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CHAPTER I

INTRODUCTION

1.1 Introduction

A common practice in designing a feedback system in which the plant consists of components
described by non-rational transfer functions, is to replace the non-rational functions with rational
approximants so that well-developed computational tools for rational systems can be utilized. The
approach may fail to give satisfactory results if the approximant is not chosen appropriately. Hence,
conditions for ensuring the design obtained from using the approximant gives satisfactory results
for the original system are required. To this end, a number of researchers have been prompted to
investigate and/or develop methods for approximating a non-rational transfer function by a rational
one. For example, Gibilaro and Lees [14] and Zakian [27] investigated methods for simplifying
transfer functions using moment approximants, whereas Lam [16] reduced models of delay systems
using Padé approximants for exponential functions. In addition, Gu et al. [15] used a method based
on Fourier transform techniques. A number of references can be found in the literature concerning
how to obtain rational approximants (see, for example, [14-16, 27] and the references therein).

The approach of replacing non-rational transfer functions with rational approximants in the
design process is useful especially when computational tools for non-rational transfer functions are
not readily available. However, it may fail to give satisfactory results for the original system if the
approximants are not sufficiently close to the original models. In order to ensure that the design
carried out with the approximants is valid for the original system, a criterion of approximation needs
to be explicitly taken into account in the formulation of the design problem.

Consider the two-input two-output feedback system shown in Figure 1.1 and described by

u; = kjpxep +kigxe
7 il 1 12 2 ’ i:1,2 (11)

ei = fi — gi1 * U1 — Giz * U2

where G(s) £ [Gi(s)],,, is the plant transfer matrix and K (s, p) £ [K;;(s, P)],, - is the controller

transfer matrix characterized by a design parameter vector p € RY. Lete 2 [e,e0]” and u =

Q K(s,p) G(s)

Figure 1.1: The two-input two-output feedback system given in (1.1).



[u1,us]” be the error and the control vectors of the system, respectively, and g, : [0, 00) — R and
kij : [0,00) — R denote the impulse responses of G;;(s) and K;;(s, p), respectively. The symbol x
denotes the convolution; that is, for functions = : [0,00) — Rand y : [0,00) — R,

(z*xy)(t) = /Ox(t —ANy(A)dxr, t>0.

The vector £ = [f1, fo]7 is the input vector of the system where f; and f» are known only to the
extent that each of them belongs to the sets 7, and P,, respectively. In this work, 7, and P, are
assumed to be the sets of input signals whose magnitude and whose slope satisfy certain bounding
conditions.

Define the performance measures ¢; and ; for i = 1, 2.

&=  sup el and @ = sup  [luglleo (1.2)

fLEPL, f2EP2 FLEP1, f2€P2

where ¢é; and ; are sometimes called the peak values of ¢; and w;, respectively. The problem inves-
tigated here is to determine a design parameter p € RY such that the following design criteria are
satisfied.

é1(p) <& and éx(p) < &s. (1.3)
ﬁl (p) < Ul and ’llg(p) < UQ. (1.4)

where &; and U; are specified bounds. It should be noted that the design criteria (1.3) and (1.4) are
equivalent to the fact that |e; ()| and |u;(¢)| do not exceed the bounds & and ¢/; for all ¢ > 0 whenever
f1 € Prand fo € Ps.

Following previous work ( [24,29,32-34], and also the references therein), it is readily appreci-
ated that in solving inequalities (1.3) and (1.4) by numerical methods, one needs computational tools
for stabilizing and obtaining the time-responses of the systems. Moreover, it is noted that for various
cases of the possible set P;, the peak outputs e; and u; are found to be functionals defined implicitly
in terms of the system’s time-responses. Once the time-responses are obtained, the methods devel-
oped in [24, 29, 32-34] can be used to compute the peak outputs. Evidently, for lumped-parameter
systems, one can solve inequalities (1.3) and (1.4) easily by using computational tools developed for
rational systems, which are readily available and well-established, in conjunction with the methods
for computing the peak outputs mentioned above.

Zakian [30] derives a criterion of approximation for the case of single-input single output
(SISO) feedback systems (see Section 2.1 for further details) in which the plant transfer function
G(s) is replaced by a rational approximant G*(s) during the design process. The criterion provides
simple sufficient conditions to ensure that the controller obtained through the use of the approximant
G*(s) still gives satisfactory results for the original system in the sense that the original design criteria
(2.6) are satisfied. Zakian’s criterion of approximation has been employed in the design of delayed

control systems [4, 5] for SISO systems. Based on the criterion, the theory of majorants were derive



([31,33,34]). and were employed to design robust control systems in [6,23]. The derivation of the
criterion of approximation and the theory of majorants for multi-input multi-output (MIMO) feedback
systems is still an open question.

So far, the design problem defined inequalities of the form (1.3) and (1.4) can be solved by
numerical method for the case of MIMO lumped-parameter feedback systems or, by using Zakian’s
criterion of approximation, SISO distributed-parameter feedback systems (See [24, 29] and the ref-
erences therein for details on this). As suggested by Arunsawatwong [3], the design problem for the
case of general MIMO distributed-parameter feedback systems is still an open question.

In this regard, it is the intention of this thesis to extend the criterion of approximation to the
case of MIMO systems that can be used to design general distributed-parameter MIMO feedback
systems. Then base on the criterion for MIMO systems, the theory of majorants will be investigated

for the case of two-input two-output systems.

1.2 Objectives

1. To study Zakian’s criterion of approximation and extend it to 2 x 2 feedback systems.

2. Based on the obtained results, to develop a practical method for designing a controller for
2 x 2 feedback systems where the non-rational plant transfer matrix is replaced by rational

approximants during the design process.

3. To develop inequalities for designing 2 x 2 feedback systems where the plant has parametric

uncertainties.

4. To illustrate the effectiveness of the developed methods by carrying out numerical examples.

1.3 Scope of Thesis

1. To extend Zakian’s theory of majorants to 2 x 2 feedback systems.

2. The design requirement is to ensure that all the errors and all the controller outputs lie within
prescribed bounds for all time in the presence of any input whose magnitude and whose slope

do not exceed respective bounds.

3. To develop a practical method for designing a controller for 2 x 2 feedback systems subject to
inputs satisfying bounding conditions so as to ensure that the design criteria (1.3) and (1.4) are
fulfilled.

4. To develop inequalities for designing a robust controller for 2 x 2 feedback systems subject to
inputs satisfying bounding conditions so as to ensure that the design criteria (1.3) and (1.4) are
fulfilled.



5. To design robust controllers for 2 x 2 feedback systems where the plant transfer matrix has

parametric uncertainties.

1.4 Methodology

Sufficient conditions for ensuring (1.3) and (1.4) in terms of inequalities are developed, thereby
providing surrogate design criteria that are in keeping with the method of inequalities. That is to say,

the obtained criteria are inequalities that can be solved in practice.

1.5 Expected Outcomes

1. Readily computable inequalities for designing a 2 x 2 feedback system described by a non-

rational transfer matrix so that the criteria (1.3) and (1.4) are satisfied.

2. Readily computable inequalities for designing a robust controller for 2 x 2 feedback systems

with uncertainties so that the criteria (1.3) and (1.4) are satisfied.

3. Numerical examples demonstrating the effectiveness of the developed methods.

1.6 Achievements

The contributions of this thesis are as follows:

e First and foremost, we develop a practical method for designing a controller for non-rational
MIMO feedback systems subject to inputs satisfying bounding conditions on magnitude and
slope. Zakian’s criterion of approximation for SISO systems is extended not only to the case
of 2 x 2 systems but also to the case of MIMO systems where the non-rational functions in
the plant transfer matrix are replaced by rational approximants throughout the design process.
Accordingly, the obtained criterion enables ones to solve the design problems (1.3) and (1.4)

for non-rational systems by using only computational tools for rational systems.

e Second, based on the criterion of approximation for MIMO systems, the inequalities for de-
signing a robust controller for 2 x 2 feedback systems subject to inputs satisfying bounding

conditions are developed.

1.7 Thesis Outline

The structure of the thesis is as follows. Chapter 2 reviews the criterion of approximation
and the theory of majorants for SISO systems. Chapter 3 presents the application of the theory of

majorants for SISO systems. Chapter 4 extends the criterion of approximation to the case of MIMO



systems. To illustrate the usefulness of the criterion, a numerical design of a binary distillation column
is carried out. Chapter 5 extends the theory of majorants to the case of 2 x 2 systems. Finally, the

thesis is concluded in Chapter 6.



CHAPTER I

RECAP OF THE THEORY OF MAJORANTS FOR SISO SYSTEMS

2.1 Zakian’s Criterion of Approximation

Consider the scalar feedback system described by

u=exk } 2.1)
c=f-gxu

where G(s) denotes the plant transfer function and K (s, p) denotes the controller transfer function
with the design parameter p € RN (see Figure 2.1). The responses e and u are the error and the
control of the system, respectively, and g and & denote the impulse responses of G(s) and K (s, p),
respectively.

Suppose that f is a possible input (i.e., input that can happen or is likely to happen in practice)
and is known only to the extent that it belongs to a set P, to be called a possible set. Accordingly,
‘P contains all possible inputs. In this work, the set P are subset of L., which denoted the set of all
bounded functions defined on [0, co).

Note, in passing, that there are different models of the possible set P which have been investi-

gated by many researchers. For example, the set P given by
P =1{f: Iflloo < Moo and |f]loc < Do} (2.2)
was considered by [8,29, 34], while the set P given by
P={f:|fll2< Mo and |[f]2 < Dy} (23)
was considered in [2,17]. Recently, the set P given by
P={f:lIfll2 < Mg, |fll2 < Do, [|flloo < Moo} (2.4)

has been considered in [24]. For the characterization of the above sets P and their implications,

see [17,24,34] and the references therein.

K(s,p) G(s)

Figure 2.1: The scalar feedback system given in (2.1).



K(s,p) G*(s)

Figure 2.2: The nominal system for (2.1).

In connection with the possible set P, define the performance measures é and  as follows.

