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NOTATIONS

H1(Ω) The Sobolev spaces of functions in L2(Ω) whose first derivatives

are also in L2(Ω)

H1
0 (Ω) The space of functions in H1(Ω) with vanishing on boundary ∂Ω

T A triangulation of Ω

V(T ) The finite element space correspoding to a triangulation T

Pn(T ) The set of all polynomials on T of degree less than or equal to n

B(·, ·) A bilinear form on H1(Ω)×H1(Ω)

〈·, ·〉 The standard inner product on L2(Ω)

‖ · ‖1 The Sobolev norm on the space H1(Ω)

| · |1 The seminorm on the space H1(Ω)

‖ · ‖0 The usual norm on L2(Ω)

‖ · ‖L2(ω) The norm on L2(ω), where ω ⊂ Ω

||| · ||| The energy norm on H1(Ω)



CHAPTER I

INTRODUCTION

The finite element method is a tool widely used for approximating the solution

of partial differential equations (PDEs) based on underlying variational formula-

tion. Nowadays, finite element methods can be applied to more complicated prob-

lems and becomes the efficient tools for large-scale applications in almost every

area of sciences.

Adaptive finite element methods (AFEMs) for the numerical solution of PDEs

started in the last 70’s and now are standard tools in many areas in sciences

and engineering. AFEMs are effective tools to obtain good approximate solutions

with low computational costs, especially in the presence of singularities and in the

problems with boundary layers.

There exists a vast variety of books about finite elements. Here, we only want

to mention the books by Braess [2] and Brenner and Scott [3] as references for

this work. Another basic ingredient for an AFEM is known as a posteriori error

estimator, described in, for example, Ainsworth and Oden [1], Verfürth [15] and

Nochetto et al. [13], which is the main objective of the analysis of adaptive meth-

ods for linear and non-linear problems.

For elliptic PDEs, AFEMs are boiled down to iterations of the form

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

Given a current mesh (triangulation) of the domain and conditions of the prob-

lem, SOLVE finds the approximate solution corresponding to the given mesh;

ESTIMATE computes error estimates in a suitable norm based on a posterior

error estimators to estimate the error of obtained solution for given mesh; MARK

marks the selected element by using a posteriori error estimators; REFINE refines

the marked elements to obtain a finer mesh according to the elements with high
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error estimators. The ultimate purpose is to construct a sequence of approximate

solutions that converges to the exact solution.

For linear elliptic partial differential equations, there are several results of

AFEMs:

• In 1996, Dörfler [6] introduced a crucial marking stratergy and proved the

strict energy error reduction for the Poisson’s equation and provided the

initial mesh satisfying a fineness assumption.

• Morin et al. [11, 12] studied linear elliptic PDEs,

−∇ · (A(x)∇u(x)) = f(x), x ∈ Ω,

for a piecewise constant function A(x). They proved a convergence without

restrictions on the initial mesh and introduced the concepts of data oscilla-

tions and the interior node property, which are very important for obtaining

the convergence of AFEMs.

• Mekchay and Nochetto [10] extended the idea of [11] to obtain the result for

general second order elliptic PDE,

−∇ · (A∇u) + b · ∇u+ cu = f, in Ω,

where A, f, b and c are suitable functions.

• Cascon et al. [4] considered Dirichlet boundary value problem for second

order elliptic PDE,

−div(A∇u) + cu = f, in Ω,

for piecewise Lipschitz function A(x). They obtained quasi-optimal conver-

gence rate without the usages of the local lower bound and interior node

property, as the new idea for convergence.

For nonlinear elliptic partial differential equations, here are some results of

AFEMs:
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• Dörfler [7] developed a robust strategy for nonlinear Poisson equation,

−∆u = f(u), in Ω,

where Ω ⊂ R2 and f ∈ C0,1(R).

• Veeser [14] proved convergence of AFEM for the nonlinear Laplacian:

−div(|∇u|p−2∇u) = f(u), in Ω,

for p ∈ (1,∞), given that f ∈ Lq(Ω), 1
p

+ 1
q

= 1.

• Diening and Kreuzer [5] proved that the AFEM converges for p-Laplacian

with linear rate for

−div(κ+ |∇u|p−2∇u) = f, in Ω,

where p ∈ (1,∞), κ ≥ 0, and f ∈ Lq(Ω), 1
p

+ 1
q

= 1.

• Garau et al. [8] showed that the AFEM converges for the quasi-linear prob-

lems:

−∇ · [α(·, |∇u|2)∇u] = f, in Ω,

where α : Ω× R+ → R+ and f ∈ L2(Ω). Convergence is based on Kačanov

iterations.

In this thesis, we analyze a standard adaptive finite element method for second

order semi-linear elliptic partial differential equations of the form

−∇ · (A(x)∇u(x)) = f(x, u(x)), x ∈ Ω,

where Ω ⊂ R2, for x ∈ Ω, f(x, u(x)) is Lipschitz in the second argument and

A(x) is a positive definite matrix with strictly monotonicity property. Our work

is developed based on the idea of Cascon et al. [4], who studied the linear model,

to obtain contraction property for semi-linear elliptic problem. Our proof is based

on the assumptions that the initial triangulation is sufficiently refined in order to

deal with the nonlinear function f(x, u(x)), which is assumed to be Lipschitz in
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the second variable. For example, the Poisson-Bolztmann equation that deals

with a nonlinear f(x, u(x)) = κ2 sinh(u(x)).

This thesis is organized as follows. In chapter 2, we give some preliminaries,

basic definitions and theorems that are important in formulating and obtaining

the error estimates in order to obtain the convergence. In chapter 3, we analyze

the standard finite element method and AFEM. Here, we construct the crucial

lemmas for obtaining the contraction property. In the last chapter the contraction

property and the convergence results are presented. Finally, we conclude our

finding and provide some ideas for designing AFEM algorithm.



CHAPTER II

PRELIMINALIES

2.1 The Sobolev

We introduce the Sobolev spaces, refer to the book by D. Braess [2]. Let Ω be an

open subset of R2 with piecewise smooth boundary. The Sobolev spaces are built

upon the function space L2(Ω), which consists of all functions u which are square-

integrable over Ω in the sense of Lebesgue measure. The space L2(Ω) becomes a

Hilbert space with the inner product

〈u, v〉 :=

∫
Ω

u(x)v(x)dx

and the corresponding norm

‖u‖0 =
√
〈u, u〉.

Definition 2.1. We say that a given function f ∈ L1(Ω), where

L1(Ω) := {g : Ω → R|
∫

Ω
|g(x)| dx < ∞}, has a weak derivative Dα

wf , provided

there is a function v ∈ L1(Ω) such that∫
Ω

v(x)ϕ(x) dx = (−1)|α|
∫

Ω

f(x)Dαϕ(x) dx, ∀ϕ ∈ C∞0 (Ω),

where α := (α1, α2) is a multi index with |α| = α1 + α2 where α1 and α2 are

nonnegative integers, Dαϕ = ∂α1
∂x1

∂α2
∂x2

ϕ and C∞0 (Ω) is the set of smooth functions

vanshing on ∂Ω . If such a v exists, we define Dα
wf = v. We denote gradient

operator ∇ = (D
(1,0)
w , D

(0,1)
w ) or ∇ = ( ∂

∂x
, ∂
∂y

).
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Definition 2.2. Let H1(Ω) be the set of all functions u in L2(Ω) which processes

weak derivative ∇u. We can define an inner product on H1(Ω) by

〈u, v〉1 := 〈u, v〉+ 〈∇u,∇v〉

with the associated norm

‖u‖1 :=
√
〈u, u〉1 =

√
‖u‖2

0 + ‖∇u‖2
0.

