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NOTATIONS

The Sobolev spaces of functions in L*(€2) whose first derivatives
are also in L?(Q)

The space of functions in H'(Q) with vanishing on boundary 9
A triangulation of €

The finite element space correspoding to a triangulation 7

The set of all polynomials on T of degree less than or equal to n
A bilinear form on H'(Q) x H(Q)

The standard inner product on L?()

The Sobolev norm on the space H'(Q)

The seminorm on the space H'({2)

The usual norm on L?(Q)

The norm on L?(w), where w C Q

The energy norm on H'(Q)



CHAPTER I
INTRODUCTION

The finite element method is a tool widely used for approximating the solution
of partial differential equations (PDEs) based on underlying variational formula-
tion. Nowadays, finite element methods can be applied to more complicated prob-
lems and becomes the efficient tools for large-scale applications in almost every
area of sciences.

Adaptive finite element methods (AFEMSs) for the numerical solution of PDEs
started in the last 70’s and now are standard tools in many areas in sciences
and engineering. AFEMs are effective tools to obtain good approximate solutions
with low computational costs, especially in the presence of singularities and in the
problems with boundary layers.

There exists a vast variety of books about finite elements. Here, we only want
to mention the books by Braess [2] and Brenner and Scott [3] as references for
this work. Another basic ingredient for an AFEM is known as a posteriori error
estimator, described in, for example, Ainsworth and Oden [1], Verfiirth [15] and
Nochetto et al. [13], which is the main objective of the analysis of adaptive meth-
ods for linear and non-linear problems.

For elliptic PDEs, AFEMs are boiled down to iterations of the form
SOLVE — ESTIMATE — MARK — REFINE.

Given a current mesh (triangulation) of the domain and conditions of the prob-
lem, SOLVE finds the approximate solution corresponding to the given mesh;
ESTIMATE computes error estimates in a suitable norm based on a posterior
error estimators to estimate the error of obtained solution for given mesh; MARK
marks the selected element by using a posteriori error estimators; REFINE refines

the marked elements to obtain a finer mesh according to the elements with high



error estimators. The ultimate purpose is to construct a sequence of approximate
solutions that converges to the exact solution.

For linear elliptic partial differential equations, there are several results of

AFEMs:

e In 1996, Dorfler [6] introduced a crucial marking stratergy and proved the
strict energy error reduction for the Poisson’s equation and provided the

initial mesh satisfying a fineness assumption.

e Morin et al. [11, 12] studied linear elliptic PDEs,
=V (A@)Vu(z)) = f(z), ze

for a piecewise constant function A(x). They proved a convergence without
restrictions on the initial mesh and introduced the concepts of data oscilla-
tions and the interior node property, which are very important for obtaining

the convergence of AFEMs.

e Mekchay and Nochetto [10] extended the idea of [11] to obtain the result for

general second order elliptic PDE,
-V - (AVu) +b-Vu+cu=f, in Q,
where A, f,b and c are suitable functions.

e Cascon et al. [4] considered Dirichlet boundary value problem for second

order elliptic PDE,
—div(AVu) + cu = f, in €,

for piecewise Lipschitz function A(z). They obtained quasi-optimal conver-
gence rate without the usages of the local lower bound and interior node

property, as the new idea for convergence.

For nonlinear elliptic partial differential equations, here are some results of

AFEMs:



e Dorfler [7] developed a robust strategy for nonlinear Poisson equation,
—Au = f(u), in
where Q C R? and f € C%'(R).
e Veeser [14] proved convergence of AFEM for the nonlinear Laplacian:
—div(|VulP2Vu) = f(u), in €,

for p € (1,00), given that f € L1(Q), = + % =1

1
p
e Diening and Kreuzer [5] proved that the AFEM converges for p-Laplacian

with linear rate for
—div(k + |VulP?Vu) = f, in €,

where p € (1,00), kK > 0, and f € LI(Q), - + = = 1.

141

P a

e Garau et al. [8] showed that the AFEM converges for the quasi-linear prob-
lems:

=V-la(, [Vu)Vul = f, i@,

where a: Q x Rt — R™ and f € L*(Q). Convergence is based on Kacanov

iterations.

In this thesis, we analyze a standard adaptive finite element method for second

order semi-linear elliptic partial differential equations of the form
—V - (A(@)Vu(z)) = f(z,u(z)), x€Q,

where  C R? for z € Q, f(z,u(z)) is Lipschitz in the second argument and
A(x) is a positive definite matrix with strictly monotonicity property. Our work
is developed based on the idea of Cascon et al. [4], who studied the linear model,
to obtain contraction property for semi-linear elliptic problem. Our proof is based
on the assumptions that the initial triangulation is sufficiently refined in order to

deal with the nonlinear function f(x,u(x)), which is assumed to be Lipschitz in



the second variable. For example, the Poisson-Bolztmann equation that deals
with a nonlinear f(z,u(z)) = x?sinh(u(x)).

This thesis is organized as follows. In chapter 2, we give some preliminaries,
basic definitions and theorems that are important in formulating and obtaining
the error estimates in order to obtain the convergence. In chapter 3, we analyze
the standard finite element method and AFEM. Here, we construct the crucial
lemmas for obtaining the contraction property. In the last chapter the contraction
property and the convergence results are presented. Finally, we conclude our

finding and provide some ideas for designing AFEM algorithm.



CHAPTER I1
PRELIMINALIES

2.1 The Sobolev

We introduce the Sobolev spaces, refer to the book by D. Braess [2]. Let 2 be an
open subset of R? with piecewise smooth boundary. The Sobolev spaces are built
upon the function space L?(£2), which consists of all functions u which are square-
integrable over 2 in the sense of Lebesgue measure. The space L?(£2) becomes a

Hilbert space with the inner product

and the corresponding norm
[ullo = v/ {u, u).

