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Chapter 1 Introduction

The foreign exchange market is one of the biggest financial markets in the world with a huge
trading value from several pairs of currencies. Over one trillion dollars in daily transactions
are executed in this market over 24 hours of weekdays.

Traders always have to deal with the dynamic of currency pairs for speculation in the FX
market. The evidence that supports the existence of a speculation in the FX market is
discovered by (Frankel and Froot 1985) who detect that the speculation in the FX market
comes from the use of technical analysis. As there are tons of traders speculating in this
market, the currency exchange rates can change rapidly due to speculation from many
traders following and contrasting the releases of the important economic news.

Historical data suggest that the currency price may not move in one certain direction
immediately after a news release but is likely to fluctuate for a while after the
announcement period. The reason could be that there are some big players speculating in
the market who try to hedge their positions in their preferred direction after the news
announcement. The price can temporarily become highly fluctuating after high-impact
economic news relevant to the currency pair is released. This state of the market will be
called the transient state in this context. The study from (Allen and Taylor 1990) supports
this event that the short-term volatility is driven by a large number of speculators using
technical analysis. The rapid change in the exchange rate price is accounted to the
momentum of the use of technical analysis in the short term trading by (Schulmeister 1988).
The studies from (Froot, Scharfstein et al. 1990) point out that using the technical analysis
to speculate in the short period, when new information arrives to the market, is preferred to
the traders than using the fundamental analysis.

Also, there is a study from (Goodman 1979) that shows that a prediction result from
technical analysis in a short time period is more accurate than using the fundamental; this
can support a reason why the technical analysis is preferred. There is a confirmation that
using the technical analysis to trade in the FX market is profitable from the study of (Levich
and Thomas 1993).

After the transient state, the dynamic of the currency pair will try to stabilize itself into a
steady state and the price will follow the news result. With a high variance during a short
time period after the news release, traders who open a position may face gain or loss due to
their betting direction. For instance, the traders will gain a huge amount if they bet on the
right direction. On the other hand, the wrong direction of the bet may force the traders to
close their positions due to the use of leverage.

Another stylized fact that can be observed is that the FX bid-ask spreads are usually
widening when news is announced. This is another reason that could result in a forced
closure due to the insufficient buffered money in their portfolios. The study by (Glosten and
Milgrom 1985) is the evidence supporting this fact. They state that the bid-ask spread will
immediately widening when news is released and narrowing when the market absorbs the
result of an announcement. The studies of (Bollerslev and Melvin 1994) state that the
exchange rate volatility increases price risk. The changes in bid-ask spreads occur because



the FX dealers try to gain some information advantage by strategically vary the bid-ask price
to prevent losses from the uncertain situations as discovered by (Evans and Lyons 2002).
With an immediate widening of the spread, the forced close condition can be met before
prices begin trending and this can be disastrous for the traders. The violation of the forced
closure rule is a huge ruin to the traders’ wealth because the position will be forced to close
immediately with a market best price without caring how much losses are.

Fortunately, the traders can prepare for the arrival of high-impact news since the
announcement time and the level of the impact are scheduled and listed in
www.forexfactory.com. For example, the traders know from the website in advance that the
unemployment claims of USA will be announced on 02 Jan 2014 at 9:30 A.M. with a high
impact level to the change of variance.

- News: Unemployment Claims # of News: 1 Announcement: 20.30 Result: Bad News
1.366 T T T

1.364 A

1362 Open short (News result is announced) (A)

136 <

Close the position for 200 points (B)

1.356 B

1.354 ;
19:30:00 20:00:00 20:30:00 21:00:00 21:30:00

Figure 1: Bid-Ask movement of EUR/USD after Unemployment claims is announced on 09/01/2014 at 20.30 (+7
GMT)

Figure 1 shows an example of how to make a profit based on an announcement of bad news
in the EUR/USD market by placing an appropriate short position after the news is announced
(line A) and closing the short position when a 200 points gain is reached (line B).
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- News: Unemployment Claims # of News: 1 Announcement: 20.30 Result: Good News
1.3595 T T

1.359
Enter trade & Stop loss

1.3585

1.358 -

1.3575

1.357

1.3565 L : ;
19:30:00 20:00:00 20:30:00 21:00:00 21:30:00

Figure 2: Bid-Ask movement of EUR/USD after Unemployment claims is announced on 30/01/2014 at 20.30 (+7
GMT)

Figure 2 shows the case in which traders enter the trade and immediately exit due to the
stop loss triggered by spread widening. The reason is that under an uncertain condition large
orders are more likely to raise dealer risk, and so the spread is widened by market makers to
prevent the risk caused by the uncertainty (Biais 1993).



20140130 News: Unemployment Claims # of News: 1 Announcement: 20.30 Result: Good News
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Figure 3: Spread size of EUR/USD after Unemployment Claims is announced on 30/01/2014 at 20.30 (+7 GMT)

Figure 3 shows an example of a spike in the spread after a news release, and the spread is
narrowing exponentially fast in time.

Unfortunately, it is impossible to know how much the spreads might spike with a given news
release. Trading in news release environments is so dangerous due to many uncertain
factors, but the potential rewards could be huge if the traders can find themselves on the
right side of the position.

A variety of entry strategies can be helpful for traders to enter the right initial position.
However, how the traders take the profit from the matched order by closing the contract at
the right price is also important.

In this thesis we will try to improve the strategies for FX trading during news announcement
period by using estimation and optimization techniques.

The goal of this thesis is inspired by the view of individual traders who mainly speculate on
the release of news. To gain some benefit from this situation, traders may set their market
price order of either buy or sell at some optimal price and optimal lot size right after the
news is announced.

To find the optimal price to open a trading position with an optimal lot size, traders need to
know that if the order is opened far from the current exchange rate level, they can be
ensured that their order, if matched, could be a low risk trade. However, there is a high
chance that the order is not matched and that gives zero gain to the traders. If the order is
matched with a small lot size, this trade may not generate enough gain to compensate the



low chance of matching. On the other hand, if traders place the order closer to the current
exchange rate level, the traders can be more confident that their order will be matched.
However, this trade has a higher risk, so a smaller lot size should be used. Therefore, not
only the optimal place of opening the order but also the optimal lot size must be taken into
account in this situation.

Intuitively, exchange rate level should go up after the good high-impact news is released and
traders can decide to send whether a limit order or a stop order to try to make a profit.
Using the limit order is effective in the situation that a reversal on currency price movement
occurs after the order is matched. For example, in the situation that the exchange rate is
initially moving in the downward direction, the Limit Long order must be placed below the
current exchange rate level. After the Limit Long order is matched, the direction of exchange
rate is starting to change reversely to the upward direction, and when the price reaches a
certain level, the trader can close the position. On the other hand, the stop order is more
effective in the situation where the exchange rate is moving in the trending fashion after it
passes through some level. For example, in the situation where the exchange rate is initially
moving in the upward direction, the Stop Long order must be placed above the current
exchange rate level. The Stop Long order is matched when the exchange rate level is passing
through where the order is placed. The Stop Long order will be effective if the exchange rate
keeps moving in the upward direction, and the trader can close the position when he enjoys
enough profit.

In conclusion, after a news release, traders may set up limit orders and expect for the price
reversal after orders are matched, or to set up the stop orders in the direction that is
consistent with the news and expect the price to move accordingly. However, due to the
high volatility during the transient period, the forced closure risk is also high when the lot
size is large.

The primary objective of this thesis is to find the optimal entry price, lot size, and exit price
for trading EUR/USD during the 15-minute period after the “Unemployment claims” of US is
announced. The scope of this study consists of

- Proposing models of exchange rate dynamic of the EUR/USD price and
its spread.

- Estimating the parameters of the FX model and the spread model.
- Finding the most suitable strategy to trade in each situation of news
announcement. We consider the following strategies: Stop Long order,

Stop Short order, Limit Long order and Limit Short order.

- Using an optimization method to find the optimal entry price, target exit
price lot size for the chosen strategies.

- Testing each strategy out-of-sample.



Chapter 2 Literature Review

There are many models and techniques we use in this thesis especially in model selection
and model estimation. This chapter provides a review of related literature on those models
and techniques. Based on the study from (Johnson and Schneeweis 1994) that uses the
empirical test to compare many models fitting the movement of 4 currency pairs in FX
market when the macroeconomic news is released, they found that in the period that the
news had an impact to the market, the dynamics of the currency pairs is better fitted to the
complex model with jump diffusion than the simple model without jump.

Their paper uses the weekly data collected once every Wednesday (or Thursday if
Wednesday is a holiday) for 4 currencies which are UK pound, German mark, Japanese yen
and French franc, all of which are compared with the US dollar. The weekly data cover the
period for 20 years starting from January 7, 1976 to January 17, 1996. In contrast, we use 10-
second data in our study. However, we expect that a model with jumps should still provide a
better fit with more recent data as high-frequency trading has become normal in the FX
market. So the response from news releases should be quick and may drive the currency
prices to move sharply which is expected to be captured by jumps.

In addition to improve the fit, there is also a suggestion from (Engel and Hamilton 1990)
who observe the behavior of the exchange rate using the quarterly FX data to conclude that
using the regime switching is a good approximation for FX market.

Instead of using quarterly data, (Marsh 2000) uses the daily exchange rates for three
currencies against US dollar and concludes that Markov regime switching model is well fitted
to the data although the performance in out-of-sample parameter forecasting is low.

Moreover, (Stephane and Zou 2011) had concluded that the Cox-Ingersoll-Ross regime
switching model is better in parameter estimation than non-regime switching model for
daily exchange rate data ranging from January 1 ,2000 to October 30 ,2011. They also
suggest that using the regime switching model for daily data helps the investors detect some
economic events especially when the dynamic of exchange rate is significantly different.
With these backgrounds, we may expect that the model with the regime switching may give
a better fit than the model without the regime switching. However, we rely on the 10-
second data rather than the daily data. So we will consider models with and without regime
switching and choose the best model for our study.

To estimate the regime switching model, many parameter values are concealed especially
the state variable representing the market condition: the transient state and the steady
state. The EM algorithm which is developed by (Dempster, Laird et al. 1977) is an answer for
this problem. The EM algorithm is widely used for parameter estimation when the data have
missing values. The EM algorithm reduces the difficult task of optimizing the non-separable
log-likelihood function by considering a sequence of simpler sub-problems for which the log-
likelihood value continuously improves in each step. This algorithm was used for estimating
the maximum likelihood estimators in the cases where there are some missing values. The
algorithm iterates between an expectation-step (E-step), which constructs an expectation
function of log-likelihood using the currently estimated parameters, and a maximization-step
(M-Step), which computes the best set of parameters that maximizes the expected complete



log-likelihood. The algorithm is terminated when the number of iterations exceeds a limit or
the change in the set of parameters is less than a tolerance. There is also the comparison
between the EM algorithm with Newton’s method by (Springer and Urban 2014). They
conclude that EM is slower to converge in terms of the number of iterations but the
computation costs for each of iteration is lower. However, the pro of using the EM algorithm
is the simplicity for implementation with the consistent and unbiased estimators. In the cons
side, EM has a slow linear convergence rate in some cases.

In conclusion, we expect that the model with jump and regime switching may be a great
choice for the scope of the thesis and we will develop an EM-based algorithm to estimate
the parameter values of our models.

Chapter 3 Data and Model

3.1 EUR/USD data

In this thesis there are two types of data used which are EUR/USD bid-ask quote data and
news data.

3.1.1 Tick-data bid-ask quote

EUR/USD bid-ask quote data is published by www.truefx.com. This website gathers it from
the real market quote. The data downloaded from this website is a tick-data consisting of
bid-ask quote, date and time-stamp for 5 years ranging from January 7, 2010 to March 6,
2014. From the tick data, we construct the 10-second data and use them in our study.

3.1.2 News data

The study from (Galati and Ho 2001) investigates that the releases of macroeconomic news
of either the euro area or the United States have impacts on the EUR/USD currency. This
thesis considers good and bad unemployment claims news which can be a proxy to indicate
the current situation of the macroeconomics of the United States.

Sometimes, there are other types of news announced close to the unemployment claims
news. In this thesis we will consider only the period with a single news announcement which
can be obviously classified into good and bad news.

Note that: the good news means that the news released may strengthen the EUR currency
or weaken the USD currency. Similarly, news will be characterized as bad news if the news
released may weaken the EUR currency or strengthen the USD currency. For example, if the
actual number of unemployment claims number turns out to be higher than forecast, it may
weaken the USD currency. This shows the weakening US economy. Therefore, this news is
characterized as good news for EUR/USD currency.

Good news dataset is filtered from the cases in which actual unemployment claim number is
higher than the forecast number and there are no other macroeconomic announcements
within the range of 2 hours after the news is announced. The news is collected by hand
ranging from January 7, 2010 to Jan 30, 2014, which consists of the announcement times,
the forecasts of unemployment claim numbers and actual unemployment claim numbers.
There are 38 good single news announcements during this period.
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Bad news dataset is filtered similarly to the good news cases except that the actual numbers
are lower than the forecast numbers in this case. The news is collected by hand ranging from
January 7, 2010 to December 26, 2013, which consists of the announcement times, the
forecast numbers and the actual numbers. There are 43 bad single news announcements
during this period.

Note that unemployment claims news is announced weekly but the time of announcement
is not fixed, but is known ahead of time. The time of news announcement is provided by
www.forexfactory.com. Good and bad news datasets are shown in Table 22 and Table 23
respectively in Appendix 1.

3.1.3 Daily closing exchange rate for EUR/USD

EUR/USD daily closing rate data is pulled from Bloomberg. The data covers 5 years ranging
from January 1, 2010 to December 31, 2014. This daily data is used for volatility adjustments
due to different market conditions as discussed later.

3.2 Model

We have two models in our study. The first model is for the exchange rate dynamic, which is
assumed to follow a mean-reverting process with regime switching. The other model is for
the bid-ask spread process. We assume a random spike in the spread after the news release
with an exponential decay.

3.2.1 Mean Reverting with regime switching model

The study of (Johnson and Schneeweis 1994) assumes that the volatility of the currency
price is high at the time of news announcement but it immediately goes back to its normal
value in the next subsequent periods. To be more realistic, the volatility of the currency price
after the news announcement is extremely high and stays high for a certain time period.
However, the volatility of the price will move to its fundamental value in the steady state in
the longer term. So, traders should not underestimate the volatility because it is related to
the entry price and forced close of their position. For example, after the high-impact news is
announced, the price dynamic may turn into the transient state which has a high volatility. If
we do not adjust the entry price to deal with the market state, we may submit a buy order at
a relatively high price, and once it is matched, the volatility and bring the price further down,
causing us to close the position due to the forced close rule. Therefore, we expect that the
switching of the parameters due to the changing of the market state may give a better result
than a pricing model with fixed volatility. This idea supports the use of a regime-switching
model.

(Engel and Hamilton 1990) shows that the currency price has mean-reverting effect in long
horizon. Moreover, the study from (Johnson and Schneeweis 1994) also suggests that the
complex model with jump is preferred than the simple non-jump model. With these
evidences we expect that using a mean reverting model with jump for the currency price
movement will improve a fit.

Before news is announced, dealers may try to adjust the spread to be wider a little bit for
their own benefit by adjusting the bid-ask prices (lower the bid price or increasing the ask
price) to be prompt for the arrivals of news to the market. When high-impact news arrives,
the spreads width will increase. Once the market becomes clear on the direction of the price
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movement, the spreads will automatically be adjusted to be narrower and finally go back to
the normal state.