The corresponding semi-norm on H1(Ω) is defined as

|u|1 := ‖∇u‖0.

H1
0 (Ω) is the space of functions in H1(Ω) vanishing on boundary ∂Ω.

Theorem 2.3 (Poincaré inequality). Suppose Ω ⊂ R2 is an open bounded domain.

Then, for all u ∈ H1
0 (Ω),

‖u‖0 ≤ CP‖∇u‖0,

where CP is a constant depending only on Ω.

Proof. See the book of Braess [2], p 30.

We then obtain that for any u ∈ H1
0 (Ω),

|u|1 ≤ ‖u‖1 = ‖∇u‖0 + ‖u‖0 ≤ (1 + CP )‖∇u‖0 = (1 + CP )|u|1.

Thus, | · |1 is equivalent to ‖ · ‖1 on H1
0 (Ω).

Definition 2.4. Let Ω ⊂ R2 be a polygonal domain. A conforming triangulation

(mesh) T of Ω is a collection {T} of triangles (elements) such that:

(i) Ω =
⋃
T∈T

T ;

(ii) for T, T ′ ∈ T and T 6= T ′ the set T ∩ T ′ is empty or consists of a vertex or

a common side.
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Figure 2.1: An example of conforming triangulation for a rectangular domain.

Figure 2.2: A triangulation is nonconforming with hanging node.

Definition 2.5. A family of triangulations {Ti} of Ω is called shape regular pro-

vided that there exists a number κ > 0, shape-regular parameter, such that every

T ∈ Ti for all Ti contains a circle of radius ρT with

hT
ρT
≤ κ, (2.1.1)

where hT is half of the diameter of T , i.e., hT = 1
2

max
x,y∈T

|x− y|.

Figure 2.3: The largest circle inscribed in a triangle

Let T0 be an initial triangulation of Ω. If we decompose a subset of tri-

angles of T0 into subtriangles such that the resulting set of triangles is again a

triangulation of Ω, we call this a refinement of T0.
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Definition 2.6. Let T0 be an initial triangulation of Ω and T the class of all shape-

regular conforming refinements of T0. Given any conforming triangulation T ∈ T,

as define the corresponding finite element space to be the space of continuous

piecewise polynomial functions of degree n ≥ 1,

Vn(T ) := {v ∈ H1
0 (Ω) : v|T ∈ Pn(T ), ∀T ∈ T },

where Pn(T ) is the space of all polynomials on T of degree less than or equal to

n. If there is no ambiguity, we will use V(T ) for simplicity.

Next, we introduce the extension of a function defined on S ⊂ ∂T onto the

triangle T ∈ T . For v : S → R, let E(v) : T → R be the extension of v onto

T such that the value of E(v) is constant along a line parallel to side of T . (see

Figure 2.4).

Figure 2.4: The extension from S to T

Theorem 2.7. Let T be a shape regular triangulation. Then there exists a con-

stant c which depends only on κ such that, for all T ∈ T and all S ∈ ∂T ,

‖v‖L2(S) ≤ ch−1/2‖E(v)‖L2(T ), ∀ v ∈ P2(T ),

where E : L2(S) −→ L2(T ) is the extension of a function on S onto T .

Proof. See equation (8.26) of Lemma 8.3 in the book of Braess [2], p 174.

Theorem 2.8 (Inverse estimates). Let Vn(T ) be a finite element space with a

conforming triangulation T ∈ T. Then, there exists a constant c = c(κ, n) such

that

‖vT ‖1 ≤ ch−1‖vT ‖0, ∀ vT ∈ Vn(T ),
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where h = max
T∈T

hT .

Proof. See the book of Braess [2], p 83.

2.2 Problem and formulation

Let Ω ⊂ R2 be a bounded, polyhedral domain. We consider the second order

semi-linear elliptic partial differential equation in divergence form with vanishing

boundary condition,

−∇ · (A(x)∇u(x)) = f(x, u(x)), ∀x ∈ Ω, (2.2.1)

u(x) = 0, ∀x ∈ ∂Ω, (2.2.2)

where f(x, u(x)) satisfies
∫

Ω
|f(x, u(x))|2dx < ∞ and is Lipschitz in the second

argument, i.e., there exists a Lipschitz constant Lf such that

|f(x, v)− f(x,w)| ≤ Lf |v − w| , ∀x ∈ Ω ∀ v, w ∈ R,

and A(x) is a positive definite matrix having components in C1(Ω) and satisfies

strictly monotonicity property, i.e., there exists a positive constant θ∗ such that

[A(x)p(x)] · p(x) ≥ θ∗ |p(x)|2 , ∀ p(x) ∈ R2 ∀x ∈ Ω.

A weak solution of (2.2.1)-(2.2.2) is a function u ∈ H1
0 (Ω) satisfying

B(u, v) = L(u; v) ∀v ∈ H1
0 (Ω), (2.2.3)

where the bilinear form B : H1(Ω)×H1(Ω)→ R is defined by

B(u, v) =

∫
Ω

A(x)∇u(x) · ∇v(x) dx. (2.2.4)

Note that B is symmetric since A is positive definite.

The functional L : H1(Ω)×H1(Ω)→ R is defined by

L(u; v) =

∫
Ω

f(x, u(x))v(x) dx.

For example, f(x, u(x)) = e−|u(x)|2 , we see that
∫

Ω
|f(x, u(x)|2dx < ∞ and L is

well-defined.
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Definition 2.9. Let H be a Hilbert space. A bilinear form a : H ×H −→ R is

called continuous (or bounded) provided there exists Ca > 0 such that

|a(v, w)| ≤ Ca‖v‖H‖w‖H , ∀ v, w ∈ H.

A symmetric continuous bilinear form a is called coercive on V ⊂ H provided

there exists ca > 0 such that

a(v, v) ≥ ca‖v‖2
H , ∀ v ∈ V.

Lemma 2.10. The bilinear form B in (2.2.4) is coercive on H1
0 (Ω) and bounded

on H1(Ω).

Proof. See Jampawai [9], p 13.

The bilinear form B induces the energy norm on H1
0 (Ω), defined as

|||v||| :=
√
B(v, v), ∀ v ∈ H1

0 (Ω).

Note that the norm ‖ · ‖1, the semi-norm | · |1, and the energy norm ||| · ||| are all

equivalent on H1
0 (Ω). Then there exists the unique approximation of u, called the

finite element solution, defined as

uT ∈ V(T ); B(uT , v) = L(uT ; v), ∀ v ∈ V(T ). (2.2.5)

Next, we will construct lemmas for linear elliptic problem. Let L be a second-

order elliptic differential operator with divergence structure

Lu = −∇ · (A∇u).

Consider the second order elliptic boundary-vlaue problem

Lu(x) = g(x), ∀x ∈ Ω, (2.2.6)

u(x) = 0, ∀x ∈ ∂Ω, (2.2.7)

with homogeneous Dirichlet boundary conditions, provided that

a(u, v) = 〈g, v〉 ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫
Ω

A∇u · ∇vdx.
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Lemma 2.11 (Céa’s lemma). Suppose the bilinear form a is symmetric and co-

ercive with H1
0 (Ω) ⊂ V ⊂ H1(Ω). In addition, suppose ũ and ũT are the solutions

of variational problem in V and V(T ) ⊂ V of the problem (2.2.6)-(2.2.7), respec-

tively. Then,

‖ũ− ũT ‖1 ≤
Ca
ca

inf
vT ∈V(T )

‖ũ− vT ‖1.

Proof. See Theorem 4.2 in Braess [2], p 55.

Theorem 2.12 (Regularity theorem). Let Ω be convex. Suppose T is a family of

shape regular triangulations of Ω. Then, the solutions ũ and ũT in Lemma 2.11

satisfies

‖ũ− ũT ‖1 ≤ ch‖g‖0,

where c = (Ω, a).