Definition 2.1. We say that a given function f € L*(f2), where
L'Q) :={g: Q = R| [,|g9(x)|dr < oo}, has a weak derivative D% f, provided

there is a function v € L'(2) such that

o de = 1) [ e)ptpta)dn, Ve cr@),

where a := (a1, a) is a multi index with |a] = a3 + s where o and «y are
nonnegative integers, D%p = aal BQQ 9z, P and C§°(Q) is the set of smooth functions
vanshing on 02 . If such a v exists, we define D2 f = v. We denote gradient

operator V = (DY, DY) or V = (7 Bay)



Definition 2.2. Let H'(Q) be the set of all functions w in L?(£2) which processes

weak derivative Vu. We can define an inner product on H*(2) by
(u,v), := (u,v) + (Vu, Vo)

with the associated norm

full 2= \flusuh, = g + [1Vul?.
The corresponding semi-norm on H'(2) is defined as
[uly = [[Vullo.
Hi () is the space of functions in H'(2) vanishing on boundary 9.

Theorem 2.3 (Poincaré inequality). Suppose Q C R? is an open bounded domain.
Then, for all u € H} (),

[ullo < Crl[Vullo,
where Cp s a constant depending only on 2.
Proof. See the book of Braess [2], p 30. O

We then obtain that for any u € H}(Q),
uly <lully = [Vullo + [lullo < (1 + Cp)|Vullo = (1 + Cp)|uls.
Thus, | - |y is equivalent to || - ||; on H(Q).

Definition 2.4. Let Q C R? be a polygonal domain. A conforming triangulation
(mesh) T of Q is a collection {T'} of triangles (elements) such that:
o=
TeT
(ii) for 7" € T and T # T’ the set T'NT" is empty or consists of a vertex or

a common side.



Figure 2.1: An example of conforming triangulation for a rectangular domain.

Figure 2.2: A triangulation is nonconforming with hanging node.

Definition 2.5. A family of triangulations {7;} of Q is called shape regular pro-
vided that there exists a number x > 0, shape-regular parameter, such that every

T € 7T; for all T; contains a circle of radius pr with

hr (2.1.1)

prT

where hy is half of the diameter of T', i.e., hy = 5 max |z — yl.
€

'Z‘7y

N\

Figure 2.3: The largest circle inscribed in a triangle

Let 7o be an initial triangulation of €. If we decompose a subset of tri-
angles of 7y into subtriangles such that the resulting set of triangles is again a

triangulation of €2, we call this a refinement of 7.



Definition 2.6. Let 7j be an initial triangulation of {2 and T the class of all shape-
regular conforming refinements of 7. Given any conforming triangulation 7 € T,
as define the corresponding finite element space to be the space of continuous

piecewise polynomial functions of degree n > 1,
VY(T) :={v e H)Q): v, € P,(T),VT € T},

where IP,,(T") is the space of all polynomials on 7" of degree less than or equal to

n. If there is no ambiguity, we will use V(7) for simplicity.

Next, we introduce the extension of a function defined on S C 9T onto the
triangle 7' € T. For v : S — R, let E(v) : T — R be the extension of v onto
T such that the value of E(v) is constant along a line parallel to side of T'. (see

Figure 2.4).

Figure 2.4: The extension from S to T'

Theorem 2.7. Let T be a shape reqular triangulation. Then there exists a con-

stant ¢ which depends only on Kk such that, for all T € T and all S € 0T,
ollzos) < b~ 2B oy, Vo € Pa(T),

where E : L*(S) — L*(T) is the extension of a function on S onto T.

Proof. See equation (8.26) of Lemma 8.3 in the book of Braess [2], p 174. O

Theorem 2.8 (Inverse estimates). Let V*(T) be a finite element space with a
conforming triangulation T € T. Then, there exists a constant ¢ = c(k,n) such
that

lorll < ch™Hlorllo, Yoy € VX(T),



where h = max hr.
TeT

Proof. See the book of Braess [2], p 83. O

2.2 Problem and formulation

Let © C R? be a bounded, polyhedral domain. We consider the second order
semi-linear elliptic partial differential equation in divergence form with vanishing

boundary condition,

=V - (A(z)Vu(z)) = f(x,u(x)), Ve, (2.2.1)

u(z) =0, Ve 09, (2.2.2)

where f(z,u(x)) satisfies [, |f(x,u(z))|*dz < co and is Lipschitz in the second

argument, i.e., there exists a Lipschitz constant L; such that
|f(z,v) — f(z,w)| < Lsfv—w|, VreQVoweR,

and A(x) is a positive definite matrix having components in C'!(Q) and satisfies

strictly monotonicity property, i.e., there exists a positive constant 6, such that
[A(@)p(a)] - px) = 0. ()], Vp(z) € R® Vo € Q.
A weak solution of (2.2.1)-(2.2.2) is a function u € Hj () satisfying
B(u,v) = L(u;v) Vv € H (), (2.2.3)
where the bilinear form B : H'(Q2) x H*(2) — R is defined by
B(u,v) = /QA(x)Vu(x) -Vou(x) du. (2.2.4)

Note that B is symmetric since A is positive definite.

The functional £ : H'(Q) x H'(2) — R is defined by
Llus) = [ S uta))o(a)d.
Q

For example, f(z,u(x)) = e @ we see that Jo |f(z,u(x)]Pdz < co and L is
well-defined.
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Definition 2.9. Let H be a Hilbert space. A bilinear form a : H x H — R is

called continuous (or bounded) provided there exists C, > 0 such that
la(v, w)] < Callollullwlla, — Vv,we H.

A symmetric continuous bilinear form a is called coercive on V' C H provided

there exists ¢, > 0 such that
a(v,v) > cql|vll%, VoeV.

Lemma 2.10. The bilinear form B in (2.2.4) is coercive on H () and bounded
on H*(Q).

Proof. See Jampawai [9], p 13. ]
The bilinear form B induces the energy norm on H; (), defined as
ol := v/B(v,v), Vv e Hy().

