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CHAPTER I 

INTRODUCTION 

 

Metastatic lung cancer is causative for more than 90% of lung carcinoma 

related deaths worldwide (Ray and Jablons, 2009). Although the earliest stage of 

disease presenting as only pulmonary nodule without involved lymph nodes at 

resection, some of these patients will finally die from undetectable micrometastases 

(Maslyar et al., 2004). Cancer metastasis is a complex process of cell spreading which 

can be divided into several steps including migration, invasion, intravasation, survival 

in the circulation, extravasation, and metastatic colonization (Hanahan and Weinberg, 

2000; Mina and Sledge, 2011). Although a growing body of study suggests that 

migration is a crucial step for successful metastasis (Harlozinska, 2005), at present, 

there are no approved drugs that inhibit such behaviors of cancer cells.  

Even though the molecular mechanisms by which cancer cells use for 

migration are not fully understood, based on previous researches, they involve 

abilities of cancer cells to change their affinity and avidness for the extracellular 

matrix (ECM) and such alterations are due to modifications of various cellular 

signaling pathways including focal adhesion kinase (FAK; Bolos et al., 2010). Indeed, 

the activation of FAK through phosphorylation rendering its kinase activity is 

important for FAK-induced focal adhesion turnover and cell movement (Vicente-

Manzanares et al., 2009). Activated FAK can then transduce the signal through the 

phosphorylation of protein kinase B (Akt) resulting in cellular responses such as cell 

invasion and migration (Bolos et al., 2010). Recently, the Rho families of small 

guanosinetriphosphatases (GTPases), especially cell division cycle 42 (Cdc42), were 
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shown to play an essential role in modulating actin reorganization associating with 

cell motility and filopodia formation (Raftopoulou and Hall, 2004). The expression 

level of Cdc42 was found to be up-regulated in many cancers (Jiang, Zhang and Qu, 

2011; Kamai et al., 2004) and its overexpression was shown to be associated with an 

enhanced migration and cancer aggressiveness (Kamai et al., 2004; Yoshioka, 

Nakamori and Itoh, 1999). In lung cancer, Cdc42 was shown to be highly 

overexpressed in primary lung cancer cells (Chen et al., 2012). Also, the study 

indicated that either curcumin-mediated Cdc42 down-regulation or Cdc42 knockdown 

could attenuate cancer cell motility (Chen et al., 2012).  

 Artonin E, an active flavonoid, obtained from a stem bark of Artocarpus 

gomezianus Wall. exTréc. (Moraceae), known as “Hat-Nun” in Thailand (Sritularak et 

al., 2010). Artonin E was shown to exhibit promising growth inhibition action against 

breast cancer cells (Shajarahtunnur, 2006). Artonin E also exhibited anoiskis 

sensitization property on lung cancer cells (Wongpankam, 2012). Moreover, artonin E 

was shown to possess many pharmacological activities such as antiplatelet 

aggregation (Shajarahtunnur, 2006), antioxidant effect (Sritularak et al., 2010). 

However, effect of artonin E on cancer cell migration is unknown. In our view, the 

knowledge regarding such activities of the compound would benefit the development 

of novel anti-metastasis drug as well as strategy to overcome cancer.  

Research Questions 

1. Does artonin E affect migration of lung cancer cells? 

2. What is the underlying intracellular mechanism that artonin E inhibit 

migration of lung cancer cells? 
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Objectives 

1. To investigate the effect of artonin E on migration of lung cancer cells. 

2. To study mechanism that artonin E inhibit migration of lung cancer cells. 

Hypothesis 

 Artonin E can inhibit migration of lung cancer cells by inducing alteration of 

the protein regulating cell migration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

CHAPTER II 

LITERATURE REVIEW 

 

Lung cancer 

 Pulmonary carcinoma is the main cause of cancer death in patients from the 

many countries around the world (Jemal et al., 2011). Lung cancer can be divided into 

two groups including non-small cell lung cancer (NSCLC) and small-cell lung cancer 

(SCLC). About 85% of all lung cancer patients are NSCLC. Non-small-cell lung 

cancer also can be sub-divided into 3 main subtypes namely squamous-cell 

carcinoma, adenocarcinoma, and large-cell lung cancer (Panov, 2005).  

Lung cancer can be caused by many factors but the common cause is smoking. 

The biology of lung cancer among smokers and non-smokers is different. For 

example, non-smoker patients, common type of lung cancer is adenocarcinomas, have 

improved survival compare to smokers (Ray and Jablons, 2009). Current treatments 

of pulmonary carcinoma are surgery, radiotherapy and chemotherapeutic treatment. 

Choosing treatment depends on histology and stage of cancer. 

In USA, about 75% of patients with lung cancer already have locally advanced 

or metastatic disease after initial diagnosis (Ray and Jablons, 2009). Global cancer 

statistic also show that more than 90% of patients with lung carcinoma died from 

metastatic lung cancer (Ray and Jablons, 2009). NSCLC and SCLC own the highly 

invasive and metastatic properties. The most common sites of lung cancer metastasis 

are extrathoracic lymph nodes, brain, bone and liver. Furthermore, most patients with 

advance lung cancer were found to have brain metastasis (Hirsch et al., 1982; Kelly 
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and Bunn, 1998). In patient with NSCLC, 40% of them already have hematogenous 

metastases after initial diagnosis (Ray and Jablons, 2009). Consequently, almost of 

them will finally die from such disease. 

 SCLC causes the worst clinical course in any type of lung cancer if it has not 

been treated.  Survival time of SCLC patients is 2-4 months after diagnosis. Likewise, 

SCLC tends to increase at a greater rate of metastasis compare to the other types of 

lung tumour. However, SCLC has more responsive to cytotoxic chemotherapy and 

radiation therapy compare to NSCLC (Timbrell, 2008).  

  The use of chemotherapeutic agents in patients with NSCLC remains 

arguable due to impact on overall survival of patient still unclear. Cisplatin, 

carboplatin, paclitaxel gemcitabine and the vinca alkaloids (vinblastine and vindesine) 

were classified as chemotherapeutic drugs of choice for lung cancer (Komaki, Tsao 

and Mehran, 2013). Nevertheless, only 20% of response rates using single agent were 

observed (Ihde, 1992). Chemotherapy cocktails were used and have improved the 

response rates (Ihde, 1992). From this review, the way to treat metastatic NSCLC is 

controversial and very hard to combine chemotherapeutic agents with the other 

treatments (Ihde, 1992). Despite of development of many cytotoxic drugs for advance 

NSCLC, overall 5 years survival of patients after diagnosis is 14% (Haura, 2001). 