The mean-reverting with jump and regime-switching model is an extended form of the
mean-reverting with jump process (Clewlow and Strickland 2000).

Consider a mean-reverting with jump process:

(m)
ds
—&5 = |a— S| dt + oaw™ + o an™ (1)
St
In this model, St(m) is the asset price at time t after the m*™ news is announced. The process

is mean reverting to the long-term log-price level a with the mean reversion rate k when

h

jumps are ignored. Wt(m) is a standard Brownian motion. The size of jumps for m*"news at

time t, Gt(m),is the extra parameter added to the usual mean-reverting process. We assume

that Gt(m) is a log-normal distributed random variable where In(1 + 8) ~ Nor(n, w?) ; nis
the mean jump size, w?is the variance of the jump and N, is a Poisson process with rate 1.

In this thesis, we allow all parameter values to be switched between the transient and
steady states. The state variable,yt(m), representing the state of a Markov chain is
introduced to make all of the parameter’s values state-dependent. The price process is now

given by

ds{™ (m) (m) (2)
S(m) =K (Yt ) [a (ytm ) —In St(m)] dt+o (yt(m)) th(m) + 9,3("1) (yt(m)) dNt(m)
t

where yt(m) is assigned to be 1 or 2 for transient or steady state, respectively. Using the

transformation agm) = lnSt(m) and Ito’s lemma to obtain the return process for the
mnews at time t, we have the following process:

dagm) =K (yt(m)) [(i (yt(m)) - agm)] dt+o (yt(m)) th(m) +in(1+ Gt(m) (yt(m))) dNt(m) ( 3 )
where,

2 (,,m)
(™) = a(ym) - 20 (4)
t t
26y™)
In practice continuous measurements of St(m) are not possible. We consider the discrete

time process Aagm) insteads of dagm):

ANE™ (5)

B = 0 (5) + Y 57 (54)

i=0

where,

8z (y™) = k(™) [a (™) = ™| 8t + o (™) 2w, ™ (6)
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50 (™) = In(1 + 6 (™)) ~i Nor (17 (™), 7 (yt(m))) (7)

6&") (yt(m)) denote for the size of i®*jump that occurs in (t — 1, t] of the regime y™.

With the unit time interval (t — 1, t], let xt('") = Aat(m). So we can rewrite it as
anN™ ( 8 )

= 0 () Y 8 (5)
i=0

It is obvious that the discrete-time processes Az.™, AN™ and 6{7 are mutually

. . (m) AN am) (o (m) -
independent given y, and the term Zizot 5t'l- (yt ) can be interpreted as zero when

ANt(m)ZO. Now, we may estimate the parameters of processSt(m) which are

K, @,0%,1m,w?, A by using process xt(m).

By given the number of jumps in the interval (t — 1,t] or ANt(m), and the hidden state yt(m) ,

xt(m) is @ Normal random variable with mean K(yt(m)) [& (yt(m))—lnst(m)] + AN (™) and
variance o2(y™) + ANT™ w?(y™). Furthermore, we may say that by given hidden state yt(m),
xt(m) are independently and identically distributed with the density of Poisson-Normal as

follows:

)= Y (e ) i) - ) 1 67 47)
mYY (9)
+ jw? (Yt(m)))] e_(’l(yt(m))) L (yt ))
where ¢(x ; a, b) denote a Normal density at x with mean a and variance b.

To be able to estimate for the Geometric Brownian motion with jump diffusion model, we

define a new parameter p (yt(m)) = ky™)a (yt(m)) and rearrange the model as follows:

dagm) =k (yt(m)) [5: (yt(m)) - agm)] dt+o (yt(m)) th(m) +In(1+ Gt(m) (yt(m))) dNt(m)
dagm) = [K (yt(m)) a (yt(m)) —K (yt(m)) agm)] dt+o (yt(m)) th(m) +n(1+ Bt(m) (yt(m)))
daf™ = [p (™) = (™) a™] dt + o (™) dW™ + tn(1 + 6™ (y™)) (10)

We can see that by setting the parameter K(yt(m)) = 0, the model will be changed into the 2-
regimes Geometric Brownian motion with jump diffusion model as follows:

i = p () -+ () AW + 1+ 08 () 1y

Similarly, we can derive 12 special-case (or nested) models in total which will be considered
in this thesis as shown in Table 1.
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Table 1: parameters of each model in the scope of the thesis

Model Number 7T A w* py 62 kx p g¢q
of regimes

Pure Diffusion (PD) 1 x X x x v  x x @ x
Geometric Brownian Motion (GBM) 1 x X x x v ox Vv x
Mean-Reverting (MR) 1 x  x x x v v v x
Pure Diffusion with Jump (PDJ) 1 x v v v o vox x  x
Geometric Brownian Motion with Jump 1 x voox v ox
(GBMI)
Mean-Reverting with Jump (MRJ) 1 x v v v v v v x
2-Regime Pure Diffusion (2-PD) 2 vooox X x v x x Y
2-Regime Geometric Brownian Motion (2- 2 vooox x x v x v v
GBM)
2-Regime Mean-Reverting (2-MR) 2 vooox x x v v v
2-Regime Pure Diffusion with Jump (2-PD)J) 2 v ovo v v v ox x Y
2-Regime Geometric Brownian Motion with 2 v v v v v x v
Jump (2-GBM))
2-Regime Mean-Reverting with Jump (2- 2 2 A A A A A
MRYJ)

3.2.2 Spread Model

The spread model can be divided into two parts which are the spike phase and the stable
phase. For the spike phase, we assume a constant spread estimated using the average
spread of tick-data which occurs in the first ten seconds after each news announcement. For
the stable spread, we will use exponential decay function to model the spread size of the
bid-ask quote after the spike phase using the tenth seconds spread as a starting spread.
Therefore, a model will have mathematical representations as follow:

o™ _ g if t <10 (12)
‘ gme=¢"(10) £ ¢ > 10

where,

CD,gm) denote the spread of the bid-ask quote for the m!™ news at time t after the
announcement.

E(m) denote the spread of the bid-ask quote for the mt" news in the spike phase.

h

((m) denote the exponential decay rate of the bid-ask spread size for m" news after the

spike phase.

Chapter 4 Methodology

This section has four sub-sections which are model estimation, simulation, optimization and
out-of-sample trading.
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In the estimation sub-section, we estimate the parameters of the currency price dynamic
using the EM algorithm based on the ten-second exchange rate data following the first 20
news announcements. This is done separately for good news and bad news. We fit each of
the models outlined in Table 1, and use the AIC and BIC to choose the best models. Due to
the changing market conditions between the in-sample period (first 20 news
announcements) and the out-of-sample period (the remaining news announcements), we
adjust the model parameters during the out-of-sample period by using a volatility ratio. In
particular, the model parameters are scaled up (down) if forecasted volatility during the out-
of-sample period is higher (lower) than that during the in-sample period. We use a GARCH
model to estimate the volatility.

The parameters of the spreads will have 2 parts to estimate which are the spike spreads and
the decaying part. The spike spreads measured by the 10" second bid-ask spreads are
collected from each news announcement during the in-sample period. For the decaying part,
the decay rates will be estimated using linear regression on the linearized model of equation
(12) to match each decay rate with a given spike spread. The kernel smoothing function will
be applied to find a joint probability density function between the spike spreads and the
decay rates.

In the simulation sub-section, the Monte-Carlo simulation technique will be used to
generate mid-prices for every ten seconds starting from the time of the news announcement
until the next 15 minutes. The parameters, after the scaling, from the estimation step will be
used to simulate the prices. This is done for each of the news announcements in the out-of-
sample period.

Also, the spreads will be simulated in this step. Each consists of two parts which are spike
part and decaying part. The size of the spike spread will be simulated using a fitted
distribution. The decaying part is simulated using a fitted exponential decay rate parameter.

After the simulation step, we will have simulated bid-ask prices for EUR/USD which are
calculated by adding and subtracting the simulated spread to the mid-price. This simulated
bid-ask prices will be used in the optimization step.

In the optimization sub-section, an optimization method will be used to find the best price to
place the order of buy or sell with the optimal volume and also the target price based on the
simulated bid-ask prices. We do this for each of the out-of-sample trading scenarios. There
will be 4 strategies to be considered in this sub-section which are Stop Long order, Stop
Short order, Limit Long order and Limit Short order. The best strategy which is judged by the
best Sharpe ratio of the in-sample trading with an appropriate chance of order matching will
be used to trade in the out-of-sample sub-section.

In the out-of-sample trading sub-section, the trading strategy and the optimal solution from
the optimization sub-section will be applied to the out-of-sample data. To measure the
performance of the strategy, the open-and-hold strategy will be used as a benchmark. This
strategy will immediately open the position at the time that the economic news is
announced to the market, and hold the position until the end of the trading period which is
15 minutes after news is announced. The opened position of both the chosen strategy and
the benchmark will be marked to market at the end of trading period. The performance is
measured by the Sharpe ratio.

We now provide the details of each step.
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4.1 Price Estimation

The purpose of this section is to estimate the parameters using news and the set of T
observable returns (x\™ x™ . x{™y form = 1,23, ..., M.

The reason that using maximum likelihood estimation for the case of a Poisson jump process
is an unsuccessful approach is because the probability density function of log-returns turns
out to be an infinite series due to the number of jumps (Beckers 1981). (Ball and Torous
1985) uses the simplifier model which relaxes the condition of the number of jumps using
the Bernoulli random variable for the approximated form of the Poisson-Normal density.

Instead of using maximum likelihood estimation, the estimation method which will be used
in this thesis is the EM algorithm based on the fact that the EM recursion will be more
numerically robust than direct maximum likelihood.

4.1.1 EM algorithm

Consider the two sets of data which are Incomplete Dataset and Complete Dataset defined
by the vector X,,,and C,,, respectively where,

Incomplete Dataset : X, = (xim),xgm), .,x;m)) ,m=123,...M

=

AW g

Complete Dataset : Cp, = | ANT™ .. AN}m) ) 5&? = (5271:21,1) v 55;21@ 5 ---,52;;21'1) "
5™ 5™ oo r
an; - Oanp
=

By given the hidden parameter set 0 = (m, 1,1, w?%, k, @,,02,q) where t = P(y, = 1), the
complete log-likelihood of the complete dataset Cj,Cs,...,Cycan be defined by (See
Appendix 2)

ln(f(CL Cz, LY ] CMler)) Al

In <P (yf’”))) + i i In (P (anf™ |y§’”)))

m=1t=1

(m) (m) (m)
l (P (5o )>

+

DM=iDM=i M= i =

S

DM

+ In (P (zt(m) | y™, AN§m)))
1 (13)
+ PO Y™)) ,m=123,..,M
m=1t=1

where, f(Cy,Cs, ..., Cy) is the joint distribution of complete dataset.

The parameter set @ is hidden; the only observable data are returns X = (X, X,, ..., X;y). The
EM algorithm starts from an initial parameter set ©,. Then it computes the associated
expectations and probabilities of the expected complete log-likelihood (Expectation step),
and them maximizes the expected complete log-likelihood to obtain the new parameter set
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0, (Maximization step). The algorithm iterates between the Expectation and Maximization
steps until the parameter set converges. In particular, we define the expected log complete
likelihood at the " loop as

Q(O10,_,) = E(n(f(Cy, Cqy ., Cy) 0 1X,0,_1) ,m=123,...M

where,

0, = (my, A, Ny wz’ Ky, Oy, Jrzr qr)
is the parameter set from the r" loop, and the expecation is taken over the unobserved
data.

Given the parameter set from the previous loop @,_4, the new parameter can be found by
maximizing Q(0|0,_;) with respect to the parameter set @. As the basis of an EM
algorithm, the function Q(@|0,_;) can be determined by the computation in the
Expectation-step. With the properties of EM, it can be shown that recursive computation
of 0, yields monotonic increasing in log-likelihood and the estimated parameters will finally
converge to the maximum likelihood estimator @ for the original incomplete dataset X.

4.1.1.1 Maximization-step

This section will show how to compute each of parameters which are , 4,1, w?, @, k, 0% and
q respectively using the first-order condition and Lagrange multiplier method in the
maximization step (See Appendix 3)
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4.1.1.2 Expectation-Step

This section will show how to compute each of the expected values which are needed in the
maximization step. The conditional mean and variance for normal distribution are applied in
this step.

Consider the jump intensity A, it can be observed that the distribution of x™ given AN{™
and regimes y{™is Gaussian. The calculation for the " loop of [E[ N('”)|x Or_1,y™ = k] can
be shown by

(o)

B a0y =k = ) s (4™ =5 [, 0,0, 7™ = )

sP (ANt(m) =s |xt(m) ,0r_p,y™ = k)

I
ipgs

P (x™[aNI™ = 5,0,_1, 5™ = k) P (AN

= P(xt(m) 0, 1,yt(m) k)

(A(r 1))5 -
- r—1
¢(xt(m)'plgr 1) (r 1) ln( ( )) Sn(r 1) ;(T 1) s 2(r 1)) k e

=S 01‘ 1,yt(m) k)

I
[\(048

s!

(™) e
r—1
\Z xt(m)'pl({r 1) (r 1) ln( (m))_l_un(r ) If(r 1)+uw2(r 1)) ku' E_Ak /

where, p{™ = VgV
Now consider 77, and @2 which are the mean and variance of jump size respectively.

The value which will be computed in this part are 520 jE[6{7"[X, 0,_;, AN = j,y™ = k|

and 532078 [(67 -7,) [ 0,48
have, for the " loop,

=jy (’") = k] Using conditional normal distribution, we

D E[BSPIX, 0,0, AN = 3™ = k]

2(r-1)
1 w
Z] (m“ ’ + (m) (pg - (r ’ lnS(m) +m(r B )< 2(r- 1)k+]a)2(r 0))

and
2
S el o =160 <
- Zj(War 5%, 0,1, AN = j,y ™ = k|
=0
2
+ IE[ r— l'ANt(m) = yt(m) = k] _ﬁk) )
where,
wz(r 1)
2(r-1 2(r-1
Var [5t(’Ti>1)|X’ @r—pANt(m) =j, yt(m) k] — wk(r ) _ wk(r ) (W)

Consider @, ,K; and &3 which are the long-term mean of stock price, speed of mean
reversion and volatility of stock respectively. The common terms which are needed for the



17

rt" loop are
7™ = E[2{"|%, 0,1, AN = j,y{™ = k| and Var [27™|X, 6,1, AN = j,y™ = k|

The distribution of Z( dgiven xg ),yt(m) and ANt(m) is Gaussian, so conditional normal

distribution will be applied to compute both values:

[ m)|X 0,_,,4 N(m) =, yt(m) k]

(p(r 1) (T' 1) lnS(m))
2(r— 1)
" Ok X _ ( (r-1) _ (r 1) lns(’")+ - 1))
Z(r D _sz(r EY) t Py JM

2(r-1)
2(r-1 2(r-1 0
Var [Zf(m)|x’ Or‘l'ANf(m) =J yf(m) = k] = Gk(r = Uk(r ) ( 2(r- 1)k+]w2(r 1))

Lastly, for P( m) — k|X,0r_1) the forward-backward algorithm is applied to compute this
probability value.