é 2 sup el and @ = sup ||ul|oo- (2.5)
P fep

fe
Note that for the possible set P, ¢ and « are the peak error and the peak control of the system (2.1).
Methods for computing such peak values in association with the possible sets described by (2.2),
(2.3) and (2.4) are readily available. See [17,24,34] and the references therein for the details of the
methods. It is worth noting at this point that in computing the peak values é and #, one needs to
compute the time-responses of the system.
Assume that the design problem for the system (2.1) is to determine a design parameter p such

that the following design criteria are satisfied.

where the bounds E,,. and Uy,ax are specified.
Let G*(s) be an approximant of the original plant transfer function G(s). In connection with
the system (2.1), the nominal system (see Figure 2.2) is described by
u* =e*xk
(2.7
e* — f _ g* *u*
where e* and u* are the error and the control of the nominal system, respectively, and ¢ be the
impulse response of G*(s). Let é* and 4* denote the peak values of ¢* and u*, respectively, for the

possible set P. That is to say,

e* 2 sup |le*|lo and a* =
P

sup || u*|| oo - (2.8)
fe P

fe

Let 1 denote the approximation index and be defined by
p= il

where w : [0,00) — R is the inverse Laplace transform of W (s) given by

W) = 1 o [6(s) = G

Now it is ready to state the main theorem on the criterion of approximation.



Theorem 2.1. [30] Suppose that the nominal system (2.7) is stable in the sense that & < oo and
u* < oco. Let u < 1. Then the original design criteria (2.6) for the system (2.1) are satisfied if the
following inequalities hold.

&+ a*
S Emax and S Umax- (2'9)
1—pu 1—p
Furthermore,
e* . A% a* . a*
<eée< and <4<
14+p 1—p 1+p 1—p

Since the approximant G*(s) is a rational function, the nominal system (2.7) is finite-dimensional.
In this case, the computation of & and @* can be readily carried out and the solution of inequalities
(2.9) is easily obtainable (see, for example, [24,34]). When tools for stability analysis and computing
time-responses for non-rational systems are not available, inequalities (2.9) becomes more computa-
tionally tractable than the original design criteria (2.6).

Following the method of inequalities [30, 32—-35], it is readily appreciated that in solving in-
equalities (2.9) by numerical methods, it is necessary that a search algorithm should start from a point
p € RY such that u(p) < oo, é*(p) < oo and @*(p) < oo. In this connection, the following
theorem provides a practical and useful sufficient condition that enables the algorithm to start from
an arbitrary point in RV,

Define A as the set of all of the finite poles of the transfer function

F(s) _  K(s,p)
0*(s) 1+ K(s,p)C"(9)

where F'(s) and U*(s) are the Laplace transforms of f and u*, respectively.

Theorem 2.2. [30,32,33] Assumethat G*(s) and K (s) arerational transfer functions. Then p < oo
if the two conditions hold.

@ |z[li < o0,z 29— g".

(b) ReA(p) < Ofor all A\(p) € A.

It is clear from Theorem 2.2 that with appropriate approximant G*(s), condition (a) is always
satisfied. Consequently, condition (b) provides a useful inequality for computing a point p satisfying
wu(p) < oo that is always soluble by numerical methods. This is because Re A(p) < oo for every
p € RV,

From Theorems 2.1 and 2.2, it readily follows that the solution of inequalities (2.6) involves

three phases of computation as follows.
e Phase | : With a starting point, find py satisfying
max Re A(pg) < —e (2.10)
PN

where 0 < e < 1 s given.



e Phase II: By starting from py, find p; satisfying

maxRe A\(p1) < —¢
AEA (2.11)

n(p1) < L.

e Phase IlI: By starting from py, find p satisfying both the design criteria (2.9) and the inequality
n(p) < 1.

Since the plant transfer function G(s) in Figure 2.1 is uncertain, which is known only to the
extent that is belongs to a set G, a difficulty arises because 1 depends on G € G. Zakian [31, 33, 34]
suggests replacing p by its upper bound that is easier to compute. This upper bound can be called a
majorant.

2.2 Majorants for Vague Systems

Suppose that the plant transfer function G(s) in Section 2.1 is uncertain and is known only to
the extent that is belongs to a set G. Then the design criteria (2.6) become the design criteria given by
sup € < Emax  and = sup @ < Unax. (2.12)

Geg Geg

From Theorem 2.1, it easy to see that

é* 0
supé < ——— and supu < ——.
Geg 1 — supp Geg 1 —supp

Geg Geg

Upon noting the computational difficulty, Zakian [31, 33, 34] proposes to replace sup u by a majo-
G(s)eg
rant u, given by

pa = Alog,| + Bllo™ — a5l (2.13)

where o* is the unit-step response of the control «*, o7, is the steady-state value of ¢, and the

constants A and B are given by

A £ sup 2]l
. Geg , 2 L g— g* (214)
B = sup{|z(0)| + ||Z|l1}
Geg

Now, in applying Theorem 2.1, it is ready to state the main theorem on the majorants.

Theorem 2.3. Suppose that the nominal system (2.7) is stable in the sense that & < oo and 4* <
oo. Let u, < 1. Then the design criteria (2.12) for the system (2.1) are satisfied if the following
inequalities hold. R

e* ~ %k

<FE and
1 B Ha — max 1 B ,Ll,a

Proof. See [31,33] for details. O

< Unax- (2.15)
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Following Theorem 2.2 in Section 2.1, the following theorem provides a sufficient condition to

ensure that 1, (p) < oc.

Theorem 2.4 ( [30,32,33]). Assume that G*(s) isa rational transfer function. Then yu, < o if the
two conditions hold.

@ lz[[x < oo,
(b) ReA(p) < Ofor all A\(p) € A,

where A isthe set of all of the finite poles of the transfer function

) K(s,p)
F(s) 1+ F(s,p)G*(s)

Proof. See [31,33] for details. O

In the same way, from Theorems 2.3 and 2.4, it readily follows that the solution of inequalities

(2.9) is the three phases of computation in Section 2.1 if 1 is replaced by .



CHAPTER 111

APPLICATION OF ZAKIAN’S MAJORANTS TO ROBUST
CONTROLLER FOR HYDRAULIC FORCE CONTROL SYSTEMS

3.1 Introduction

In modern industry, the precision of mechanical positioning systems is important in automation
process. Such positioning systems are usually driven by electric, hydraulic or pneumatic actuators.
For heavy load application, hydraulic actuators are more attractive because they possess a high force-
to-weight ratio and fast response time and also because they are able to maintain their loading capacity
indefinitely. However, uncertainties in hydraulic actuators limit their use in high precision application
with a simple closed-loop controller. Under different operating conditions, the flow and the pressure
coefficients, which characterize fluid flow into and out of the value, can vary. The uncertainty in the
valve characteristic causes the variation of the valve dynamics. Furthermore, the value of the bulk
modulus can vary significantly owing to changes of the oil temperature, the pressure and the air inside
the cylinder. See, e.g., [11,20] and the references therein for details on this.

The control design for hydraulic force control systems, especially in high precision application,
is a challenging problem and has been investigated by many authors. For example, Niksefat and
Sepehri [20] applied the quantitative feedback theory (QFT) to the design of robust force control
of hydraulic actuators. Marusak and Kuntanapreeda [19] designed an analytical model predictive
controller for force control of an electrohydraulic actuator.

This chapter presents the design of a robust controller for a hydraulic force control system, in
which the parametric uncertainties are due to the variations of environmental stiffness and pressure
sensitivity gain of the value. The principal design objective is to ensure that, for all possible inputs
(that is, inputs that happen or are likely to happen in practice), the error and the control signals always
stay within their prescribed bounds despite all uncertainties. When the objective is fulfilled, one can
fully ensure that the control system will operate with high precision as required and the components
of the system will not be damaged.

The design problem is formulated using Zakian’s theory of majorants stated in Chapter 2 and
other theories developed by Zakian and his group ( [24,33-35] and the references therein). It may be
noted that the theory of majorants can be used effectively to formulate the design problem when the
principal design objective of the chapter is taken into account. As a result, the problem is expressed

explicitly as a set of inequalities that can readily be solved in practice.
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3.2 Hydraulic Actuator Model

In a hydraulic actuator, the control input signal controls the spool displacement of valve that
controls the flow of fluid from pump to the actuator. This flow builds a pressure difference that is
proportional to the sensed force. For the detail on this, see [20].

Since hydraulic systems are highly nonlinear, a linear model of a hydraulic actuator that is
obtained from linearization about an operating point will be used in the subsequent design. Following

[20], the transfer function of the hydraulic actuator is given by

F(s) kg Ksko(A; + Ap) (3.1)
U(s) (rs+1) (Kp 4+ Cs)(mgs® 4+ ds + ke) + (A2s + A2s) '

where F'(s) and U (s) are the Laplace transforms of the sensed force f and the input control voltage
u, respectively.

The meanings of the parameters in the transfer function of the actuator are as follows. Param-
eters k. and d represent damping and stiffness of the environment, K, and K, are the flow and the
pressure sensitivity gains of the valve, respectively, C is the approximant of the volume of fluid to the
effective bulk modulus of the fluid, m, represents the mass of the hydraulic piston, 4; and A, are the
piston effective areas, 7 and k, are gains describing the valve dynamics. The nominal values of the

parameters used in the subsequent design are given in Table 3.1.

Parameter | Nominal Value Parameter | Nominal Value
ke 75 (KN/m) Mg, 20 (kg)

K, 0.375 (m?/pa.s) A; 0.00203 (m?)
K, 2.5 x 10712 (m/s?) || A, 0.00152 (m?)
C 1.5 x 1071 (m3/pa) || ksp 0.0012 (m/V)
d 700 (N/m/s) T 35 (ms)

Table 3.1: Nominal values of parameters of the transfer function ( [20]).

Parameter k. depends on the variation in the environmental stiffness of the system, whereas
K, depends on the supply pressure of hydraulic actuator and the orifice area gradient ( [20]). During
the operation of the hydraulic actuator, the parameters k. and K, may change. Therefore, in the
following, assume that k. and K, are parametric uncertainties within the ranges [50, 100] kN/m and
[0,5 x 10~12] m?/s, respectively.

The frequency responses of the plant for different environmental stiffness and pressure sensi-
tivity gains of the valve are shown in Figure 3.1 for k. € [50, 100] kN/m and for K,, € [0,5 x 10712]

m?/s.
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Figure 3.1: The frequency responses of G, (s) with uncertainties in k. and k.
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Figure 3.2: Two—degree-of—freedom feedback control system.
3.3 Design Formulation

In this section, the two-degree-of-freedom control configuration shown in Figure 3.2 is used
where H (s, p) is the prefilter transfer function, K (s, p) is the controller transfer function, p € RY
is the design parameter to be determined. To this end, let K (s) and H(s) be characterized by

Pas” + pss + pe
(s +p1)(s? + p2s + p3)

_ polprs+1)
H(s,p) = (pgs + 1)(pgs + 1)

}KT(S, I)) =

where p = [p1,p2, p3, P41, D5, D6, P7, P8, P9, P1o]. € R is the design parameter vector to be deter-
mined.