Note that the norm || - ||;, the semi-norm | - |1, and the energy norm || - || are all
equivalent on H}(€). Then there exists the unique approximation of u, called the

finite element solution, defined as
ur €V(T)  Blurv) = Lluriv), Yo eV(T).  (225)

Next, we will construct lemmas for linear elliptic problem. Let L be a second-

order elliptic differential operator with divergence structure
Lu= -V - (AVu).
Consider the second order elliptic boundary-vlaue problem

Lu(z) = g(x), Ve Q, (2.2.6)
u(zx) =0, Ve o, (2.2.7)

with homogeneous Dirichlet boundary conditions, provided that
a(u,v) = (g,v) Vv € Hy (),

where

a(u,v) = / AVu - Vudz.
Q
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Lemma 2.11 (Céa’s lemma). Suppose the bilinear form a is symmetric and co-
ercive with HY () C V. C HY(Q). In addition, suppose @ and tr are the solutions
of variational problem in'V and V(T ) C V of the problem (2.2.6)-(2.2.7), respec-
tively. Then,

i—arly <= inf |la— :
lo—drly < 2%t o= vrl

Proof. See Theorem 4.2 in Braess [2], p 55. O

Theorem 2.12 (Regularity theorem). Let ) be convex. Suppose T is a family of
shape regqular triangulations of Q). Then, the solutions u and uy in Lemma 2.11
satisfies

@ — trlly < chllgllo,

where ¢ = (£, a).
Proof. See Theorem 7.3 in Braess [2], p 90. O

Theorem 2.13 (Duality argument). Under the hypotheses of Theorem 2.12, if

u € HY(Q) is the solution of the associated variational problem, then
[t — trllo < cCahlla — drlly.
If in addition, g € L*() so that @ € H*(QY), then
1@ — drllo < cCah*|lgllo-
Proof. See corollary 7.7 in Braess [2], p 92. O

For simplicity, we write fr := f(z,ur), fi := fr, and f := f(z,u). Based on
the results obtained by Jumpawai [9], the L? estimates for the error can be given

as follows.

Lemma 2.14. Let u be a weak solution satisfying (2.2.3) and ur € V(T) be the
solution of (2.2.5). Then,

|lu —urllo < Cyllu — url|s sup ( inf ||gpg—v||1> +C3llf = frllo,
9eL2(),]|gllo<I\VEV(T)
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where C; and Cj are constants depending only on data. For a given g € L*(),

denoted by p, € Hi(Q) the corresponding unique solution of the linear equation
B(pg,w) = (g,w), Yw € Hy(Q). (2.2.8)

Proof. Let w € L*(Q). Then, w € (L*(Q2))*, the dual space of L*(€2). Ones can

easily show that

[wllo="sup  (g,w). (2.2.9)
9eL2(Q)llgllo<1

From (2.2.3) and (2.2.5), we have
B(u—ur,v) = {(f — fr,v), Vo e V(T). (2.2.10)

By setting w := u — uy € Hj(Q) in (2.2.8) and using (2.2.10), for any v € V(T)

we have

<g,u—U7—> :B(QOQ,U—UT):B(@g—ﬁ,u—UT>+B<7~],u—UT>,

:B(gog—ﬂ,u—ufr,)vL(f—fT,f;). (2.2.11)
Applying the continuity of B and the Cauchy-Schwartz inequality to get
(g, u —ur) < Cpllu—urlly - llgg = olls + 1 = Frllollollo. (2.2.12)

Let @7 € V(T) be a finite element solution of ¢, in (2.2.8). By Céa’s Lemma
211,

Cp
_ < 2B int — ;. 2.2.13
g — @orl1 < P, g — vl ( )

Taking 0 = ¢, 7 € V(T) and using (2.2.13) in (2.2.12), it gives
(9;u —ur) < Cpllu—urlly - llog — g7l + I1F = Frllollegrllo,

hence,

C? }
(o= urh < = url (nt ey = olh) + 15 = Frlollonrl. (2210
cp vev(T)

By triangle inequality, the last term of (2.2.14) becomes

H90977—H0 = HSOQ,T 2 SOQHO < HSOg,T - SDQHO + ”909”0- (2-2-15)
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By duality technique for linear problem (2.2.8) on a convex polygonal domain and
duality argument (Theorem 2.13), the first term on the right hand side of (2.2.15)

becomes

l0g, 7 — @gllo < Cahllgr — @4lli < cCah®|lgllo, (2.2.16)

where Cq and c are constants depending on the domain {2 and shape-regularity.
Setting w = ¢, in (2.2.8) and applying the coercivity (Lemma (2.10)) and
Cauchy-Schwartz inequality, we get

csllegllt < B2y, 09) = (9. 24) < llgllollogllo-

Since |[v]|o < [Jv||; for all v € HY(Q), we get cpllogllz < llglloll¢gllo- Therefore,

1
legllo < ;Hgllo. (2.2.17)

Combining the previous inequalities into (2.2.15), we have

g7 llo < lleg T — @gllo + llgllo

1
< cCal?||gllo + —llgllo
CB

1
- (CC’Qh2 + C-) lgllo-
B

The inequality (2.2.14) becomes
(@ru—ur) < llu—urly inf [log— ol + (cCah® + )17 = Frlollgl
g, T) > o T 1U6V(T) Pg 1 Q . Tllollg]lo-

By setting C} = f—g and C5 = cCq + é by assuming that h < 1 and taking the

suppremum over all ||g||o < 1, we obtain the result

|lu —urlo= sup (g, u — ur)
geL2(Q),llgllo<1

<Cilu—urls  sup (inf ||<pg—v||1)+05‘||f—f7||o~
9€L2(Q),|lgllo<1 veV(T)

O

Corollary 2.15. Under the hypotheses of Lemma 2.1/ and f satisfies

Ly<p< % for some positive p. Then,
2

lu = urllo < Crhllu = urly,
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where Cy is a constant depending only on p, the shape regularity, and the data

(A,Q).

Proof. By the regularity Theorem 2.12,

inf — < — < ch .
ot ey = vl < ey = 2yl < chlgl
Lemma 2.14 becomes

|u —urllo < eCTh||u —urlly + C3[|f — frllo-

By the Lipschitz condition, it follows that || f — frllo < Ly|lu — ur|lo and by

assumption Ly < p, we get || f — frllo < pllu — urllo. Hence,
lu = urllo < cCThllu — urlly + C3pllu — urlfo.
Since C5p < 1, we can combine terms to get
lu = urllo < Crhllu = urly,

where Cy := kc—cl*p is a positive constant. O
2



CHAPTER III
ADAPTIVE FINITE ELEMENT METHODS

3.1 Adaptive Finite Element Method: AFEM

We analyze here a standard adaptive finite element method (AFEM) as a loop of

procedures
SOLVE — ESTIMATE — MARK — REFINE.