4.1.1.3 Forward-Backward Algorithm

The forward—backward algorithm is an algorithm used to find the probability of being in the
unobservable state k at time t of the process given certain information. Formally, this
algorithm can be classified into 3 sub-parts which are Forward Procedure, Backward
Procedure and Smoothing Procedure. In the Forward procedure, the probability of being in
state k at time t is computed by the past information from time 1 to time t. In the Backward
procedure, the probability of being in state k at time t is computed backward from the
future information from time T to time t + 1. In the Smoothing Procedure, the process of
this part is to normalize the product of the probability given from the Forward and Backward
parts.

Using this algorithm to find the value of P( m) — k|X, 0) for the " loop, we have

(X yt(m) k|@r 1)
f=1 (Xryt - k‘er— )

P(y™ = k|X,0,_,) = « P(X,y™ = k|6,_,).

Define the forward probability as
Fo™ = k) = PO = k™, 10 1 g
and the backward probability as
B(y™ = k) = PCx™ 2y 2y e I = Ky Oy,
Using the Bayes’ rule, we get

(X y(m)

ocP(y“")—klx(’") xg (™, x(™,01) P (™ X X e xS ™ = e 61)
o F (™ = k) B.o™ = k)
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Note that X = (X, X®, . X(M) where XM = (xgn) ™™, ;m)) and X(™ js

independent with X" for allm # m'.

Now, the Forward Procedure is applied to find the value of F, (y™ = k) by first computing
probability Fl( (m) — k)

F(™ = k) « ZP(y<'") = k)P(x™|y™ =k, AN™ =n,0,_,) ANy = k)

2= D"
(r-1)
E (r— 1)¢(x(1n) (r-1) _ (r 1) ln(s(m)) +m](r 1) 2(r D4 wz(r 1)) ( ) e Mt
n!
n=0

and then using the recursively transition to find the value of Ft( m) — k)

F(y™ = k) Zth L = NP = kly™ = HPE™|y™ = kAN =n,0,,) PANT[y™ = k)

n=0j=1

® 2 (r-D\"
1 % -1 -1) _2(r-1 2(r-1 (Ak ) _A0r-D
o 3 a0l = DO () 02 =) B

=)

n=0 j=1

After we get the value of Fr.(yi™ =

to find P( m) = k|X 0, 1) by using the value of F;(y, (M) = k) and compute the backward
probabilities from time T back to time 1. Define

k) from the Forward Procedure, it is more convenient

G(y(m) k) « P(y('”)

r— 1) Zg 1P( e k yt(.:.r;) g r—1)

ZP (yfi"f = g%, 0,-)PO™ = K|yl = 9.%,0,,)

g=1
2

o Z (SR = g)P™ = k|ySY = g,X™[1:t],6,_,)
g=1

« Y60 - )(P(yfi’? = g™ =k X™[1:01,0, ,)POL™ = klx“")[l:”'@f*))
& Py = g|x™[1:¢),6,.,)

2 (r-1) (m) _
« Z 6 =g) Gy R0 = K)
t+1 2_ ( (m) (m) _ h) Ft( (m) _ h)

g= 1 Ve+1 —gly

( 1) (m)
ZG(yc(ﬁ) = )( qkrg( F:)(y'”(—)k) >
g=1 ?llqi:q Ft(ym h)

where G (y}m) k) (yﬁm) k)and XM[1:¢] = (xim) ém) ém), ...,xt(m))

(r 1)F (m)
Therefore, P(y™ = k|X,6,_,) « 33_,G(y? = g) <thkg(r f)(p( Wﬁh))
14

4.1.2 Akaike Information Criterion (AIC)

The Akaike Information Criterion method is a statistical method that used to compare the
efficiency of the model. This method will compute the log-likelihood of the model as a
reward and penalize it with the number of parameters fitted in the model. The main source
of penalty is from the over-fitting parameter because the increase in the number of
parameters in the model will almost always improve the log-likelihood. Given a log-
likelihood loglik and the number of parameters nParam, AIC can be calculated by

AIC = —2(loglik) + 2(nParam)
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Based on the formulation, the model with the lowest AIC is preferred.

4.1.3 Bayesian Information Criterion (BIC)

Similar to AIC, the Bayesian Information Criterion method can be used to compare the
goodness-of-fit of the model. Given a log-likelihood loglik, the number of observations
nObs and the number of parameters nParam, BIC can be calculated by

BIC = —2(loglik) + (nParam)(In(n0bs))
Based on the formulation, the model with the lowest BIC is preferred.

As shown from the mathematical expressions of the AIC and BIC, we can see that the AIC
framework tries to select the best model accounting for the number of parameters but
ignoring the number of observations. On the contrary, the BIC framework tries to find the
best fitted model taking into the number of parameters and the number of observations.

Study of (Acquah 2010) shows that the AIC framework overcomes the BIC under the
unstable data conditions (i.e. small sample size or large noise level).

4.1.4 Volatility Scale Ratio

As the parameters are fitted based on the in-sample data, the volatility of the currency
movement during the out-of-sample period can be changed due to the change in the market
condition, such as ECB (Euro central Bank) stimulates the economy system by QE
(Quantitative Easing). Therefore, we use a volatility adjustment (A(™) to adjust the model
parameters for each of the out-of-sample news announcements

By assuming that in the out-of-sample data the mt" news will be announced on the date k,
the volatility scale ratio for that news will be computed using GARCH(1,1) by

(m)
Am) — V-1

17in—sample

where v,gfi is the variance of the log-return on date k — 1 based on the GARCH(1,1) model
fitted using the daily data from the first date of the in-sample period to the day before the
mt" news is announced, and Vin—sample 1S the mean of the variances of the log-return of the
daily data during the in-sample period estimated from a GARCH(1,1) model using the data
from January 1, 2010 to December 31, 2014.

4.2 Spread Estimation

The estimation of the spread will be divided into two parts which are the spike part and
decaying part. The steps to estimate the spread parameters are as follow:
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1. The estimation for the spike spread can be done by averaging all of the spreads
of the tick-data during the first ten seconds after each of the news
announcements. Then, we will store all of the averaged values in the M-
dimensional vector§ where M is the number of news. Therefore, & =

[EW @B gD,

2. Recall that the spread at time t > 10 is CDE"‘) = ¢ <" -10) The estimation for
the decaying spread can be done by using linear regression on the historical
spreads for each news announcement after the spike phase (i.e. 10 seconds
after the announcement time). The regression equation is lnqbgm) =In E(m) —
((m>(t—10). Then, we will store all of the parameter values in the M-
dimensional vector { where M is the number of news. Therefore, { =
[((1) (@B {(M)]_

3. Use a Kernel smoothing function for estimating the joint probability density of &
and {. Then, apply the t —copula fitting between the smoothed ¢ and smoothed
¢ which is characterized by the correlation matrix P and the degree of freedom
N for creating the joint distribution between & and ¢.

4.3 Simulation

In this section price dynamic of the currency will be simulated with the model:

= () ) - a0 () ™ 467 () an
t

where yt(m) is assigned to be 1 or 2 according to transient state and steady state

(Ball and Torous 1985) come up with a simplified model for Poisson jump process using
Bernoulli jump process. They state that if the return is computed for the very small time
interval the Bernoulli model would converge to the Poisson model. Therefore, Bernoulli
jump process will be used in the simulation for jumps instead of Poisson jump model to
reduce the complexity of the infinite series representation of probability density function of
log-return.

In the optimization step, we need to compute the expected value of the terminal wealth for
a given model and trading strategy. This quantity is complex, and hence we approximate the
expectation by using a simulation technique. With the parameters from the estimation step,
we will simulate the mid-price of the currency (after adjusting the volatility with a scaling
ratio) to get 15 minutes of ten-seconds time-step data. We repeat this to obtain 5000 paths
for each news announcement scenario. At the first time step the mid-price of the currency
will be scaled to 1, so that the dynamic of the price will be the percentage change from the
price right before the news announcement.

Furthermore, we will also simulate spreads. Spreads are divided into two phases after the
news announcement which are spike phase and decaying phase.
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First, we will use t —copula with the correlation matrix P and the degree of freedom N to
create the joint distribution between spike spread size £ and decay rate ¢ as the vector T =

[$ <1

We simulate the spike spread size and the decay rate following these steps:

1. The spike spread size will be simulated by using inverse cumulative density function
from the first column of T with the average spike spread sizes from historical
data for each scenario.

2. We will use the kernel smoothing to find the decay rate. Given the simulated spread
size, we use the inverse cumulative density function with the second column of
vector T.
The results from these steps are the simulated spike spread and the exponential decay rate
which will be used in the decaying phase. In the decaying phase, spreads after the first ten
seconds will be calculated using the equation (12). Declining of spread will start at the tenth
second after the new announcement and continue until 15 minutes after the news
announcement had passed.

By adding to and subtracting from the simulated currency mid-prices with the half of the
spreads, we will get the simulated ten-second bid-ask prices for EUR/USD for good and bad
news.

4.4 Optimization

Suppose a trader has initial wealth Wjat time 0 before the news is announced. When the
news is announced, the price will start to fluctuate rapidly, and the trader will set an open
position with a desired lot size at this time. When the order is placed the target price is also
set and traders will do nothing until the currency price move up/down to the target price
and then close the position. In another case that the price is unable to hit the target price
before the 15-minute period has passed, the trader must close the position and realize the
profit or loss. Also, there is a chance that the trader may hold too excessive position that the
opened position will be forced to close when the buffered cash left in the portfolio is not
sufficient.

In this thesis, we will find the best strategy to trade the EUR/USD currency during the news
announcement period. The strategies covered in this thesis are the Stop Long order, Stop
Short order, Limit Long order and Limit Short order. The strategy with the best Sharpe ratio
of the in-sample trading with an appropriate chance of order matching from in-sample test
will be used in the out-of-sample trading. To compute the Sharpe ratio, we will calculate the
Sharpe ratio only from the cases in which the order is matched. The reason is that the limit
orders are rarely matched and the wealth data seem to be overly stable, making the Sharpe
ratio computed from all cases too extreme.

In this section, we will use one-step optimization to find the optimal price to open the
position ( B; ), lot size of the opened position ( V) and the target price to close the position (
B2). The objective function of this optimization is based on maximizing expected wealth of
trader when the position is closed by using the average wealth from each path due to the
complexity in computing the expected value of wealth. The optimization problem for the
good news is modeled as
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1
max(ﬂhﬁz,V)E]Rg’ {622:1 VVq }
SubjeCt to :81! ﬁZ! V 2 0

Bz = B

where Q is the total number of simulated paths, W, is the trader’s wealth after the position
is closed for price path g (Note that for bad news we also use a similar model except for the
last constraint which will be 8, < [ instead).

In news trading, there are many factors to consider. The most important factor to consider is
the possibility of a forced close in their position due to the high volatility after news is
announced. Traders will be forced to close when the cash buffered in their portfolio, called
free margin, is less than or equal to 30 percent of the total margin that traders pay for
opening their trading position.

To be precise, denote the free margin by F;, which is the cash buffered at time t in the
portfolio. It can be calculated by subtracting the total margin denoted by K; from the sum of
cash left in portfolio 1, and unrealized profit U;:

Fe=¢:+U; —K;

The position will be forced to close immediately if the cash buffered in the portfolio is less
than 30 percent of the total margin, so we can set an inequality for the forced closure
constraint as follows:

Fy (14)
—>0.
= 0.3

Traders will need to set their leverage ( L ) for their portfolio due to the costly contract price
which is fixed at 100,000 US dollar per contract. In the scope of this thesis, the leverage will
be set at 2,000 times which is a normal case for the traders with less amount of money.

Denote by B the margin that traders need to place for each contract. Now cash left and

total margins are fixed. Therefore, cash left Y, can be calculated by W, — %.

Instead of viewing a free margin as a forced closure constraint, it is easier to view a forced
closure constraint as the amount of unrealized return. Let 1, denote the unrealized return
for EUR/USD without leverage. The unrealized leveraged profit U, can be expressed as the
product of the opened lot size V with the unrealized leveraged return for each contract Br;.
Therefore, the unrealized profit U; can be represented by VBr;. Thus, the inequality
constraints for forced closure can be rewritten from equation (24) as:

VB VB
038, 1 W,

L L VB

T =

With this inequality, it is shown that the return of the portfolio for all time t must be greater

0.3 1 W .
than 036 +-— V—; to prevent position forced closure.

L

There is also another constraint that prevents an immediate forced closure after the position
is matched; due to the spread widening. It can be written as follows:
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(r-)-va(32)

K;

> 0.3

L .
where VB (ﬁ—‘)) denote the unrealized loss due to the spread.
1
Consequently, to calculate the realized return, let T denote the time when the position is

closed, then

([)’2 if tg, = min(TBZ,T, ‘L'd) T= min(rﬁz, T, ‘[d)
r:PT_ﬁl ‘L'Bl=inf{520=PSSﬂ1}
! B P = { Pr if T =min(tp,, T, 74) Tg, = inf{s 2 1, : P = o}

l Tg=inf{s=>t,: <Py}
Py ifty = min(‘[ﬁz,T, ‘[d)

where,
7, denote the currency return if the position is closed at time T
Pr denote the price at time T
P; denote the price when the position is forced closed
P, denote the price when the position is closed
Ty denote the time that the trading order is matched
7p, denote the time when the position is opened, or infinity otherwise
T4 denote the time when the position is forced close , or infinity otherwise

7p, denote the time when the price reaches the target price §, after the position is
opened

In conclusion, the trader’s wealth W, can be calculated by the sum of cash left i, and
leveraged realized profit/loss R; (in dollars amount)

W= Y +R;

where

R, = VBrl{r, < T},

and [ is an indicate function taking value one if the limit order is matched at time 7y < T and
zero otherwise.

In Section 5.2 the results are reported as the currency returns. The percentage changes of
the trader’s wealth are reported in Appendix 4. Note that this is for the case of the Limit
Long position. For the other strategy, there will be a small change in the calculation. The
differences are shown in Table 2.
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Table 2 : Calculation of the currency return for the optimal trading for each order type

Limit Long position order Limit Short order
75, = inf{s 2 0: P, < By} Tp, = inf{s=20: P, > B}
tg=inf{s>1t,: P, <Py} tg=inf{s=>t,: Py =Py}
_PT_Bl r_Bl_Pr
f B ‘ B1
Stop Long position order Stop Short position order
T, =inf{s 2 0: Py > B} T, = inf{s 2 0: Py < B}
tg=inf{s>1t,: Py <Py} tg=inf{s>t,: Py =Py}
r=Pr_B1 r=Bl_Pr
‘ B1 i B1
4.5 Out of Sample Test

We will compare our strategy with an open-and-hold strategy which chooses to open either
a long or short position at the current market price when the news is announced. The
position will be closed at price P, when the time reaches the limit (15 minutes). We consider
3 open-and-hold benchmarks which are the Always Long Strategy, the Always Short Strategy
and the Mixed Long and Short Strategy.

The Always Long Strategy will immediately open the long position at the best ask price when
the news is announced and hold the position until the end of the trading period (15-minute
holding).

The Always Short Strategy will immediately open the short position at the best bid price
when the news is announced and hold the position until the end of the trading period (15-
minute holding).

The Mixed Long and Short Strategy will choose to open either the long or the short position,
whichever provides a higher return, immediately when the news is announced and hold the
position until the end of the trading period (15-minute holding).