In our early study, it has been found that the one-degree-of-freedom control configuration is
not appropriate. This is because a sufficiently high loop gain is required in order to make the error
fulfill the control objective. However, such a loop gain makes the control system not robust to be
against the uncertainties in k. and K.

The main control objective is to ensure that during the operation, the absolute values of the

error e and the control « do not exceed 105 N and 0.1 V, respectively, in the presence of all input
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f* € Py given by
Poo = { £ 111" lloo 1000 and [ f*||oc <1000} . (3.2)

Accordingly, the design problem is to find a value of p that satisfies

pa(P) < 0.99
&*(P)/(1 = pa(p)) < 105N - (33)
@ (p)/(1 = pa(p)) < 01V

3.4 Numerical Results

A design solution is obtained from simultaneously solving inequalities (3.3) by a numerical
search algorithm called the moving-boundaries-process (MBP). The detail of the algorithm can be
found in [34], [35].

By conducting numerical searches in the range [50, 100] kN/m for k. and the range [0,5 x
10~12) m?/s for K, we find that

A =9.431 x 10° atk, = 100 kN/m and K, = 0 m?*/s

and
B =2.2976 x 10* at k. = 50 kN/m and K, = 0 m?/s.

The plots of ||z||; and |2(0)|+ || 2|1 versus k. and I, are given in Figures 3.3 and 3.4, which confirm
the obtained numerical results.

After a number of iterations, the MBP algorithm locates a design solution

p = [99.0580, 4.2871 x 103, 9.6540 x 10*, 0.2580, 58713,
1.8897 x 1076, 1.5712 x 1073, 0.2268, 0.2000, 0.1000]7.

The corresponding performance measures are

pe = 0.1376
e /(1 —pa) = 100.4894 N
0 /(1 —pe) = 81271 x 107°V

To verify the design, a simulation is carried out for the case in which the control system is
subject to a test input f which is generated randomly so that their magnitude and slope satisfy (3.2).
The waveform of f and the corresponding responses e and « are displayed in Figure 3.5 for k €
[50,100] kN/m and K, € [0,5 x 10~'2] m?/s. Clearly, the design objectives are satisfied.
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Figure 3.3: The plot of ||z||; versus k. and K.

3.5 Conclusions

This chapter presents the design of a robust controller for a hydraulic force control system, in
which the uncertainties are in the parameters k. and K. The design objective is to ensure that the
magnitudes of the error and the control output signal always stay within their prescribed bounds for
all time and for any input in the set P, in spite of all uncertainties. The design problem is formulated
using Zakian’s majorants [31] in conjunction with other theories in Zakian’s framework [24, 33-35],

and consequently is expressed explicitly as a set of inequalities that can be solved in practice by
numerical methods.
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Figure 3.4: The plot of [2(0)| + ||2]|1 versus k. and K,

20 40 60 80 100
time (sec)

0 20 40 60 80 100
time (sec)

0 20 40 60 80 100
time (sec)

Figure 3.5: Responses e and u to f* for k. € [50,100] kN/m and K, € [0,5 x 10~%] m?/s.
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CHAPTER IV

CRITERION OF APPROXIMATION FOR MIMO FEEDBACK
SYSTEMS

This chapter presents an extension of Zakian’s criterion of approximation [30] in which the
plant is a non-rational MIMO feedback system.

4.1 Introduction

Consider the multi-input multi-output (MIMO) feedback system described by
u; = Z k” * €5
j=1

4 , t=12,...,n (4.1)
€ = fi‘zgij*uj
j=1

where G(s) = [Gy;(8)]nxn is the plant transfer matrix and K(s,p) = [Ki;(s, P)]nxn is the con-
troller transfer matrix characterized by a design parameter p € RY (see Figure 4.1). Lete =
[e1,e2,...,e,]T and u = [ug,us,...,u,]” be the error vector and the control vector of the sys-
tem (4.1), respectively. Also let k;; : [0,00) — R and g;; : [0,00) — R denote the inverse Laplace
transforms of G;;(s) and K;; (s, p), respectively.

Suppose that the input vector f 2 [fi, fa,..., f»]T is known only to the extent that each
element f; : [0,00) — R belongs to the possible set P, where P; C L, foralli = 1,2...,n and
L is the set of all bounded functions. In this connection, define the Cartesian product of the possible

sets as

PEP XPyX...xP,.
Define, for the system (4.1), the vectors of performance measures

T

&2 [e1,69,...,6,]7 and @2 [y, o, ..., 0n]" (4.2)

where ¢é; and 4; denote the peak values of ¢; and w;, respectively, associated with the space P given

Q K(s,p) G(s)

Figure 4.1: The MIMO feedback system given in (4.1).
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by

éi £ sup [leglloo and i £ sup i oo- (4.3)
fep feP

Let x < y denote a componentwise inequality between vectors x and y. The design problem

is to find p such that the following design criteria are satisfied.

e

PN

£ (4.4)
0 < U (4.5)

where the bound vectors £ 2 [£1, &, ..., &) andU £ [Uy,Us, ..., U,]T are specified. It should be
noted that the criteria (4.4) and (4.5) are equivalent to the fact that, for every i, |¢(¢)| and |u;(t)| are

within the bounds &; and U;, respectively, for all time ¢t whenever f € P.

4.2 Main Results

This section derives the criterion of approximation for the system (4.1). To this end, let
G*(s) & [G7;(8)lnxn be a rational approximant matrix of G(s) Then replacing G(s) with G*(s)

yields the resulting system which is called a nominal system (see Figure 4.2) and described by

n
* — . *
u; = E kij x €]
j=1

. L i=1,2,....n (4.6)
el = fi—ngj*u;
j=1

where e* = [ef,e3,...,e:]T and u* = [uj, u3,...,u;]" are the error vector and the control vector

e n

of the nominal system (4.6), respectively, and g; : [0,00) — R denotes the inverse Laplace transform
of G7;(s).

For the nominal system (4.6), define

"2 (e, 6 T and o £ [af,a5,..., 45"

A /\*
é €1,65,...,6r]

where &7 and @ denote the peak value of ¢ and v, respectively, given by

Ak A
e; =

sup |lef || and u; £ sup e [l oo - 4.7)
feP feP

O K(s,p) G*(s)

Figure 4.2: The nominal system for (4.1).
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Define
X(s) = [Xij(8)nxn = [T+ G*()K(s)] ! (4.8)
Z(s) = [Zij(8)]lnxn = G(s) — G(s) (4.9)
W(s) = [Wi;(8)]nxn = X(s)Z(s)K(s) (4.10)
V(s) = [Vij(8)]nxn = K(5)X(5)Z(s) (4.11)
M = [pijlnxn, ig = lwijlh (4.12)
N = [Vijlnxns vig = viglh (4.13)

where w;; and v;; are the inverse Laplace transforms of 1;;(s) and Vj;(s), respectively. The fol-

lowing results provide useful mathematical expressions for upper bounds and lower bounds of ¢ and

~

(7

Lemma4.1. Supposethat éf < oo fori =1,...,n. Let (I — M)~! existsand all of its elements are
positive. Then it follows that

(I+M)te* <e=x(I—-M) e (4.14)

Proof. Using equations (4.1), (4.6), (4.8), (4.9) and (4.10), one can verify that
Ei(s) = Bi(s) = ) Wij(s)E;(s) (4.15)
j=1

where E;(s) and E*(s) are the Laplace transforms of e; and e}, respectively, due to the input f.
Consequently,

n

ei(t) = € (t) = > (wi *e;)(1) (4.16)
j=1
and then
n
leillo < ll€f]loo + Z”wij *€jlloo
j=1
n
< eflloo + D llwisllilieslloo-
j=1
Thus, by using (4.12), one obtains
n
leilloo < lleflloo + > pizlleslloo- (4.17)

j=1

From equations (4.3), (4.7) and (4.17), it follows that

n
e < é;k + Z,uijéj. (4.18)
Jj=1

It is easy to see from (4.2), (4.12) and (4.18) that

& < é* + Me. (4.19)
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By using (4.12) and (4.16), we have
ey = eillse <> pijllejllso- (4.20)
j=1
From the identity

e; () = [ef (t) — ei(t)] + ei(?),

one obtains

leilloo < ll€F — €illoo + leilloo
and (4.20) implies that

n
leloe < > mislleslloe + lleilloc.
j=1

Hence,
é" < Meé + e. (4.21)

Now, if (I — M)~ exists and all of its elements are positive, then (4.19) and (4.21) imply that
(I+M)'e*<e=<(I-M) e
O

Lemma 4.2. Suppose that i} < cofori=1,...,n. Let (I — N)~! existsand all of its elements are
positive. Then it follows that

(I+N) o <a=<(-N)"ta* (4.22)

Proof. From the definition of 1;; in (4.13), the proof can be completed by the technique used in
Lemma 4.1. O

Now, it is ready to state the main theorems in this section.

Theorem 4.1. Supposethat &f < cofori=1,...,n. Let (I —M)~! existsand let all of its elements
be positive. Then the original design criteria (4.4) for the system (4.1) are satisfied if

(I-M)ler <€, (4.23)
Proof. The theorem readily follows from Lemma 4.1. O

Theorem 4.2. Supposethat @} < cofori =1,...,n. Let (I — N)~! existsand let all of its elements
be positive. Then the original design criteria (4.5) for the system (4.1) are satisfied if

(I-N)"la* <u. (4.24)

Proof. The theorem readily follows from Lemma 4.2. O
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From Theorems 4.1 and 4.2, we can see that the upper bounds of ¢ and 4, are expressed in
terms of the matrices M, N and the peak values & and @; of the nominal system (4.6). It is important
to note that when the system (4.1) becomes the scalar system (2.1), the conditions in Theorems 4.1
and 4.2 turn out to be identical to those in Theorem 2.1 in Chapter 2.

Since G*(s) and K(s) are rational matrices, tools for stability analysis and computing time-
responses are readily available for the case of the nominal system (4.6). Hence, when such tools for
the non-rational system (4.1) are not available, inequalities (4.23) and (4.24) are more computationally
tractable than the original design criteria (4.4) and (4.5). For this reason, (4.23) and (4.24) are called

the surrogate design criteria.

4.3 Finiteness of e and u

Following the method of inequalities [29, 30, 32,33, 35], it is readily appreciated that in solving
inequalities (4.23) and (4.24) by numerical methods, a search algorithm needs to start from a point
p € RY such that ¢;(p) < oo and @;(p) < oo for all 4. In this regard, the following proposition

provide useful sufficient conditions for ensuring that ¢ < oo and 4; < oo for all i.