New therapies, specific for lung cancer and safe for patients, are needed. 
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Metastasis 

 

Figure 1. Metastasis of cancer cells (Onkal and Djamgoz, 2009) 

Metastasis is the major cause of death in patients with cancer. Moreover, 5-

year survival of patients with early-stage cancers is 49%. However, 5-year survival 

patient with end-stage cancer is 3% (Jemal et al., 2011). The metastatic process 

begins when cancer cells separate from primary tumor site, migrate and invade to 

surrounding area via local lymphatic and blood vessels, some of them can survive in 
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circulation then attach to capillaries or venules of remote organs and they finally 

adapt to new microenvironment and establish a new tumor (Bacac and Stamenkovic, 

2008). 

 There are some essential functions of cancer cell to achieve the events as 

mentioned previously including tumors-microenvironment interactions, migration, 

invasion, anoikis resistance and angiogenesis capability (Bacac and Stamenkovic, 

2008). These functions are modulated by adhesion and proteolysis which are 

necessary for metastatic tumor cell (Bacac and Stamenkovic, 2008). 

 Migration is the pivotal parameters in the metastatic cascade. The lymph 

nodes are the one of major routes which cancer cell uses them to migrate through the 

body via the lymphatic system. Therefore, lymph node metastases in cancer are a 

good indicator for patient’s survival and prognostic indicator of whether distal 

metastases will develop. A previous study indicated that NSCLC show characteristic 

of stem cells (Krystal et al., 1996) which could migrate and lead to metastasis then 

successful colonization at target organ. For beginning of migration, cancer cell need 

changes in cell motility and cytoskeletal reorganization to separate from primary 

tumor. The most common form of morphogenesis is epithelial-mesenchymal 

transition (EMT) which is the process that leads to cell elongation, secretion of 

extracellular enzymes to degrade ECM and migrate out (Ray and Jablons, 2009). 

Molecular mechanism of migration 

 Mechanism of cancer migration can be divided into 5 stages including 

First: Cell membrane was forced in a specific direction by connecting 

between adaptor proteins and stretching actin filaments. The actin connects to the 
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actin relating protein 2/3 (ARP2/3) complex that links to an adaptor protein called 

Wiscott-Aldrich syndrome protein or WASP to form actin polymerization (Rohatgi et 

al., 1999). Complex of ARP2/3/WASP can attach to clustered phosphoinosites (PIPs) 

to stay inside plasma membrane (Rohatgi et al., 1999). Moreover, there is the 

interaction between ARP2/3 and pre-existing actin filament to form branching of the 

actin filament network organization (Blanchoin et al., 2000). The ability of PIPs also 

activates guanine-nucleotide exchange factors (GEFs) which regulate Rac, CDC42 

and RHO which are the family of small GTPases protein (Kaibuchi, Kuroda, and 

Amano, 1999). Furthermore, CDC42 can link both of PIPs and WASP that lead to 

stimulate formation of the filopodia or pseudopod extensions which are essential 

structure for cancer motility (Guillou et al., 2008; Nobes and Hall, 1995). PIPS can be 

produced by two enzymes, phosphatidylinositol 3-kinase (PI3K) and 

phosphatidylinositol 4, 5-kinase (PI45K; Ren et al., 1996; Tsutsumi, Gupta, Hogan et 

al., 2002). 

Second: ECM ligands link to integrins result in creating of clustered integrin 

in inner of plasma membrane (Zamir and Geiger, 2001). After integrin clustering, the 

adaptor and signaling protein are recruited and phosphorylated for signal generation 

into the cell (Hynes, 2002). Integrin in the inner part of plasma membrane can interact 

with FAK or several important proteins (Miyamoto et al., 1995). These essential 

proteins can connect to the adaptor protein to induce the actin-binding proteins or 

ABP with target protein including PI3K enzyme or RHO GTPases (Cdc42) to focal 

contact (Zamir and Geiger, 2001). Therefore, signaling pathway from PI3K and RHO 

GTPases impact the alteration of the assembly of focal contact (Hynes, 2002; Degani 

et al., 2002). 
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Third: Focal contacts recruit the surface proteases to cleave ECM 

composition including collagen, fibronectin and pro-matrix metalloproteinase proteins 

(MMPs) which produce active MMPs namely MMP-2 (Ohuchi et al., 1997). 

Fourth: Active myosin (Actomyosin) links to actin filaments for contraction 

of cell (Cramer, 1999). Myosin light chain or MLC can be activated by myosin light-

chain kinase (MLCK) lead to stimulation of myosin II (Kamm and Stull, 2001). MLC 

phosphatase (MLCPtase) also regulates function of MLC by dephosphorylation result 

in deactivation of MLC (Kamm and Stull, 2001). Actomyosin contraction is 

modulated by ROCK, an effector of the small GTPase Rho, for phosphorylation and 

inhibition of MLCPtase (Katoh et al., 2001). 

Fifth: Various mechanisms cause focal adhesion disassembly at trailing edge 

such as phosphorylation of FAK at tyrosine 397 can induce focal adhesion turnover 

(Hamadi et al., 2005). As cell moves forward, there are proteolytic cleavage of 

adhesion receptor to weaken focal contact and the gathering of collagen fragments 

(Carragher, Levkau, Ross et al., 1999). Finally integrins can internalize by 

endocytosis for detachment from substrate and recycling to the leading edge or 

accumulate onto the substrate after focal adhesion disassembly (Bretscher, 1996). 

 As the stage that mention above, we have focused on three proteins that play 

an important role for migration including FAK, Akt and Cdc42. 

Focal adhesion kinase (FAK)  

 Focal adhesion kinase, which is a member of non-receptor protein tyrosine 

kinase (PTK), is found in many cell types or tissues and also expressed in the 

mammal and the lower eukaryotic organisms. Structure of FAK consists of 3 domains 

including a central catalytic domain, non-catalytic domain including N- terminal 
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domains and C-terminal domains (Parsons, 2003). There is a section of N-terminal 

domain shows the same sequence of a family of protein called FERM domain and its 

role is unclear in FAK (Parsons, 2003). Generally, members of this protein connect 

transmembrane glycoproteins to the actin cytoskeleton. The N-terminal domain is 

linked to the tail of ß-integrin subunits in the cytoplasmic domain (in vitro model; 

Parsons, 2003). Moreover, previous evidence shows that the adhesion protein called 

talin uses its FERM domain connects to the cytoplasmic part of ß3 integrin tails then 

modulate the integrin stimulation (Hynes, 2002). 

The C-terminal domain of FAK is essential for FAK signaling and has many 

protein-protein interaction sites (Sieg et al., 1999). There is a ~100 residue sequence 

called FAT (focal-adhesion targeting) which designates FAK to form adhesion 

complexes (Bertolucci, Guibao and Zheng, 2005). So this sequence is important and 

necessary for targeting FAK to adhesion complexes (Bertolucci, Guibao and Zheng, 

2005).  