Let P&S* denote the market best ask price at the time that news is announced, and PP
denote the market best ask price at the time that news is announced. Let Cur; denote the
currency return when the position is closed at time 1.

We use the currency return to measure the performance of the suggested strategy and
benchmarks. The currency return from the benchmark strategies are computed as shown in
Table 3. The results are reported in the Section 5.2 as the currency returns.

Table 3 : Calculation of currency return for the benchmark for each order type

Long position order Short position order
tg=inf{s=>t,: P, <Py} tg=inf{s>t,: Py <Py}
Pr_PgSk Pgid_P‘r
Cur, = W Cur, = W
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Chapter 5 Result and Discussion

5.1 Parameters Estimation and model selection

Table 4 : Log-likelihood, AIC and BIC Value for good news

Model Log- # of # of AIC BIC
likelihood parameter observation

2-Regime Pure Diffusion with Jump (2- 15,100 10 1,800 -30,181 -30,126
PDJ)
2-Regime Mean-Reverting with Jump 15,101 14 1,800 -30,174 -30,097
(2-MRJ)
2-Regime Geometric Brownian Motion 15,055 12 1,800 -30,087 -30,021
with Jump (2-GBMJ)
2-Regime Mean-Reverting (2-MR) 15,024 8 1,800 -30,033 -29,989
2-Regime Pure Diffusion (2-PD) 15,017 4 1,800 -30,026 -30,004
2-Regime Geometric Brownian Motion 15,017 6 1,800 -30,022 -29,989
(2-GBM)
Geometric Brownian Motion with Jump 15,000 5 1,800 -29,991 -29,963
(GBM))
Mean-Reverting with Jump (MRJ) 15,000 6 1,800 -29,989 -29,956
Pure Diffusion with Jump (PDJ) 14,698 4 1,800 -29,388 -29,366
Pure Diffusion (PD) 14,625 1 1,800 -29,248 -29,242
Geometric Brownian Motion (GBM) 14,625 2 1,800 -29,246 -29,235
Mean-Reverting (MR) 14,625 3 1,800 -29,244 -29,228

Table 4 shows the performance of the model fitting for the good-news in-sample data using
the AIC and BIC values. The model with the least AIC and BIC values is preferred which is the
2-Regime pure diffusion with jump (2-PDJ). The dynamic of this model can be expressed by
setting the parameters k and @ to zero in full model given by equation (10).

The AIC and BIC values from Table 4 obviously show that allowing regime switching improves
the fit of the model as expected. We can see that all of the models with two regimes give the
better result in model fitting, and the models with jump are better fitted to the exchange
rate than the non-jump-model although the regime switching is allowed or not. We can see
from the result that in the good-news announcement, allowing the regime switching to each
parameter in the model is preferred to adding jump factor to the model. The proposed 2-
MRJ model gives the best log-likelihood value as expected due to higher number of
parameters. This value shows that the proposed model has the best potential in estimation
comparing with all others. However, the AIC and BIC values of the proposed model cannot
overcome the simpler 2-PDJ model due to the penalty from the complexity of the model.
Using the AIC and BIC values as a benchmark to justify the model in simulation, the model
that will be used is 2-PDJ instead of the proposed model.
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Table 5 : Log-likelihood, AIC and BIC Value for bad news

Model Log- # of # of AIC BIC
likelihood parameter observation

2-Regime Mean-Reverting with Jump 14,948 14 1,800 -29,869  -29,792
(2-MRJ)
2-Regime Pure Diffusion with Jump (2-PDJ) 14,926 10 1,800 -29,833  -29,778
2-Regime Geometric Brownian Motion 14,921 12 1,800 -29,818  -29,752
with Jump (2-GBMJ)
Pure Diffusion with Jump (PDJ) 14,876 4 1,800 -29,745  -29,723
Geometric Brownian Motion with Jump 14,877 5 1,800 -29,745  -29,717
(GBMJ)
Mean-Reverting with Jump (MRJ) 14,877 6 1,800 -29,743  -29,710
2-Regime Pure Diffusion (2-PD) 14,867 4 1,800 -29,727  -29,705
2-Regime Geometric Brownian Motion 14,866 6 1,800 -29,720  -29,687
(2-GBM)
2-Regime Mean-Reverting (2-MR) 14,811 8 1,800 -29,606  -29,562
Pure Diffusion (PD) 14,518 1 1,800 -29,035  -29,029
Geometric Brownian Motion (GBM) 14,518 2 1,800 -29,033  -29,022
Mean-Reverting (MR) 14,519 3 1,800 -29,032  -29,015

Table 5 shows the performance of the model fitting for the bad-news in-sample data using
AIC and BIC values. The model with the least AIC and BIC values is preferred which is the
proposed model: 2-Regime Mean-Reverting with Jump (2-MRJ).

The AIC and BIC values from the Table 5 show that adding the jump parameters improves
the fit of the model. We can see that all of the models with jumps are better fitted to the
exchange rate than the non-jump-model. We can also see from the Table 5 that in the bad-
news announcement, adding jump parameters to the model is preferred than the regime
switching. The proposed model 2-MRJ gives the best log-likelihood, AIC and BIC values as
expected. Using the AIC and BIC values as a benchmark to justify the model in simulation,
the model that will be used is 2-MRJ.
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Table 6 : Good news parameters values of 2-regime pure diffusion with jump (2-PDJ)

Regime-1 Regime-2
Parameter Values Values
4 1.0000 0.0000
y 0.1544 0.3906
w? (x1078) 0.8111 4.0887
7 (x1079) -0.4668 -5.9176
o? (x1079) 1.0057 2.0884
q 0.9963 0.0037

Table 6 shows the parameter value of the 2-regime pure diffusion with jump (2-PDJ) model.
By setting the parameters k and & to zero in equation (10), the dynamic of the model is
expressed as:

da{™ = o (y™) aw™ + in(1+ 6™ (™)) an™
The estimated parameter values suggest that the dynamic of the currency after the news
announcement is mainly driven by the volatility a(yt(m)) and the jump size in(1 + 6™ ()

. Since the jump size in(1 + 6™ (yt(m))) is normally distributed with 1 as the mean jump size

and w? as the variance of the jump size, the expected return from the model for each given

(m) (m)

regime y,™ can be calculated by E [dat |0] = Andt which are the negative values for both

regimes. Therefore, the suitable strategy for the good news announcement is to open a
short position.

The trading period last 15 minutes after the news is announced and is divided into 90 10-
second time-steps. Given that the regime is initially a transient regime, we expect that the
regime will be changed from the transient regime to the steady regime during this period
with probability of 1 — (0.9963)°° = 0.2837 or more. After the regime has been changed
from the transient regime to the steady regime, it is obviously seen from Table 6 that the
parameter values are significantly changed (e.g. the mean jump size 7 is changed from -
0.4668 to -5.9176, as well as other parameter values.) The result in changing the regime
makes the expected return to be more negative value.

The Limit Short order needs to be placed above the current price and waits until the price
moves up to where the order is placed. According to the suggestion from the model that the
exchange rate is expected to instantly move in downward direction after the news
announcement and drop faster after the regime switches, we expect that using the Limit
Short order strategy, the submitted order will be rarely matched. With this reason the Limit
Short order strategy is expected to be placed with a huge lot size to improve the Sharpe
ratio when the order is matched. The advantage of using this strategy can have a huge gain
from this strategy in the case that the order is matched which gives a large Sharpe ratio to
this strategy as a trade-off with the order matching occurrence.

However, using the Stop Short order strategy may give a lower Sharpe ratio than the Limit
Short order strategy, given the order is matched, but can significantly improve the chance of
order matching since the stop order can instantly follow the direction of the exchange rate
at the current price. The opened order may have a lower lot size compared with the Limit
Short order strategy because the Stop Short order strategy needs to follow the exchange
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rate direction, so the entry price of the stop order will be worse than the limit order.
Therefore, we expect that using the Stop Short order strategy will improve the chance of
order matching with a lower lot size as a trade-off compared with the Limit Short order
strategy. With this reason the Stop Short order strategy may give a lower Sharpe ratio if we
are comparing with the Limit Short order strategy due to the smaller lot size and lower entry
price.

Table 7 : Bad news parameters values of 2-Regime Mean-Reverting with Jump (2-MRJ)

Regime-1 Regime-2
Parameter Values Values
14 0.7427 0.2573
A 0.1842 0.3557
w? (x1078) 0.7302 3.0501
7 (x107) 5.8969 4.3869
a? (x1079) 0.7843 1.3855
K 0.0068 0.0046
a(x1077) 6.2796 7.4857
q 0.9964 0.0036

Table 7 shows the parameter values of the 2-Regimes Mean-Reverting with Jump (2-MRJ).
The dynamic of the model is expressed as:

dagm) =K (yt(m)) [d (yt(m)) - aEm)] dt+o (yt(m)) th(m) +In(1+ Ht(m) (yt(m))) dNt(m)
The estimated parameter values, the model suggest that the dynamic of the currency after
the news announcement has a mean reversion effect due to the positive value of mean
convert speed parameter K(yt(m)). With a positive long-run mean &(yt(m)) and positive mean

jump size r;(yfm)), we expect that the long position can take advantage in this scenario.

However, the choice that traders will choose the Stop Long order or Limit Long order to take
action in this case is not yet obvious because the Limit Long order strategy can intuitively
take advantage from the mean reversion effect but there is also a trade-off with the chance
of order matching. On the other hand, the Stop Long order strategy is a great strategy for a
trending markets but the entry may not be as low as that from the limit order. So to choose
the strategy to trade during the bad news scenario, we will use the simulation.
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5.2 In-sample Trading Simulation

This section will show the simulation trading results of the good and bad news for each
scenario. In each scenario, the exchange rate movement will be simulated for 5,000 paths
and based on the simulated paths, we find the optimal open, lot size and target price.

Each table reports the detailed simulation trading result for each strategy with each news
result. It provides the volatility scale ratio (Scale Ratio), average currency returns (Currency
Return), standard deviation (Std.), Sharpe ratio (Sharpe Ratio), optimal open prices (Open),
optimal lot sizes (Lot), optimal target prices (Target), percentage matched orders
(%Matched), and percentage forced close order (%Force).

There are 18 scenarios for the good news and 23 scenarios for the bad news. Each scenario
will be sorted in descending order by the volatility scale ratio in Scale Ratio column.

Table 8 and Table 9 will report the results from the simulated trades using the Stop order
strategies for good news scenarios. Table 10 and Table 11 will report the results from the
simulated trades using the Limit order strategies for good news scenarios. Table 12 and
Table 13 will report the results from the simulated trades using the Stop order strategies for
bad news scenarios. Table 14 and Table 15 will report the results from the simulated trades
using the Limit order strategies for bad news scenarios.

There are also Table 16 and Table 17 which show the summary result from applying each
strategy in the simulation trading. (Good and Bad news result respectively)
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Table 8: In-sample result for each good news scenario using Stop Long order strategy trading on simulation

Stop Long Strategy

Scenario  Scale Ratio Currency  Std. (%) Sharpe Ratio  Open Lot Target %Matched  %Forced
Return (%)

1 1.112 -0.008 0.055 -0.139 1.000 0.010 1.001 97.330 0.000
2 0.978 -0.008 0.050 -0.156 1.000 0.010 1.001 96.440 0.000
3 0.918 -0.009 0.049 -0.176 1.000 0.010 1.001 96.560 0.000
4 0.881 -0.008 0.037 -0.207 1.000 0.023 1.000 96.780 0.000
5 0.860 -0.007 0.029 -0.255 1.000 0.024 1.000 97.000 0.000
6 0.842 -0.008 0.030 -0.270 1.000 0.023 1.000 96.330 0.000
7 0.842 -0.008 0.030 -0.271 1.000 0.023 1.000 96.560 0.000
8 0.840 -0.008 0.030 -0.277 1.000 0.022 1.000 96.560 0.000
9 0.838 -0.009 0.031 -0.278 1.000 0.022 1.000 96.560 0.000
10 0.814 -0.008 0.028 -0.292 1.000 0.013 1.000 97.220 0.000
11 0.795 -0.008 0.027 -0.308 1.000 0.022 1.000 96.560 0.000
12 0.783 -0.008 0.023 -0.338 1.000 0.023 1.000 96.670 0.000
13 0.757 -0.010 0.007 -1.387 1.001 0.010 1.001 6.110 0.000
14 0.727 -0.008 0.036 -0.230 1.000 0.022 1.000 99.330 0.000
15 0.713 -0.009 0.043 -0.214 1.000 0.010 1.001 96.780 0.000
16 0.691 -0.009 0.042 -0.211 1.000 0.010 1.001 99.330 0.000
17 0.673 -0.008 0.041 -0.202 1.000 0.010 1.001 96.890 0.000
18 0.672 -0.008 0.041 -0.204 1.000 0.010 1.001 96.890 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%)
shows the currency return, which is calculated by averaging the currency return per trade
from simulation paths in each scenario using only the matched order, in percent. Std. (%)
shows the standard deviation of return only in the case that order is matched using the
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot
sizes from optimization. Target shows the optimal Closing price from optimization.
%Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced
closed.
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Table 9: In-sample result for each good news scenario using Stop Short order strategy trading on simulation

Stop Short Strategy

Scenario  Scale Ratio Currency  Std. (%) Sharpe Ratio  Open Lot Target %Matched  %Forced
Return (%)

1 1.112 -0.001 0.055 -0.017 1.000 0.010 0.999 99.110 0.000
2 0.978 0.000 0.048 -0.008 1.000 0.010 0.999 94.440 0.000
3 0.918 0.000 0.048 -0.008 1.000 0.010 0.999 98.110 0.000
4 0.881 0.000 0.046 0.003 1.000 24.330 0.999 94.560 0.000
5 0.860 0.001 0.046 0.011 1.000 32.997 0.999 96.670 0.000
6 0.842 0.001 0.042 0.028 1.000 57.316 0.999 91.110 0.240
7 0.842 0.001 0.047 0.023 1.000 58.708 0.999 98.780 0.340
8 0.840 0.001 0.047 0.031 1.000 33.034 0.999 99.670 0.000
9 0.838 0.001 0.047 0.025 1.000 34.328 0.999 99.890 0.000
10 0.814 0.001 0.046 0.019 1.000 32.811 0.999 98.330 0.000
11 0.795 0.001 0.046 0.018 1.000 32.855 0.999 99.890 0.000
12 0.783 0.000 0.046 0.011 1.000 32.300 0.999 99.890 0.000
13 0.757 0.000 0.043 0.002 1.000 32.100 0.999 97.560 0.000
14 0.727 0.000 0.042 0.002 1.000 0.856 0.999 97.890 0.000
15 0.713 0.000 0.042 -0.008 1.000 0.010 0.999 98.440 0.000
16 0.691 0.000 0.041 0.001 1.000 1.566 0.999 98.440 0.000
17 0.673 0.000 0.039 -0.003 1.000 0.110 0.999 98.440 0.000
18 0.672 0.000 0.040 -0.004 1.000 0.096 0.999 99.670 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%)
shows the currency return, which is calculated by averaging the currency return per trade
from simulation paths in each scenario using only the matched order, in percent. Std. (%)
shows the standard deviation of return only in the case that order is matched using the
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot
sizes from optimization. Target shows the optimal Closing price from optimization.
%Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced
closed.
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Table 10: In-sample result for each good news scenario using Limit Long order strategy trading on simulation

Limit Long Strategy

Scenario  Scale Ratio Currency  Std. (%) Sharpe Ratio  Open Lot Target %Matched  %Forced
Return (%)

1 1.112 0.012 0.015 0.782 0.999 67.201 1.001 8.000 0.000
2 0.978 0.021 0.014 1.463 0.999 79.471 1.001 5.330 0.000
3 0.918 0.009 0.012 0.763 0.999  82.822 1.001 4.560 2.440
4 0.881 0.000 0.009 0.003 0.999  26.810 1.001 4.780 0.000
5 0.860 0.008 0.012 0.665 0.999  86.833 1.001 4.670 2.380
6 0.842 0.010 0.013 0.795 0.999 92.839 1.001 5.110 8.700
7 0.842 0.009 0.013 0.700 0.999  92.243 1.001 5.220 6.380
8 0.840 0.009 0.013 0.730 0.999 92911 1.001 5.000 13.330
9 0.838 0.004 0.013 0.311 0.999 110.669 1.001 4.780 48.840
10 0.814 0.005 0.010 0.462 0.999 92.951 1.001 4.890 6.820
11 0.795 0.005 0.011 0.433 0.999 101.973 1.001 5.110 26.090
12 0.783 0.020 0.011 1.816 0.999 91.042 1.000 4.670 2.380
13 0.757 0.005 0.008 0.680 0.999  89.850 1.001 4.330 2.560
14 0.727 0.001 0.005 0.155 0.999 88.231 1.001 3.330 0.000
15 0.713 0.006 0.005 1.121 0.999  97.669 1.001 3.110 0.000
16 0.691 0.015 0.007 2.260 0.999 104.142 1.001 2.890 11.540
17 0.673 0.018 0.006 3.022 0.999 104.331 1.001 2.560 4.350
18 0.672 0.018 0.006 3.015 0.999 104.273 1.001 2.560 4.350

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%)
shows the currency return, which is calculated by averaging the currency return per trade
from simulation paths in each scenario using only the matched order, in percent. Std. (%)
shows the standard deviation of return only in the case that order is matched using the
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot
sizes from optimization. Target shows the optimal Closing price from optimization.
%Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced
closed.