Proof. See Theorem 7.3 in Braess [2], p 90.

Theorem 2.13 (Duality argument). Under the hypotheses of Theorem 2.12, if

ũ ∈ H1(Ω) is the solution of the associated variational problem, then

‖ũ− ũT ‖0 ≤ cCΩh‖ũ− ũT ‖1.

If in addition, g ∈ L2(Ω) so that ũ ∈ H2(Ω), then

‖ũ− ũT ‖0 ≤ cC2
Ωh

2‖g‖0.

Proof. See corollary 7.7 in Braess [2], p 92.

For simplicity, we write fT := f(x, uT ), fk := fTk and f := f(x, u). Based on

the results obtained by Jumpawai [9], the L2 estimates for the error can be given

as follows.

Lemma 2.14. Let u be a weak solution satisfying (2.2.3) and uT ∈ V(T ) be the

solution of (2.2.5). Then,

‖u− uT ‖0 ≤ C∗1‖u− uT ‖1 sup
g∈L2(Ω),‖g‖0≤1

(
inf

v∈V(T )
‖ϕg − v‖1

)
+ C∗2‖f − fT ‖0,
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where C∗1 and C∗2 are constants depending only on data. For a given g ∈ L2(Ω),

denoted by ϕg ∈ H1
0 (Ω) the corresponding unique solution of the linear equation

B(ϕg, w) = 〈g, w〉 , ∀w ∈ H1
0 (Ω). (2.2.8)

Proof. Let w ∈ L2(Ω). Then, w ∈ (L2(Ω))∗, the dual space of L2(Ω). Ones can

easily show that

‖w‖0 = sup
g∈L2(Ω),‖g‖0≤1

〈g, w〉 . (2.2.9)

From (2.2.3) and (2.2.5), we have

B(u− uT , v) = 〈f − fT , v〉 , ∀ v ∈ V(T ). (2.2.10)

By setting w := u − uT ∈ H1
0 (Ω) in (2.2.8) and using (2.2.10), for any ṽ ∈ V(T )

we have

〈g, u− uT 〉 = B(ϕg, u− uT ) = B(ϕg − ṽ, u− uT ) + B(ṽ, u− uT ),

= B(ϕg − ṽ, u− uT , ) + 〈f − fT , ṽ〉 . (2.2.11)

Applying the continuity of B and the Cauchy-Schwartz inequality to get

〈g, u− uT 〉 ≤ CB‖u− uT ‖1 · ‖ϕg − ṽ‖1 + ‖f − fT ‖0‖ṽ‖0. (2.2.12)

Let ϕg,T ∈ V(T ) be a finite element solution of ϕg in (2.2.8). By Céa’s Lemma

2.11,

‖ϕg − ϕg,T ‖1 ≤
CB
cB

inf
v∈V(T )

‖ϕg − v‖1. (2.2.13)

Taking ṽ = ϕg,T ∈ V(T ) and using (2.2.13) in (2.2.12), it gives

〈g, u− uT 〉 ≤ CB‖u− uT ‖1 · ‖ϕg − ϕg,T ‖1 + ‖f − fT ‖0‖ϕg,T ‖0,

hence,

〈g, u− uT 〉 ≤
C2
B

cB
‖u− uT ‖1

(
inf

v∈V(T )
‖ϕg − v‖1

)
+ ‖f − fT ‖0‖ϕg,T ‖0. (2.2.14)

By triangle inequality, the last term of (2.2.14) becomes

‖ϕg,T ‖0 = ‖ϕg,T − ϕg + ϕg‖0 ≤ ‖ϕg,T − ϕg‖0 + ‖ϕg‖0. (2.2.15)
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By duality technique for linear problem (2.2.8) on a convex polygonal domain and

duality argument (Theorem 2.13), the first term on the right hand side of (2.2.15)

becomes

‖ϕg,T − ϕg‖0 ≤ CΩh‖ϕg,T − ϕg‖1 ≤ cCΩh
2‖g‖0, (2.2.16)

where CΩ and c are constants depending on the domain Ω and shape-regularity.

Setting w = ϕg in (2.2.8) and applying the coercivity (Lemma (2.10)) and

Cauchy-Schwartz inequality, we get

cB‖ϕg‖2
1 ≤ B(ϕg, ϕg) = 〈g, ϕg〉 ≤ ‖g‖0‖ϕg‖0.

Since ‖v‖0 ≤ ‖v‖1 for all v ∈ H1(Ω), we get cB‖ϕg‖2
0 ≤ ‖g‖0‖ϕg‖0. Therefore,

‖ϕg‖0 ≤
1

cB
‖g‖0. (2.2.17)

Combining the previous inequalities into (2.2.15), we have

‖ϕg,T ‖0 ≤ ‖ϕg,T − ϕg‖0 + ‖ϕg‖0

≤ cCΩh
2‖g‖0 +

1

cB
‖g‖0

=

(
cCΩh

2 +
1

cB

)
‖g‖0.

The inequality (2.2.14) becomes

〈g, u− uT 〉 ≤
CB
cB
‖u− uT ‖1 inf

v∈V(T )
‖ϕg − v‖1 +

(
cCΩh

2 +
1

cB

)
‖f − fT ‖0‖g‖0.

By setting C∗1 = CB
cB

and C∗2 = cCΩ + 1
cB

by assuming that h < 1 and taking the

suppremum over all ‖g‖0 ≤ 1, we obtain the result

‖u− uT ‖0 = sup
g∈L2(Ω),‖g‖0≤1

〈g, u− uT 〉

≤ C∗1‖u− uT ‖1 sup
g∈L2(Ω),‖g‖0≤1

(
inf

v∈V(T )
‖ϕg − v‖1

)
+ C∗2‖f − fT ‖0.

Corollary 2.15. Under the hypotheses of Lemma 2.14 and f satisfies

Lf ≤ ρ < 1
C∗2

for some positive ρ. Then,

‖u− uT ‖0 ≤ Cfh‖u− uT ‖1,
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where Cf is a constant depending only on ρ, the shape regularity, and the data

(A,Ω).

Proof. By the regularity Theorem 2.12,

inf
v∈V(T )

‖ϕg − v‖1 ≤ ‖ϕg − ϕg,T ‖1 ≤ ch‖g‖0.

Lemma 2.14 becomes

‖u− uT ‖0 ≤ cC∗1h‖u− uT ‖1 + C∗2‖f − fT ‖0.

By the Lipschitz condition, it follows that ‖f − fT ‖0 ≤ Lf‖u − uT ‖0 and by

assumption Lf ≤ ρ, we get ‖f − fT ‖0 ≤ ρ‖u− uT ‖0. Hence,

‖u− uT ‖0 ≤ cC∗1h‖u− uT ‖1 + C∗2ρ‖u− uT ‖0.

Since C∗2ρ < 1, we can combine terms to get

‖u− uT ‖0 ≤ Cfh‖u− uT ‖1,

where Cf :=
cC∗1

1−C∗2ρ
is a positive constant.



CHAPTER III

ADAPTIVE FINITE ELEMENT METHODS

3.1 Adaptive Finite Element Method: AFEM

We analyze here a standard adaptive finite element method (AFEM) as a loop of

procedures

SOLVE → ESTIMATE → MARK → REFINE.

SOLVE: Given a current triangulation T of the domain Ω and a finite element

space V(T ), it produces the finite element solution uT ∈ V(T ),

uT = SOLVE(T ).

We cannot compute integrals involving a nonlinear function f since (2.2.5) is a

nonlinear problem. By (2.2.5), we find uT ∈ V(T )

B(uT , v) = 〈f(x, uT ), v〉 , ∀v ∈ V(T ).