SOLVE: Given a current triangulation 7 of the domain €2 and a finite element

space V(T), it produces the finite element solution uy € V(T),
ur =SOLVE(T).

We cannot compute integrals involving a nonlinear function f since (2.2.5) is a

nonlinear problem. By (2.2.5), we find ur € V(7))
B(“Ta U) = <f(!l§',U7‘),'U> ) Vv € V(T)

Using the finite element basis {1}, Tl is formulated as follows: let ur = Zf\z u; Yy,
for v =; € V(T),

Nt
<f(17,UT),77Z)j> - U,T,@/)] - Zul¢l7¢j ZUZB(¢Z7¢])7
=1
then

B(yr, 1) B, va) .. B, vn,) | |wm (f(z, > uihi(z)), ¥n)

B(wNTv ¢1> B(d’lﬂb) B<¢NT7 wNT) Un <f<I> Zuzwz(x>>>7¢n>
Set .A = [bij], where bz‘j = B(ﬂ%ﬂﬁ]) and F' = [(f(l‘, Zuz¢z(x)))’¢]>]t and

U = [ug uy ... u,]*, we have a nonlinear system for U,

AU = F(U).
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We seek the solution of the nonlinear system
AU - F(U) =0. (3.1.1)

The solution U of (3.1.1) can be estimate by iterative techniques such as the
Newton’s method or the Kacanov iteration as used in [8] for quasi-linear problem.

For the Newton’s method, we require that the Jacobian of AU — F(U) is non-

A o OF(U)

singular, i.e., 50

‘ = 0, and the initial guest Uy is chosen approximately in
order to the convergence of the method.
ESIMATE: For T € T, T € T and v € H}(2), we define the local interior

residual
Rr(v) == f(x,v)|r + V- (AV0)|r. (3.1.2)
The jump residual on side S C 9T N2
Js(v) := (AV)|s - fir + (AV0)|s - fig, (3.1.3)

where 777 and 7y are the outward unit normal vectors on S corresponding to T’

and 7", respectively (see Figure 3.1 ).

Figure 3.1: The outward unit normal vectors on S corresponding to 7" and T"

The local error indicator nr(v,T) on T is defined via

W7 (v, T) = " | Re() 22y + b Ts(0) 72 orne). (3.1.4)

where we define here that hy = |T|'/2, |T| is the area of T in R?2. We can show
that this definition is equivalent to the half diameter of T defined in Definition
2.5.
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Let a, b and ¢ be sides of a triangle T such that c¢ is the longest side of T, and

contains a circle of radius pr. If . is the angle opposite of side ¢, then

1/2 .
\/—dlam(T) '

1
IT)Y? = | Zabsin(6,) =2
2 2

Conversely, by property of triangles, we obtain

a+b+c 1/2 ¢ a+b 12
=[S o] = [(5+ ) o] 2 e

By shape-regular (2.1.1),

1/2 .
T > [cc/—2] - \/g—dlam(T).
K K 2

Therefore, both definitions of A7 are equivalent.

The global error indicator ny for T is

1/2
U) = (Z 77’2r(U>T)> ’

TeT

and for any subset 7/ C T,

1/2
(v, T') : (Zn vT) .

TeT’
Based on a posteriori error analysis, see [1], Jampawai [9] obtained the upper

bound estimate stated as:

Lemma 3.1 (Upper bound). Let u be the weak solution (2.2.3) of the model
problem and uy =SOLVE(Ty). Then,

lu = wll < Crme(un) + Cohuc|| f = fello, (3.1.5)

where Cy,Cy depend on the shape regqularity and the data (A,Q), hy is defined to

be the mazimum of hy for T in Ty, and denoting n(ux) for nr. (uy).

Proof. See Jampawai [9], p 20. O]

MARK: Given a triangulation 7, the set of indicators {ny(ur,T)}rer, and the
marking parameter 6 € (0, 1], the procedure MARK produces a marked subset
MCT,
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M = MARK({nr(ur, T)}rer, T, ),

such that M satisfies some marking properties in some optimal way. For example,

in this paper we use Dorfler’s marking [6],

nr(ur, M) = Onr(ur). (3.1.6)
MARK will find an optimal subset M satisfying the marking property (3.1.6).

REFINE: Given a fixed integer b > 1, for any 7 € T and M C T of marked

elements, the procedure produces a finer conforming triangulation
7. = REFINE(T, M)

by refining all elements T" € M for b times, and together with a few more elements
surrounding to be conforming. Note that V(7)) C V(7). For T" € T.\T obtained

by refining T' € T, i.e., by using newest vertex bisection method b times, we have
IT'| < 27°|T. (3.1.7)
Note that for 7", as a child of T,
hpr =272y, (3.1.8)

Adaptive Algorithm.
Given the initial grid 7y, TOL, and marking parameter 0 < 0 < 1, set k = 0:

(i) u, = SOLVE(T);

(ii) {n(ur, T)}rer, = ESTIMATE (ug, T); (STOP: if 1, < TOL.)
(iii) My = MARK({nx.(ux, T) }rer,, Tk, 0);
(iv) Tiy1 = REFINE(M,, Ty); set k =k + 1, go to Step 1.

Note that from (3.1.8) the algorithm gives the decreasing sequence {hj},, namely,
hi, < hy for all k.
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3.2 Lemmas

In this section we prove lemmas required for obtaining the contraction property
and the convergence of AFEM stated in the next section. These lemmas are
obtained according to the AFEM algorithm, based on the four main procedures,

SOLVE, ESTIMATE, MARK, and REFINE.