33

Table 11: In-sample result for each good news scenario using Limit Short order strategy trading on simulation

Limit Short Strategy
Scenario  Scale Ratio Currency  Std. (%) Sharpe Ratio  Open Lot Target %Matched  %Forced
Return (%)
1 1.112 0.004 0.012 0.316 1.001 67.031 0.999 6.670 0.000
2 0.978 0.004 0.010 0.378 1.001 73.814 0.999 5.670 0.000
3 0.918 0.009 0.011 0.853 1.001 83.042 0.999 4.670 2.380
4 0.881 0.006 0.008 0.671 1.001  89.001 0.999 3.890 5.710
5 0.860 0.006 0.008 0.808 1.001 83.736 0.999 3.780 2.940
6 0.842 0.016 0.010 1.632 1.001 86.872 0.999 3.670 3.030
7 0.842 0.018 0.010 1.883 1.001  87.090 0.999 3.560 0.000
8 0.840 0.017 0.010 1.697 1.001  87.108 0.999 3.440 3.230
9 0.838 0.015 0.010 1.553 1.001  87.225 0.999 3.560 0.000
10 0.814 0.012 0.008 1.552 1.001  88.256 0.999 3.110 0.000
11 0.795 0.007 0.008 0.894 1.001  88.571 0.999 3.330 0.000
12 0.783 -0.005 0.026 -0.199 1.000 30.000 1.000 67.890 0.000
13 0.757 0.016 0.008 2.005 1.001  87.926 0.999 2.890 0.000
14 0.727 0.018 0.008 2.120 1.001 86.707 0.999 3.000 0.000
15 0.713 0.017 0.008 2.000 1.001 92335 0.999 2.890 0.000
16 0.691 0.009 0.006 1.352 1.001 105.499 0.999 2.330 19.050
17 0.673 0.027 0.008 3.184 1.001  98.354 1.000 2.330 0.000
18 0.672 0.026 0.008 3.171 1.001  98.217 0.999 2.330 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%)
shows the currency return, which is calculated by averaging the currency return per trade
from simulation paths in each scenario using only the matched order, in percent. Std. (%)
shows the standard deviation of return only in the case that order is matched using the
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot
sizes from optimization. Target shows the optimal Closing price from optimization.
%Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced

closed.
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Table 8 reports the results from the simulated trades based on the Stop Long order strategy
on good news releases. The Sharpe ratio column obviously shows that using the Stop Long
order in a good news scenario gives the average negative return in every trading case. This is
obvious evidence that using Stop Long order for good news is not a suitable choice as
suggested from the previous section.

Table 8 also shows that using the stop order gives a high probability for sent order to be
matched from the %Matched column. The lot size is small as expected. The reason is that
the stop order has a high chance of order being matched, and preventing the position from
being forced closed is a top priority to consider during the trade. Therefore, the sent order
will have a small lot size as a trade-off with the frequently matched order. As shown in Table
8 that there is no case of position forced close from the sent order which is consistent with
the small lot size strategy.

By comparing Table 8 with Table 9, which reports the results from the simulated trades
based on the Stop Long order strategy on good news releases, it obviously shows that the
Sharpe ratio obtained from using the short strategy in a good news scenario is improved in
most of the trading cases. This is obvious evidence that using the short order during good
news is a better choice than the long strategy. Table 9 also shows that the probability for
sent order to be matched is high and the lot size is small as expected in many cases. Like
what we see from Table 8, there is a very low chance of position forced close from the sent
order. This can be concluded that using the stop order with an appropriate lot size during a
good news announcement can prevent the forced close position.

Table 10 reports the results from the simulated trades based on the Limit Long order
strategy on good news releases. The Sharpe ratio from using the Limit Long order in a good
news scenario is significantly higher than the Sharpe ratio from the stop order though the
model suggests using the short strategy. The reason is that the optimal open with a large lot
size is set at the place which is far from the current exchange rate which gives a better entry
price if the order is matched. With this reason, the Limit Long strategy has a better entry
price, if the order is matched, comparing with the stop order strategy but it has a lower
chance of order to be matched as a trade-off. Using the Limit Long order is more likely to
cause a position forced close as we can observe from the %Forced column which is
absolutely higher than the stop order strategy.

By comparing Table 10 with Table 11, which reports the results from the simulated trades
based on the Limit Short order strategy on good news releases, The Limit Short order
strategy also has a significantly lower chance of position forced close than the Limit Long
order strategy on average. Also, the average Sharpe ratio from the Limit Short order in a
good news scenario is better than the average Sharpe ratio from the Limit Long order (See
Table 16 for detail). This is consistent with the suggestion from the model that using short
order may give a better Sharpe ratio. Using a limit order gives a significantly better Sharpe
ratio than the stop order with a trade-off that the position forced close is more likely and a
lower chance of sent order to be matched.

By comparing among all of the trading strategies, we find that using the Limit Short strategy,
when a good news is released, gives the best result in terms of the Sharpe ratio with a low
chance of order matching as a trade-off.
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Table 12: In sample result for each bad news scenario using Stop Long order strategy trading on simulation

Stop Long Strategy

Scenario  Scale Ratio Currency  Std. (%) Sharpe Ratio  Open Lot Target %Matched  %Forced
Return (%)

1 1.021 0.001 0.053 0.019 1.000 62.686 1.001 99.890 2.110
2 0.958 0.001 0.051 0.023 1.000 56.438 1.001 98.330 4.750
3 0.948 0.002 0.052 0.047 0.999 47.237 1.001 100.000 0.000
4 0.909 0.000 0.050 0.010 1.000 62.580 1.001 99.780 1.890
5 0.883 0.002 0.049 0.048 0.999 43.320 1.001 100.000 0.000
6 0.862 0.002 0.047 0.036 1.000 40.069 1.001 98.670 0.000
7 0.855 0.001 0.047 0.023 1.000 41.477 1.001 98.780 0.000
8 0.839 0.002 0.046 0.035 1.000 36.730 1.001 98.890 0.000
9 0.838 0.001 0.046 0.032 1.000 36.736 1.001 98.780 0.000
10 0.811 -0.001 0.044 -0.013 1.000 0.010 1.001 96.330 0.000
11 0.807 0.001 0.046 0.029 0.999 47340 1.001 100.000 0.000
12 0.806 0.002 0.044 0.054 0.999 30.932 1.001 100.000 0.000
13 0.795 0.002 0.044 0.056 0.999 57.470 1.001 100.000 0.560
14 0.792 0.000 0.042 -0.003 1.000 0.010 1.001 96.330 0.000
15 0.777 0.000 0.045 0.003 1.000 64.671 1.001 99.890 1.330
16 0.776 0.001 0.043 0.012 1.000 31.762 1.001 98.780 0.000
17 0.775 0.000 0.045 0.004 1.000 61.746 1.001 99.890 0.670
18 0.756 0.001 0.044 0.013 1.000 62.874 1.001 100.000 0.560
19 0.739 0.000 0.042 0.012 1.000 37.578 1.001 98.560 0.000
20 0.720 0.002 0.042 0.041 1.000 37.666 1.001 100.000 0.000
21 0.689 0.000 0.040 0.010 1.000 34.804 1.001 99.220 0.000
22 0.684 0.001 0.042 0.035 0.999 51.924 1.001 100.000 0.000
23 0.670 0.002 0.040 0.041 1.000 44.188 1.001 99.890 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%)
shows the currency return, which is calculated by averaging the currency return per trade
from simulation paths in each scenario using only the matched order, in percent. Std. (%)
shows the standard deviation of return only in the case that order is matched using the
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot
sizes from optimization. Target shows the optimal Closing price from optimization.
%Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced
closed.
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Table 13: In sample result for each bad news scenario using Stop Short order strategy trading on simulation

Stop Short Strategy

Scenario  Scale Ratio Currency  Std. (%) Sharpe Ratio  Open Lot Target %Matched  %Forced
Return (%)

1 1.021 -0.012 0.050 -0.231 1.000 0.010 0.999 96.780 0.000
2 0.958 -0.012 0.049 -0.241 1.000 0.010 0.999 97.670 0.000
3 0.948 -0.007 0.038 -0.184 1.000 0.020 1.000 97.440 0.000
4 0.909 -0.011 0.049 -0.231 1.000 0.010 0.999 100.000 0.000
5 0.883 -0.010 0.022 -0.478 1.000 0.021 1.000 78.560 0.000
6 0.862 -0.012 0.046 -0.266 1.000 0.010 0.999 97.670 0.000
7 0.855 -0.012 0.045 -0.266 1.000 0.010 0.999 97.330 0.000
8 0.839 -0.012 0.045 -0.262 1.000 0.010 0.999 97.670 0.000
9 0.838 -0.011 0.003 -3.853 0.999 0.010 0.999 5.110 0.000
10 0.811 -0.011 0.044 -0.262 1.000 0.010 0.999 97.780 0.000
11 0.807 -0.009 0.034 -0.258 1.000 0.020 1.000 92.220 0.000
12 0.806 -0.010 0.038 -0.274 1.000 0.018 1.000 91.780 0.000
13 0.795 -0.022 0.024 -0.915 1.000 0.010 0.999 23.780 0.000
14 0.792 -0.014 0.043 -0.318 1.000 0.010 0.999 93.330 0.000
15 0.777 -0.011 0.044 -0.249 1.000 0.010 0.999 99.000 0.000
16 0.776 -0.017 0.037 -0.452 1.000 0.010 0.999 70.780 0.000
17 0.775 -0.011 0.043 -0.259 1.000 0.010 0.999 98.780 0.000
18 0.756 -0.008 0.034 -0.232 1.000 0.018 1.000 95.000 0.000
19 0.739 -0.010 0.042 -0.244 1.000 0.010 0.999 99.440 0.000
20 0.720 -0.014 0.005 -2.753 0.999 0.010 0.999 3.560 0.000
21 0.689 -0.006 0.025 -0.252 1.000 0.036 1.000 99.220 0.000
22 0.684 -0.010 0.040 -0.259 1.000 0.010 0.999 99.000 0.000
23 0.670 -0.011 0.039 -0.281 1.000 0.010 0.999 97.890 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%)
shows the currency return, which is calculated by averaging the currency return per trade
from simulation paths in each scenario using only the matched order, in percent. Std. (%)
shows the standard deviation of return only in the case that order is matched using the
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot
sizes from optimization. Target shows the optimal Closing price from optimization.
%Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced
closed.
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Table 14: In sample result for each bad news scenario using Limit Long order strategy trading on simulation

Limit Long Strategy

Scenario  Scale Ratio Currency  Std. (%) Sharpe Ratio  Open Lot Target %Matched  %Forced
Return (%)

1 1.021 0.019 0.015 1.296 0.999 96.704 1.001 6.330 19.300
2 0.958 0.021 0.014 1.493 0.999 93.868 1.001 5.890 11.320
3 0.948 0.022 0.014 1.596 0.999 94.628 1.001 5.780 9.620
4 0.909 0.012 0.009 1.453 0.999 89.336 1.001 5.000 0.000
5 0.883 0.014 0.009 1.672 0.999  93.504 1.001 4.890 2.270
6 0.862 0.021 0.009 2.179 0.999 93.966 1.001 4.000 2.780
7 0.855 0.013 0.010 1.318 0.999 97.817 1.001 4.110 18.920
8 0.839 0.014 0.011 1.256 0.999 107.242 1.001 4.000 27.780
9 0.838 0.014 0.011 1.257 0.999 107.258 1.001 4.000 27.780
10 0.811 0.018 0.010 1.733 0.999 90.478 1.001 3.890 2.860
11 0.807 0.021 0.010 2.116 0.999  89.655 1.001 3.670 0.000
12 0.806 0.017 0.010 1.636 0.999 101.529 1.001 3.670 21.210
13 0.795 0.021 0.010 2.119 0.999 104.848 1.001 3.440 12.900
14 0.792 0.022 0.010 2.173 0.999 105.068 1.001 3.440 12.900
15 0.777 0.021 0.010 1.996 0.999 105.703  1.001 3.670 15.150
16 0.776 0.021 0.010 1.997 0.999 105.729 1.001 3.670 15.150
17 0.775 0.021 0.010 2.080 0.999 105.715 1.001 3.670 12.120
18 0.756 0.018 0.010 1.751 0.999 117.161 1.001 3.220 41.380
19 0.739 0.031 0.011 2.896 0.999 106.484 1.001 2.890 3.850
20 0.720 0.024 0.008 2.902 0.999 110.301 1.001 2.330 4.760
21 0.689 0.038 0.008 4.707 0.999 110.323 1.001 1.890 0.000
22 0.684 0.031 0.008 4.045 0.999 111.165 1.001 1.890 0.000
23 0.670 0.039 0.007 5.917 0.999 120.000 1.000 1.220 9.090

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%)
shows the currency return, which is calculated by averaging the currency return per trade
from simulation paths in each scenario using only the matched order, in percent. Std. (%)
shows the standard deviation of return only in the case that order is matched using the
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot
sizes from optimization. Target shows the optimal Closing price from optimization.
%Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced
closed.
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Table 15: In sample result for each bad news scenario using Limit Short order strategy trading on simulation