Phosphorylation of FAK at Tyr397 or various areas within kinase and the C-

terminal domains can cause integrin clustering (Calalb et al., 1995). Furthermore, 

phosphorylation of Tyr397 results from temporary dimerization of FAK proteins as 

well as associates with increased catalytic activity of FAK (Bertolucci, Guibao and 

Zheng, 2005). Interestingly, phosphorylation at Tyr576 and Tyr577, which are two 

conserved residues sited in central kinase domain, are found to be important as well as 

phosphorylation at Tyr397 (Calalb et al., 1995). Phosphorylation of these tyrosine 

positions is essential for FAK signaling and activation to the following effect proteins 

(Calalb et al., 1995). 
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Figure 2. Molecular structure of FAK (Parsons, 2003) 

 Phosphorylation of Tyr397 is also found to be a critical step to recruit many 

SH2-containing proteins such as the subunit of phosphoinositide 3- kinase (PI 3-

kinase; Chen et al., 1996) which can activate its downstream effector, protein kinase 

B or Akt. 

 As mentioned above, the C-terminal domain has many protein-protein 

interactions sites. There are two important sites that bind to protein paxillin in the 

FAT domain and consist of the sites for SH3 containing proteins (SI and SII in Figure 

2; Parsons, 2003). The small GTPase proteins including CDC42 connect to FAK at 

the site II motif and play an essential role in cytoskeleton organization (Liu et al., 

2002). 
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FAK in cell migration 

 Over expressions of pFAK were found in many type of cancer such as lung, 

and ovarian cancers (Imaizumi et al., 1997; Grisaru-Granovsky et al., 2005). Many 

reasonable studies indicate the essential role of FAK in the control of cell motility. 

Interestingly, Knockdown of FAK exhibits slow spread of cell on the extracellular 

matrix protein, an accumulated number of obvious focal contacts as well as a slow of 

migration process in the response to haptotactics and chemotactic attractants (Sieg et 

al., 1999; Sieg et al., 2000). The FRNK (FAK-related non kinase) section is found in 

non-catalytic C-terminal domain of FAK. An increased expression of FRNK can slow 

down the rate of cell spreading, haptotaxis and chemotaxis of cell migration (Sieg et 

al., 1999). Therefore, effective outcomes of FAK signaling require essential key 

regulatory proteins. Moreover, the study of FAK in Chinese hamster ovary (CHO) 

cells show that overexpression of FAK in this cell can increase cell motility (Cary et 

al., 1996). In FAK siRNA transfected cells, wildtype FAK can restore cell motility of 

these cells by reconstitution technique, however, using of FAK that lack kinase 

activity or capability to link Src family kinase or Site I mutation cannot improve 

motility (Sieg et al., 1999). Previous study also indicates that there is relation between 

FAK-deficient cells and the regulation of Rho-regulated contractility (Chen et al., 

2002). 

Protein kinase B (Akt)  

 Protein kinase B or known as Akt family members are downstream of the 

PI3K signaling. Akt can be activated by several agonists such as growth factors or 

many cytokines (Stambolic and Woodgett, 2006). After Akt is stimulated, it can 
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control many essential functions of the cell namely proliferation (increased number of 

cell), growth (increased size of cell), survivability of cells or many aspects of 

intermediary metabolism (Stambolic and Woodgett, 2006). 

Protein kinase B in cell migration  

The role of protein kinase B/Akt in regulation of cell migration has garnered 

increased researcher attention in many years. For example, the study of the role of Akt 

in squamous cell carcinoma reveal that Akt can promote the epithelial to 

mesenchymal transition (EMT) and also increase the motility and invasion of this 

lung cancer cell (Grille et al., 2003). Akt knockdown in murine thyroid cancer model 

exhibits slow tumor progression (Saji et al. 2012). Down-regulation of pAkt also 

decreases cancer migration (Lee et al. 2010). Moreover, Akt regulate stabilization of 

microtubule, which has an essential role for mobile cell (Onishi et al., 2007). 

Cell cycle division 42 (Cdc42) 

Cdc42, a member of the Rho family small GTPase, has regulatory functions 

for cytoskeleton organization, intercellular communication for many physiological 

procedures including the proliferation of cell, migration, invasion, control the 

direction of cell and the growth of cell (Sinha and Yang, 2008). Interestingly, there 

are many disorder conditions that have malfunction of Cdc42 namely degenerative 

disorder of neuron, cardiac disorder and carcinoma (Schmidt and Hall, 2002). Cdc42 

is activated by guanine nucleotide exchange factors or GEFs which exchange GDP 

(guanosine diphosphate)-Cdc42 form to GTP (guanosine triphosphate)-Cdc42 form 

for Cdc42 stimulation (Schmidt & Hall, 2002; Sinha and Yang, 2008). Following 
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activated Cdc42, it can send signal that affect many downstream effectors lead to 

many physiological processes as mentioned above. 

Cell cycle division 42 in cell migration 

  Cdc42 affects the motility of cell by various processes such as modulation of 

cytoskeleton structure namely actin and tubulin, and membrane dynamics by 

stimulation many effector proteins like many protein kinases (Sinha and Yang, 2008). 

 Cdc42 also implicates in filopodia formation by actin polymerization. 

Filopodia locate at the front of mobile cell and have a critical function for direction of 

cell motility (Raftopoulou and Hall, 2004). 

 Overexpression of Cdc42 is found to increase motility of many cancers from 

many studies (Jiang et al., 2011; Kamai et al., 2004). 

 Cdc42-knock down cell has generated less metastasis compared to the control 

cells (Reymond et al., 2012). 

Filopodia 

 Filopodia are the protrusion structures of actin containing cell membrane and 

found at the outer edge of a mobile cell (Mattila and Lappalainen, 2008). 

Characteristics of filopodia are thin filament about 0.1-0.3 µm long, finger-like 

arrangements which are consist of polymerization of actin (Mattila and Lappalainen, 

2008). Filopodia play an essential role in many basic physiological functions of cells 

including cell movement or cell migration. Filopodia also use many receptor for direct 

the signal transduction of several molecules and extracellular matrix molecules 
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(Mattila and Lappalainen, 2008). Recent study of the relationship between filopodia 

and Cdc42 exhibit that Cdc42 has been implicated in the formation of filopodia 

(Guillou et al., 2008). 

Artonin E 

 Artonin E is a prenylflavone as shown in figure 3A. It was isolated as a yellow 

powder from stem bark of Hat-nun (Artocarpus gomezianus) in Moraceae family as 

shown in figure 3B. This plant is a tree widely distributed throughout in Thailand 

(Sritularak et al., 2010) and its stem bark has been used as traditional medicine in 

many indications such as relieving fever, deworming, and antiflatulent (Seepin, 2009). 