Using the finite element basis {ψi}NTi=1 is formulated as follows: let uT =
∑NT

i=1 uiψi,

for v = ψj ∈ V(T ),

〈f(x, uT ), ψj〉 = B(uT , ψj) = B(

NT∑
i=1

uiψi, ψj) =

NT∑
i=1

uiB(ψi, ψj),

then
B(ψ1, ψ1) B(ψ1, ψ2) ... B(ψ1, ψNT )

...
... ...

...

B(ψNT , ψ1) B(ψ1, ψ2) ... B(ψNT , ψNT )



u1

...

un

 =


〈f(x,

∑
uiψi(x)), ψ1〉

...

〈f(x,
∑
uiψi(x))), ψn〉

 .
Set A = [bij], where bij = B(ψi, ψj) and F = [〈f(x,

∑
uiψi(x))), ψj〉]t and

U = [u1 u2 ... un]t, we have a nonlinear system for U ,

AU = F (U).
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We seek the solution of the nonlinear system

AU − F (U) = 0. (3.1.1)

The solution U of (3.1.1) can be estimate by iterative techniques such as the

Newton’s method or the Kačanov iteration as used in [8] for quasi-linear problem.

For the Newton’s method, we require that the Jacobian of AU − F (U) is non-

singular, i.e.,
∣∣∣A− ∂F (U)

∂U

∣∣∣ 6= 0, and the initial guest U0 is chosen approximately in

order to the convergence of the method.

ESIMATE: For T ∈ T, T ∈ T and v ∈ H1
0 (Ω), we define the local interior

residual

RT (v) := f(x, v)|T +∇ · (A∇v)|T . (3.1.2)

The jump residual on side S ⊂ ∂T ∩ Ω

JS(v) := (A∇v)|S · ~nT + (A∇v)|S · ~nT ′ , (3.1.3)

where ~nT and ~nT ′ are the outward unit normal vectors on S corresponding to T

and T ′, respectively (see Figure 3.1 ).

Figure 3.1: The outward unit normal vectors on S corresponding to T and T ′

The local error indicator ηT (v, T ) on T is defined via

η2
T (v, T ) := h2

T‖RT (v)‖2
L2(T ) + hT‖JS(v)‖2

L2(∂T∩Ω), (3.1.4)

where we define here that hT = |T |1/2, |T | is the area of T in R2. We can show

that this definition is equivalent to the half diameter of T defined in Definition

2.5.
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Let a, b and c be sides of a triangle T such that c is the longest side of T , and

contains a circle of radius ρT . If θc is the angle opposite of side c, then

|T |1/2 =

∣∣∣∣12ab sin(θc)

∣∣∣∣1/2 ≤ ∣∣∣∣12ab
∣∣∣∣1/2 ≤ ∣∣∣∣12c2

∣∣∣∣1/2 =
√

2
diam(T )

2
.

Conversely, by property of triangles, we obtain

|T |1/2 =

[(
a+ b+ c

2

)
ρT

]1/2

=

[(
c

2
+
a+ b

2

)
ρT

]1/2

≥ [cρT ]1/2 .

By shape-regular (2.1.1),

|T |1/2 ≥
[
c
c/2

κ

]1/2

=

√
2

κ

diam(T )

2
.

Therefore, both definitions of hT are equivalent.

The global error indicator ηT for T is

ηT (v) :=

(∑
T∈T

η2
T (v, T )

)1/2

,

and for any subset T ′ ⊂ T ,

ηT (v, T ′) :=

(∑
T∈T ′

η2(v, T )

)1/2

.

Based on a posteriori error analysis, see [1], Jampawai [9] obtained the upper

bound estimate stated as:

Lemma 3.1 (Upper bound). Let u be the weak solution (2.2.3) of the model

problem and uk =SOLVE(Tk). Then,

|||u− uk||| ≤ C1ηk(uk) + C2hk‖f − fk‖0, (3.1.5)

where C1, C2 depend on the shape regularity and the data (A,Ω), hk is defined to

be the maximum of hT for T in Tk, and denoting ηk(uk) for ηTk(uk).

Proof. See Jampawai [9], p 20.

MARK: Given a triangulation T , the set of indicators {ηT (uT , T )}T∈T , and the

marking parameter θ ∈ (0, 1], the procedure MARK produces a marked subset

M⊂ T ,
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M = MARK({ηT (uT , T )}T∈T , T , θ),

such thatM satisfies some marking properties in some optimal way. For example,

in this paper we use Dörfler’s marking [6],

ηT (uT ,M) ≥ θηT (uT ). (3.1.6)

MARK will find an optimal subset M satisfying the marking property (3.1.6).

REFINE: Given a fixed integer b ≥ 1, for any T ∈ T and M ⊂ T of marked

elements, the procedure produces a finer conforming triangulation

T∗ = REFINE(T ,M)

by refining all elements T ∈M for b times, and together with a few more elements

surrounding to be conforming. Note that V(T ) ⊂ V(T∗). For T ′ ∈ T∗\T obtained

by refining T ∈ T , i.e., by using newest vertex bisection method b times, we have

|T ′| ≤ 2−b|T |. (3.1.7)

Note that for T ′, as a child of T ,

hT ′ = 2−b/2hT . (3.1.8)

Adaptive Algorithm.

Given the initial grid T0, TOL, and marking parameter 0 < θ ≤ 1, set k = 0:

(i) uk = SOLVE(Tk);

(ii) {ηk(uk, T )}T∈Tk = ESTIMATE(uk, Tk); (STOP: if ηk < TOL.)

(iii) Mk = MARK({ηk(uk, T )}T∈Tk , Tk, θ);

(iv) Tk+1 = REFINE(Mk, Tk); set k = k + 1, go to Step 1.

Note that from (3.1.8) the algorithm gives the decreasing sequence {hk}k≥0, namely,

hk ≤ h0 for all k.
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3.2 Lemmas

In this section we prove lemmas required for obtaining the contraction property

and the convergence of AFEM stated in the next section. These lemmas are

obtained according to the AFEM algorithm, based on the four main procedures,

SOLVE, ESTIMATE, MARK, and REFINE.

Lemma 3.2. Let u be the weak solution of (2.2.3), uk = SOLVE(Tk), and uk+1 =

SOLVE(Tk+1). Then,

|||u− uk|||2 = |||u− uk+1|||2 + |||uk+1 − uk|||2 + 2 〈f − fk+1, uk+1 − uk〉 .

Proof. By nested property of refinements, we have that Vk ⊂ Vk+1 ⊂ H1
0 (Ω) and

uk+1 − uk ∈ Vk+1 ⊆ H1
0 (Ω). From (2.2.3) and (2.2.5), we get

〈f − fk+1, uk+1 − uk〉 = 〈f, uk+1 − uk〉 − 〈fk+1, uk+1 − uk〉

= B(u, uk+1 − uk)− B(uk+1, uk+1 − uk)

= B(u− uk+1, uk+1 − uk).

By definition of the energy norm, we obtain the followings:

B(u− uk+1, uk+1 − uk) = B(u− uk+1, uk+1 − u+ u− uk)

= B(u− uk+1, uk+1 − u) + B(u− uk+1, u− uk)

= −|||u− uk+1|||2 + B(u− uk+1, u− uk),

B(u− uk+1, u− uk) = B(u− uk + uk − uk+1, u− uk)

= B(u− uk, u− uk) + B(uk − uk+1, u− uk)

= |||u− uk|||2 + B(uk − uk+1, u− uk),

and

B(uk − uk+1, u− uk) = B(uk − uk+1, u− uk + uk+1 − uk+1)

= B(uk − uk+1, uk+1 − uk) + B(uk − uk+1, u− uk+1)

= −|||uk+1 − uk|||2 − B(u− uk+1, uk+1 − uk)
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= −|||uk+1 − uk|||2 − 〈f − fk+1, uk+1 − uk〉 .