Limit Short Strategy

Scenario  Scale Ratio Currency  Std. (%) Sharpe Ratio  Open Lot Target %Matched  %Forced
Return (%)

1 1.021 0.020 0.016 1.232 1.001  80.502 0.999 8.000 1.390
2 0.958 0.021 0.018 1.187 1.001 86.571 0.999 7.780 7.140
3 0.948 0.023 0.019 1.253 1.001 90.181 0.999 7.780 11.430
4 0.909 0.025 0.018 1.416 1.001 86.689 0.999 7.000 3.170
5 0.883 0.026 0.017 1.527 1.001  85.093 0.999 7.110 0.000
6 0.862 0.025 0.017 1.429 1.001 91.977 0.999 6.670 10.000
7 0.855 0.026 0.017 1.548 1.001  92.158 0.999 6.220 8.930
8 0.839 0.010 0.013 0.732 1.001 116.010 0.999 5.560 48.000
9 0.838 0.010 0.013 0.730 1.001 115.960 0.999 5.560 48.000
10 0.811 0.014 0.013 1.061 1.001 111.033 0.999 4.780 30.230
11 0.807 0.009 0.013 0.720 1.001 120.000 0.999 4.780 51.160
12 0.806 0.028 0.014 1.933 1.001  90.098 0.999 4.670 2.380
13 0.795 0.015 0.012 1.196 1.001 102.709 0.999 4.780 16.280
14 0.792 0.015 0.012 1.270 1.001 100.312 0.999 4.780 9.300
15 0.777 0.021 0.011 1.805 1.001 100.651  0.999 4.110 8.110
16 0.776 0.024 0.012 2.061 1.001 100.619 0.999 4.110 5.410
17 0.775 0.023 0.012 1.988 1.001 100.725  0.999 4.220 5.260
18 0.756 0.019 0.011 1.670 1.001 112.883 0.999 4.000 27.780
19 0.739 0.027 0.012 2.185 1.001 110.127  0.999 3.560 21.880
20 0.720 0.023 0.010 2.235 1.001 97.217 0.999 3.560 3.130
21 0.689 0.029 0.011 2.687 1.001 111.036 0.999 3.440 16.130
22 0.684 0.026 0.010 2.485 1.001 111.723  0.999 3.670 12.120
23 0.670 0.029 0.010 2.764 1.001 111.224  0.999 3.440 9.680

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%)
shows the currency return, which is calculated by averaging the currency return per trade
from simulation paths in each scenario using only the matched order, in percent. Std. (%)
shows the standard deviation of return only in the case that order is matched using the
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot
sizes from optimization. Target shows the optimal Closing price from optimization.
%Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced
closed.
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Table 12 reports the results from the simulated trades based on the Stop Long order
strategy on bad news releases. It obviously shows from the Sharpe ratio column that using
the Stop Long order in a bad news scenario gives the average positive Sharpe ratio in most
of the trading simulation cases with a high probability for sent order to be matched as can
be seen from the %Matched column. This is expected from the parameter values of 2-MRJ
model reported in Table 7. The lot size is reasonable for the initial wealth of $10,000
because the maximum lot size in this case, with 2,000 times leverage, is 200 lots.

As expected, with the higher lot size, the chance of position forced closure is increased. This
can be observed from the %Forced column in Table 8 and Table 9 as a comparison.

As shown in some trading cases from Table 12, we find that using the optimal lot size from
optimization has a low chance of position forced closure. Although, there is a chance that
the position forced closure condition is activated but we still have a positive return on
average. This is because most of the trades are profitable, except the cases that the
positions are forced closed, and the profits are able to fully cover the losses from the
position forced close.

Table 13 reports the results from the simulated trades based on the Stop Short order
strategy on bad news releases. We can see that most trading simulation cases have negative
returns. This suggests that it is better not-to-trade for those cases, or equivalently, to hold
the cash in those scenarios. However, using a small lot size can prevent a huge loss occurred
from the position forced closure.

By comparing from both strategies (the Stop Long order strategy and the Stop Short order
strategy), the Stop Long order give a better result in trading (in terms of the Sharpe ratio)
than the Stop Short order strategy when the bad news is released to the market but there
still are some scenarios that the position forced closure can be triggered with a small
chance. The main reason is that the optimal lot size from the Stop Short order strategy is
significantly lower than that of the Stop Long order strategy.

Table 14 reports the results from the simulated trades based on the Limit Long order
strategy on bad news releases. We can see from the Sharpe ratio column that using the Limit
Long order in the bad news scenarios give the higher positive Sharpe ratio in every trading
case with a lower probability of sent order to be matched than the Stop Long strategy from
Table 12. However, the chance of position forced closure is significantly increased. We can
observe from the %Forced column in Table 12 as a comparison.

By comparing Table 14 with Table 15 which reports the results from the simulated trades
based on the Limit Short order strategy on bad news releases, the Limit Long order strategy
also has a significantly lower chance of position forced close than the Limit Short order
strategy on average. Also, the average Sharpe ratio from the Limit Long order in a bad news
scenario is better than the average Sharpe ratio from the Limit Short order (See Table 17 for
detail). This is consistent with the suggestion from the parameter values of the model from
Table 7 that using a long order may give a better Sharpe ratio than a short order.

By Comparing Table 12 with Table 15, we can observe that using the Stop Long order (shown
in Table 12) gives a worse Sharpe ratio than the Limit Short order which conflicts to the
suggestion from the parameter values in the 2-MRJ model discussed from Table 7 in the
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previous section that using a long strategy may give a better Sharpe ratio. The reasons are
that the entry price of the limit order is better, if the order is matched, and that the lot size
is larger than the stop order. Although the percentage of orders being matched is lower, it
results in a higher Sharpe ratio for the limit order.

Table 8 : Summary trading simulation statistic for In-sample trading case using 2-regimes pure diffusion with jump

(2-PDJ) with a good news announcement

Good News 2-Regimes Pure Diffusion
Strategy Stop Long  Stop Short Limit Long  Limit Short
Total Scenario 18 18 18 18
Scenarios with Loss Trade in simulation 18 6 0 1
Simulation paths for each scenario 5,000 5,000 5,000 5,000
Average chance of order matched (%) 91.99% 97.83% 4.49% 7.17%

Average currency return given trade (%) -0.00827 0.00031 0.00972 0.01224

STD currency return given trade (%) 0.03486 0.04508 0.01009 0.00985

Average Sharpe Ratio -0.23723 0.00688 0.96333 1.24264
Forced Closure given trade (%) 0.00% 0.03% 7.78% 2.01%
Average Lot Size 0.016 20.747 89.237 84.480

Table 16 shows the summary result of trading simulation for good news with 2-PDJ model
for each strategy using the optimal open prices, target prices and lot sizes. It can be seen
that the Sharpe ratio (given there is a trade) of both limit order strategies give the better
result than the stop order strategies in the trading simulation. However, the chance for the
sent order to be matched is very low. With a low chance of order matching, the limit order
strategy is not a good choice for the out-of-sample trading due to the limitation of the
numbers of news. Also, we find that using the limit order is more likely to face with the
higher chances for forced closure than the stop order. Therefore, using the Stop Short order
is preferred with these reasons.

Table 9 Summary trading simulation statistic for In-sample trading case using 2-Regimes Mean-Reverting with

Jump (2-MRJ) with a bad news announcement

Bad News 2-Regimes Mean-Reverting with Jump Diffusion
Strategy Stop Long Stop Short Limit Long Limit Short
Total Scenario 23 23 23 23
Scenarios with Loss Trade in simulation 2 23 0 0
Simulation paths for each scenario 5,000 5,000 5,000 5,000
Average chance of order matched (%) 99.22% 83.90% 3.76% 5.20%

Average currency return given trade (%)  0.00112 -0.01143 0.02152 0.02116
STD currency return given trade (%) 0.04524 0.03646 0.01023 0.01360
Average Sharpe Ratio 0.02483 -0.31364 2.10320 1.55522

Forced Closure given trade (%) 0.52% 0.00% 11.79% 15.52%
Average Lot Size 43.05 0.01 102.54 101.11
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Table 17 shows the summary result of trading simulation for bad news with 2-MRJ model for
each strategy using the optimal open prices, target prices and lot sizes. Similar to the good
news case, the Sharpe ratios (given there is a trade) of both limit order strategies are
significantly better than those of the stop order strategies in the trading simulation.
However, the chance for the sent order to be matched is also very low. Therefore, the Stop
Long order is preferred with the same reasons.

5.3 Out-of-Sample Trading Result

This section shows the out-of-sample trading results of the good and bad news for each
scenario with benchmark returns. These results are based on actual bid-ask quotes from the
market.

In each scenario, the bid-ask quote of the exchange rate will be normalized using the mid-
price of EUR/USD at the news announcement time by:

\ f Bid price;
Normalized Bid; = —————
Mid price,

. Ask price,
Normalized Ask, = ————
Mid price,

Each table reports the detailed out-of-sample trading results for the chosen strategy
compared with 3 open-and-hold benchmarks. It provides the volatility scale ratio (Scale
Ratio), the currency return for each strategy (Currency Return), optimal open prices (Optimal
Open), optimal target prices (Optimal Target) , actual open price for each strategy (Opened
Price), optimal lot sizes (Optimal Lot) and strategy that the Mixed benchmark use to trade in
each scenario (Strategy). In some cases, the value will be assigned as “N/A” which indicates
that the order is not submitted due to a negative mean return from the trading simulation.

There are 18 scenarios for the good news announcement and 23 scenarios for the bad news
announcement. Each scenario will be sorted in descending order by the volatility scale ratio
in Scale Ratio column.

Each scenario is sorted in descending order by the volatility scale ratio in Scale Ratio column.
Table 18 reports the results from the out-of-sample trades using the Stop Short order
strategy with 3 open-and-hold benchmarks for good news scenarios. Table 20 reports the
results from the out-of-sample trades using the Stop Long order strategy with 3 open-and-
hold benchmarks for bad news scenarios. There are also Table 19 and Table 21 which show
the summary result which compare the suggested strategy with the benchmark in out-of-
sample trading. (summarized from Tables 18 and 20 respectively)
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Table 18 shows the details of out-of-sample trades for each good-news scenario. The
volatility scale ratio (A) estimated by GARCH for each scenario is used to adjust the
parameter from estimation step.

We can observe from Table 18 that the optimization suggests trading using the Stop Short
order strategy for 12 out of 18 scenarios. This is because the in-sample trading simulation
does not generate positive mean returns for the chosen strategy in those other 6 scenarios.
The result from Table 18 also shows that 4 out of 6 scenarios that the optimization suggests
to hold cash on hand give negative currency return for Always Short strategy. This shows the
effectiveness of the forecasting performance from in-sample optimization that following the
suggestion to hold cash in some trades are effective.

The Mixed Strategy column shows that it is more efficient if the benchmark uses both Long
and Short Strategy depending on how the movement of the market price is. However, this
strategy cannot be implemented as we did not know ahead of time what the direction of the
price movement is.

Note that open prices at the first 10 seconds in all scenarios deviate a lot from the prices at
the announcement time 0, and this makes the trades from the suggested strategy open at
those open prices, which are the same as the open prices of Always Short strategy, instead
of their proposed optimal entry prices.

Returns reported in Table 18 are currency returns and thus do not account for the leverage
ratio and the optimal lot size. When the optimal lot size and leverage are used and the
returns are calculated based on the trader’s wealth, the magnitude of returns can be much
larger. The results in terms of the returns of trader’s wealth are reported in Table 32 in
Appendix 5. With leverage, using the optimal lot size can reduce the loss from forced
closure, but the overall risk from leverage can be huge.
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Table 19: Out-of-sample trading summary result using Stop Short order with 2-PDJ model for good news

announced and three benchmark strategies

Good News Out-Of-Sample
Strategy : Stop Short order Stop Short Always Short Always Long Mixed
Total News 18 18 18 18
Number of Trading Scenarios 12 18 18 18
Currency Average return (%) -0.00825 -0.00756 -0.00628 0.02228
STD Currency return (%) 0.02378 0.03866 0.04214 0.02687
Sharpe Ratio -0.34697 -0.19542 -0.14896 0.82917
Percent Win given trade (%) 41.67 38.89 44.44 83.33
Force Close Occurrence given trade (%) 0.00% 5.6% 0.00% 0.00%
Number of Out-of-sample loss Trade 7 11 10 3
Forecasting Performance (%) 67% N/A N/A N/A

Table 19 shows the summary results of the out-of-sample trades using the Stop Short order
with 2-PDJ model, and the benchmark strategies.

The Stop Short order strategy column shows the trading performance of using the Stop
Short order strategy. We can see that given a trade occurs, this strategy has 41.67% of
winning rate without any chance of the position forced closure.

To measure the forecasting performance when the in-sample trading results predict losses in
a given scenario, we introduce the forecasted performance row. This row reports the
percentage of loss scenarios if the Always Short strategy is used given the in-sample trading
simulation suggests no trade (Table 9). In this case, we have 67% accuracy so the suggestion
from the in-sample result to hold cash in those scenarios is effective.

Comparing all strategies, we can observe that the Sharpe ratio of using the Stop Short order
strategy underperform all of the benchmarks. Table 34 in Appendix 5 reports the summary
results with 2,000-time leverage and optimal lot size. As expected, the return and standard
deviation are much larger in magnitude. It turned out that the Sharpe ratio with the leverage
ratio is worse (more negative).
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Table 20 shows the details for each bad-news scenario. There are 21 out of 23 scenarios that
the optimization result suggests to trade. For most of the trading scenarios, the Long order
can gain an advantage on average in 15-minute trading as we can observe from the Always
Long strategy that the Currency Return column are positive in most scenarios.

The Optimal Open for the Stop Long strategy does not provide any advantage for these
scenarios as shown from the Opened price column that in all the scenarios, the best ask price
jumps across the optimal open price when news is announced. Therefore, the Stop Long
order is executed immediately at the best ask price which is not the optimal price from
optimization.

In the bad news scenarios in Table 20, we can also see from the Currency Return column of
the Mixed strategy that some scenarios give negative return although we can look ahead of
time and choose the best strategy to open the position. This indicates that it is better to hold
cash than to trade in some scenarios because neither Long order nor Short order is
profitable.

Table 33 in Appendix 5 reports the results of the Stop Long strategy with optimal lot size and
2,000-time leverage. The returns are much larger in the magnitude as expected. With the
optimal lot size, all trades can avoid the force closure at the large leverage ratio.

Table 21: Out-of-sample trading summary result using Stop Short order with 2-MRJ model for bad news

announced and three benchmark strategies

Bad News Out-Of-Sample
Strategy : Stop Long order Stop Long Always Short Always Long Mixed
Total News 23 23 23 23
Number of Trading Scenarios 21 23 23 23
Currency Average return (%) -0.00619 -0.00791 -0.00452 0.01013
STD Currency return (%) 0.01711 0.02505 0.01778 0.01260
Sharpe Ratio -0.36188 -0.31592 -0.25437 0.80410
Percent Win given trade (%) 33.33% 30.43% 34.78% 65.22%
Force Close Occurrence given trade (%) 0.00% 0.00% 0.00% 0.00%
Number of Out-of-sample loss Trade 12 13 15 6
Forecasting Performance (%) 50% N/A N/A N/A

Table 21 shows the summary results for the out-of-sample trades using Stop Long order
strategy with 2-MRJ model and the benchmark strategies.