  Chemical formula of artonin E is C25H24O7 and its molecular weight is 436. 

Artonin E can be dissolved in ethanol. Artonin E’s melting point is 244-248 °C at 760 

mmHg respectively (Hano et al., 1990). 

 

 

 

 

 

 

Figure 3.  A. Basic Structure of Artonin E            
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B. Artocarpus gomezianus (Seepin, 2009) 

Research of Artonin E 

 Antioxidant activity of artonin E was investigated in vitro assay using DPPH 

assay and nitric oxide inhibitory assay (Sritularak et al., 2010). 

 Artonin E also has been found in Artocarpus lowii, A. scortechinii, A. 

teysmanii (Shajarahtunnur, 2006), A. altilis (Boonphong et al., 2007), A. rigida 

(Suhartati, Yandri and Hadi, 2008). Artonin E was shown to inhibit the platelet 
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aggregation by block adenosine diphosphate activity compared to aspirin 

(Shajarahtunnur, 2006). 

 Moreover, antitubercular and antimalarial ability of artonin E have been 

demonstrated (Boonphong et al., 2007). Artonin E also exhibits promising property 

for antiasthma activity by inhibition of arachidonate 5-lipoxygenase (Reddy et al., 

1991). In antibacterial activity, artonin E can against some bacteria namely 

Escherichia coli and Bacillus subtilis (Suhartati, Yandri and Hadi, 2008).  

 Interestingly, recent studies have demonstrated anticancer activity of artonin 

E. Artonin E can against the growth of breast carcinoma cell line compared to 

tamoxifen (Shajarahtunnur, 2006), inhibit the proliferation of leukemia P-388 cell 

(Suhartati, Yandri and Hadi, 2008), also show toxic effect against oral squamous 

carcinoma (KB cell) and breast carcinoma (Boonphong et al., 2007). 

 Finally, Artonin E exhibits anti-metastasis activity of cancer cell by anoikis 

sensitization (Wongpankam, 2012). 

However, the ability of artonin E on cancer cell migration which is the early 

step of metastasis is waiting for investigation.  



 
 

 
 

CHAPTER III

MATERIALS AND METHODS 

 

1. Chemicals and reagents 

Artonin E, a yellow powder, was obtained from Associate Professor Boonchoo 

Sritulalak. Hoechst 33342, propidium iodide (PI), 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), dimethyl sulfoxide (DMSO) were purchased 

from Sigma Chemical, Inc. (St. Louis, MO). Primary and secondary Antibodies for 

western blot including Cdc42, pFAK, FAK, pAkt, Akt and β-actin rabbit antibody 

were purchased from Cell Signaling Technology, Inc. (Danver, USA). 

2. Instruments  

- Analyst/PC densitometry software  (Bio-Rad, USA) 

- Automated cell counter (Bio-Rad, USA) 

- Autopipette: 0.2-2 μl, 2-20 μl, 20-200 μl and 100-1,000 μl 

- Cell culture plate: 6-well and 96-well (Costar) 

- Centrifuge 

- Chemiluminescence substrate (Supersignal West Pico; Pierce) 

- Fluorescence microplate reader (SpectraMax M5, Molecular Devices) 

- Fluorescence microscope (Olympus IX51 with DP70, NY) 

- Laminar flow cabinet, humidified incubator 

- Mini Trans-Blot cell and PowerPac Basic Power Supply (Bio-Rad, USA) 

- Nitrocellulose membranes (Bio-Rad, USA) 
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- pH meter 

- Vertex mixer 

3. Test compound preparation 

Artonin E was dissolved in ethanol and Roswell Park Memorial Institute 

medium (RPMI) 1640 to achieve designed concentrations containing less than 0.5% 

ethanol. 

4. Cells culture 

Human lung cancer cells namely Human lung cancer H460 (Large cell lung 

cancer), H23 (adenocarcinoma), H292 (mucoepidermoid pulmonary carcinoma) and 

A549 (adenocarcinoma) cells were purchased from the American Type Culture 

Collection (Manassas, VA, USA). H460, H292, H23 cells were cultured in RPMI 

1640 and A549 cells were cultured in DMEM containing 10% fetal bovine serum 

(FBS), 2 mM L-glutamine, and 100 units/mL penicillin/streptomycin in under certain 

circumstance (5% carbon dioxide at 37 °C). 
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5. Experimental design 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Experimental design of this study 
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5.1. Investigation on cellular toxicity induced by artonin E in human lung 

cancer H460 cells 

To determine sub-toxic concentrations of artonin E that didn’t significantly 

affect H460 cell viability compare to untreated group, cell survival was examined by 

MTT assay which measures activity of mitochondria dehydrogenase enzyme. Cells 

were seeded at 1 x 104 cells per well in a 96-well plate 12 h. Cells were treated with 

various concentrations of artonin E (0-50 µg/ml) and incubated for 24 h. Cells were 

incubated with 100 μl of 500 μg/ml MTT solution for 4 h at 37 °C. Then, MTT 

solution was replaced with 100 μl of DMSO which dissolved MTT formazan crystal. 

Finally, fluorescence microplate reader was performed to measure fluorescence 

intensity of formazan product at optical density (OD) 570 nm. Rate of cell viability 

(%) was calculated as this formula 

 Cell viability (%) =    OD570 of treatment × 100 

        OD570 of control 

5.2. Investigation on nuclear morphology induced by artonin E in human lung 

cancer H460 cells 

To determine whether artonin E caused apoptosis or necrosis in H460 cell, 

Hoechst 33342 and PI co-staining assay were used to detect mode of cell death. Cells 

were seeded at 1 x 104 cells per well in a 96-well plate 12 h. Cells were treated with 

sub-toxic concentrations of artonin E (0-0.5 µg/ml) for 24 h cells were then incubated 

with 10 μM of the Hoechst 33342 and 5 μg/mL PI dye for 30 min at room 

temperature. The characteristics of the apoptotic cells were chromatin condensation or 
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fragmentation of nuclei. For analyzing apoptotic or necrotic cells, a fluorescence 

microscope was used to distinguish these cells. 

5.3.  Investigation effect of artonin E on proliferation of human lung cancer 

H460 cells 

 To study effect of artonin E on cell proliferation, MTT assay was used as 

describe previously. Cells were seeded at 5 x 103 cells per well in a 96-well plate 12 h. 

Cells were treated with sub-toxic concentrations (0-0.5 µg/ml) of artonin E and 

incubated for 12, 24, 48 and 72 h. Then, cell viability was examined by MTT assay. 