Proposition 4.1. Consider the original system (4.1) and the nominal system (4.6). Suppose that
{A¢g+, Bg+,Cq+,0} and {Agk, Bi,Crk, Di } are state-space realizations of G*(s) and K(s), re-
spectively. Let A.; denotes the set of all the eigenvalues of the closed-loop state transfer matrix

AK ‘ —BKCG*
Acl y 7
BGCK ‘ Ag* — BG*DKCG*
Thené; < coand 4; < oo for all i = 1,2, ..., nif the following conditions hold.

(@ ReA(p) < Oforall \(p) € Ag.
(b) (I —-M) tand (I —N)~!existsand all of their elements are positive.

Proof. Condition (a) is a well-known result of bounded-input bounded-output (BIBO) stability for
rational systems. It implies that & < oo and @} < oo for any bounded input. Therefore, it follows
from (4.14) and (4.22) that if conditions (a) and (b) hold, then § < oo and @; < oo for all i =
1,2,...,n. O

Consider condition (b) in Proposition 4.1. The finiteness of M and IN is necessary for existence
of (I —M)~!and (I — M)~. Therefore, a search algorithm should find a point p such that M and
N are finite before finding p that satisfying condition (b).

The following lemmas provide sufficient conditions for ensuring that M and N are finite.

The following notation will be used in Lemmas 4.3, 4.4 and Theorem 4.3. For given integers

1, j, k and [, define

fjl(p) £ max Re A(p)
AEA}!

(e
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where Af;? denotes the set of all the poles of the function F;(s) X (s). Let 2z be the impulse

response of Zy(s).

Lemma4.3. Assumethat G*(s) and K(s) arerational matrices. Then y;; < oo if the two conditions
hold.

(a) szlHI <oo,VEkI=1,2,...,n
(b af?(p) <0, VkI1=1,2,...,n

Proof. It is easy to see from (4.8), (4.9) and (4.10) that

ZZKU (8)Zki(s)-

k=11=1

From the definition of 1;; in (4.12), one can easily see that

Zzﬁ K ()X (s) Zi(s) } (4.25)
k=11=1 1

Evidently, K;; X, is a proper rational function of s for any 7, j,k,0 = 1,2,...,n. Thus,
Kij(s) Xan(s) = ajf + Rij(s) (4.26)

where alk’ is a constant and R““ is a strictly proper function of s. Then it follows from (4.25) and
(4.26) that

n n
pij S > affl - llzwalls + llrff * 21l

k=11=1
where rf’“ denotes the impulse response of Rzik( ). By a well-known result (see, for example, [13]),
it follows that if H?“zkﬂl < oo and ||zx|[1 < oo, then Hr * zk1|]1 < oo. Condition (b) is necessary
and sufficient for [|rj¥||, < oo forall k1 =1,2,... 7. O

Lemma4.4. Assumethat G*(s) and K(s) arerational matrices. Then v;; < oo if the two conditions
hold.

@ [yl < o0, VI=12,. .
(b ozf,i(p) <0, Vk,i1=1,2,...,n

Proof. It is easy to see from (4.8), (4.9) and (4.11) that

ZZsz ) Xi(s)Z15(s).

k=11=1

From the definition of ;; in (4.13), the proof can be completed by the technique used in Lemma
4.3. O

Now it is ready to state the main theorem for the finiteness of the matrices M and IN.

Theorem 4.3. Assume that G*(s) and K(s) are rational matrices. Then all elements of M and N
are finite if the two conditions hold.
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@ lzmlli < oo, VE,I=1,2,... n.
(b) ¥(p) <0, VEk,I,p,g=1,2,...,n.

Proof. The theorem readily follows from Lemmas 4.3 and 4.4. O

From above, the solution of inequalities (4.23) and (4.24) involves three phases of computation

as follows. Define

W] & g-wt | L
7/1/7.]: b 7”’7n’
vl & (1 -N)

e Phase I : With an arbitrary starting point, find py satisfying
ai?(po) < -, VklI,pg=12,...,n.
where 0 < ¢ < 1 is given.
e Phase Il : By starting from py, find p; satisfying

ai(l](pl) ~INTE Vkvlvpzq: 1,2,...,??,,

:U’;rj(pl) > 0, Vei,5=1,2,...,n, : (427)

1%

! 0, Vi, j=12,...,n

<)
vV

e Phase Il : By starting from py, find p satisfying the design criteria (4.23), (4.24), and inequal-
ities (5.28).

4.4 Majorants for MIMO Feedback Systems

The original definition of a majorant for the case of SISO feedback systems is defined as fol-

lows.
Definition 4.1 ( [31]). Suppose that IT € RY and thereis a function ¢ : RN — [0, co] such that
¢(p) <oo Vpell
Afunction ¢ : IT — [0, o¢] is said to be a majorant of ¢ if the following conditions are satisfied.
<

(A1) ¢(p) < d(p) VYpell
(A2) TIC I

(A3) Suppose that thereis a sequence S of points inII such that ¢(p) converges to zero. Then, for the
same sequence S, ¢(p) also converges to zero.

(A4) The function ¢ can be calculated more easily than ¢.

Now the definition of a majorant for the case of vector-valued functions is defined as follows.
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Definition 4.2. Suppose that IT € RY and there are functions ¢; : RY — [0,00],7 = 1,2,...,m,
such that
¢i(p) < oo, fori=1,2,...,m, Vp € IL.

Afunction ¢ £ [¢1, ds, ..., dm]7 is said to be a majorant vector of ¢ £ [y, ¢a, ..., dm|T if the
following conditions are satisfied.

(B1) ¢i(p) < di(p), fori=1,2,....n Vpell
(B2) IIC1II

(B3) Suppose that there is a sequence S of points inII such that ¢i(p) converges to zero for all i.
Then, for the same sequence S, g&-(p) also converges to zero for all i.

(B4) The functions ¢; can be calculated more easily than ¢; for all 4.

The following propositions show that the upper bounds derived in Lemmas 4.1 and 4.2 are

majorants of & and 1, respectively.
Proposition 4.2. The function (I — M)~'é* is a majorant vector of é.

Proof. From the result in Proposition 4.1, if & < oo for all 4 and (I — M)~ exists and all of its
elements are positive, then condition (B1) in Definition 4.2 is satisfied.

Since & < oo forall i and (I — M)~! exists and all of its elements are positive, then & is
always not greater than (I — M)~'é*. Hence, these conditions are sufficient for ensuring thaté is
finite. Then condition (B2) in Definition 4.2 is satisfied.

Consider inequalities (4.14) in Lemma 4.1. If & converges to zero, then €* will converge to
zero and then, if (I — M)~ > 0, the upper bound (I — M)~!é&* also converges to zero. Hence,
condition (B3) in Definition 4.2 is satisfied.

Since the approximant G*(s) and the controller K (s, p) are rational, €* are easily obtainable.
When tools for computing time-responses for non-rational systems are not available, the upper bound
(I — M)~té* can be calculated more easily than &. Therefore, condition (B4) in Definition 4.2 is
satisfied. O

Proposition 4.3. The function (I — N)~'a* isa majorant vector of .

Proof. The proof can be completed by the technique used in Proposition 4.2. O

4.5 The Criterion of Approximation for 2 x 2 Feedback Systems
This section states the criterion of approximation for 2 x 2 feedback systems. This was pub-
lished in [10] and can be seen as a special case of Theorems 4.1 and 4.2.

Theorem 4.4. [10] Supposethat & < co and €5 < oo. Let iy < 1, poo < 1 and det(I — M) > 0.
Then the original design criteria (4.4) for the system (4.1) are satisfied if the following hold.

(1 — po2)é] + p12és (1 — p11)eés + 21 €}
< & d < &,. 4.28
det(I—d) N Taqr—-my (4.28)
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Theorem 4.5. [10] Suppose that @ < oo and 45 < co. Letvy; < 1, v < 1 anddet(I — N) > 0.
Then the original design criteria (4.5) for the system (4.1) are satisfied if the following hold.

(1 — vo2)0] + vi2ub R (1 — v11)0s + voru3
det(I —N)  — 7 det(I — N)

Theorems 4.4 and 4.5 can be seen as a special case of Theorems 4.1 and 4.2 in Section 4.2,

< Us. (4.29)

From Lemmas 4.1 and 4.2, one obtains
e<(I-M)lte* and a< (I-N)la
For 2 x 2 systems, it is easy to see that

1 1— 22 12 &l

(I -M)7ler = det(I — M)

por 1= |65

Consequently,

(1~ p22)éf + p12és by < (1 — p11)é3 + ponég
det( — M) det(I — M)

Similarity, for 4, and o, it is easy to verify that

IN

€1

(1 — VQQ)@T + V12’ll§ (1 — Vn)ﬁz + Vglfff
det(I — IN) det(I — IN)

Hence, it can be readily seen that Theorems 4.4 and 4.5 are equivalent to Theorems 4.1 and 4.2,

IN

and o <

Uy

respectively, for the cases 2 x 2 systems.
The following theorem provides useful sufficient conditions for ensuring that the matrices M

and N are finite.

Theorem 4.6. [10] Assumethat G*(s) and K(s) arerational matrices. Then all elements of M and
N arefinite if the two conditions hold.

(a) szlHI < 00, Vk‘,l = 1,2.

From Theorems 4.4, 4.5 and 4.6, it readily follows that the solution of inequalities (4.28) and

(4.29) involves three phases of computation as follows.
e Phase I : With an arbitrary starting point, find py satisfying
bl (po) < —e, Yk, I,p,g=1,2.
where 0 < ¢ < 1 is given.
e Phase Il : By starting from py, find p; satisfying

ai(l](po) < —¢, v kvlapaq = 172

,u11(p1) <1 and ,LLQQ(p]_) <1
(4.30)

1/11(1)1) <1 and 1/22([)1) <1

det(I —M) >0 and det(/ —N) >0
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e Phase 11 : By starting from py, find p satisfying the design criteria (4.28), (4.29), and inequal-
ities (4.30).

4.6 Numerical Examples

In this section, the linearized model of a binary distillation column is obtained from lineariza-

tion about an operating point [25]. The plant transfer matrix G(s) is given by

12.8¢75  —18.9¢73%
16.7s +1 21.0s+1
Gls) = 6.6 —194e2s | (4.3

109s+1 144s+1

Let K(s, p) take the form

p1(p2s +1)(p3s + 1)

DP9
_ s(pss+1)
K(s,p) = 4 ps(pes + 1)(prs + 1)
oy s(pss + 1)

where p £ [p1, p2, p3, P4, P35, D6, D7, P8, P9, P1o] - IS a design parameter. Assume the inputs f; belongs
to the set P where

P2 {fi:|fillo <02 and ||fi] < 0.2}. (4.32)

For simplicity, let fo = 0. It may be noted that if f, is not zero, one can use the principle of
superposition to compute the peaks due to both inputs f; and f5.