We can see that the Sharpe ratio of using the Stop Long order strategy is the worst
comparing with all other strategies. However, all strategies (except the Mixed Strategy) give
the negative Sharpe ratios. The reason that the Sharpe ratio of the Stop Long order strategy
is lower than the Always Long strategy mainly comes from avoiding the trade in scenario 14
in Table 20 which is quite a high profit scenario comparing with others. In the bad news
announcement, the forecasting performance for holding cash is 50% which is equal to
tossing a fair coin. Comparing with the good news case, this suggestion is worse.

We report the results of the Stop Long strategy with 2,000-time leverage and optimal lot size
case by case in Table 33 and report the summary result in Table 35 in Appendix 5. As
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expected, the returns and standard deviations are much larger in magnitude, but the Sharpe
ratio improves a little (-0.250).

Chapter 6 Conclusion and Further Study

The objective of this thesis is to find the suitable trading strategy with the optimal solution
for trading the EUR/USD currency in the Unemployment claims announcement period.

This thesis presents the EUR/USD price dynamic, and an estimation method based on the
EM algorithm. The models that best describe the dynamics of EUR/USD data during the
announcement periods for the good news and bad news based on AIC and BIC are the two-
regime pure-diffusion with jumps (2-PDJ) and two-regime mean-reversion with jumps (2-
MRIJ) respectively.

The parameter values from the model estimation show that the result of the news
announcement and the dynamic of the EUR/USD prices are inconsistent. More precisely, the
model suggests us to open a short position after a release of good news, and to open a long
position when the news result turns out to be bad.

For the good news case, the estimated model suggests that prices are trending downward
with no mean reversion. Although, the best strategy in our scope is the Limit Short order
strategy judged by the Sharpe ratio, there is a trade-off for using this strategy which is the
chance of order matching is significantly low compared with the stop order strategy.
Therefore, the Stop Short order strategy is preferred for this situation due to the data
limitation. Also, the optimal lot size from this strategy can help prevent the traders’ portfolio
from the forced closure.

In the out-of-sample cases, our strategy and the benchmarks (except for the Mixed strategy)
have the negative Sharpe ratio and our strategy underperform all of the benchmarks. When
the large leverage ratio is applied to our strategy, the magnitude of the risk to trader’s
wealth is increased. The negative Sharpe ratio is also worse after the large leverage ratio is
applied. In terms of preventing the position forced closure, the optimal lot size for the Stop
Short order strategy does a great job, since this strategy can perfectly prevent the position
forced closure for the out-of-sample data.

For the bad news case, the estimated parameter values suggest that there is a mean
reversion effect with a fast reverting speed to a mean value higher than the announced
currency price. Although, the Limit Buy order strategy is obviously a good strategy to trade
during this situation if the price goes down before it reverts back up to its mean, the trade-
off of using this strategy is that the chance of order matching is low. With this reason, the
Stop Long order comes as an alternative choice. Due to the fast converging to the mean,
there is a small trend from the entry price toward the mean if the current price is
significantly lower than the mean, so using the Stop Long order will gain a small trending
benefit while the currency price is converging to its mean value.

In the out-of-sample trading, the result turns out to be a loss on average and our strategy
underperforms all of the benchmarks. When the large leverage ratio is applied to our
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strategy, it does a great adjustment in the lot size applied in trading since the Sharpe ratio is
improved, and the forced closure condition is not activated. With these reasons, we can
conclude that using optimal lot size in real trading with the large leverage ratio can help
traders to improve their trading performance and prevent their loss from forced closure
condition. However, the current strategy still yields a negative mean return.

Since, the Mixed strategy has a look-ahead bias and cannot be implemented in reality. We
use it to provide a high-performance benchmark for our comparison. In some scenarios,
using the Mixed strategy gives a negative currency return. This shows that in some cases
using neither long nor short strategy is the best. So the trading performance can be
improved if we avoid some trades. Also, instead of trading using one strategy in all the cases,
it is better to allow strategy to be adaptive to the current situation to improve the trading
performance. We suggest to test on the combination with other strategies or to apply a
longer trading period for a further study.
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APPENDIX

Appendix 1: News Data Table

Table 22: Good news announced date

News Date  Announcement time(+7 GMT) Result (x103) Forecast (x103)
2010/01/21 20:30 482 441
2010/02/04 20:30 480 461
2010/04/08 19:30 460 434
2010/04/29 19:30 448 442
2010/05/20 19:30 471 439
2010/07/01 19:30 472 454
2010/07/22 19:30 464 449
2010/08/05 19:30 479 456
2010/08/12 19:30 484 465
2010/08/19 19:30 500 478
2010/09/23 19:30 465 451
2010/11/04 19:30 457 437
2010/12/02 20:30 436 425
2011/01/06 20:30 409 400
2011/03/31 19:30 388 379
2011/04/21 19:30 403 394
2011/05/05 19:30 474 415
2011/06/02 19:30 422 416
2011/06/23 19:30 429 414
2011/12/01 20:30 402 390
2011/12/29 20:30 381 372
2012/03/08 20:30 362 352
2012/03/29 19:30 359 351
2012/04/26 19:30 388 374
2012/06/21 19:30 387 381
2013/01/10 21:30 371 361
2013/01/31 21:30 368 362
2013/02/07 21:30 366 361
2013/03/28 20:30 357 340
2013/04/04 20:30 385 352
2013/06/20 20:30 354 343
2013/07/11 20:30 360 342
2013/08/22 20:30 336 329
2013/10/10 20:30 374 307
2013/12/19 21:30 379 336
2014/01/02 20:30 339 341
2014/01/30 20:30 348 329
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Table 23: Bad news announced date

News Date  Announcement time(+7 GMT) Result (x103) Forecast (x103)

2010/01/07 20:30 434 449
2010/02/11 20:30 440 460
2010/03/25 19:30 442 452
2010/07/08 19:30 454 461
2010/08/26 19:30 473 488
2010/09/30 19:30 453 458
2010/10/07 19:30 445 454
2010/10/28 19:30 434 453
2010/12/09 20:30 421 426
2010/12/30 20:30 388 416
2011/01/20 20:30 404 422
2011/02/03 20:30 415 420
2011/02/10 20:30 383 411
2011/03/03 20:30 368 394
2011/05/19 19:30 409 421
2011/06/16 19:30 414 421
2011/07/28 19:30 398 413
2011/09/29 19:30 391 420
2011/10/06 19:30 401 411
2011/11/17 20:30 388 396
2011/12/08 20:30 381 397
2011/12/22 20:30 364 376
2012/02/02 20:30 367 373
2012/02/09 20:30 358 369
2012/03/22 19:30 348 353
2012/04/19 19:30 386 370
2012/05/03 19:30 365 381
2013/01/17 21:30 335 369
2013/01/24 21:30 330 359
2013/02/14 21:30 341 361
2013/03/21 20:30 336 343
2013/04/11 20:30 346 362

2013/04/25 20:30 339 352
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Table 23(cont.): Bad news announced date

News Date  Announcement time(+7 GMT) Result (x103) Forecast (x103)

2013/05/09 20:30 323 333
2013/05/23 20:30 340 347
2013/07/18 20:30 334 344
2013/08/01 20:30 326 346
2013/09/12 20:30 292 332
2013/09/19 20:30 309 331
2013/09/26 20:30 305 319
2013/10/03 20:30 308 315
2013/12/26 21:30 338 346

Appendix 2: Deriving log complete likelihood

For deriving the likelihood function, it is obvious that
f(Cy,Cy, ..., Cyy) = P(CP(Cy, Cs, ... Cy|Cy)
where,
P(C)="P ()’1(1)'AN1(1)r5;3(11»Z1(1)'3’2(1)AN2(1)'52\,21»22(1)' ""y’l('l)'ANT(‘D'5;;,);1)'Z7(‘1))'
By recursively use of the properties of the conditional probability r(4, B,¢) = P(B,c|A)P(4)
, the equation will be rearranged into

T T—-1
[ ey (50 fon) e bi)| [,
t=1 t=1

By recursively substitute to f(C;, Cs, ..., Cy)

, the complete likelihood function can be shown as follows:
f(CerZr ""CM) = P(C1)P(CZ'C3' ---CM|C1)
= P(CP(CICP(C1Cy, C) .. P(CylCy, Gy, oo, 1)

P(C) = P(y")

Because of the Markov properties,
The equation f(C,,C,, ..., Cy) = P(CP(C,IC)P(C;]Cy, Cp) .. P(Cy|Cy, G ..., Cy—1) CAN beE Written as
f(CpCz: ---:CM) = f;w(c1)P(Cz|C1)P(€3|C2) ---P(CM|CM—1)

T-1
= [ Teoom{ [ Trten e s famseoie) | [T i}
m=1 t=1 t=1

Therefore, the log complete likelihood can be written as:

M M T
IN(f(Cy, Cyy ., Cu)|0)) = Z in(P(y™)) + Z Z In (P(AN{™ ™))

m=1 m=1 t=1

(m) (m)  (m)
l"(" (8 ))
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t

I
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N
[
A
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+ PO ™)) ,m=123,..,M

m=1t=

Appendix 3: Deriving M-step parameter

[y

Derive the Initial State Probability ( 7 )

The parameter 7 can be derived by using the lagrange multiplier method with the
constraint Y2_, m, = 1 for the expected log complete likelihood

E(In(f(Cy, Gy, -, Ci)10,) 1X, 0r_y).

Let P(y(™ = k) = m. Therefore,
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where, |L is a lagrange multiplier variable.
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Derive the Jump Intensity (1)

The parameter 1, can be derived by using the first order derivative method with respect
tod, and setting it equal to zero for the expected Ilog complete
likelihood E(In(f(Cy, Cs, ..., Cy)10,) IX,0,_;).  First, we will consider the term
E[XM_ 3T . in (P(ANt(m)|yt(m))) |X,0,_,] which is the only term where the parameter A,is
concealed in.

M T M T
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m=1t=1 m=1t=1
where, P (ANE"‘)|yt(m) = k) is the Poisson distribution with the parameter 1,. Therefore,
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can rearrange it into
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erivative method with respect to 1, and setting it equal to zero, we
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Derive the Mean of jump size (7)) and the Volatility of jump size (@)

where, E[1{y{™ =

) r—1] = P(yt(M) -

The parameter %, and @2 can be derived by using the first order derivative method for the
expected log complete I|keI|hood E(In(f(Cy, Cy, ..., Cy)|6,) IX, O,_;) With respect to n, and w?
respectively. We will set each differentiated equation equal to zero.

We will consider the term E[XX_, 3T, ln< ( (m)|AN(m),yt(m) )) IX, ©,_;] which is the only

term where the parameters i, and w? are concealed in.
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where, sTV|AN™ = j,y™ =k~ Nor(ny, w3) fori = 1,23, ..,
To find 1,, we will apply the first order derivative method with respect to 7,
and set it equal to zero, we can rearrange it into
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To find &)\,2(, we will apply the first order derivative method with respect to wy,

and set it equal to zero. We can rearrange it into
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) Thoi B 2P (AN = j%, 6,5 = k) P (3™ = k|x,0)
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Derive the Long-Term Mean (a), the Mean Converging rate (k) and the
Volatility (o)

The parameter a,, &, and 62 can be derived by using the first order derivative method for the
expected log complete likelihood E(In(f(C,,C,, ..., Cy)16,) |X, 0,_,) with respect to @, K
and o7 respectively. We will set each differentiated equation equal to zero.

We will consider the term E[XM_, 3T . In (P(zt(m)|yt(m))) X, 0,_,] which is the only term
where the parameters @, k, and o are concealed in.



57

0= M_u BEY= )Y = " _m__m_.,ﬁu.“__.“_pﬂumTl w T =0 R o + 187 — uln_ L NWN
L] L TIE ¥ ’
m_" _m ..M__“_H..___.u_hr_.ﬂ_...__:“ _1..”_.u._. ._.‘_.H-_WN“_W .ﬂ_.ﬁ
ajul Y 3FuBLE3I UBD M "0U3Z OF |enba Y umm _u:m "o 03 373ds530 Yy poyisw m:.,_wmbcmﬁ JapJo 35013 ay3 Ajdde (w2 Ty puly ol
("B E = fﬁ =ikt M_F .E.H_m =

W

._h...“. _:._u.uh. H_..l_ nl_._Hu

[ T -

LK

0= H_“.A g ..H_um = ._w‘.._m._““um —{m ikt m M___-| BT -‘r_.ﬂ_.u_.u._. T-| q ._..11r1ﬂ_. = ___._...ﬁ.._. m...M .._._.h".H.".. ___._;.ua_! +3 Vi Y — ___._.1
[ FE

=| 18R (i s =) .W.Wum e

03Ul 3 25ueLIB3l UBY AN TO13T 0} __m:n_m w_ 325 pue "x 03 }03ds30 Y poy3sw IAEALISP J3pJo 350y 3y Aidde e 2 Ty puly o

g = Faog( 1 B = YN o BN = M0 = T SIS0

et Doy [ JLmiiE

EN .E#.FT!?NET; WNNNN

_.l. nl_._

0Bl (W l) EWNE

M_Hn m..ﬁ_:. — ._.-.“_nm._"”-._. - __.“.._...._" m..m_m.| __..r-r_uﬁu_nm._HHH () .p‘r_uﬁ._... —_ ___“.._....n m MF_”..:_._H.._.H + ._..ﬂ_ ._.“_._ - .___.



58

(= "2 — )+
R (R ERNES) CIU ) - i+
_‘.L.H.”__.“_.__r_.__.__...a = gt _H_” whZ — {uilE “_._‘_ml
[7= v = 0 @] ((Gnd™ = "2 — 2 + (2 —af)) |8 = [£= 0w ¥ = 0 @B ((nade" = "2 — =) |2

T.H T =y

50| o 58 3 38ueliesd of snbiuyasy eagage sy 250 uel m.__.__.zT.u.”___u._.q Y= Lt mﬁ_y_ﬂm”_____a._al._m ) — glE “_m wiizy 2yy Julapisucd Ag
0K = (Y = (i OB = WV T T RT o
[ "oml = (¥ = (0" OE) = (WiNW) 2 [f = T ¥ = (0% em] (Gl — 270 — im)| F) 5T R .
! [ LT
B = i) = =, i=, = e B T 1) 22T ?|N|
M_.,ﬂ BE[ = 02 (¥ = gl ]! __Lra”i oIV Y = ] _y_”..__:n M T — o) —— Tt NNN

0=|0" O I{ (¥ i Cui=)d ) EM..Mum =

03Ul ¥ 3fuelieal UBDd 3/ "043Z 0F [Enb3 3 325 pue [0 03 3133d530 Y POYIAW SARBALIIP J3PJ0 35114 3R h__,_n_um (|1 20 " T puig oL

(" 9K = (¥ = il B E| = ..___E_u”_m ="
m“_.'_. = Bl ..._.. ...m.” .“_._._“hr_._..d..n _m.M_. = ”_m = g h.