5.4. Investigation effect of artonin E on migration of human lung cancer H460 

cells 

To study effect of sub-toxic concentrations of artonin E on cell migration, the 

ability of H460 cells on cell migration was evaluated using scratch assay at various 

times. A space between cells was created by using 1-mm width tip on a monolayer of 

cells in 96-well plate. After washing with phosphate buffer saline (PBS), cells were 

incubated with sub-toxic concentrations of artonin E (0-0.5 µg/ml) and allowed to 

migrate for indicated time (24, 48 and 72 h). Pictures were taken under a phase 

contrast microscope and the distance between cells at each time was measured by 

using Olympus DP controller software. The analysis of cell migration was done by 

using an average space from those random fields of view, and % change at various 

times was calculated using the following formula: 
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% change at time 24, 48 and 72 h 

= (Average space at time 0 h) - (Average space at time 24, 48 and 72 h) × 100  

 

Relative cell migration was calculated by dividing the percentage change in 

the wound space of treated cells by that of the control cells in each experiment 

5.5. Investigation of cell morphology induced by artonin E in human lung 

cancer H460 cells 

 To study the effect of artonin E on cell morphology, H460 cells were stained 

with phallodin.  Cells were seeded at 5 x 103 cells per well in a 96-well plate 12 h. 

Cells were treated with sub-toxic concentrations of artonin E (0-0.5 µg/ml) for 24 h. 

After rinsing with PBS, cells were fixed in 4% paraformaldehyde in PBS for 10 min 

at room temperature. Cells were then permeabilized by 0.1% Triton-X100 in PBS for 

4 min, washed with PBS 3 times and blocked with 0.2% BSA for 30 min. After 

washing cells with PBS 3 times, cells were labeled with rhodamine-phalloidin diluted 

1:100 in PBS for 15 min and washed with PBS 3 times 5 min each. Picture of stained-

cell were taken under fluorescence microscope.  

5.6. Investigation on molecular mechanisms that induced by artonin E in 

human lung cancer H460 cells 

 To identify the underlying mechanism of artonin E-inhibited migration in 

H460 cells, western blot analysis was performed to evaluate p-FAK, FAK, p-Akt, Akt 

and Cdc42 expression. Cells were seeded at the number of 5 × 105 cells per well onto 

6-well plate 12 h and treated with sub-toxic concentrations of artonin E for 24 h and 

Average space at time 0 h 
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72 h.  Cells were lysed with lysis buffer (20 mM Tris-HCl (pH 7.5), 0.5% Triton X-100, 150 

mM sodium chloride, 10% glycerol, 1 mM sodium orthovanadate, 50 mM sodium fluoride, 

100 mM phenylmethylsulfonyl fluoride, and cocktail protease inhibitor) for 1 h on ice. After 

collecting cell lysate, protein content was quantified using the Bradford method (Bio-Rad 

Laboratories, Hercules, CA). Proteins (60-80 μg) were resolved on 10% SDS-polyacrylamide 

gel electrophoresis and then transferred onto nitrocellulose membranes using wet transfer 

method. The membranes were blocked for 1 h in 5% skim milk in TBST (25 mM Tris-HCl 

(pH 7.5), 125 mM NaCl, 0.05% Tween 20). After washing twice with TBST for 7 min each, 

the transferred membranes were incubated with the primary antibodies at 4°C for 10 h and 

washed 3 times with TBST for 7 min each then incubated with horseradish peroxidase–

coupled isotype-specific secondary antibodies for 2 h at room temperature. The immune 

complexes were detected by enhanced with chemiluminescence substrate and quantified using 

analyst/PC densitometry software normalized to the level of β-actin protein. 

5.7. Investigation effect of artonin E on migration of other type of human lung 

cancer cells 

To study effect of sub-toxic concentrations of artonin E on cell migration in 

the other types of human lung cancer cells including H292, H23 and A549, the ability 

of these cells on cell migration was evaluated using scratch assay as describe 

previously at 24, 48 and 72 h.  

6. Statistical Analysis 

The data were presented as the mean ± SD from at least three independent 

experiments and were normalized to result in the untreated control cells. The 
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differences between group was performed using one way ANOVA (analysis of 

variance) followed by Duncan’s test at a significance level of p-values less than 0.05. 

7. Conceptual framework 

 

 

 

 

 

 

 

Figure 5. Conceptual framework of this study 
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CHAPTER IV 

RESULTS 

 

1. Artonin E induces apoptosis and does not affect proliferation on human non-

small cell lung cancer H460 cells. 

The present study investigated anti-cancer activity of artonin E using H460 

human lung cancer cells by incubating the cells in the presence or absence of artonin 

E (0-50 µg/ml) for 24 h, and cell viability was analyzed. Figure 6A shows that 

treatment with artonin E caused a concentration-dependent decrease in cell survival 

and 50 % inhibition (IC50) was observed in response to artonin E at the concentration 

of 31.93 µg/ml. Because the study aimed to investigate anti-migration activity of the 

compound, concentrations of artonin E which cause neither toxic nor proliferative 

effects were clarified. Results indicated that treatment of artonin E at the 

concentrations 0.05–0.5 µg/ml for 24 h caused no significant effect on H460 cell 

viability (figure 6B). The nuclear morphology study shown in figure 6C supported the 

above finding that no apoptotic and necrotic cell death was detected in response to 

artonin E at indicated concentrations. In addition, artonin E at the concentrations of 

0.05-0.5 µg/ml, did not significantly alter proliferation of the cells up to 72 h (figure 

6D).    
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Figure 6. Effect of artonin E on cell viability of human lung cancer H460 cells. Cells 

were treated with various concentrations of artonin E (0-50 µg/ml) for 24 h. A: 

Cytotoxicity was determined by MTT assay and concentration for 50% cell survival 

(IC50) was determined. B: Percentage of cell viability and cell apoptosis were 

analyzed by MTT assay and Hoechst 33342 staining assays, respectively. C: 

Morphology of apoptotic nuclei stained with Hoechst 33342 and PI (Apoptotic cells 

are indicated by arrow). D: Proliferation of H460 cells in response to artonin E 0.05-

0.5 µg/ml for 12, 24, 48, and 72 h was investigated by MTT assay. Values are means 

of triplicate samples ± SD. 
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2. Artonin E inhibits migration of H460 cells. 