By combining all these terms together, we obtain

|||u− uk|||2 = |||u− uk+1|||2 + |||uk+1 − uk|||2 + 2 〈f − fk+1, uk+1 − uk〉 .

Lemma 3.3. Let u satisfies (2.2.3), uk = SOLVE(Tk), and uk+1 = SOLVE(Tk+1).

Given that f satisfying the assumption in Corollary 2.15, then

〈fk+1 − f, uk+1 − uk〉 ≤
3

2
C2
eC

2
fLfh

2|||u− uk+1|||2 +
1

2
C2
eC

2
fLfh

2|||u− uk|||2.

Proof. By the Cauchy-Schwartz inequality,

〈fk+1 − f, uk+1 − uk〉 = 〈fk+1 − f, uk+1 − u+ u− uk〉

= 〈fk+1 − f, uk+1 − u〉+ 〈fk+1 − f, u− uk〉

≤ ‖fk+1 − f‖0‖uk+1 − u‖0 + ‖fk+1 − f‖0‖u− uk‖0.

Applying the Lipschitz condition for ‖fk+1 − f‖0, we get

〈fk+1 − f, uk+1 − uk〉 ≤ Lf‖uk+1 − u‖2
0 + Lf‖uk+1 − u‖0‖u− uk‖0.

By Corollary 2.15, we obtain

〈fk+1 − f, uk+1 − uk〉 ≤ LfC
2
fh

2‖u− uk+1‖2
1 + LfC

2
fh

2‖u− uk+1‖1‖u− uk‖1.

By the equivalence of norms ||| · ||| and ‖ · ‖1, i.e., there is a constant Ce > 0 such

that ‖ · ‖1 ≤ Ce||| · |||, we obtain

〈fk+1 − f, uk+1 − uk〉≤LfC2
eC

2
fh

2|||u− uk+1|||2+LfC
2
eC

2
fh

2|||u− uk+1||||||u− uk|||,

and by applying the inequality, 2ab ≤ a2 + b2, we get

〈fk+1 − f, uk+1 − uk〉 =
3

2
C2
eC

2
fLfh

2|||u− uk+1|||2 +
1

2
C2
eC

2
fLfh

2|||u− uk|||2.
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Corollary 3.4. Under the assumption of Lemma 3.3,(
1− 3C2

eC
2
fLfh

2
)
|||u− uk+1|||2 ≤

(
1 + C2

eC
2
fLfh

2
)
|||u− uk|||2 − |||uk+1 − uk|||2.

Proof. By Lemma 3.2, we obtain

|||u− uk+1|||2 = |||u− uk|||2 − |||uk+1 − uk|||2 + 2 〈fk+1 − f, uk+1 − uk〉 . (3.2.1)

Applying Lemma 3.3 to the last term of (3.2.1), we get

|||u− uk+1|||2 ≤ |||u− uk|||2 − |||uk+1 − uk|||2 + 3C2
eC

2
fLfh

2|||u− uk+1|||2

+ C2
eC

2
fLfh

2|||u− uk|||2,

which leads to(
1− 3C2

eC
2
fLfh

2
)
|||u− uk+1|||2 ≤

(
1 + C2

eC
2
fLfh

2
)
|||u− uk|||2 − |||uk+1 − uk|||2.

Lemma 3.5. For any T ∈ T, there holds for all v, w ∈ V(T ), and δ > 0,

η2
T (v, T ) ≤ (1 + δ)η2

T (w, T ) + hT

(
1 +

1

δ

)
‖JS(v − w)‖2

L2(∂T∩Ω)

+ 2h2
T

(
1 +

1

δ

)(
‖∇·(A∇(v − w))‖2

L2(T ) + ‖f(v)− f(w)‖2
L2(T )

)
.

Proof. For any T ∈ T, let v, w ∈ V(T ). We denote, for simplicity, f(x, v) and

f(x,w) by f(v) and f(w), respectively. Consider T ∈ T and its sides S ⊂ ∂T , by

using (3.1.2) we get,

RT (v) = ∇·(A∇v) + f(v)

= ∇·(A∇(v − w)) +∇·(A∇w) + f(w) + f(v)− f(w)

= RT (w) +∇·(A∇(v − w)) + f(v)− f(w).

By linearity of the jump residual (3.1.3), we have

JS(v) = JS(v − w) + JS(w).

The local error indicator (3.1.4) leads to

η2
T (v, T ) = h2

T ‖RT (w) +∇·(A∇(v − w)) + f(v)− f(w)‖2
L2(T )
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+ hT ‖JS(v − w) + JS(w)‖2
L2(∂T∩Ω) .

By triangle inequality,

η2
T (v, T ) ≤ h2

T

(
‖RT (w)‖L2(T ) + ‖∇·(A∇(v − w)) + f(v)− f(w)‖L2(T )

)2

+ hT
(
‖JS(v − w)‖L2(∂T∩Ω) + ‖JS(w)‖L2(∂T∩Ω)

)2
. (3.2.2)

For simplicity, let us denote

a := ‖RT (w)‖L2(T ),

p := ‖∇·(A∇(v − w)) + f(v)− f(w)‖L2(T ),

q := ‖JS(v − w)‖L2(∂T∩Ω),

t := ‖JS(w)‖L2(∂T∩Ω).

The inequality (3.2.2) becomes

η2
T (v, T ) ≤ h2

T

(
a2 + p2 + 2ap

)
+ hT

(
q2 + t2 + 2qt

)
. (3.2.3)

Applying the Young’s inequality to ap and qt of (3.2.3), we obtain, for δ > 0,

η2
T (v, T ) ≤ h2

T

(
a2 + p2 + δa2 +

1

δ
p2

)
+ hT

(
q2 + t2 + δt2 +

1

δ
q2

)
= h2

T (1 + δ)a2 + h2
T

(
1 +

1

δ

)
p2 + hT

(
1 +

1

δ

)
q2 + hT (1 + δ)t2.

Therefore,

η2
T (v, T ) ≤ (1 + δ)

{
h2
Ta

2 + hT t
2
}

+ hT

(
1 +

1

δ

)
q2 + h2

T

(
1 +

1

δ

)
p2. (3.2.4)

By (3.1.4), the first term of the right hand side of (3.2.4) becomes η2
T (w, T ). For

the term p2 we get

p2 =
(
‖∇·(A∇(v − w)) + f(v)− f(w)‖L2(T )

)2

≤ 2
(
‖∇·(A∇(v − w))‖2

L2(T ) + ‖f(v)− f(w)‖2
L2(T )

)
.

Finally, (3.2.4) becomes

η2
T (v, T ) ≤ (1 + δ)η2

T (w, T ) + hT

(
1 +

1

δ

)
‖JS(v − w)‖2

L2(∂T∩Ω)

+ 2h2
T

(
1 +

1

δ

)(
‖∇·(A∇(v − w))‖2

L2(T ) + ‖f(v)− f(w)‖2
L2(T )

)
.
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Lemma 3.6. For Tk ∈ T, let Mk =MARK({ηk(uk)}T∈Tk , Tk) and let Tk+1 ∈ T be

defined by Tk+1 = REFINE(Tk,Mk) for λ := 1−2−b/2 > 0. Then, for v ∈ V(Tk),

η2
k+1(v) ≤ η2

k(v)− λη2
k(v,Mk).