Suppose that the plant transfer matrix G(s) is replaced by a strictly proper rational approximant
matrix G*(s). Here, we replace e~7* with its [1/2] Padé approximant!; that is

LONS 1—17s/3
T (18)2/6 + 2715/3 4+ 1

Then the resultant approximant matrix G*(s) is given by

. B —25.6(s — 3)

n(s) = (16.7s 4+ 1)(s2 + 4s + 6)

. B 37.8(s — 1)

i2(s) = (21.0s + 1)(3s2 + 4s + 2)

. —13.2(7s — 3)
G(s) (10.95 + 1)(49s* + 28s + 6)
- 19.4(2s — 3)

(14.4s + 1)(2s2 +4s + 3)°

The impulse responses of the original system and the nominal system are shown in Figure 4.3.

The main control objective is to ensure that, during the operation,

The [M/N] Padé approximant to a function h(s) is defined as a rational function P(s)/Q(s) where P and Q are
polynomials of degree M and N, respectively. See, e.g., [5] for the details.
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Figure 4.3: Comparison of the impulse responses of G(s) and G*(s).
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e the top product deviation e; stays within £0.38 mol%,

o the bottom product deviation e, stays within £0.20 mol%,

o the deviation of the reflux rate «; stays within +0.10 Ib/min,

o the deviation of the reboiler rate w, stays within +0.05 Ib/min.

Accordingly, the principal design criteria can be expressed as

10 15 20 25
time (s)
g22 |4
E3
I
5 10 15
time (s)

é1<0.38, é <0.20, @y <0.10, @y < 0.05.
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(4.33)

In this work, inequalities (4.33) are solved by using the MBP algorithm (See [34, 35] for the

detail of the MBP algorithm). Alternatively, other algorithms for solving a set of inequalities may be

used (see [22] and the references therein). In addition, the nominal peaks & and @ associated with

the possible set (4.32) are computed by the method developed in [14].

To verify the design, a simulation is carried out for the case in which the control system is

subject to a test input f = [fl, 0]”, which is generated randomly so that its magnitude and slope

satisfy (4.32). The waveform of the test input f; is shown in Figure 4.4.
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Figure 4.4: The waveforms of the test input f; and its derivative.

4.6.1 Design without the criterion of approximation
In this part, the nominal system (4.6) is designed without the criterion of approximation. A
controller is obtained by solving the design criteria

e < 0.38mol%, é5 0.20 mol%,

IN

a; < 0.10 Ib/min, a3 < 0.05 Ib/min.

After a number of iterations, the MBP algorithm locates a design solution resulting in

0.21352 + 0.1892s + 0.04204
5(0.1015s + 1)

Kii(s,p) =

Kia(s,p) = 0.08298
Kgl(s,p) = —=0.01224

—0.7245% — 0.4234s — 0.05974
5(0.05371s + 1)

(4.34)

K22(87 p) =
and the corresponding performance measures are

ér = 0.3726 mol%, é5 = 0.0626 mol%,
a; = 0.0860 lb/min, @5 = 0.0352 Ib/min.
The responses ey, e2, u; and uy of the nominal system and the original system are displayed in
Figures 4.5 and 4.6, respectively.
The simulation results in Figure 4.6 show that the responses of the original system oscillate;
that is, the system is unstable. From this example, it is seen that the design can give a failure when

the system is designed without the criterion of approximation.

4.6.2 Design by using the criterion of approximation

Now the criterion of approximation is used. Following Theorems 4.4, 4.5 and 4.6, a controller

is obtained by solving the design criteria

max Re \(po) < —107% Vk,I,p,q=1,2 (4.35)
AeAPT
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Figure 4.5: Responses of the nominal system using controller (4.34).

w11 (p) < 0.5, f22(p) < 0.5,
v11(p) <0.5, ve2(p) < 0.5, (4.36)
—det(I — M) < —0.5, —det(I —N)< —0.5
(1= p22)é] + w1263
< 0.38 mol
det(I — M) - %
) ) 4.37)
(1 — p11)é3 + po1é] (
< 0.20 mol
det(I — M) < 0.20mol%
(1 — Z/QQ)QTLT + V12’EL§ .
< 0.10 Ib/min
det(I — N) -
(1 Vit + o (4.38)
— V11)Ug T 21Uy .
< 0.05 Ib/min
det(I — N) = )

Inequalities (4.35) ensure the finiteness of M and IN, whereas (4.36) ensure that ¢ and ; are finite
for all 4. Inequalities (4.37) and (4.38) are sufficient conditions for ensuring that the design criteria

(4.33) are satisfied.
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Figure 4.6: Responses of the original system using controller (4.34).

By using the MBP algorithm, a controller K(s, p) with
0.03238s% + 0.0533s + 0.007084

K —
11(5,P) 5(0.3652s + 1)
Kia(s,p) = 0.03657 (4.39)
Koi(s,p) = —0.00922
—0.2561s? — 0.1073s — 0.01
K =
2(5,P) s(20.735 + 1)

is found and the corresponding performance measures are
,un(p) = 0.0357, /ng(p) = 0.0497,
H21 (p) = 0.1055, MQQ(p) = 0.0767,
Vll(p) = 0.0855, V12(p) = 0.0671,

vo1(p) = 0.0397,  v5(p) = 0.0387,

(1 — po2)é] + p12é5
=0. |
det(I — M) 0.3798 mol%,

(1 — p11)é3 + po1€]
= (0.1991 mol
det(I — M) %,




31

0.5

e1 (mol%)

ea (Mol%)

uq (Ib/min)

us (Ib/min)

0 100 200 300 400 500
time (sec)

Figure 4.7: Responses of the original system using controller (4.39).

(1 v 1/22)124{ + V12ﬁ§

= 0.0376 Ib/min
det(I — N) ",
(1 e I/n)@; == Vglﬂ){ .
= 0.0186 Ib/min.
det(I —N) min

The responses ey, eo, u1 and us of the original system are displayed in Figure 4.7. The peak
values of e1, es ,u; and us in response to f; are 0.3791 mol%, 0.1547 mol%, 0.0343 Ib/min and

0.0094 Ib/min, respectively. Clearly, the design objectives are satisfied.

4.7 Conclusions and Discussion

This chapter derives a criterion of approximation for n x n feedback systems where the non-
rational plant transfer matrix is replaced by a rational approximant during the design process and
the system is subject to the possible inputs satisfying bounding conditions on their magnitude and
slope. The design objective is to ensure that the error peaks é,és,...,é, and the control peaks
U1, 0o, . . . , Uy always stay within the error bounds &, &, .. ., &, and the control bounds 14, Us, . . .,
U, respectively. For a chosen rational approximant matrix, the criterion provides useful sufficient
conditions that are expressed as inequalities that can be solved in practice. When the plant and the
control transfer matrices become scalar transfer functions, the results obtained in the paper turns out

to be identical to Zakian’s criterion of approximation for SISO systems. To illustrate the usefulness
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of the results, a controller design for a binary distillation column is carried out successfully by using
the criterion in conjunction with the method of inequalities.

Although the system used in the numerical example to demonstrate the theory is the time-delay
system, the theory can be used with other types of non-rational systems as well as long as the impulse

response [g;;] is obtained. For various non-rational systems that can be founded in practice, see [12].



CHAPTER V

THEORY MAJORANTS FOR 2 x 2 VAGUE SYSTEMS

This chapter extends the theory of majorants for SISO vague systems to 2 x 2 vague systems.

5.1 Introduction

Consider the feedback system shown in Figure 5.1 and described by

(5.1)

u; = kjixer + kigxes )
, =12
ei = fi—gin*ui— gip*us

where the plant transfer matrix G(s) £ [Gi;(s)]2x2 is known only to the extent that is belongs to a
set G € R?*2(s) and K (s, p) = [K (s, p)]2xa is the transfer matrix of the controller with the design
parameter p € RY. The vectors e = [e1, e2]” and u = [uy, uo]” are the error vector and the control
vector of the system (5.1), respectively, and &; : [0,00) — R and g;; : [0,00) — R denote the
inverse Laplace transforms of G;;(s) and K;;(s, p), respectively.

Suppose that the input vector f = [f;, f2]* is known only to the extent each element f; :
[0,00) — R belongs to the the set P, where P; C L, fori = 1,2.

Define, for the system (5.1), the performance measures éi, éo, 1 and s as follows.

&=  sup el and @; = sup  [|luglleo (5.2)

f1EP1, f2€P2 f1€P1,f2€P2

where é; and u; denote the peak values of e; and w;, respectively, for the spaces P, and Ps.

The design problem is to find p such that the following design criteria are satisfied.

sup €1 < & and sup és < & (5.3)
Geg Geg
sup @1 <U; and sup do < Us (5.4)
Geg Geg

where the bounds &, &, U; and Us are specified by designers.

controller plant

O K(s,p) G(s)eg

Figure 5.1: The two-input two-output feedback system given in (5.1).
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controller plant

O K(s,p) G*(s)

Figure 5.2: The nominal feedback system for (5.1).

5.2 Main Results

A

Let G*(s) = [Gj]ax2 be an approximant matrix of G(s), then replacing G(s) with G*(s)

yields the resulting system which is called a nominal system (see Figure 5.2) and described by

Uu
(5.5)

(&

Sy Sy

= kil*e’{—l—kig*e; } 19
) 1= b

= fi—gin*ui+ gixxuj

where e* = [e},e3]" and u* = [uf},u3] " are the error vector and the control vector of the nominal
system (5.5), respectively, and g; : [0,00) — R denotes the inverse Laplace transform of Gi; ().

Define, for the nominal system (5.5), the performance measures €, €3, u} and @3 as follows.

&2 sup et and @2 sup [l (5.6)

f1EP1, f2EP2 f1EP1, f2€P2
where é; and 4 denote the peak values of e and w;, respectively.

