the design in each case, a simulation is carried out for the case in which the control

system is subjected to a test input f = [f̂1, 0]
T where f̂1 is the worst case input in which their

magnitude and the slope of f̂1 satisfy (5.31).

• Case I: G11(s) has parametric uncertainties.

After a number of iterations, the MBP algorithm locates a design solution resulting in

K(s, p) =

⎡
⎢⎢⎣

1.265s2 + 0.303s + 0.01766

9.141s2 + s
0.0032

−0.0038 −
(
0.4234s2 + 0.3051s + 0.02628

0.002817s2 + s

)
⎤
⎥⎥⎦ .

The corresponding performance measures are

μ̃11(p) = 0.3348, μ̃12(p) = 0.0113,

μ̃21(p) = 0.1976, μ̃22(p) = 0.0027,

ν̃11(p) = 0.3375, ν̃12(p) = 0,

ν̃21(p) = 0.3156, ν̃22(p) = 0,

det(I −M) = 0.6612, det(I −N) = 0.6625,

(1− μ̃22)ê
∗
1 + μ̃12ê

∗
2

det(I − M̃)
= 0.5998 mol%,

(1− μ̃1)ê
∗
2 + μ̃21ê

∗
1

det(I − M̃)
= 0.2276 mol%,

(1− ν̃22)û
∗
1 + ν̃12û

∗
2

det(I − Ñ)
= 0.0888 lb/min,

(1− ν̃11)û
∗
2 + ν̃21û

∗
1

det(I − Ñ)
= 0.0874 lb/min.

From the simulation results, the waveform of the test input f̂1 and those of the responses

e1, e2, u1 and u2 due to f̂1 in Case I are displayed in Figure 5.5. The maximal magnitudes

of e1, e2, u1 and u2 in response to f̂1 are 0.3947 mol%, 0.0751 mol%, 0.0428 lb/min and

0.0237 lb/min, respectively. Clearly, the design objectives are satisfied.
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Figure 5.5: Responses of e1, e2, u1 and u2 due to the test input f̂1 for Case I.

• Case II: G12(s) has parametric uncertainties.

After a number of iterations, the MBP algorithm locates a design solution resulting in

K(s, p) =

⎡
⎢⎢⎣

0.1561s2 + 0.1164s + 0.01969

1.221s2 + s
0.00257

−0.00274 −
(
0.7045s2 + 0.1836s + 0.01144

2.473s2 + s

)
⎤
⎥⎥⎦ .

The corresponding performance measures are

μ̃11(p) = 0.0099, μ̃12(p) = 0.5576,

μ̃21(p) = 0.0059, μ̃22(p) = 0.3541,

ν̃11(p) = 0, ν̃12(p) = 0.5288,

ν̃21(p) = 0, ν̃22(p) = 0.3640,

det(I −M) = 0.6362, det(I −N) = 0.6360,
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(1− μ̃22)ê
∗
1 + μ̃12ê

∗
2

det(I − M̃)
= 0.6864 mol%,

(1− μ̃1)ê
∗
2 + μ̃21ê

∗
1

det(I − M̃)
= 0.1373 mol%,

(1− ν̃22)û
∗
1 + ν̃12û

∗
2

det(I − Ñ)
= 0.0999 lb/min,

(1− ν̃11)û
∗
2 + ν̃21û

∗
1

det(I − Ñ)
= 0.0195 lb/min.

From the simulation results, the waveform of the test input f̂1 and those of the responses

e1, e2, u1 and u2 due to f̂1 in Case II are displayed in Figure 5.6. The maximal magnitudes

of e1, e2, u1 and u2 in response to f̂1 are 0.3931 mol%, 0.09007 mol%, 0.0350 lb/min and

0.0137 lb/min, respectively. Clearly, the design objectives are satisfied.
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Figure 5.6: Responses of e1, e2, u1 and u2 due to the test input f̂1 for Case II.

• Case III: G21(s) has parametric uncertainties.

After a number of iterations, the MBP algorithm locates a design solution resulting in

K(s, p) =

⎡
⎢⎢⎣

0.1561s2 + 0.1164s + 0.01969

1.221s2 + s
0.00257

−0.00274 −
(
0.7045s2 + 0.1836s + 0.01144

2.473s2 + s

)
⎤
⎥⎥⎦ .
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The corresponding performance measures are

μ̃11(p) = 0.4238, μ̃12(p) = 0.0017,

μ̃21(p) = 0.2365, μ̃22(p) = 0.0016,

ν̃11(p) = 0.4255, ν̃12(p) = 0,

ν̃21(p) = 0.6806, ν̃22(p) = 0,

det(I −M) = 0.5748, det(I −N) = 0.5745,

(1− μ̃22)ê
∗
1 + μ̃12ê

∗
2

det(I − M̃)
= 0.6919 mol%,

(1− μ̃1)ê
∗
2 + μ̃21ê

∗
1

det(I − M̃)
= 0.2992 mol%,

(1− ν̃22)û
∗
1 + ν̃12û

∗
2

det(I − Ñ)
= 0.1969 lb/min,

(1− ν̃11)û
∗
2 + ν̃21û

∗
1

det(I − Ñ)
= 0.1826 lb/min.