Lemma 3.2. Let u be the weak solution of (2.2.3), ux = SOLVE(Ty), and ug1 =
SOLVE(Tis1). Then,

lu = will® = N = wgal® + s = will® + 2 (F = firr, s — w)-

Proof. By nested property of refinements, we have that Vi, C V., C H}(Q) and
U1 — Ug € Vi C HY(Q). From (2.2.3) and (2.2.5), we get

(f = frortstepr — ) = (f uper — ug) — (fogt, Ungr — Ug)
= B(u, ugy1 — u) — B(upy1, g1 — ug)

= B(u — Upq1, Ups1 — Up).
By definition of the energy norm, we obtain the followings:

B(u — upr1, upyr — ug) = B(u — Upy1, Upr — u + u — uy)
= B(u — Upy1, Up1 — w) + Blu — upy1,u — ug)

= —Jlu — i || + Blu — wpsr, uw — uy),

B(u — tugy1,u — ug) = Blu — ug + ugp — U1, u — ug)
= B(u — ug, u — ug) + Blug — ugy1, v — uy)

= flu — wgl® + Blugx — wpsr, u — uy),
and

B(Uk = Uk41, U — Uk) = B(Uk — Up+1, U — U + Up1 — Uk+1)
= B(up — Whp1, Up1 — ug) + Blug — Upy1, © — Ugg1)

= —[lurgr — up |||2 — Bt — Wpg1, U1 — Ug)
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= ~flursr — wrll® = (f = frr, wnsr — wi) -
By combining all these terms together, we obtain
e = wnll® =l = e * + flewwsr = well® + 2 (F = frrr, unsr — up) -
[

Lemma 3.3. Let u satisfies (2.2.3), up = SOLVE(Ty), and ugy1 = SOLVE(T41).
Given that f satisfying the assumption in Corollary 2.15, then

3 1
(fiorr = frun =) < SCCCTL A Nlu = P + 5 CCCTL R flu — ug]”
Proof. By the Cauchy-Schwartz inequality,

(frrr = frungr — wr) = (frog1 — [repr — v 40— uy)
= (frr1 — frunn —w) + (frr1 — fru —ug)

< frwr = fllolluess = ullo + [ fesa = fllollu — urllo-
Applying the Lipschitz condition for || fzr1 — fllo, we get
(frrr = frunrr — u) < Lylluger — ullg + Ly lluger — ullollu — ugllo-
By Corollary 2.15, we obtain
(frar = [rungr — ug) < LyCR2 Ju — ugi||F 4 LyCih? lu — w1 [lu — |1

By the equivalence of norms || - || and || - |1, i.e., there is a constant C, > 0 such

that || - |1 < C¢] - ||, we obtain
(frrr = fruprr — ug) S LyC2OFR lu — wpia [P+ Ly CZCTR? Ju — g [lw — w],
and by applying the inequality, 2ab < a? + b?, we get

3 1
(ferr = frun —un) = SCCTL R lu — wp||* + SC2CTL A lu — wi ]
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Corollary 3.4. Under the assumption of Lemma 3.3,
(1=3C2CTLsR?) lu — wpaI* < (1+ CZCTLR) flu — ugl* — fluwss — well®.
Proof. By Lemma 3.2, we obtain
o = wrall® = flu = unll® = fusr — well® + 2 (fosr = frunen —w) . (3.2.1)
Applying Lemma 3.3 to the last term of (3.2.1), we get

lu = wrsl* < lu = ull® = llwrsr — unll® + 3CZCFLeh* lu — wpa |1®

+ C2CFL R lu — g,
which leads to
(1=3C2CFLsh%) flu — upa|* < (1+ C2CFLsA?) Nlu — wiell® — Nupsr — will®.
O

Lemma 3.5. For any T € T, there holds for all v,w € V(T), and § > 0,
1
FHOT) < (0 T) + e (145 ) 1s(o = 0o

v 2 (14 ) (1900 = ) + 170) = S0l

Proof. For any T € T, let v,w € V(T). We denote, for simplicity, f(z,v) and
f(z,w) by f(v) and f(w), respectively. Consider T' € T and its sides S C 0T, by
using (3.1.2) we get,

Rr(v) = V-(AVv) + f(v)
=V-(AV(v —w)) + V-(AVw) + f(w) + f(v) — f(w)
= Rr(w) + V- (AV(v —w)) + f(v) — f(w).

By linearity of the jump residual (3.1.3), we have
Js(v) = Js(v —w) + Jg(w).
The local error indicator (3.1.4) leads to

(0. T) = h7 |Re(w) + V-(AV(0 = w)) + f(v) = f(w)| 72
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2
+hr || Js(v —w) + JS(w)||L2(8TmQ) :
By triangle inequality,

050, T) < b (|Re ()]l 12¢r) + 1V -(AV (0 = w)) + f(v) = f()]l12(r))”

2

+ hT (Hjs(v — w)HLQ(aTOQ) + ”Js(w>HL2(@TmQ)) . (322)

For simplicity, let us denote

a = [Rr(w)r2q),

p=IV-(AV(v —w)) + f(v) = f(w)l| 22y,

q = |[Js(v — w)|| 2700+

t = ||Js(w)| z2(o1n0)-
The inequality (3.2.2) becomes

n7-(v,T) < hi (a4 p* + 2ap) + hr (¢° + 2 + 2qt) . (3.2.3)

Applying the Young’s inequality to ap and gt of (3.2.3), we obtain, for § > 0,

1 1
n>-(v,T) < b3 (a2 +p? + da* + 51?2) + hr <q2 + % 4 6t + qu)

1 1
= h2(1+68)a® + h2 (1 + 5) p*+ hr (1 + 5) ¢+ hr(140)%.