In the same fashion as in Chapter 4, define

X(s) = [Xij(s)axa = [[+G*(s)K(s)] " (5.7)
Z(s) = [Zij(s)]2x2 = G(s) — G*(5) (5.8)
W(s) = [Wi(s)]ax2 = X(s)Z(s)K(s) (5.9)
V(s) = [Vij(s)lax2 = K(s)X(s)Z(s) (5.10)
M = [uijlaxe, pij = llwiglh (5.11)
N = [vylexe, vig = |vylh (5.12)

where w;; and v;; are the inverse Laplace transforms of W;;(s) and Vj;(s), respectively.
The following lemmas are the results have been published in [9]. The lemmas provide upper

bounds of ¢é1, é5, @1 and s.

Lemmab5.1. If uy; < 1, puge < 1and det(I — M) > 0, then it follows that

o (1= poo)eé] + pi2és
< 5.13
=T det(I-M) 13)
(1 — p11)é5 + po1é}
5.14
=T get(I - M) (6-14)

Proof. The result readily follows from Lemma 4.1 in Chapter 4. O



Lemmab5.2. If v < 1,199 < 1 and det(I — N) > 0, then it follows that

(1 — VQQ)’&/T + Vlgﬂg
det(I —N) ~’

(1 — V11)’EL§ + VQﬂTf
det(I —N)

i <

Uy <

Proof. The result readily follows from Lemma 4.1 in Chapter 4.

35

(5.15)
(5.16)

O

By noting that ;.;; and v;; depend on G(s) € G, the following results is readily obtained from

Lemmas 5.1 and 5.2.

Proposition 5.1. Suppose that éf < oo and é5 < oco. Let puy; < 1, pge < 1 and det(f — M) > 0
for any G(s) € G. Then the design criteria (5.3) for the system (5.1) are satisfied if the following

inequalities hold.
éT + sup ,ulgé;
Geg < &
(1 — sup p11)(1 — sup pio2) — Sup pu12 sup po1
Geg Geg Geg Geg
és + éup p21€1
€g < &
(1 — sup p11)(1 — sup pa) — sup fii2 sup por
Geg Geg Geg Geg

Proof. Taking the supremum over the set G on the both sides of (5.13) yields

= Ak A%
supé; < sup (1 — p22)é] + 11263
Geg geg [ (1T —pi1) (1 — pa2) — paopor

Supgeg (1 — p22)é] + p12€3]
infaeg (1 — p11)(1 — pa2) — pi2p21]

1 — inf ér + su és
( Geg/m) 1 GE%MQ 2

(1 — sup p11)(1 — sup pg2) — sup fi12 sup fio1
Geg Geg Geg Geg

Ak Ak
€1 + sup pi2ég
Geg

IN

Geg Geg Geg

(1 — sup p11)(1 — sup pga) — sup fi12 Sup fia1
Geg

(5.17)

In the same way by taking the supremum over the set G on the both sides of (5.14), it can be shown

that . .
€g + Sup ug1€
o Geg
sup ég < .
Geg (1 — sup p11)(1 — sup po2) — sup g2 sup po1
Geg Geg Geg Geg

This completes the proof of the proposition.

O

Proposition 5.2. Suppose that 4 < oo and u} < oco. Letvy; < 1, v99 < landdet(I — N) > 0
for any G(s) € G. Then the original criteria (5.4) for the system (5.1) are satisfied if the following
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inegqualities hold.
U + sup vi905 )
Geg
< U
(1 — sup v11)(1 — sup va2) — sup vig sup Vo
Geg Geg Geg Geg (5.18)
- . .
Uy + Sup Voqig
Geg
< Uy
(1 — sup v11)(1 — sup v92) — sup vig sup vop
Geg Geg Geg Geg
Proof. Use Lemma 4.2 and the same technique used in Proposition 5.1. O
Define

A = sup |lzmllt, 2w = ge — Gl
Geg

Bu 2 sup{|zu(0)] + || Zrill1}-
Geg

Upon noting the computational difficulty owing to supremal operations over the set G, M is replaced
by M £ [jiij]a.2,
2 2
iy 237 3 (Aulotf| + Bulloi — oIl ) (5.19)
k=1 =1
where ol’“ is the unit-step response (Kl] Zk) s) and a”‘? is the steady-state value of o/
Now it is ready to state the main theorem on an upper bound for the error peak vector.

Theorem 5.1. Supposethat €} < co and €5 < oco. Let i1 < 1, fige < 1 and det ([ —ﬁ) > 0. Then
the original design criteria (5.3) for the actual system (5.1) are satisfied if the following inequalities

hold.

M < & and M < &. (5.20)
det(I — M) det(] — M)

Proof. It follows from (5.9) that

2
- Z Z Klj(S)Xik(S)Zkl(s).

k=11=1

Hence, w;;(t) is given by the input-output relation
k=1 =1 (5.21)

By a well-known result (see, for example, [13]) that

[z *ylle < [lzl[x]lyll1, (5.22)

it follows from (5.7)—(5.9) and (5.11) and that

2 2
sup iy < Zz{sup |02 (0)] + 2wl ] ot — 5%
Geg k=1 1=1 (5.23)

+ sup |lzull1 a1} | }-
Geg
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Then it is easy to see from (5.19) that

élé% Pij < fhij-
Therefore, by using the result in Proposition 5.1, if inequalities (5.20) hold, then the original design
criteria (5.3) are satisfied. O

Similarly, the matixIN is replaced by a majorantﬁ £ [D;;]2x2 Where

2 2

7= > > (Aylalil + Byllok — ki) (5.24)

k=11=1

The main theorem on the majorants for the control peak vector is stated as follows.

Theorem 5.2. Suppose that @} < oo and 5 < co. Let 1 < 1, 99 < 1 and det(I — ﬁ) > 0. Then
the original design criteria (5.4) for the actual system (5.1) are satisfied if the following inequalities

hold.

MY gy and 2PN gy (5.25)
det(I — IN) det(I —IN)

Proof. Use the results in Proposition 5.2 and the technique used in Theorem 5.1. O

5.3 Finiteness of Approximation

Following the method of inequalities [30, 32, 33, 35], it is necessary that a search algorithm
should start from a point p € RY such that fi;; < oo and 7;; < oo for 4, j = 1, 2. In this connection,
the following lemmas provide useful sufficient conditions for ensuring that /;; < oo and 7;; < oo.

Let af} denotes the abscissa of stability of the denominator of /;(s) Xy, (s), which is defined

by
kl & . Dkl _
a;; = max{Re s: D;7(s) = 0} (5.26)

ij
where Dj(s) is the denominator of K;(s)Xpi(s).

Lemma 5.3. Assumethat G*(s) isarational transfer matrix with time delay. Then f;; isfinite if the
following two conditions hold.

(a) szlHl < oo for k,l=1,2

(b) ajf <0Ofor k,l=1,2.

Proof. From the result in [1], it is known that retarded delay differential systems are BIBO stable if
and only if o < 0, where « denotes the abscissa of stability of the characteristic function f(s), which
is defined by

a = max{Re s : f(s) = 0}.

Condition (b) implies that the transfer function X;;(s) Ky (s) is BIBO stable for all k,7 = 1,2. Then
it follows that |5j¥| < oo and ||o}} — aj¥||1 < oo for all k,1 = 1,2. Therefore, from the definition of
fi;5 in (5.19), conditions (a) and (b) imply that /i;; < oc. O
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Lemma 5.4. Assumethat G*(s) isarational transfer matrix with time delay. Then 7;; isfinite if the
following two conditions hold.

@) ||z|l1 < ccforalli=1,2
(b) ot <0forall k,1=1,2.
Proof. Use the definition of 7;;; in (5.24) and the same technique as in Lemma 5.3. O

Now it is ready to state the main theorem that provide useful sufficient conditions for ensuring

that fi;; < oo and 7;; < oo fori,j =1,2.

Theorem 5.3. Assumethat G*(s) isarational transfer matrix with time delay. Then i;; and 7;; are
finitefor all ¢, j = 1, 2 if the following two conditions hold.

(a) szlul <ooforalk,l=1,2
(b) off <Oforall k,l,p,q=1,2.
Proof. It readily follows from Lemmas 5.3 and 5.4. O

From Theorems 5.1, 5.2 and 5.3, it readily follows that the solution of inequalities (5.3) and

(5.4) involves three phases of computation as follows.
e Phase I : With an arbitrary starting point, find py satisfying
o (po) < —¢ forall k,1I,p,q = 1,2 (5.27)
where 0 < ¢ < 1 is given.
e Phase Il : By starting from py, find p; satisfying (5.27) and

oyl (p1) < —¢

fr(p1) <1 and fige(p1) <1

ri(p1) <1 and ooa(p1) <1 - (5.28)
det(I — M) > 0
det(I —N) >0

e Phase Il : By starting from py, find p satisfying (5.27), (5.28) and both the design criteria
(5.20) and (5.25).
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5.4 Numerical Example

In this section, the linearized model of a binary distillation column is obtained from lineariza-

tion about an operating point [25]. The plant transfer matrix G(s) is given by

kie 3 k2€—35
16. 1 1

G(s) = 6.75 + as + ' (5.29)
k36_7s ]{:46_25

109s +1 144s+1
where k; € [11.6,14.0], ko € [—20.8,—17.0], k3 € [6.0,7.2] and k4 € [-21.4, —17.4].
Let the controller K(s, p) take the form

p1(p2s + 1)(p3s +1)

K(s,p) = s(pas+1) " (5:30)
P 5 p5(pss + 1)(prs + 1) '
20 s(pgs+ 1)
where p = [p1, pa, 3, Pa, Ps, P6, D7, Ps, P9; Pio] " is @ design parameter.
Assume the inputs f; belongs to the set P where
PE{fi: I fillo <02 and ||fifle <0.2}. (5.31)

For simplicity, let fo = 0. It may be noted that in case that f; is not zero, one can use the principle of
superposition to compute the peaks due to both inputs £ and fs.

The main control objective is to ensure that, during the operation,
o the top product deviation e; stays within +0.50 mol%,
e the bottom product deviation e, stays within +0.30 mol%,
o the deviation of the reflux rate «; stays within +0.10 Ib/min,
e the deviation of the reboiler rate w, stays within +0.20 Ib/min.

Accordingly, the design criteria can be expressed as

sup é1 < 0.50 and sup é; < 0.30

Geg Geg (5_32)
sup 47 < 0.10 and sup e < 0.20.
Geg Geg

In our early study, we assume that all the parameters in (5.29) has uncertainties. It is found that
the controller cannot be obtained by using inequalities (5.20) and (5.25) because we cannot find p
such that the design criteria (5.28) are satisfied. Hence, for checking the effectiveness of the developed
method, we have to know that the design problem has a solution or not. The design Section 5.4.1 are

set up for checking the existence of a solution of the design problem.
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5.4.1 Example 1: Design by varying the values of the parameter

For checking the existence of a solution, we will design the system with the plant (5.29) by
varying the values of the parameters ki, ko, k3 and k4. The maximum value and the minimum value
of each parameter are used to design for convenience. The values of the parameters in each case are
shown in Tables 5.1 and 5.2.