From the simulation results, the waveform of the test input f̂1 and those of the responses

e1, e2, u1 and u2 due to f̂1 in Case III are displayed in Figure 5.7. The maximal magnitudes of

e1, e2, u1 and u2 in response to f̂1 are 0.4060 mol%, 0.0903 mol%, 0.0477 lb/min and 0.0338

lb/min, respectively. Clearly, the design objectives are satisfied.

• Case IV: G22(s) has parametric uncertainties.

After a number of iterations, the MBP algorithm locates a design solution resulting in

K(s, p) =

⎡
⎢⎢⎣

0.3362s2 + 0.3391s + 0.07131

0.5051s2 + s
0.00111

−0.00100 −
(
0.1257s2 + 0.0865s + 0.01464

1.122s2 + s

)
⎤
⎥⎥⎦ .

The corresponding performance measures are

μ̃11(p) = 0.0016, μ̃12(p) = 0.2343,

μ̃21(p) = 0.0058, μ̃22(p) = 0.4138,

ν̃11(p) = 0, ν̃12(p) = 1.1662,

ν̃21(p) = 0, ν̃22(p) = 0.4138,

det(I −M) = 0.5855, det(I −N) = 0.5862,

(1− μ̃22)ê
∗
1 + μ̃12ê

∗
2

det(I − M̃)
= 0.9792 mol%,

(1− μ̃1)ê
∗
2 + μ̃21ê

∗
1

det(I − M̃)
= 0.4915 mol%,

(1− ν̃22)û
∗
1 + ν̃12û

∗
2

det(I − Ñ)
= 0.4955 lb/min,

(1− ν̃11)û
∗
2 + ν̃21û

∗
1

det(I − Ñ)
= 0.0413 lb/min.

From the simulation results, the waveform of the test input f̂1 and those of the responses

e1, e2, u1 and u2 due to f̂1 in Case IV are displayed in Figure 5.8. The maximal magnitudes of

e1, e2, u1 and u2 in response to f̂1 in Case IV are 0.5169 mol%, 0.2968 mol%, 0.1781 lb/min

and 0.0254 lb/min, respectively. Clearly, the design objectives are satisfied.
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Figure 5.7: Responses of e1, e2, u1 and u2 due to the test input f̂1 for Case III.

From four cases of the design, it can be seen that the design by using inequalities (5.20) and (5.25)

can give the satisfactory results for the original system. However, this method will be effective only

in the case that the plant uncertainties are small enough. That is, the case that we can find p such that

the design criteria (5.28) are satisfied.

Tables 5.6–5.9 show comparisons between the the upper bounds of ê1, ê2, û1 and û2 obtained

from the design using inequalities (5.37), (5.38) and (5.39), and the maximal magnitudes of e1, e2, u1

and u2 obtained from the simulation results. We can see that there are reasonably differences between

the upper bounds obtained from the design and the peak of the responses due tof̂1. This shows that

the design inequalities have significant conservatism, which is caused by the derivation of the upper

bounds êi and ûi.
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Figure 5.8: Responses of e1, e2, u1 and u2 due to the test input f̂1 for Case IV.

5.5 Conclusions and Discussion

This chapter presents the extension of Theory of majorants for SISO vague systems to the case

of 2 × 2 vague systems by replacing an uncertain transfer matrix with a fixed transfer matrix. The

principal design objective is to ensure that e1(t), e2(t), u1(t) and u2(t) stay within the ranges ±E1,

±E2, ±U1 and ±U2, respectively, for all time and for any possible input in the set P1 and P2 in spite

of all uncertainties. The design problem is formulated using Zakian’s theory of majorants [31] in

conjunction with other theories in Zakian’s framework [24,27,33,34] and can be expressed explicitly

as a set of inequalities that can be solved in practice by numerical methods.

The numerical results in Section 5.4 may indicate that the design method using inequalities

(5.20) and (5.25) is effective only when the number of plant uncertainties is small. However, Tables

5.6–5.9 show that the design inequalities have conservatism For this reason, it is interesting to develop,

in the future, the design inequalities so that they can be used to design the system with the larger

number of uncertainties or the conservatism can be reduced significantly in the design inequalities.
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Response Peak value Maximal magnitude Difference (%)

e1 0.5998 0.3947 52.00 %

e2 0.2276 0.0751 203.06 %

u1 0.0888 0.0428 107.48 %

u2 0.0874 0.0237 268.78 %

Table 5.6: Comparison between upper the bounds of ê1, ê2, û1 and û2 and the maximal magnitudes

of e1, e2, u1 and u2 due to f̂1 in Case I.