Proof. LetMk be a set of elements in Tk that are refined to get Tk+1 and M̃k+1 be

a set of newly obtained elements in Tk+1 from the refinement of Tk, i.e., M̃k+1 =

Tk+1\(Tk+1∩Tk). Note that the marked setMk ⊆Mk ⊂ Tk. It is easy to see that⋃
T∈Mk

T =
⋃
T ′∈M̃k+1

T ′ and Mk ∪ (Tk ∩ Tk+1) = Tk. Since Tk+1 is decomposed

into two disjoint subsets Tk ∩ Tk+1 and M̃k+1, we have

η2
k+1(v) =

∑
T∈Tk∩Tk+1

η2
k+1(v, T ) +

∑
T ′∈M̃k+1

η2
k+1(v, T ′). (3.2.5)

Similarly, Tk is the disjoint union of Tk ∩ Tk+1 and Mk, then

η2
k(v) =

∑
T∈Tk∩Tk+1

η2
k(v, T ) +

∑
T∈Mk

η2
k(v, T ).

From the definition of indicators (3.1.4), we have that ηk(v, T ) = ηk+1(v, T ) for

all v ∈ H1
0 (Ω), T ∈ Tk ∩ Tk+1. Then, (3.2.5) becomes to

η2
k+1(v) = η2

k(v) +
∑

T ′∈M̃k+1

η2
k+1(v, T ′)−

∑
T∈Mk

η2
k(v, T ). (3.2.6)

For a marked element T ∈Mk, we set Pk+1(T ) = {T ′ ∈ Tk+1 : T ′ ⊂ T} ⊂ M̃k+1,

the set of all children of T . By refinement condition, hT ′ ≤ 2−b/2hT , we have∑
T ′∈Pk+1(T )

η2
k+1(v, T ′) =

∑
T ′∈Pk+1(T )

(h2
T ′‖RT ′(v)‖2

L2(T ′) + hT ′‖JS(v)‖2
L2(∂T ′∩Ω))

≤
∑

T ′∈Pk+1(T )

2−bh2
T‖RT ′(v)‖2

L2(T ′) +
∑

T ′∈Pk+1(T )

2−b/2hT‖JS(v)‖2
L2(∂T ′∩Ω)

For v ∈ V(Tk) and T ∈ Tk, the restriction v|T ∈ Pn(T ) is continuous and has

continuously derivative on T . Then, for the interior sides S of T1 inside T ,

JS(v) = A∇v · ~n1 + A∇v · ~n2 = 0,

because ~n1 = −~n2, where ~n1 and ~n2 are outward unit normal vectors on S corre-

sponding to T1 and T2, respectively (see Figure 3.2).



24

Figure 3.2: The outward unit normal vector for the common side S of T1 and T2

Hence, ∑
T ′∈Pk+1(T )

‖JS(v)‖2
L2(∂T ′∩Ω) = ‖JS(v)‖2

L2(∂T∩Ω).

By definition of interior residual, since T =
⋃

T ′∈Pk+1(T )

T ′,

∑
T ′∈Pk+1(T )

‖RT ′(v)‖2
L2(T ′) = ‖RT ′(v)‖2

L2(T ).

Thus, we obtain∑
T ′∈Pk+1(T )

η2
k+1(v, T ′) ≤ 2−b/2(h2

T‖RT (v)‖2
L2(T ) + hT‖JS(v)‖2

L2(∂T∩Ω)) = 2−b/2η2
k(v, T ).

Thus,

∑
T∈Mk+1

η2
k+1(v, T ) =

∑
T∈Mk

( ∑
T ′∈Pk+1(T )

η2
k+1(v, T ′)

)
≤ 2−b/2

∑
T∈Mk

η2
k(v, T ),

where the last term comes from the refinement criteria (3.1.8). Therefore,

η2
k+1(v) ≤ η2

k(v) + 2−b/2
∑
T∈Mk

η2
k(v, T )−

∑
T∈Mk

η2
k(v, T ). (3.2.7)

By defining λ = 1− 2−b/2 > 0, (3.2.7) becomes

η2
k+1(v) ≤ η2

k(v)− λ
∑
T∈Mk

η2
k(v, T ).

Since Mk ⊆Mk,
∑
T∈Mk

η2
k(v, T ) ≤

∑
T∈Mk

η2
k(v, T ), we finally get

η2
k+1(v) ≤ η2

k(v)− λ
∑
T∈Mk

η2
k(v, T ) = η2

k(v)− λη2
k(v,Mk).
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Lemma 3.7. For Tk ∈ T and Mk =MARK({ηk(uk)}T∈Tk , Tk), let Tk+1 ∈ T be

defined by Tk+1 = REFINE(Tk,Mk). Then, for all vk ∈ Vk, vk+1 ∈ Vk+1, and

δ > 0, there holds

η2
k+1(vk+1) ≤ (1 + δ)

{
η2
k(vk)− λη2

k(vk,Mk)
}

+

(
1 +

1

δ

)
Kk‖vk+1 − vk‖2

1,

where Kk := CA + 2L2
fh

2
k + 2CAA(1 + hk)

2.

Proof. By setting T = Tk+1, v = vk+1 and w = vk in Lemma 3.5, we get

η2
k+1(vk+1)

=
∑

T∈Tk+1

η2
k+1(vk+1, T )

≤ (1 + δ)
∑

T∈Tk+1

η2
k+1(vk, T ) +

(
1 +

1

δ

) ∑
T∈Tk+1

hT‖JS(vk+1 − vk)‖2
L2(∂T∩Ω)

+ 2

(
1 +

1

δ

)[ ∑
T∈Tk+1

h2
T‖∇·(A∇(vk+1 − vk))‖2

L2(T )+
∑

T∈Tk+1

h2
T‖f(vk+1)− f(vk)‖2

L2(T )

]
.

To estimate the ‖JS(vk+1 − vk)‖L2(∂T∩Ω) term, we applied the Theorem 2.7 to

obtain∑
T∈Tk+1

hT‖JS(vk+1 − vk)‖2
L2(∂T∩Ω) ≤ 2

∑
T∈Tk+1

hT‖A∇(vk+1 − vk)‖2
L2(∂T∩Ω)

≤ C∂
∑

T∈Tk+1

‖A‖∞ ‖∇(vk+1 − vk)‖2
L2(T ),

where C∂ is a constant depends only on shape-regular parameter, and ‖A‖∞ is a

bounded by assumptions. This can be written as∑
T∈Tk+1

hT‖JS(vk+1 − vk)‖2
L2(∂T∩Ω) ≤ CA‖vk+1 − vk‖2

1,

where CA := C∂ ‖A‖∞.

To estimate ‖∇·(A∇(vk+1 − vk))‖L2(T ), we observe that

∇·(A∇(vk+1 − vk)) = (∇·A) · (∇(vk+1 − vk)) + A : ∇2(vk+1 − vk),

where ∇2(vk+1−vk) is the Hessian matrix of vk+1−vk and : denotes the Frobenius

inner product, i.e., A : B =
∑

i,j aijbij. This leads to an estimate∑
T∈Tk+1

h2
T‖∇·(A∇(vk+1 − vk))‖2

L2(T )
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≤
∑

T∈Tk+1

h2
T

(
‖∇·A‖∞‖∇(vk+1 − vk)‖L2(T ) + ‖A‖∞‖∇2(vk+1 − vk)‖L2(T )

)2

.

Applying the inverse estimates, Theorem 2.8, to the Hessian matrix to get∑
T∈Tk+1

h2
T‖∇·(A∇(vk+1−vk))‖2

L2(T )≤
∑

T∈Tk+1

(
hT‖∇·A‖∞+ ‖A‖∞

)2‖∇(vk+1 − vk)‖2
L2(T ).

This gives∑
T∈Tk+1

h2
T‖∇·(A∇(vk − vk+1))‖2

L2(T ) ≤ CAA(1 + hk)
2‖vk+1 − vk‖2

1,

where CAA := max{‖∇·A‖∞, ‖A‖∞}.