Plant Gl(S) GQ(S) G3(8) G4(8) G5(8) Gﬁ(S) G7(8) Gg(S)

k1 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6

ko —-20.8 | —20.8 | —20.8 | —20.8 | —17.0 | —17.0 | —17.0 | —17.0

ks 6.0 6.0 7.2 712 6.0 6.0 7.2 7.2

ky —214 | -174| =214 | =174 | =214 | —-174 | =214 | —174

Table 5.1: The values of uncertain parameters for Gy (s), Ga(s), ..., Gs(s).

Plant Gg(s) Glo(s) GH(S) Glg(s) Glg(s) G14(8) G15(8) G16(8)

k1 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0

ko -208 | —20.8 | —20.8 | —20.8 | —17.0 | —-17.0 | —17.0 | —17.0

ks 6.0 6.0 7.2 7.2 6.0 6.0 7.2 7.2

ky —-214 | —174 | =214 | —174 | =214 | —174 | =214 | —174

Table 5.2: The values of uncertain parameters for Go(s), G1o(s), - - ., G1s(s).

Define é1(G;, p), é2(Gy, p), U1 (Gi, p) and u2(G;, p) as peak values of e, ea, u; and ug, re-
spectively, for G;,7 = 1,2,...,16. Now, according to the main control objective, the original design
criteria (5.32) become

él(qup) S 057 é2(GZ7p) 037

IN

Li=1,2,...,16. (5.33)

In this example, a solution of the design inequalities (5.35) is obtained by using the MBP al-
gorithm (see [34, 35] for the detail of the MBP algorithm). The peak values & (G;, p), é2(Gi, p),
u1(Gy, p) and u2(Gy, p) associated with the possible set (5.31) are computed by the method devel-
oped in [24] where all the time responses use in the method are computed by employing the h;n
approximants [26, 28].

After a number of iterations, the MBP algorithm locates a design solution resulting in

0.1561s% + 0.1164s + 0.01969

1.22152 + s 0.00257
K(s,p) = ' o0 (0.704552 4 0.18365 + 0.01144>
- N 2.473s2 + s



Plant | Gi(s) | Ga(s) | Gs(s) | Ga(s) | Gs(s) | Ge(s) | Gr(s) | Gs(s)
é1(p) | 0.4228 | 0.4348 | 0.4145 | 0.4520 | 0.4458 | 0.4394 | 0.4283 | 0.4526
é2(p) | 0.2140 | 0.1699 | 0.1989 | 0.1588 | 0.2336 | 0.1863 | 0.2168 | 0.1732
41(p) | 0.0614 | 0.0230 | 0.0531 | 0.0678 | 0.0735 | 0.0637 | 0.0664 | 0.0612
tg(p) | 0.1138 | 0.1041 | 0.1134 | 0.1097 | 0.1241 | 0.1154 | 0.1244 | 0.1206
Table 5.3: The peak values é;, é3, 11 and us for the cases of Gy (s), Ga(s), ..., Gs(s)
— 02 T T T T T T T ]
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Figure 5.3: The waveforms of the test input f; and its derivative.
The corresponding performance measures are shown in Table 5.3 and 5.4.
Plant | Go(s) | Gio(s) | G11(s) | Gi2(s) | Giz(s) | Gia(s) | Gis(s) | Gie(s)
é1(p) | 0.4409 | 0.4632 | 0.4367 | 0.4799 | 0.4764 | 0.4694 | 0.4624 | 0.4853
éa2(p) | 0.2265 | 0.1772 | 0.2090 | 0.1669 | 0.2473 | 0.1953 | 0.2165 | 0.1828
41(p) | 0.0659 | 0.0628 | 0.0602 | 0.0605 | 0.0746 | 0.0678 | 0.0688 | 0.0647
ds(p) | 0.1188 | 0.1142 | 0.1195 | 0.1122 | 0.1293 | 0.1194 | 0.1291 | 0.1220
Table 5.4: The peak values é;, é2, 41 and y for the cases of Gy(s), Gio(s), ..., Gie(s).

41

From the results in Tables 5.3 and 5.4, we can see that the design has a solution. The maximum
peak values of e, es, u1 and uy are 0.4853 mol%, 0.2473 mol%, 0.0746 Ib/min and 0.1291 Ib/min,

respectively.

To verify the design, a simulation is carried out for the case in which the control system is
subjected to a test input f = [f1,0]” where the magnitude and the slope of f; satisfy (5.31).

The waveforms the responses ey, ea, u1 and ug are displayed in Figure 5.4 for &y € [11.6,14.0],
ke € [—20.8,—17.0], k3 € [6.0,7.2] and k4 € [—21.4, —17.4]. The maximal magnitudes of e, ea, u;
and uy in response to f; are 0.4759 mol%, 0.2345 mol%, 0.0688 Ib/min and 0.1005 Ib/min, respec-

tively. Clearly, the design objectives are satisfied. Hence, we can conclude that the design problem

has a solution.
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Figure 5.4: Responses of e;, eo, 11 and uo due to the test input fy.

Now, because inequalities (5.20) and (5.25) in Theorems 5.1 and 5.2 cannot be used to solve
the design problem, we will simplify the problem by reducing the plant uncertainties and relaxing the

original design criteria (5.32) in Section 5.4.2.

5.4.2 Example 2: Design by using the theory of majorants

To reduce the plant uncertainties, the plant transfer matrix considered in this case is given by

kie™?® k2€_38
1 1

G(s)= | ©oT L et (5.34)
k:ge_?S ]{:46_25

azs+1 ags+1

where the design is divided into four cases as follows.

e Case I: The transfer function Gy (s) has parametric uncertainties. Parameter k; and a; vary

10% of their nominal values.

e Case II: The transfer function Gi2(s) has parametric uncertainties. Parameter &, and ao vary

10% of their nominal values.

e Case IlI: The transfer function Ga; (s) has parametric uncertainties. Parameter ks and ag vary

10% of their nominal values.

e Case IV: The transfer function Gaa(s) has parametric uncertainties. Parameter %, and a4 vary

10% of their nominal values.
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Parameter | Nominal Value | Case | Case Il Case 111 Case IV

k1 12.8 [11.6, 14] - - -

k2 —18.9 - [—20.8,—17] - -

ks 6.6 - - [6.0,7.2] -

ks —19.4 - - - [—21.4, 17 4]
ay 16.7 [15,18.4] - - ;

a 21 - [18.9,23.1] - -

as 10.9 - - 9.8,12] -

as 14.4 . : - [13.0,15.8]

Table 5.5: Nominal values and ranges of parameters for each case.
The nominal values and the ranges of the uncertain parameters in each case are shown in Table 5.5.

For this case, the control objectives is to ensure that, during the operation,

e the top product deviation e; stays within +1.0 mol%,

o the bottom product deviation e, stays within +0.5 mol%,

o the deviation of the reflux rate «; stays within +0.5 Ib/min,
o the deviation of the reboiler rate u, stays within 0.2 Ib/min.

Accordingly, the new design criteria can be expressed as

sup é1 < 1.00 and sup é; < 0.50

Geg Geg (5_35)
sup @1 < 0.50 and sup ds < 0.20.
Geg Geg

Suppose that the plant transfer matrix G(s) is replaced by a fixed transfer matrix G*(s) given

by
12.8¢=5  —18.9¢ 33

16.7s +1 21.0s+1

6.6e~7"  —19.4e7 2
109s+1 144s+1
Following Theorems 5.1, 5.2 and 5.3, it is readily appreciated that the design problem is to find

G*(s) =

a value of p that satisfies

apl(p) < =107% Yk, I,p,g = 1,2 (5.36)
fi1(p) < 0.5, fiz2(p) < 0.5,
71 (p) < 0.5, U92(p) < 0.5, (5.37)

—det(I — M) < =05, —det(I — N) < —0.5
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(1 — fizz)é] T /11269 < 1.0mol%
det(l — M) (5.38)
(1—fi11)é3 T 216y < 0.5mol%
det(I — M)
(1 —dl/22()Iu1 "1’(;;12% < 0.5 Ib/min
et(/ —
(1 -N) (5.39)
(1 — 011)a3 T vty < 0.2 Ib/min
det(I — N)

In each case, a solution of the design inequalities (5.38) and (5.39) is obtained by using the
MBP algorithm. The peak values é;(p), é5(p), u;(p) and 43(p) associated with the possible set
(5.31) are computed by the method developed in [24] where all the time responses in the design are
computed by employing the I; 5 approximants [26, 28].

To verify the design in each case, a simulation is carried out for the case in which the control
system is subjected to a test input f = [fl,O]T where f; is the worst case input in which their

magnitude and the slope of f; satisfy (5.31).

e Case I: G11(s) has parametric uncertainties.
After a number of iterations, the MBP algorithm locates a design solution resulting in

1.265s% + 0.303s + 0.01766

9.141s%2 + s 0.0052
K(s,p) = ' 0.423452 + 0.3051s + 0.02628
—D-0038 - 0.0028175% + s

The corresponding performance measures are

fn1(p) = 0.3348, fu2(p) = 0.0113,
fiz1(p) = 0.1976, fiz2(p) = 0.0027,
r11(p) = 0.3375, v12(p) = 0,
Par (p) = 0.3156, Pan(p) = 0,

det(I — M) = 0.6612, det(I — N) = 0.6625,

1— 7 A% ~ A% 1 — j1q)éx ~ A%
(1 — fig2)é] + 11263 — 0.5998 mol%, (1 — [11)€5 + fin1 €] — 0.2276 mol%,

det(I — M) det(I — M)
1 — Big) it + D1l (1= )k + eyt .
(L= 7o) + 71285 _ ) ees jymin, =P8 72180 _ o et 1pmin.
det(I — N) det(I — N)

From the simulation results, the waveform of the test input f; and those of the responses
e1, ez, u1 and uy due to f1 in Case | are displayed in Figure 5.5. The maximal magnitudes
of e1,es,u; and us in response to f; are 0.3947 mol%, 0.0751 mol%, 0.0428 Ib/min and

0.0237 Ib/min, respectively. Clearly, the design objectives are satisfied.
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Figure 5.5: Responses of e;, e, 1y and uy due to the test input f1 for Case I.

e Case Il: Gi2(s) has parametric uncertainties.