To examine the effect of artonin E on migration of the cells, scratch assay was 

performed. Briefly, the confluent monolayer of H460 cells was scratched and cultured 

with or without sub-toxic concentrations of artonin E (0.05-0.5 µg/ml) for 24, 48, and 

72 h. Figure 7A and 7B show that the incubation of artonin E at the concentration of 

0.5 µg/ml significantly decreased the spreading of H460 cells to the wound area as 

early as 24 h whereas artonin E at 0.05 µg/ml had no significant effect on cell 

migration in comparison to that of non-treated control. In addition, artonin E at the 

concentrations of 0.1 and 0.25 µg/ml significantly inhibited migration of H460 cells at 

72 h. These results indicated that artonin E possess ability to inhibit cancer cell 

migration.  
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Figure 7. Effects of artonin E on H460 cell migration. For migration assay, scratch 

assay was performed. Wound space was made and the cells were treated with sub-

toxic concentrations of artonin E for various times. A: Wound space was visualized 

under a phase contrast microscope at indicated times. B: The relative cell migration 

was analyzed by comparison of the relative change in wound space of the treated 

groups over untreated control. 
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3. Artonin E inhibits filopodia formation. 

Having shown that artonin E at the sub-toxic concentration significant 

inhibited lung cancer cell migration, we further tested whether the compound could 

have an effect on filopodia formation in these cells. Cells were treated with 0-0.5 

µg/ml of artonin E and the phalloidin-labeled filopodia were detected under 

fluorescence microscope. Figure 8 shows that in non-treated control, cells exhibited 

several membrane protrusions of filopodia. Interestingly, treatment with artonin E 

dramatically decreased directional stress fiber and filopodia in H460 cells in 

comparison to that of un-treated cells. These data and above findings suggested that 

artonin E have a negative effect on cell migration. 
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Figure 8. Effect of artonin E on filopodia alteration. After treating with sub-toxic 

concentrations of artonin E for 24 h, cells were stained with phalloidin and filopodia 

was examined under fluorescent microscope (n=3). Filopodia are indicated by arrow. 
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4. Artonin E inhibits FAK signaling and suppresses Cdc42 expression in H460 

cells. 

In order to clarify the mechanism of artonin E in suppression of cancer cell 

motility, the expression level and activation status of protein regulators of cell 

motility including FAK and Akt were investigated. Cells were seeded and incubated 

in the presence or absence of artonin E (0.05-0.5 µg/ml) and the expressions of 

proteins were determined by western blotting, as mentioned in Materials and 

Methods. After 24 h treatment with artonin E (0.5 µg/ml), it significantly decreased 

the level of phosphorylated FAK at Tyr 397 (Activated FAK) and did not effect on 

total FAK as shown in figure 9. We investigated the effect of artonin E on Akt 

activation. Figure 9 demonstrates that artonin E at the concentrations of 0.5 µg/ml 

also significantly decreased phosphorylation of Akt (Ser 473) while had no significant 

effect on total Akt expression.  

We assessed the effect of artonin E on Cdc42 level by western blot analysis. 

Figure 9 shows that the level of Cdc42 protein was found to be down-regulated in 

response to artonin E treatment at the concentrations of 0.25 and 0.5 µg/ml in 

comparison to that of untreated control. 

Furthermore, we investigated effect of artonin E on the expressions of related 

proteins at 72 h as shown in figure 10. While artonin E had only minimal effect on the 

level of total FAK and Akt, treatment of artonin E at the concentrations of 0.1-0.5 

µg/ml significantly decreased the levels of phosphorylated FAK at Tyr 397 (Activated 

FAK) and phosphorylated Akt at Ser 473. These findings indicated that artonin E 

inhibits cell migration via FAK-Akt-dependent mechanism. 
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Together, these results suggest the role of artonin E in attenuation of lung 

cancer cell migration through FAK-Akt-dependent mechanism and via reduction of 

Cdc42. 
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Figure 9. Effect of artonin E on FAK, Akt and Cdc42 proteins for 24 h. A: Cells were 

seeded and treated with various concentrations of artonin E (0–0.5 µg/ml) for 24 h 

and the expressions of pFAK (Tyr 397), FAK, pAkt (Ser 473), Akt and Cdc42 

proteins were determined by Western blotting. To confirm equal loading of samples, 

blots were re-probed with β-actin antibody. B: The immunoblot signals were 

quantified by densitometry and mean data from four independent experiments were 

presented. Values are means of samples ± SD. *p < 0.05 versus untreated group. 
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Figure 10. Effect of artonin E on FAK, Akt proteins for 72 h. A: Cells were seeded 

and treated with various concentrations of artonin E (0–0.5 µg/ml) for 72 h and the 

expressions of pFAK (Tyr 397), FAK, pAkt (Ser 473), Akt proteins were determined 

by Western blotting. To confirm equal loading of samples, blots were re-probed with 

β-actin antibody. B: The immunoblot signals were quantified by densitometry and 

mean data from four independent experiments were presented. Values are means of 

samples ± SD. *p < 0.05 versus untreated group. 
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5. Artonin E inhibits migration of other lung cancer cells. 

In order to support the negative regulatory activity of artonin E on lung cancer 

cell migration and invasion, human lung cancer cells, namely H292, H23 and A549 

cells. 

H292 cells 

Human lung cancer H292 cells were treated with the non-toxic concentrations 

of artonin E (0-0.5 µg/ml) and subjected to migration assays. Our results shown in the 

figure 10A showed that artonin E at the concentrations of 0.25 and 0.5 µg/ml 

significantly inhibited migratory behavior of H292 cells in comparison to that of non-

treated control of each cells.  
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Figure 11. Effect of artonin E on migration of H292 cells. H292 cells were subjected 

to migration assay and visualized under a phase contrast microscope. The relative cell 

migration of H292 cells was shown. Values are means of triplicate samples ± SD. 

*p<0.05 versus untreated control. 
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H23 cells 

Human lung cancer H23 cells were treated with the non-toxic concentrations 

of artonin E (0-0.5 µg/ml) and subjected to migration assays. Our results shown in the 

figure 11 showed that artonin E at the concentrations of 0.25 and 0.5 µg/ml 

significantly inhibited migratory behavior of H23 cells in comparison to that of non-

treated control of each cells.  
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Figure 12. Effect of artonin E on migration of H23 cells. H23 cells were subjected to 

migration assay and visualized under a phase contrast microscope. The relative cell 

migration of H23 cells was shown. Values are means of triplicate samples ± SD. 

*p<0.05 versus untreated control. 
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A549 cells 

Human lung cancer A549 cells were treated with the non-toxic concentrations 

of artonin E (0-0.5 µg/ml) and subjected to migration assays. Our results shown in the 

figure 12 showed that artonin E at the concentrations of 0.25 and 0.5 µg/ml 

significantly inhibited migratory behavior of A549 cells in comparison to that of non-

treated control of each cells.  

These data have strengthen the observations of the present study that artonin E 

possess ability to inhibit migration of lung cancer cells. 
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Figure 13. Effect of artonin E on migration of A549 cells. A549 cells were subjected 

to migration assay and visualized under a phase contrast microscope. The relative cell 

migration of A549 cells was shown. Values are means of triplicate samples ± SD. 