Therefore,

1 1
(v, T) < (1+8){h}a® + hrt*} + hr (1 - 5) ¢’ + h3 (1 + 5) P> (3.24)

By (3.1.4), the first term of the right hand side of (3.2.4) becomes n3(w,T). For

the term p? we get
P = ([V-(AV(v = w)) + f(v) = f(w)z2r))”
<2 (IIV-(AV @ = )2y + 1) = F@)llEe ) -
Finally, (3.2.4) becomes

1
0. T) < (U0 0 T) + e (143 ) 1s(o = 0

w2 (14 3) (I9-(AV0 = )l + 170 = S0,

]



23

Lemma 3.6. For T, € T, let My =MARK({ni(uk)}rer., Te) and let Ty € T be
defined by Tr11 = REFINE(Ty, My) for X := 1—-27%2 > 0. Then, forv € V(Ty),

M1 (V) < me(v) = A (v, M)

Proof. Let M, be a set of elements in 7 that are refined to get Trr1 and //\/lka be
a set of newly obtained elements in 7Ty, from the refinement of 7y, i.e., ./\7k+1 =
Tir1\(Tes1NTr). Note that the marked set My, C M, C T. It is easy to see that
UTeﬂk T = UT,G/%H T and M U (Tp 0 Trg1) = Ti. Since Tjyy is decomposed
into two disjoint subsets T, N 711 and M1, we have

lia(@) =Y @)+ Y nia (T, (3.2.5)

TeTNTk4+1 T’GM}C+1
Similarly, 7y is the disjoint union of 7 N Tp41 and M, then
mw)= Y m@T)+ > ni1T).
TeTNTk+1 TeM,
From the definition of indicators (3.1.4), we have that ng(v,T) = ngy1(v,T) for
allv e HY(Q), T € Te N Try1. Then, (3.2.5) becomes to

e (0) =i 0) + Y a0, T) = Y (e, T). (3.2.6)

T’GMk+1 TEM}C

For a marked clement T € My, we set Py (T) = {T" € Trpr : T C T} C My,
the set of all children of T. By refinement condition, hy < 27%2hp, we have
e (. T) = (3 | R (0) |22y + B [| T ()17 )
Me+1\Y, T || /T L2(T") T8 L2(8T'NQ)
T'€Pps1 (T) T'€Ppy1(T)

<D 2MIRe @y + D 2 hell 5@ ern

T'€Py11(T) T'€Pyes1(T)
For v € V(T;) and T' € Ty, the restriction v, € P,(T) is continuous and has

continuously derivative on T". Then, for the interior sides S of T} inside T,
JS(U) = AVv - ﬁl + AVv - ﬁg = 0,

because 17; = —1io, where 77 and 7, are outward unit normal vectors on .S corre-

sponding to T} and Ty, respectively (see Figure 3.2).
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Figure 3.2: The outward unit normal vector for the common side S of T and T3

Hence,
Z ||JS(U)||%2(8T/OQ) = ||JS(U)H%2(6THQ)‘
TPy (T)
By definition of interior residual, since T = U T,
T'€Pr41(T)
> IR )72 = 1R (0) 721y
TPy (T)

Thus, we obtain
Yo a0 T) <2720 Re (o)) + bl Js (0) 72 0rn0)) = 2720k (0, T).
T'€Pr41(T)

Thus,

Z 7713+1(U7T) = Z ( Z 7713+1(U7T/)> S 2_b/2 Z nZ(UvT)’

TeMp41 TeM, \T'€Pry1(T) TeMj,
where the last term comes from the refinement criteria (3.1.8). Therefore,
Mo () <) +272 3" k(. T) = Y 5w, 7). (3:2.7)
Teﬂk TEH}C
By defining A = 1 — 27%2 > 0, (3.2.7) becomes
Mo (0) S 7p(0) = A Y (v, 7).
Téﬂk
Since M;, € My, Z ni(v,T) < Z ni(v,T), we finally get

TeM; Teﬂk

Mo () S0W) = A D7 (0, T) = ni(v) = M (v, My,).

TeMy



25

Lemma 3.7. For T, € T and My =MARK({nx(ux)}rer,, Tr), let Tryr € T be
defined by Tyy1 = REFINE(T,, My). Then, for all vy, € Vi, vpy1 € Viiq, and
0 > 0, there holds

1
ealvne) < (1) {rk(00) = Aon Mo} + (14 5 ) Ko = wl

where Kj, .= Cy + QL?hi + 2044 (1 + hy,)?.

Proof. By setting T = Tp11, v = v+1 and w = vy in Lemma 3.5, we get

7713+1(Uk+1)
= Z 7713+1<Uk+17T)
T€Tk+1
1
<040 Y taon )+ (145) 3 brldston - o)lEome
TeTk+1 T€Tk41
1
#2(145) | SOV (ATt = )yt S 0nrr) = ) e |
T€Tht1 TETk+1

To estimate the ||Js(vk+1 — k)| 22(o7n0) term, we applied the Theorem 2.7 to
obtain

> bl Ts(vkin = on)lF2orney <2 ) hrllAV vk — o) 32 0mme)

T€ETk4+1 TETk41

<Co Y Al IV ki = vl Z2ry.

T€Tk41
where Cy is a constant depends only on shape-regular parameter, and [|A||» is a
bounded by assumptions. This can be written as

> hrllJs(iess — vl F2orna) < Callvess — vellf,
T€Tk41

where Cy := Cy || A .-
To estimate ||V-(AV (k41 — vk))|| 2(7, we observe that

V- (AV (ki1 = ve)) = (V-A) - (V(vkgr — o)) + A V(0 — v),

where V2(vy,1 —vx) is the Hessian matrix of vy, — v, and : denotes the Frobenius

inner product, i.e., A: B = Zij a;jb;j. This leads to an estimate

Z h3||V - (AV (g1 — Uk))H%Q(T)

T€Tk41
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2
< > n ||V'A||oo||V(Uk+1—"Uk)||L2<T)+||AHoo||V2(Uk+1—Uk:)||L2(T)>-

T€Tk+1
Applying the inverse estimates, Theorem 2.8, to the Hessian matrix to get
2
> IV AV s =v) T2y < D (V- Alloo+ [Alloo) IV (Wi = 00) 22,

T€Tk+1 T€Tk+1

This gives

> hHIV-(AV (0 = ves)) T2y < Can(l+ i) |vpsr — oil]3,
T€Tkt1

where Cyy = max{||V- Ao, [| 4|00}

Finally, by the Lipschitz condition on f, we obtain an estimate

Z hcerf(UkH) - f(”’f)H%Q(T) < Z h?pochkH - Uk“%?(T)

TETk4+1 T€Tk+1

< hi L ||vgsr — w3

After combining all estimates above and applying v = v, in Lemma 3.6, we

get
1
) = (14 (100 = Mlon, M0) + (14 5) Kaller =l

where K}, := CA+2hiL§+2CAA(1+hk)2. O

Note that since {hy},-, is non-increasing, i.e, 1 > hy > hy > ... > hy > ...,

therefore the constant K is bounded above by K, i.e.,

Ky, < Oy +2L5 +8Caa := K.