Response Peak value Maximal magnitude Difference (%)

e1 0.6864 0.3931 74.61 %

e2 0.1373 0.0901 52.39 %

u1 0.0999 0.0350 185.42 %

u2 0.0195 0.0137 42.33 %

Table 5.7: Comparison between upper the bounds of ê1, ê2, û1 and û2 and the maximal magnitudes

of e1, e2, u1 and u2 due to f̂1 in Case II.

Response Peak value Maximal magnitude Difference (%)

e1 0.6919 0.4060 70.42 %

e2 0.2992 0.0903 231.34 %

u1 0.1969 0.0477 118.05 %

u2 0.1826 0.0338 440.24 %

Table 5.8: Comparison between the upper bounds of ê1, ê2, û1 and û2 and the maximal magnitudes

of e1, e2, u1 and u2 due to f̂1 in Case III.

Response Peak value Maximal magnitude Difference (%)

e1 0.9792 0.5169 89.44 %

e2 0.4915 0.2968 65.60 %

u1 0.4955 0.1781 178.21 %

u2 0.0413 0.0254 62.60 %

Table 5.9: Comparison between the upper bounds of ê1, ê2, û1 and û2 and the maximal magnitudes

of e1, e2, u1 and u2 due to f̂1 in Case IV.



CHAPTER VI

CONCLUSIONS

This thesis extends the theory of majorants, which consists of the criterion of approximation

and majorants for vague systems, to the case of two-input two-output systems. The theory of ma-

jorants provides useful inequalities for designing feedback systems where the design objective is to

ensure that the errors and the controller outputs of the systems always stay within their prescribed

bounds whenever the inputs satisfy the magnitude and slope conditions.

The criterion of approximation for the SISO feedback systems is extended to the cases of two-

input two-output feedback systems and then further extended to the case of MIMO feedback systems

where non-rational transfer matrices are replaced by rational approximants during the design process

so that reliable and efficient computational tools for rational systems can be fully utilized. Moreover,

the criterion can be used with any types of non-rational systems whenever the impulse response matrix

is obtained.

Based on the developed criterion, the theory of majorants for SISO vague systems is extended

to the case of two-input two-output systems where the plant with uncertainties is replaced by a certain

plant. The numerical examples show that the developed inequalities are effective when the number

of parametric uncertainties is small enough. Furthermore, the search algorithm may fail to find a

solution because the developed inequalities have conservatism.

To this end, from the numerical examples in Section 5.4, it is interesting to develop the inequal-

ities for designing two-input two-output vague systems, so that they can be used effectively when the

plant have more parametric uncertainties.
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The Moving-Boundaries-Process Algorithm [35] (see also [21]) Here we will describe the moving-

boundaries process (MBP) algorithm, which has been used for solving the design inequalities in the

numerical examples throughout the thesis.

Consider the design problem expressed in the form of inequalities

φi(p) ≤ Ci i = 1, 2, . . . ,m (7.1)

where Ci are real numbers, p denotes a real vector [p1, p2, . . . , pn]T and φi are real functions of p.

Define the admissible set of the ith inequality as

Si � {p : φi(p) ≤ Ci}.

If there exists a point p ∈ R
n that satisfies all the inequalities φi(p) ≤ Ci, i = 1, 2, . . . ,m, then p is

inside the set S defined by

S �
m⋂
i=1

Si.

The MBP algorithm is an iterative search, which proceed form an arbitrary initial point p0 to

any point in set S. Let pk denotes the value of p at the kth iteration.

The MBP algorithm is stated as follows.

Algorithm 7.1. (Moving-boundary-process)

• Initial step : Set k = 0 and choose an initial point p0. Then compute φi(p), i = 1, 2, . . . ,m.

• Step k :

(I) If φi(p) ≤ Ci, i = 1, 2, . . . ,m, stop; otherwise generate a trial point p̃k.

(II) Compute φi(p̃
k), i = 1, 2 . . . ,m.

(III) If φi(p̃k) ≤ φi(p
k), i = 1, 2, . . . ,m, then:

(a) set pk+1 = pk

(b) set k = k + 1

(c) go to step (I)

otherwise

(a) generate another trial point p̃k

(b) go to step (II).

In the thesis, Rosenbrock’s method is used to generate the trial points p̃k. The detail of the

method can be found in [22].
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