*p<0.05 versus untreated control. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

 

Advance and novel strategies for cancer therapies involving those inhibit 

metastasis of cancer have garnered increasing attention these days. So far, limited 

efficacy has been obtained from the available therapy resulted in only 68 % 5-year 

survival of cancer patients in the United States (Merrill and Hunter, 2010), and the 

major cause of death found in such patients involves metastasis. In patient with 

NSCLC, 40% of them already have hematogenous metastases after initial diagnosis 

(Ray and Jablons, 2009). Consequently, almost of them will finally die from such 

disease. As a hallmark of cancer metastasis, ability of cancer cells to migrate away 

from original tumor and invade to the blood or lymphatic circulations is considerably 

important (Hanahan and Weinberg, 2000). Moreover, migration is the critical 

parameters in the metastatic cascade. The lymph nodes are one of the major routes 

which cancer cell uses them to migrate through the body via the lymphatic system. 

Therefore, lymph node metastases in cancer are a good indicator for patient’s survival 

and prognostic indicator of whether distal metastases will develop. 

Although anti-cancer activity of artonin E was previously demonstrated in 

breast cancer cell model (Shajarahtunnur, 2006), it is not clear whether such a 

compound cause cytotoxic to the lung cancer cells. Furthermore, artonin E was 

reported to have many pharmacological properties such as antiasthma activity by 

inhibition of arachidonate 5-lipoxygenase (Reddy et al., 1991), antioxidant activity by 

inhibition of DPPH radical activity (Sritularak et al., 2010). Herein we demonstrated 
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for the first time that artonin E a plant-originated pure compound has a promising 

ability to inhibit lung cancer cell migration. 

PTK families, including FAK, own the potential role in metastasis of cancer 

cells such as   angiogenesis, tumor cell distribution, and cell motility (Germanov, 

Berman, and Guernsey, 2006). Overexpression or deregulations of PTK mostly occur 

in several cancer cells (Eccles, 2005; Onn, Tsuboi, and Thatcher, 2004). 

From western blot analysis, we found that artonin E had different effect on the 

expressions of pFAK and pAkt proteins at 24 and 72 h. These results were consistent 

with effect of artonin E on scratch assay at 24 and 72 h. Artonin E (0.5 µg/ml) could 

inhibit migration of H460 cells and suppress the expressions of pFAK and pAkt at 24 

h. Moreover, artonin E (0.1-0.5 µg/ml) could decrease migration of H460 cells and 

the expressions of pFAK and pAkt at 72h. 

 Activation of cancer cell movements involves several mechanistic pathway 

including FAK (Bolos et al., 2010), Akt (Kim et al., 2001) and Cdc42 (Sinha and 

Yang, 2008). Tumor progression and metastasis can be stimulated by FAK signaling 

pathways through the regulation of cell migration. It has been well established that the 

phosphorylation of FAK at Try 397 activated its kinase activity (Bolos et al., 2010). 

Mutagenesis of FAK gene by insertion technique at 397 site eliminated ability of 

FAK to activate motility (Cary et al., 1996). Likewise, many studies demonstrate that 

phosphorylation of FAK at Tyr 397 is necessary for capability of FAK to promote cell 

migration (Niwa et al., 2005; Sieg et al., 2000; Zhao and Guan, 2009). Moreover, 

FAK can transduce the signal through the activation of PI3K-Akt pathway. Akt 

activation was shown to be associated with cell migration by several means (Grille et 
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al., 2003; Kim et al., 2001). Akt can regulate the stabilization of microtubules, which 

has an essential role for mobile cell (Onishi et al., 2007) and also increase 

invasiveness of cell by promoting matrix metalloproteinase production (Kim et al., 

2001). 

During cell movement, the membrane protrusions called filopodia were shown 

to be increased and the formation of filopodia was shown to tightly involve with 

cancer cell migration and invasion (Arjonen et al., 2011). Cdc42 protein, a member of 

Rho GTPase families, has been shown to regulate many cellular processes including 

actin reorganization, cell polarity (Schmitz et al., 2000). Cdc42 is also implicated in 

filopodia formation which leads to migration and invasion of cancer cell (Machesky, 

2008). Some evidences exhibit that cdc42 has been overexpressed in many types of 

human carcinoma resulting in aggressiveness of cancer (Jiang et al., 2011; Kamai et 

al., 2004). Evidence indicated that knockdown of Cdc42 resulted in inhibition of 

cancer cell migration and invasion suggesting significance impact of this protein on 

cell motility (Raymond et al., 2012). Previously, curcumin was shown to down-

regulated Cdc42 expression and inhibited migration and invasion of lung cancer cell 

lines (Chen et al., 2012). Since the Cdc42 was shown to be up-regulated in primary 

lung cancer cells and such an increase of the protein was shown to associate with high 

TNM stage and lymph node metastasis, it is interesting to investigate whether artonin 

E treatment could affect cellular Cdc42 level. In the present study, we found that 

treatment of the lung cancer H460 cells with artonin E resulted in the reduction of 

cellular Cdc42 level (Figure 5A and B), along with the finding indicated that filopodia 

protrusions were decrease in the cells treated with artonin E (Figure 8), this substance 

may, at least in part, inhibit migration through Cdc42 suppression. 
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In addition, we have provided evidence indicating that the inhibitory effect of 

artonin E on cancer cell motility can also be observed in other lung cancer cell 

models. Three human lung carcinoma cell lines, namely, H292, H23 and A549, were 

tested with sub-toxic concentrations of artonin E and the results indicated that artonin 

E had similar activities in these cells as those found in H460 cells. Nevertheless, the 

treatment of artonin E (0.25 µg/ml) for 24 h did not affect migration of H460 cells, 

this effect was due to characteristic and aggressiveness of H460 (Large cell lung 

cancer; Lynne, 2012). 

Migration inhibitory of artonin E by down regulation of pFAK, pAkt and 

Cdc42 proteins might be due to anti-EGFR properties (Kandaswami et al., 2005) or 

anti-oxidant effect like many flavonoids (Adhikary et al., 2010; Lai et al., 2013). 

Previous study shows that the inhibition of hydroxyl radical can inhibit migration of 

lung cancer cells (Kowitdamrong et al., 2013). 

This investigation reveals that artonin E can inhibit migration of lung cancer 

cells via FAK signaling pathways and suppression of Cdc42 therefore artonin E may 

be a promising agent for anti-metastasis therapy or used as adjuvant with standard 

therapies to improve survival of cancer patients. 
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APPENDIX 

TABLE OF EXPERIMENTAL RESULTS 

 

Table 1. Percentage of H460 cell viability after treatment with various concentrations 

of artonin E at 24 hours was determined by MTT assay. 