CHAPTER IV
CONVERGENCE

In this chapter we prove a contraction property for the weighted sum of the
energy error and the error estimator for any two consecutive iterations of the
AFEM. The convergence of AFEM follows directly from the lemmas in the pre-
vious chapter as stated in the corollary. The last section will be the conclusion of

this work.

4.1 Contraction property

Theorem 4.1. Given an initial triangulation Ty with initial mesh-size hg, let
0 € (0,1] and {Tg, Vi, ur }r>0 be a sequence of triangulations T, finite element
spaces Vi, and discrete solutions uy produced by AFEM. Then, there exists a
constant K depending only on the data and the Lipschitz constants such that if

ho < K, then there exist constants o,y > 0 and 0 < pu < 1 such that

Vs (1) + oflu = wen I* < g (g (un) + aflu — ) -

Proof. For simplicity, let us use ng := Mg (ug), ka1 = M1 (Ugr1),
ery1 = ||u — ugs1]), and |Ju — ug|| := ex. By setting vy = ug and v = Uy in

Lemma 3.7, we get

1
M < (14 6) {mi — Mnjg(ue, M)} + <1 + 5) Killugsr — w2 (4.1.1)

Using equivalence of norms and setting Ej, = ||ugs1 — ug|, (4.1.1) becomes

J

where C, is a constant for the norm equivalence depending on the data A and 2.

1
e < (14 0) {mi — Mg (uw, M) } + (1 + —> C2K,E2,

Applying Dorfler Marking (3.1.6) and g (ug, My) > 61, we have

1
7713+1 < (1+9) {771% - M’?nﬁ} + (1 + 5) C2K.Ey. (4.1.2)
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Since K}, < Ky, (4.1.2) leads to

Mo < (L+68) {mg — i} + (1 + 5) C’K,E;}. (4.1.3)

Multiplying (4.1.3) by 7 := > 0 to obtain

C2Ky (1+5
Miesr <Y1+ 8)m — YA (1 + 0)ni; + Ej.

By Corollary 3.4, if hy <

Vi1 + (L=3CECTLshi)er y <y(1+0)n; — yA0* (L+0)n + (1+CCTLhi)ey
To balance the 7 term, we can rewrite as, for 8 > 0,

Vs + (1= 3C2C5Lshy) €y < v(140)ni + (1 + CZCLsh) €}
— BYA* (1 + &) — (1 — B)yA6*(1 + &),
(4.1.4)

Using the upper bound (3.1.5), the Lipschitz condition on f, the Corollary 2.15,

and the equivalence of norms, we get

ex < Cimie + Calullf = Fillo
S Cﬁ?k + Cghka ||U — UkHO
< Ciy, + CoLyCrhi||u — gy

< Cﬂ]k + CngCfohzek.

If h() < \/ﬁ, then we have
1 — C.CyCy LN
0<( 02 =7 k)ek < 0. (4.1.5)
1

Combining (4.1.5) to the right hand side of (4.1.4), we have

’W?i%ﬂ + (1_3030?th2)6z+1
< A(1+0)m; + (1+CECTLshg) ek — (1= B)yA* (L +0)ni (4.1.6)

1-C.CoCrLeh2\*
Cl ek.

- mAe?(Ha)(
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For convenience we denote the coefficients as follows;

ay =1 —3C2C7Lsh; > 0,

5
e BAG? (

az = (146) (1= (1—B)r6%).

1— C,CoCLh2\>
az =1+ C2C3Lsh; — kel ’f) :

Ch

The equation (4.1.6) can be written as

&%)
Miesr T ar€i g < Yagip + asej = yagi; + o <a—) - (4.1.7)
1

The result follows by setting & = o1 and showing that p := max{as, 3—?} < 1.

Showing that 0 < ag < 1 is equivalent to show that
0<(1+46)(1—(1-pB)A?) < 1.
This is the case if we choose 5 > 0 such that

o<ﬁ<1—i< 0 ) (4.1.8)

Since A and 6 are known from AFEM and \§? < 1, then we can choose 3 > 0

satisfying (4.1.8) provided that 6 > 0 is pre-selected so that ﬁ (%) < 1, ie.,

choosing

A\G?

0<6<m.

(4.1.9)

In order to arrive at (4.1.7), it requires that hy < min { \/30310§Lf’ \/CECZCfo },

for obtaining (4.1.4) and (4.1.5), thus this gives a; > 0.

We get ag > 0 by selecting § satisfying § < min{ 22 Ce KOC%} so that

FESVERRDVE
5503%0;12 (1= C.CoCsLyh2)? < 1.
The case 0 < as < a7 holds if and only if
1+ C2C2Lsh3 — ﬁaA—QQQ (1= C.CCrLsh2) < 1 — 3C2C2Lsh2.
C2KyC5
This is equivalent to
5 BNG?

h? <

k 404K00?Lf012 (1 - CeCQOfohi)Q'
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5BNG2

———r22— . The condition on h
ACTK(C3L;C? k

For convenience, set r = C.CoCrLy and s =
becomes

hi < s(1 — 2rhi +r°hy).

This is the case if kg < \/755,; because sr?h; > 0.

1 R 3 1 1 S oy
By selecting K := min { AL, e, O /1+2m} > 0, the condition
ho < K will give us the contraction result for (4.1.7). O

Corollary 4.2 (Convergence). Under the hypothesis of Theorem 4.1,
lim 7y (ug) = 0 and lim |Ju — u| = 0.
k—o00 k—o00

Proof. From Theorem 4.1, it is easy to see that

Miesr (Wrpr) + allu = w2 < P (9 (uo) + aflu — uol|?)
Since limy_,o p*1 = 0 for u € (0,1), and 7, > 0, thus

lim 7y (ug) = 0 and lim |Ju — upyq|| = 0.
k—ro0 k—ro0

Remark 4.3.