Finally, by the Lipschitz condition on f , we obtain an estimate∑
T∈Tk+1

h2
T‖f(vk+1)− f(vk)‖2

L2(T ) ≤
∑

T∈Tk+1

h2
TL

2
f‖vk+1 − vk‖2

L2(T )

≤ h2
kL

2
f‖vk+1 − vk‖2

1.

After combining all estimates above and applying v = vk in Lemma 3.6, we

get

η2
k+1(vk+1) = (1 + δ)

(
η2
k(vk)− λη2

k(vk,Mk)
)

+

(
1 +

1

δ

)
Kk‖vk+1 − vk‖2

1,

where Kk := CA + 2h2
kL

2
f + 2CAA(1 + hk)

2.

Note that since {hk}∞k=0 is non-increasing, i.e, 1 ≥ h0 ≥ h1 ≥ ... ≥ hk ≥ ...,

therefore the constant Kk is bounded above by K0, i.e.,

Kk ≤ CA + 2L2
f + 8CAA := K0.



CHAPTER IV

CONVERGENCE

In this chapter we prove a contraction property for the weighted sum of the

energy error and the error estimator for any two consecutive iterations of the

AFEM. The convergence of AFEM follows directly from the lemmas in the pre-

vious chapter as stated in the corollary. The last section will be the conclusion of

this work.

4.1 Contraction property

Theorem 4.1. Given an initial triangulation T0 with initial mesh-size h0, let

θ ∈ (0, 1] and {Tk,Vk, uk}k≥0 be a sequence of triangulations Tk, finite element

spaces Vk, and discrete solutions uk produced by AFEM. Then, there exists a

constant K depending only on the data and the Lipschitz constants such that if

h0 < K, then there exist constants α, γ > 0 and 0 < µ < 1 such that

γη2
k+1(uk+1) + α|||u− uk+1|||2 ≤ µ

(
γη2

k(uk) + α|||u− uk|||2
)
.

Proof. For simplicity, let us use ηk := ηk(uk), ηk+1 := ηk+1(uk+1),

ek+1 := |||u − uk+1|||, and |||u − uk||| := ek. By setting vk = uk and vk+1 = uk+1 in

Lemma 3.7, we get

η2
k+1 ≤ (1 + δ)

{
η2
k − λη2

k(uk,Mk)
}

+

(
1 +

1

δ

)
Kk‖uk+1 − uk‖2

1. (4.1.1)

Using equivalence of norms and setting Ek = |||uk+1 − uk|||, (4.1.1) becomes

η2
k+1 ≤ (1 + δ)

{
η2
k − λη2

k(uk,Mk)
}

+

(
1 +

1

δ

)
C2
eKkE

2
k ,

where Ce is a constant for the norm equivalence depending on the data A and Ω.

Applying Dörfler Marking (3.1.6) and ηk(uk,Mk) ≥ θηk, we have

η2
k+1 ≤ (1 + δ)

{
η2
k − λθ2η2

k

}
+

(
1 +

1

δ

)
C2
eKkE

2
k . (4.1.2)
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Since Kk ≤ K0, (4.1.2) leads to

η2
k+1 ≤ (1 + δ)

{
η2
k − λθ2η2

k

}
+

(
1 +

1

δ

)
C2
eK0E

2
k . (4.1.3)

Multiplying (4.1.3) by γ := δ
C2
eK0(1+δ)

> 0 to obtain

γη2
k+1 ≤ γ(1 + δ)η2

k − γλθ2(1 + δ)η2
k + E2

k .

By Corollary 3.4, if h0 <
1√

3C2
eC

2
fLf

, then

γη2
k+1 + (1−3C2

eC
2
fLfh

2
k)e

2
k+1≤γ(1+δ)η2

k − γλθ2(1+δ)η2
k + (1+C2

eC
2
fLfh

2
k)e

2
k.

To balance the ηk term, we can rewrite as, for β > 0,

γη2
k+1 +

(
1− 3C2

eC
2
fLfh

2
k

)
e2
k+1 ≤ γ(1 + δ)η2

k +
(
1 + C2

eC
2
fLfh

2
k

)
e2
k

− βγλθ2(1 + δ)η2
k − (1− β)γλθ2(1 + δ)η2

k.

(4.1.4)

Using the upper bound (3.1.5), the Lipschitz condition on f , the Corollary 2.15,

and the equivalence of norms, we get

ek ≤ C1ηk + C2hk‖f − fk‖0

≤ C1ηk + C2hkLf ‖u− uk‖0

≤ C1ηk + C2LfCfh
2
k‖u− uk‖1

≤ C1ηk + CeC2CfLfh
2
kek.

If h0 <
1√

CeC2CfLf
, then we have

0 <

(
1− CeC2CfLfh

2
k

C1

)
ek ≤ ηk. (4.1.5)

Combining (4.1.5) to the right hand side of (4.1.4), we have

γη2
k+1 + (1−3C2

eC
2
fLfh

2
k)e

2
k+1

≤ γ(1+δ)η2
k +

(
1+C2

eC
2
fLfh

2
k

)
e2
k − (1− β)γλθ2(1 + δ)η2

k

− βγλθ2(1+δ)

(
1−CeC2CfLfh

2
k

C1

)2

e2
k.

(4.1.6)
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For convenience we denote the coefficients as follows;

α1 = 1− 3C2
eC

2
fLfh

2
k > 0,

α2 = 1 + C2
eC

2
fLfh

2
k −

δ

C2
eK0

βλθ2

(
1− CeC2CfLfh

2
k

C1

)2

,

α3 = (1 + δ)
(
1− (1− β)λθ2

)
.

The equation (4.1.6) can be written as

γη2
k+1 + α1e

2
k+1 ≤ γα3η

2
k + α2e

2
k = γα3η

2
k + α1

(
α2

α1

)
e2
k. (4.1.7)

The result follows by setting α = α1 and showing that µ := max{α3,
α2

α1
} < 1.

Showing that 0 < α3 < 1 is equivalent to show that

0 < (1 + δ)
(
1− (1− β)λθ2

)
< 1.

This is the case if we choose β > 0 such that

0 < β < 1− 1

λθ2

(
δ

1 + δ

)
. (4.1.8)

Since λ and θ are known from AFEM and λθ2 < 1, then we can choose β > 0

satisfying (4.1.8) provided that δ > 0 is pre-selected so that 1
λθ2

(
δ

1+δ

)
< 1, i.e.,

choosing

0 < δ <
λθ2

1− λθ2
. (4.1.9)

In order to arrive at (4.1.7), it requires that h0 < min

{
1√

3C2
eC

2
fLf

, 1√
CeC2CfLf

}
,

for obtaining (4.1.4) and (4.1.5), thus this gives α1 > 0.

We get α2 > 0 by selecting δ satisfying δ ≤ min
{

λθ2

1−λθ2 ,
C2
eK0C2

1

λθ2

}
so that

βδ
λθ2

C2
eK0C2

1

(
1− CeC2CfLfh

2
k

)2
< 1.

The case 0 < α2 < α1 holds if and only if

1 + C2
eC

2
fLfh

2
k − βδ

λθ2

C2
eK0C2

1

(
1− CeC2CfLfh

2
k

)2
< 1− 3C2

eC
2
fLfh

2
k.

This is equivalent to

h2
k <

δβλθ2

4C4
eK0C2

fLfC
2
1

(1− CeC2CfLfh
2
k)

2.
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For convenience, set r = CeC2CfLf and s = δβλθ2

4C4
eK0C2

fLfC
2
1
. The condition on hk

becomes

h2
k < s(1− 2rh2

k + r2h4
k).