After a number of iterations, the MBP algorithm locates a design solution resulting in

0.1561s2 + 0.1164s + 0.01969

5 0.00257
K(S p) _ 1.221s% + s )
) 000274 B 0.7045s° + 0.1836s + 0.01144
' 2.473s%2 + s
The corresponding performance measures are
fi11(p) = 0.0099, fi12(p) = 0.5576,
ﬂgl (p) = 0.0059, ﬂgg(p) = 0.3541,
711(p) = 0, 719(p) = 0.5288,
ﬁgl(p) = 0, 522([)) = 0.3640,

det(I — M) = 0.6362, det(I — N) = 0.6360,
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1 — i 5% o o% 1 — q)é* o A%

(L= fi22)éy + 1265 _ ) 6o6y motop, L= FAUG+ 2181 _ o ja0a 1or0r
det(I — M) det(I — M)
(L= Po2)i + 7128y _ () 199q Ib/min, (L= o)t + Doy
det(I — N) det( — N)

= 0.0195 Ib/min.

From the simulation results, the waveform of the test input f‘1 and those of the responses
e1,e2,up and uy due to f; in Case Il are displayed in Figure 5.6. The maximal magnitudes
of e1,eq,u1 and us in response to f1 are 0.3931 mol%, 0.09007 mol%, 0.0350 Ib/min and

0.0137 Ib/min, respectively. Clearly, the design objectives are satisfied.

f1 (mol%)

1
o
[\)
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o
(82
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]
?
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S
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Figure 5.6: Responses of eq, eo, 11 and us due to the test input f1 for Case II.

e Case I11: Go;(s) has parametric uncertainties.
After a number of iterations, the MBP algorithm locates a design solution resulting in

0.1561s2 4+ 0.1164s + 0.01969

1.221s2 + s 0.00257
K(s,p) = ' o0z <0.7045s2 +0.18365 + o.o1144>
e N 2.473s% + s



The corresponding performance measures are
i1 (p) = 0.4238,
fi21(p) = 0.2365,
711 (p) = 0.4255,

521 (p) = 06806,

det(I — M) = 0.5748,

(1 — figg)e] + fi12€5

T2 0.6919 mol%,
det(I — M)
(L= 720)5 + 71285 _ ) 060 (p/min,
det(I — IN)
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fi2(p) = 0.0017,
fiz2(p) = 0.0016,
712(p) =0,
22(p) = 0,
det(I — N) = 0.5745,

(1 — fin)és + fio1€]

s = 0.2992 mol%,
det(I — M)

(L= 710)5 + P _ oo 1h/min,
det(I — IN)

From the simulation results, the waveform of the test input f; and those of the responses
e1,e2,ur and uy due to f; in Case I are displayed in Figure 5.7. The maximal magnitudes of
e1, e2,u1 and uy in response to f1 are 0.4060 mol%, 0.0903 mol%, 0.0477 Ib/min and 0.0338

Ib/min, respectively. Clearly, the design objectives are satisfied.

e Case IV: G2(s) has parametric uncertainties.
After a number of iterations, the MBP algorithm locates a design solution resulting in

0.3362s2 4 0.3391s + 0.07131

0.5051s2 + s 0.00111
K(s,p) = ( 0.125752 + 0.0865s + 0.01464
~0.00100 — RToEn
. S S

The corresponding performance measures are

fin1 (p) = 0.0016,

fir2(p) = 0.2343,

fiz1(p) = 0.0058,  fisa(p) = 0.4138,

r11(p) =0, 712(p) = 1.1662,

91(p) =0, 9o (p) = 0.4138,

det(I — M) = 0.5855, det(I — N) = 0.5862,

(1 — figg)é] + fi12€5

AL = 0.9792 mol%,
det(I — M)
(1 = Po2) i + 71245 _ ) yoee Ib/min,
det(I — IN)

(1 — fi1)é5 + fio1€]

s = 0.4915 mol%,
det(I — M)
(L= 1)@ + D183 _ 013 1/min.
det(I — IN)

From the simulation results, the waveform of the test input f; and those of the responses
e1,e2,ur and uy due to f1 in Case IV are displayed in Figure 5.8. The maximal magnitudes of
e1,e2,u1 and us in response to f; in Case 1V are 0.5169 mol%, 0.2968 mol%, 0.1781 Ib/min
and 0.0254 Ib/min, respectively. Clearly, the design objectives are satisfied.
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Figure 5.7: Responses of e;, eo, uy and us due to the test input f1 for Case IllI.

From four cases of the design, it can be seen that the design by using inequalities (5.20) and (5.25)
can give the satisfactory results for the original system. However, this method will be effective only
in the case that the plant uncertainties are small enough. That is, the case that we can find p such that
the design criteria (5.28) are satisfied.
Tables 5.6-5.9 show comparisons between the the upper bounds of é, é5, @; and 5 obtained

from the design using inequalities (5.37), (5.38) and (5.39), and the maximal magnitudes of g, ey, u;

and us obtained from the simulation results. We can see that there are reasonably differences between
the upper bounds obtained from the design and the peak of the responses due to f1. This shows that
the design inequalities have significant conservatism, which is caused by the derivation of the upper

bounds ¢; and ;.
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Figure 5.8: Responses of e;, eo, u and uy due to the test input f‘1 for Case IV.

5.5 Conclusions and Discussion

This chapter presents the extension of Theory of majorants for SISO vague systems to the case
of 2 x 2 vague systems by replacing an uncertain transfer matrix with a fixed transfer matrix. The
principal design objective is to ensure that e (¢), ea(t), u1(t) and ua(t) stay within the ranges +&,
+&,, +U; and +Us, respectively, for all time and for any possible input in the set A and P in spite
of all uncertainties. The design problem is formulated using Zakian’s theory of majorants [31] in
conjunction with other theories in Zakian’s framework [24,27,33,34] and can be expressed explicitly
as a set of inequalities that can be solved in practice by numerical methods.

The numerical results in Section 5.4 may indicate that the design method using inequalities
(5.20) and (5.25) is effective only when the number of plant uncertainties is small. However, Tables
5.6-5.9 show that the design inequalities have conservatism For this reason, it is interesting to develop,
in the future, the design inequalities so that they can be used to design the system with the larger

number of uncertainties or the conservatism can be reduced significantly in the design inequalities.



Response | Peak value | Maximal magnitude | Difference (%)
el 0.5998 0.3947 52.00 %
e 0.2276 0.0751 203.06 %
Uy 0.0888 0.0428 107.48 %
U9 0.0874 0.0237 268.78 %

Table 5.6: Comparison between upper the bounds of é, és, i, and s and the maximal magnitudes
of e1, e, u1 and uy due to f in Case I.

Response | Peak value | Maximal magnitude | Difference (%)
el 0.6864 0.3931 74.61 %
€2 0.1373 0.0901 52.39 %
U1 0.0999 0.0350 185.42 %
U 0.0195 0.0137 42.33 %

Table 5.7: Comparison between upper the bounds of é, és, 7 and s and the maximal magnitudes
of e1, e2, uq and uy due to f; in Case II.

Response | Peak value | Maximal magnitude | Difference (%)
el 0.6919 0.4060 70.42 %
e 0.2992 0.0903 231.34 %
U1 0.1969 0.0477 118.05 %
U9 0.1826 0.0338 440.24 %

Table 5.8: Comparison between the upper bounds of &, és, 41 and s and the maximal magnitudes
of e1, e, u1 and us due to f; in Case I11.

Response | Peak value | Maximal magnitude | Difference (%)
el 0.9792 0.5169 89.44 %
€2 0.4915 0.2968 65.60 %
U1 0.4955 0.1781 178.21 %
U2 0.0413 0.0254 62.60 %

Table 5.9: Comparison between the upper bounds of é, és, i, and s and the maximal magnitudes
of e1, e, u1 and us due to f; in Case IV.




CHAPTER VI

CONCLUSIONS

This thesis extends the theory of majorants, which consists of the criterion of approximation
and majorants for vague systems, to the case of two-input two-output systems. The theory of ma-
jorants provides useful inequalities for designing feedback systems where the design objective is to
ensure that the errors and the controller outputs of the systems always stay within their prescribed
bounds whenever the inputs satisfy the magnitude and slope conditions.

The criterion of approximation for the SISO feedback systems is extended to the cases of two-
input two-output feedback systems and then further extended to the case of MIMO feedback systems
where non-rational transfer matrices are replaced by rational approximants during the design process
so that reliable and efficient computational tools for rational systems can be fully utilized. Moreover,
the criterion can be used with any types of non-rational systems whenever the impulse response matrix
is obtained.

Based on the developed criterion, the theory of majorants for SISO vague systems is extended
to the case of two-input two-output systems where the plant with uncertainties is replaced by a certain
plant. The numerical examples show that the developed inequalities are effective when the number
of parametric uncertainties is small enough. Furthermore, the search algorithm may fail to find a
solution because the developed inequalities have conservatism.

To this end, from the numerical examples in Section 5.4, it is interesting to develop the inequal-
ities for designing two-input two-output vague systems, so that they can be used effectively when the

plant have more parametric uncertainties.
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The Moving-Boundaries-Process Algorithm [35] (see also [21]) Here we will describe the moving-
boundaries process (MBP) algorithm, which has been used for solving the design inequalities in the
numerical examples throughout the thesis.

Consider the design problem expressed in the form of inequalities

where C; are real numbers, p denotes a real vector [py,po,...,pn|” and ¢; are real functions of p.

Define the admissible set of the i** inequality as

Si&{p : ¢i(p) < Ci}.

If there exists a point p € R” that satisfies all the inequalities ¢;(p) < C;,i = 1,2,...,m, then p is
inside the set .S defined by

m
Sl 3.
=1

The MBP algorithm is an iterative search, which proceed form an arbitrary initial point p to
any point in set S. Let p* denotes the value of p at the &' iteration.

The MBP algorithm is stated as follows.
Algorithm 7.1. (Moving-boundary-process)
e |nitial step:  Set k = 0 and choose an initial point py. Then compute ¢;(p),i = 1,2,...,m.
e Sepk

(1) If ¢;(p) < Cy,i = 1,2,...,m, stop; otherwise generate a trial point p*.
(1) Compute ¢;(p*),i =1,2...,m.
(1) 1f ¢;(p*) < ¢i(p*),i =1,2,...,m, then:
(8) setprs1=p~
(b) setbk=k+1
(c) gotostep(l)
otherwise
(@) generate another trial point p*
(b) goto step (1.

In the thesis, Rosenbrock’s method is used to generate the trial pointsp*. The detail of the
method can be found in [22].
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