1. In the contraction result, the reduction factor of the weighted sum ~yni_ , +
llu — up1||* is p < 1. By definition p is controllable by changing parameters
A =1-27%2and 6 € (0,1]. To have high reduction rate (u small), we require
that A and € are close to 1, i.e., by controlling the marking criterion to have
6 close to 1 (nearly uniformly refinement) and/or controlling the refining

criterion to have bigger b, the number of bisections for each refinement step.

2. The weights v and « in the sum of the error estimator 7, and the energy
error ||u—uyg|| are chosen to balance these two errors to have the contraction.
They are chosen based on the parameter ¢ that satisfies (4.1.9) and other
constants such as C., Ko, Cf, Ly and hy from the problem and the initial
triangulation 75. Many of these constants are computable, but some of
them, such as Ky and C}, not computable from the Lemmas . Therefor, v

and « are not computable in general.
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3. The constant K in definition is upper bound for initial mesh size hq in order
to have the contraction. The value of K depends on serveral parameters
of the algorithm and the constants of the problem. Similarly, the value of
K is not computable due to some constants are not known. Therefore, the
control of hg by K in order to have convergence result can only be obtained

by experiments.

4.2 Examples

In this section, we give examples of semi-linear elliptic partial differential equa-
tions satisfying the assumption of the main Theorem 4.1. Let Q = [0, 1] x [0, 1]

and 7o be an initial triangulation as follows (see Figure 4.1).

(0,1} (1.1}

(0,00 {0,1)

Figure 4.1: An initial triangulation 7 for the rectangular domain 2

We consider the problem

=V - (A(x)Vu(z)) = f(z,u(zx)), Ve, (4.2.1)
u(z) =0, Ve 09, (4.2.2)

a(x) b(z)

where A(x) = , ¢ € €1, being positive definite matrix. For con-
b(x) c(x)

venience, we will omit the variable . Let A; and Ay be eigenvalues of A with
A2 > Aq. Since A is positive definite, Ay > Ay > 0. Both eigenvalues are positive

if ac > b%, where a, b and c¢ are positive. By property of the Rayleigh quotient,

A(x)p-p

Mix) <
N

< Ao(2), Ve eQ VpeR:p#£0,

we can choose

0* = inf )\1(1’) > 0.

e
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Then, A satisfies strictly monotonicity.

1 0
Example 4.4. Let A(z) = . It is easy to see that A is positive definite

0 1
and has the eigenvalue Ay = Ay = 1. Then, we can choose 0, = 1.

6 2
Example 4.5. Let A(x) = . Then, the eigenvalues of A are A\ =5 — V5
2 4

and A\ =5+ V5. Thus, we can choose 6, =5 — V5.

1 =
Example 4.6. Let x = (21, 22) € Q and A(x) = L Then, the eigenvalues
T 2

of A are M (z) = SV and Ay () = TV

5 5 . Then, A is positive definite

since A\i(z) and Ao(z) are positive for all x € 2. Hence, we can choose 0, =

: _ 3-V5
A =50

For the nonlinear function f(z,u), we give examples for those satisfies the

assumptions as follows:

Example 4.7. Let f(z,u) = e~m® where z € O and a constant m > 0. It is

clear that
0 —2u 2 u
of = —|=—" UQ, Vu € R. (4.2.3)
ou memY¥ m emY
By calculus, E‘LQ has absolute maximum /2%, i.e., ELQ < V5, Yu € R. Thus,
0 [ 2
—f <3\ —, Yu € R.
ou me
We can choose Ly = % By corollary 2.15, Ly < %, ie.,
2
> 2 (ccpCp +1)?
m > —(cc
662B BYB )
where cp = 0., Cp = [|Al and ¢ = % In the case of Example 4.4 where
A =1, we get that cg = Cg = 1, therefore, and we must m > M in order to

satisfy the condition of the Corollary 2.15. Moreover, since f(z,u) is continuous

and bounded on (2,

/|f(x,u)|2d:c = / e dr < oo,
Q Q
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Example 4.8. Let f((x1,22),u) = xysin(mziu), where x = (x1,25) € Q and a
constant m > 0. It is easy to see that

of

5| = |mayzo cos(mziu)| < m, Yu € R, Vx € Q.
u

Similarly to Example 4.7, we choose Ly = m. Then,

CB

< —.
m CCBCB + 1
In the case of Example 4.4 where A = I, we can compute cg = Cg = 1 and we

have m < Since f(x,u) is continuous and bounded on (2,

1
c+1°

/|f(x,u)|2dx :/xg sin?(mau) dr < oco.
Q Q

4.3 Conclusion

In this work we obtain convergence theorem of AFEM for second order semi-
linear elliptic PDEs as stated in the main Theorem 4.1. The proof relies on
several assumptions as follows. The coefficient matrix A is positive definite and
satisfies the strictly monotonicity in order to have the coercivity such that the
energy norm is equivalent to the H'-norm and seminorm on H}(Q2). Moreover,
we require that all components of A are C'(Q) functions in order to have the
approximation of the reduction for error estimators as stated in Lemma 3.7. The
examples for such A are given in the examples 4.4-4.6. In addition, we require
that f(z,w) is Lipschitz in variable u in order to approximate the difference of
| f(xz,v) = f(z,w)|lo in terms of |[v — w||p to obtain the upper bound (Lemma
3.1), the estimation of error reduction (Corollary 3.4), and the estimation of error
estimator reduction (Lemma 3.7). Examples of f(x,u) satisfying such conditions
are shown in Examples 4.7 and 4.8. The key idea for getting the contraction in
Theorem 4.1, is to combine the estimators of the error reduction in Corollary 3.4
with the estimator of error estimator reduction in Lemma 3.7, and with the help
of the upper bound, the marking property and the refining criterion. Finally,
the contraction is obtained under the assumption that the initial meshsize hq is

sufficiantly refined. The convergence follows easily as stated in Corollary 4.2.
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