This is the case if h0 <
√

s
1+2rs

because sr2h4
k ≥ 0.

By selecting K := min

{
1√

3C2
eC

2
fLf

, 1√
CeC2LfCf

,
√

s
1+2rs

}
> 0, the condition

h0 < K will give us the contraction result for (4.1.7).

Corollary 4.2 (Convergence). Under the hypothesis of Theorem 4.1,

lim
k→∞

ηk(uk) = 0 and lim
k→∞
|||u− uk||| = 0.

Proof. From Theorem 4.1, it is easy to see that

γη2
k+1(uk+1) + α|||u− uk+1|||2 ≤ µk+1

(
γη2

0(u0) + α|||u− u0|||2
)

Since limk→∞ µ
k+1 = 0 for µ ∈ (0, 1), and γ, α > 0, thus

lim
k→∞

ηk(uk) = 0 and lim
k→∞
|||u− uk+1||| = 0.

Remark 4.3.

1. In the contraction result, the reduction factor of the weighted sum γη2
k+1 +

|||u−uk+1|||2 is µ < 1. By definition µ is controllable by changing parameters

λ = 1−2−b/2 and θ ∈ (0, 1]. To have high reduction rate (µ small), we require

that λ and θ are close to 1, i.e., by controlling the marking criterion to have

θ close to 1 (nearly uniformly refinement) and/or controlling the refining

criterion to have bigger b, the number of bisections for each refinement step.

2. The weights γ and α in the sum of the error estimator ηk and the energy

error |||u−uk||| are chosen to balance these two errors to have the contraction.

They are chosen based on the parameter δ that satisfies (4.1.9) and other

constants such as Ce, K0, Cf , Lf and h0 from the problem and the initial

triangulation T0. Many of these constants are computable, but some of

them, such as K0 and Cf , not computable from the Lemmas . Therefor, γ

and α are not computable in general.
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3. The constant K in definition is upper bound for initial mesh size h0 in order

to have the contraction. The value of K depends on serveral parameters

of the algorithm and the constants of the problem. Similarly, the value of

K is not computable due to some constants are not known. Therefore, the

control of h0 by K in order to have convergence result can only be obtained

by experiments.

4.2 Examples

In this section, we give examples of semi-linear elliptic partial differential equa-

tions satisfying the assumption of the main Theorem 4.1. Let Ω = [0, 1] × [0, 1]

and T0 be an initial triangulation as follows (see Figure 4.1).

Figure 4.1: An initial triangulation T0 for the rectangular domain Ω

We consider the problem

−∇ · (A(x)∇u(x)) = f(x, u(x)), ∀x ∈ Ω, (4.2.1)

u(x) = 0, ∀x ∈ ∂Ω, (4.2.2)

where A(x) =

a(x) b(x)

b(x) c(x)

, x ∈ Ω, being positive definite matrix. For con-

venience, we will omit the variable x. Let λ1 and λ2 be eigenvalues of A with

λ2 ≥ λ1. Since A is positive definite, λ2 ≥ λ1 > 0. Both eigenvalues are positive

if ac > b2, where a, b and c are positive. By property of the Rayleigh quotient,

λ1(x) ≤ A(x)p · p
|p|2

≤ λ2(x), ∀x ∈ Ω ∀p ∈ R2, p 6= 0,

we can choose

θ∗ = inf
x∈Ω

λ1(x) > 0.
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Then, A satisfies strictly monotonicity.

Example 4.4. Let A(x) =

1 0

0 1

 . It is easy to see that A is positive definite

and has the eigenvalue λ1 = λ2 = 1. Then, we can choose θ∗ = 1.

Example 4.5. Let A(x) =

6 2

2 4

 . Then, the eigenvalues of A are λ1 = 5−
√

5

and λ2 = 5 +
√

5. Thus, we can choose θ∗ = 5−
√

5.

Example 4.6. Let x = (x1, x2) ∈ Ω and A(x) =

 1 x1

x1 2

 . Then, the eigenvalues

of A are λ1(x) =
3−
√

1+4x21
2

and λ2(x) =
3+
√

1+4x21
2

. Then, A is positive definite

since λ1(x) and λ2(x) are positive for all x ∈ Ω. Hence, we can choose θ∗ =

inf
x∈Ω

λ1(x) = 3−
√

5
2

.

For the nonlinear function f(x, u), we give examples for those satisfies the

assumptions as follows:

Example 4.7. Let f(x, u) = e−
1
m
u2 , where x ∈ Ω and a constant m > 0. It is

clear that ∣∣∣∣∂f∂u
∣∣∣∣ =

∣∣∣∣ −2u

me
1
m
u2

∣∣∣∣ =
2

m
· |u|
e

1
m
u2
, ∀u ∈ R. (4.2.3)

By calculus, |u|
e

1
mu2

has absolute maximum
√

m
2e

, i.e., |u|
e

1
mu2
≤
√

m
2e
, ∀u ∈ R. Thus,∣∣∣∣∂f∂u

∣∣∣∣ ≤
√

2

me
, ∀u ∈ R.

We can choose Lf =
√

2
me
. By corollary 2.15, Lf <

1
C∗2

, i.e.,

m >
2

ec2
B

(ccBCB + 1)2,

where cB = θ∗, CB = ‖A‖∞ and c = (1+c1)c2CB
cB

. In the case of Example 4.4 where

A = I, we get that cB = CB = 1, therefore, and we must m > 2(c+1)2

e
in order to

satisfy the condition of the Corollary 2.15. Moreover, since f(x, u) is continuous

and bounded on Ω, ∫
Ω

|f(x, u)|2dx =

∫
Ω

e−
2
m
u2 dx <∞.
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Example 4.8. Let f((x1, x2), u) = x2 sin(mx1u), where x = (x1, x2) ∈ Ω and a

constant m > 0. It is easy to see that∣∣∣∣∂f∂u
∣∣∣∣ = |mx1x2 cos(mx1u)| ≤ m, ∀u ∈ R, ∀x ∈ Ω.

Similarly to Example 4.7, we choose Lf = m. Then,

m <
cB

ccBCB + 1
.

In the case of Example 4.4 where A = I, we can compute cB = CB = 1 and we

have m < 1
c+1

. Since f(x, u) is continuous and bounded on Ω,∫
Ω

|f(x, u)|2 dx =

∫
Ω

x2
2 sin2(mx1u) dx <∞.

4.3 Conclusion

In this work we obtain convergence theorem of AFEM for second order semi-

linear elliptic PDEs as stated in the main Theorem 4.1. The proof relies on

several assumptions as follows. The coefficient matrix A is positive definite and

satisfies the strictly monotonicity in order to have the coercivity such that the

energy norm is equivalent to the H1-norm and seminorm on H1
0 (Ω). Moreover,

we require that all components of A are C1(Ω) functions in order to have the

approximation of the reduction for error estimators as stated in Lemma 3.7. The

examples for such A are given in the examples 4.4-4.6. In addition, we require

that f(x, u) is Lipschitz in variable u in order to approximate the difference of

‖f(x, v) − f(x,w)‖0 in terms of ‖v − w‖0 to obtain the upper bound (Lemma

3.1), the estimation of error reduction (Corollary 3.4), and the estimation of error

estimator reduction (Lemma 3.7). Examples of f(x, u) satisfying such conditions

are shown in Examples 4.7 and 4.8. The key idea for getting the contraction in

Theorem 4.1, is to combine the estimators of the error reduction in Corollary 3.4

with the estimator of error estimator reduction in Lemma 3.7, and with the help

of the upper bound, the marking property and the refining criterion. Finally,

the contraction is obtained under the assumption that the initial meshsize h0 is

sufficiantly refined. The convergence follows easily as stated in Corollary 4.2.
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