Artonin E (µg/ml) Cell viability (%) 

control 100±1.41 

1 99.32±0.12 

5 97.66±0.90 

10 89.11±0.80 

20 83.37±1.04 

25 70.04±1.41 

30 48.01±7.11 

40 33.05±2.94 

50 14.42±0.16 

 

Each value represents the mean ± S.D. of three independent experiments. 
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Table 2. Percentage of H460 cell viability after treatment with sub-toxic 

concentrations of artonin E at 24 hours was determined by MTT assay. 

Artonin E(µg/ml) Cell viability (%) 

control 100±0.04 

0.05 87.43±2.59 

0.1 90.58±4.87 

0.25 91.51±3.98 

0.5 89.92±4.62 

 

Each value represents the mean ± S.D. of three independent experiments. 

Table 3. Percentage of H460 cell apoptosis after treatment with sub-toxic 

concentrations of artonin E at 24 hours was determined by Hoechst assay. 

Artonin E(µg/ml) Cell apoptosis (%) 

control 1.72±0.69 

0.05 1.83±1.04 

0.1 1.67±1.04 

0.25 2.00±0.50 

0.5 3.17±1.53 

 

Each value represents the mean ± S.D. of three independent experiments. 
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Table 4. Relative cell proliferation of H460 cell after treatment with sub-toxic 

concentrations of artonin E at various time points was determined by MTT assay. 

      Artonin E(µg/ml) 

Time (h) 

Relative cell growth (% of control) 

0.05 0.1 0.25 0.5 

12 89.74±3.50 89.40±2.73 90.67±4.71 88.37±1.93 

24 86.27±5.01 89.48±6.79 89.70±3.61 88.04±2.14 

48 92.85±2.68 89.72±3.88 88.69±3.60 85.05±2.73 

72 92.43±1.59 90.36±3.88 85.45±5.01 83.98±4.84 

 

Each value represents the mean ± S.D. of three independent experiments. 

Table 5. Relative cell migration of H460 after treatment with sub-toxic concentrations 

of artonin E at various time points was determined by scratch assay. 

      Artonin E(µg/ml) 

Time (h) 

Relative cell migration (of control) 

0.05 0.1 0.25 0.5 

24 1.13±0.10 0.77±0.07 0.86±0.07 0.63±0.07 

48 0.97±0.1 0.81±0.1 0.81±0.07 0.57±0.05* 

72 0.85±0.07 0.72±0.10* 0.72±0.08* 0.54±0.01* 

 

Each value represents the mean ± S.D. of three independent experiments. Asterisks 

refer significant difference from control: *, p < 0.05 determined by One-way ANOVA 

followed by Duncan’s test. 
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Table 6. Relative of various proteins were determined by western blot analysis after 

treatment with sub-toxic concentrations of artonin E at 24 hours for pFAk, FAK, pAkt 

Akt and Cdc42 proteins. 

 

Each value represents the mean ± S.D. three independent experiments. Asterisks refer 

significant difference from control: *, p < 0.05 determined by One-way ANOVA 

followed by Duncan’s test. 

 

 

 

 

 

 

 

    Artonin E(µg/ml)                    

Proteins 

Relative protein level 

control 0.05 0.1 0.25 0.5 

pFAK 1.00±0.01 0.99±0.01 0.97±0.05 0.92±0.02 0.69±0.03* 

FAK 1.00±0.01 1.00±0.01 0.87±0.20 0.93±0.11 1.07±0.09 

pAkt 1.00±0.02 1.01±0.14 1.11±0.25 0.99±0.03 0.36±0.11* 

Akt 1.00±0.01 0.91±0.14 0.92±0.13 0.99±0.02 1.03±0.06 

Cdc42 1.00±0.18 0.91±0.17 0.81±0.15 0.35±0.06* 0.17±0.03* 
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Table 7. Relative of various proteins were determined by western blot analysis after 

treatment with sub-toxic concentrations of artonin E at 72 hours for pFAk, FAK, pAkt 

and Akt proteins. 

 

Each value represents the mean ± S.D. three independent experiments. Asterisks refer 

significant difference from control: *, p < 0.05 determined by One-way ANOVA 

followed by Duncan’s test. 

 

 

 

 

 

 

 

 

 

 

    Artonin E(µg/ml)                    

Proteins 

Relative protein level 

control 0.05 0.1 0.25 0.5 

pFAK 1.00±0.11 0.85±0.09 0.63±0.07* 0.62±0.07* 0.53±0.06* 

FAK 1.00±0.09 1.00±0.09 0.79±0.07 0.96±0.09 1.06±0.09 

pAkt 1.00±0.09 0.99±0.10 0.68±0.08* 0.71±0.07* 0.40±0.03* 

Akt 1.00±0.07 1.01±0.07 0.97±0.06 0.90±0.06 0.89±0.06 
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Table 8. Relative cell migration of H292 after treatment with sub-toxic concentrations 

of artonin E at various time points was determined by scratch assay. 

      Artonin E(µg/ml) 

Time (h) 

Relative cell migration (of control) 

0.25 0.5 

24 0.64±0.14* 0.56±0.12* 

48 0.65±0.09* 0.61±0.02* 

72 0.67±0.08* 0.61±0.11* 

 

Each value represents the mean ± S.D. three independent experiments. Asterisks refer 

significant difference from control: *, p < 0.05 determined by One-way ANOVA 

followed by Duncan’s test. 
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Table 9. Relative cell migration of H23 after treatment with sub-toxic concentrations 

of artonin E at various time points was determined by scratch assay. 

      Artonin E(µg/ml) 

Time (h) 

Relative cell migration (of control) 

0.25 0.5 

24 0.59±0.05* 0.26±0.02* 

48 0.74±0.04* 0.37±0.04* 

72 0.70±0.04* 0.39±0.06* 

 

Each value represents the mean ± S.D. three independent experiments. Asterisks refer 

significant difference from control: *, p < 0.05 determined by One-way ANOVA 

followed by Duncan’s test. 
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Table 10. Relative cell migration of A549 after treatment with sub-toxic 

concentrations of artonin E at various time points was determined by scratch assay. 

      Artonin E(µg/ml) 

Time (h) 

Relative cell migration (of control) 

0.25 0.5 

24 0.72±0.09* 0.53±0.15* 

48 0.80±0.09* 0.58±0.09* 

72 0.79±0.14* 0.57±0.10* 

 

Each value represents the mean ± S.D. of three independent experiments. Asterisks 

refer significant difference from control: *, p < 0.05 determined by One-way ANOVA 

followed by Duncan’s test. 
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