._H g ___ _...!_H_"..“.Hnl_. _ _H m.:..._Hn.u.__Hnu.“.HT:. :H ._. .___Wq_...q.__Hnu_ t=m u

__.....ﬂn.,._ muu.H_nu H”__H ._.._..: m.p._... L] nu_..HH_ H .:_.._...nm .WHn. Hnu_ Emr h__” ey} .___H_a!_Hn-_ nl_.HU
50| |0 5B cm..-c__..._ aq ued ¥p Jagaweled ayz ‘uoenba 3y m:_mcmtmm: pue 1 1aiaweled ayz Sunejos) Ag

="y

=

_m._.,l__H thnl__.
_H ._\a_nq WH_T_ Pl = _

1
i

1]

le_.H_.I_ L {TE
A _.. i _ I _.. | — Lo o [LL
_” f._ ndEuNEHH: =l 1=371= EHu _“ f._ ndEuH_T =l 1=ig 1= EH iy

a_.q_”_.h_wu.. { = (o0 o = B0 Y ml] (e

5B U3lls 30 ued

r e = i = G Tt T ; = HH .|:.H._ = yr
uonenba ayy A _m:MT. o9 vmﬁ. et e Hm. Jq.....uh_rjm (yd PUE & E_h..._uﬂ..hu..._,m -tHI W T T T weFugnyasqns Ag
M= (= T R = ,__ra“_mimn._ = o

i
=

= (i) (¥ = i 0T BB = W) = NV ¥ =0 O R L W D] T ITND



59

I= ?. = .“.......UH.T.- ..m.M_.m.H *.....u“hr_.___u_u_m n_u,uw‘ pue m.- ‘e M_MH .“...uﬁw__m?. = .“.......u".ﬁ: ‘a .M__.H *.......u“hr_._.qu_m - ﬁﬂ-wmﬂuﬁﬁdﬂs
_”m.ﬂ_..u.ﬂ..___._..ﬁum._.._ pet

=1

o H\._”_H“ =) D)+ = ._.?.Hu:__"_Ezm.Mv___“ufui?mwr.h -
21042031 0= [{ =NV 8 =0T B Rz — U= NP R 8 = (lz STETR
._” _"“.______Ha_u,_.l a_d.n_. ._u,._..u — o A ¥ = = .._____hrqﬂ..mﬁ_.“___“u.m:_.n_.._m.ﬂ




60

Derive the Transition Probability (g )

The parameter g;,can be derived by using the lagrange multiplier method with the constraint
Y2, q;, = 1 for the expected log complete likelihood E(in(f(Cy, Cy, .-, C1y)16,) 1X, 0,_,). We will
consider the term E[X¥_, ¥/t in(P(y™1y™)) |X,6,.,] which is the only term where the
parameter g;,is concealed in.

PO =Ly = iIX,0,) Ingy,

M T-1 M T-1 2 2
ED D (PO ™)) e, 1= > 3 > N B =1y =i} ing,ix.0,]
m=1 t=1 m=1 t=1 i=1 [=1

M T-1 2 2

1t=

[y

i=11=1

3
il

T-1

20

aqll

in (PO |Y™)) 1X, 0, 1]—(2%1 ) ] =0

where, u is a lagrange multiplier variable.
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u L 2
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where,
M T-1 2 M T-1 2
DO PEE =y = %.0,.) = > > P = X, 0, 3™ = )P = ifx.0,.)
m=1t=1 l=1 m];l i:;l[ =1
=Y > e =ix.0,)
m=1t=1
Therefore,

%—i?—‘%P(yfi"f = 1Ly™ = i|X,0,_,)
M TSP = 01X, 6,-)

foril=1,2
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Appendix 4: Leveraged returns of in-sample trading

This appendix shows the results from Section 5.2 using leveraged return. The returns which
are shown in this appendix is the percentage of leveraged realized profit/loss using the fixed
margin (B) at 100,000 US dollar per contract and the leverage ratio (L) at 2,000 times for the
simulation trade.

Table 24: In-sample result for each good news scenario using Stop Long order strategy trading on simulation

Stop Long Strategy

Scenario Scale Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced

Ratio
1 1.112 -0.001 0.005 -0.139 1.000 0.010 1.001 97.330 0.000
2 0.978 -0.001 0.005 -0.156 1.000 0.010 1.001 96.440 0.000
3 0.918 -0.001 0.005 -0.176 1.000 0.010 1.001 96.560 0.000
4 0.881 -0.002 0.009 -0.207 1.000 0.023 1.000 96.780 0.000
5 0.860 -0.002 0.007 -0.255 1.000 0.024 1.000 97.000 0.000
6 0.842 -0.002 0.007 -0.270 1.000 0.023 1.000 96.330 0.000
7 0.842 -0.002 0.007 -0.271 1.000 0.023 1.000 96.560 0.000
8 0.840 -0.002 0.007 -0.277 1.000 0.022 1.000 96.560 0.000
9 0.838 -0.002 0.007 -0.278 1.000 0.022 1.000 96.560 0.000
10 0.814 -0.001 0.003 -0.292 1.000 0.013 1.000 97.220 0.000
11 0.795 -0.002 0.006 -0.308 1.000 0.022 1.000 96.560 0.000
12 0.783 -0.002 0.005 -0.338 1.000 0.023 1.000 96.670 0.000
13 0.757 -0.001 0.001 -1.387 1.001  0.010 1.001 6.110 0.000
14 0.727 -0.002 0.008 -0.230 1.000 0.022 1.000 99.330 0.000
15 0.713 -0.001 0.004 -0.214 1.000 0.010 1.001 96.780 0.000
16 0.691 -0.001 0.004 -0.211 1.000 0.010 1.001 99.330 0.000
17 0.673 -0.001 0.004 -0.202 1.000 0.010 1.001 96.890 0.000
18 0.672 -0.001 0.004 -0.204 1.000 0.010 1.001 96.890 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of
leveraged return, which is calculated by averaging the return per trade from simulation paths in each
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Table 25: In-sample result for each good news scenario using Stop Short order strategy trading on simulation

Stop Short Strategy
Scenario Scale Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced
Ratio
1 1.112 0.000 0.006 -0.017 1.000 0.010 0.999 99.110 0.000
2 0.978 0.000 0.005 -0.008 1.000 0.010 0.999 94.440 0.000
3 0.918 0.000 0.005 -0.008 1.000 0.010 0.999 98.110 0.000
4 0.881 0.034 11.092 0.003 1.000 24.330  0.999 94.560 0.000
5 0.860 0.172 15.298 0.011 1.000 32.997 0.999 96.670 0.000
6 0.842 0.672 24.253 0.028 1.000 57.316 0.999 91.110 0.240
7 0.842 0.635 27.314 0.023 1.000 58.708 0.999 98.780 0.340
8 0.840 0.475 15.506 0.031 1.000 33.034 0.999 99.670 0.000
9 0.838 0.403 16.173 0.025 1.000 34.328 0.999 99.890 0.000
10 0.814 0.285 14.929 0.019 1.000 32.811 0.999 98.330 0.000
11 0.795 0.282 15.238 0.018 1.000 32.855 0.999 99.890 0.000
12 0.783 0.159 14.771 0.011 1.000 32.300 0.999 99.890 0.000
13 0.757 0.021 13.919 0.002 1.000 32.100 0.999 97.560 0.000
14 0.727 0.001 0.361 0.002 1.000 0.856 0.999 97.890 0.000
15 0.713 0.000 0.004 -0.008 1.000 0.010 0.999 98.440 0.000
16 0.691 0.000 0.644 0.001 1.000 1.566 0.999 98.440 0.000
17 0.673 0.000 0.043 -0.003 1.000 0.110 0.999 98.440 0.000
18 0.672 0.000 0.038 -0.004 1.000 0.096 0.999 99.670 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of
leveraged return, which is calculated by averaging the return per trade from simulation paths in each
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from
optimization. %$Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced closed.



Table 26: In-sample result for each good news scenario using Limit Long order strategy trading on simulation
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Limit Long Strategy

Scenario

O 0 N O

11
12
13
14
15
16
17
18

Scale
Ratio
1.112
0.978
0.918
0.881
0.860
0.842
0.842
0.840
0.838
0.814
0.795
0.783
0.757
0.727
0.713
0.691
0.673
0.672

Return (%)

7.922
16.717
7.352
0.008
6.697
9.550
8.418
8.798
4.306
4.239
4.955
18.297
4.677
0.685
5.422
15.424
19.254
19.177

Std. (%)

10.128
11.426
9.632
2.372
10.065
12.021
12.024
12.057
13.861
9.180
11.447
10.078
6.873
4.409
4.835
6.824
6.371
6.360

Sharpe Ratio

0.782
1.463
0.763
0.003
0.665
0.795
0.700
0.730
0.311
0.462
0.433
1.816
0.680
0.155
1.121
2.260
3.022
3.015

Open

0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999

Lot

67.201
79.471
82.822
26.810
86.833
92.839
92.243
92.911
110.669
92.951
101.973
91.042
89.850
88.231
97.669
104.142
104.331
104.273

Target

1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.000
1.001
1.001
1.001
1.001
1.001
1.001

%Matched

8.000
5.330
4.560
4.780
4.670
5.110
5.220
5.000
4.780
4.890
5.110
4.670
4.330
3.330
3.110
2.890
2.560
2.560

%Forced

0.000
0.000
2.440
0.000
2.380
8.700
6.380
13.330
48.840
6.820
26.090
2.380
2.560
0.000
0.000
11.540
4.350
4.350

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of
leveraged return, which is calculated by averaging the return per trade from simulation paths in each
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Table 27: In-sample result for each good news scenario using Limit Short order strategy trading on simulation

Limit Short Strategy
Scenario Scale Return (%)  Std. (%) Sharpe Ratio  Open Lot Target  %Matched  %Forced
Ratio
1 1.112 2.558 8.096 0.316 1.001 67.031 0.999 6.670 0.000
2 0.978 2.711 7.174 0.378 1.001 73.814 0.999 5.670 0.000
3 0.918 7.579 8.886 0.853 1.001 83.042 0.999 4.670 2.380
4 0.881 5.006 7.465 0.671 1.001  89.001 0.999 3.890 5.710
5 0.860 5.075 6.279 0.808 1.001 83.736 0.999 3.780 2.940
6 0.842 13.863 8.497 1.632 1.001 86.872 0.999 3.670 3.030
7 0.842 15.770 8.377 1.883 1.001 87.090 0.999 3.560 0.000
8 0.840 14.425 8.499 1.697 1.001 87.108 0.999 3.440 3.230
9 0.838 13.282 8.554 1.553 1.001 87.225 0.999 3.560 0.000
10 0.814 10.759 6.934 1.552 1.001 88.256 0.999 3.110 0.000
11 0.795 6.162 6.894 0.894 1.001 88.571 0.999 3.330 0.000
12 0.783 -1.578 7.931 -0.199 1.000 30.000 1.000 67.890 0.000
13 0.757 14.239 7.103 2.005 1.001 87.926 0.999 2.890 0.000
14 0.727 15.424 7.274 2.120 1.001 86.707 0.999 3.000 0.000
15 0.713 15.541 7.771 2.000 1.001 92.335 0.999 2.890 0.000
16 0.691 9.239 6.835 1.352 1.001 105.499 0.999 2.330 19.050
17 0.673 26.483 8.317 3.184 1.001 98.354 1.000 2.330 0.000
18 0.672 25.305 7.979 3.171 1.001 98.217 0.999 2.330 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of
leveraged return, which is calculated by averaging the return per trade from simulation paths in each
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from
optimization. %$Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced closed.



Table 28: In sample result for each bad news scenario using Stop Long order strategy trading on simulation
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Stop Long Strategy

Scenario Scale
Ratio

1 1.021
2 0.958
3 0.948
4 0.909
5 0.883
6 0.862
7 0.855
8 0.839
9 0.838
10 0.811
11 0.807
12 0.806
13 0.795
14 0.792
15 0.777
16 0.776
17 0.775
18 0.756
19 0.739
20 0.720
21 0.689
22 0.684
23 0.670

Return (%)

0.619
0.667
1.154
0.303
1.025
0.665
0.454
0.589
0.527
0.000
0.642
0.739
1.407
0.000
0.080
0.161
0.117
0.366
0.181
0.649
0.139
0.755
0.716

Std. (%)

33.093
28.538
24.510
31.127
21.150
18.693
19.399
16.729
16.714
0.004
21.850
13.702
25.268
0.004
28.915
13.710
27.529
27.672
15.763
15.733
14.020
21.598
17.673

Sharpe Ratio

0.019
0.023
0.047
0.010
0.048
0.036
0.023
0.035
0.032
-0.013
0.029
0.054
0.056
-0.003
0.003
0.012
0.004
0.013
0.012
0.041
0.010
0.035
0.041

Open

1.000
1.000
0.999
1.000
0.999
1.000
1.000
1.000
1.000
1.000
0.999
0.999
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.999
1.000

Lot

62.686
56.438
47.237
62.580
43.320
40.069
41.477
36.730
36.736
0.010
47.340
30.932
57.470
0.010
64.671
31.762
61.746
62.874
37.578
37.666
34.804
51.924
44.188

Target

1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001

%Matched

99.890
98.330
100.000
99.780
100.000
98.670
98.780
98.890
98.780
96.330
100.000
100.000
100.000
96.330
99.890
98.780
99.890
100.000
98.560
100.000
99.220
100.000
99.890

%Forced

2.110
4.750
0.000
1.890
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.560
0.000
1.330
0.000
0.670
0.560
0.000
0.000
0.000
0.000
0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of
leveraged return, which is calculated by averaging the return per trade from simulation paths in each
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from
optimization. %$Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced closed.



Table 29: In sample result for each bad news scenario using Stop Short order strategy trading on simulation
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Stop Short Strategy
Scenario Scale Return (%)  Std. (%)  Sharpe Ratio Open Lot Target  %Matched  %Forced
Ratio
1 1.021 -0.001 0.005 -0.231 1.000 0.010 0.999 96.780 0.000
2 0.958 -0.001 0.005 -0.241 1.000 0.010 0.999 97.670 0.000
3 0.948 -0.001 0.007 -0.184 1.000 0.020 1.000 97.440 0.000
4 0.909 -0.001 0.005 -0.231 1.000 0.010 0.999 100.000 0.000
5 0.883 -0.002 0.004 -0.478 1.000 0.021 1.000 78.560 0.000
6 0.862 -0.001 0.005 -0.266 1.000 0.010 0.999 97.670 0.000
7 0.855 -0.001 0.005 -0.266 1.000 0.010 0.999 97.330 0.000
8 0.839 -0.001 0.005 -0.262 1.000 0.010 0.999 97.670 0.000
9 0.838 -0.001 0.000 -3.853 0.999 0.010 0.999 5.110 0.000
10 0.811 -0.001 0.004 -0.262 1.000 0.010 0.999 97.780 0.000
11 0.807 -0.002 0.007 -0.258 1.000 0.020 1.000 92.220 0.000
12 0.806 -0.002 0.007 -0.274 1.000 0.018 1.000 91.780 0.000
13 0.795 -0.002 0.002 -0.915 1.000 0.010 0.999 23.780 0.000
14 0.792 -0.001 0.004 -0.318 1.000 0.010 0.999 93.330 0.000
15 0.777 -0.001 0.004 -0.249 1.000 0.010 0.999 99.000 0.000
16 0.776 -0.002 0.004 -0.452 1.000 0.010 0.999 70.780 0.000
17 0.775 -0.001 0.004 -0.259 1.000 0.010 0.999 98.780 0.000
18 0.756 -0.001 0.006 -0.232 1.000 0.018 1.000 95.000 0.000
19 0.739 -0.001 0.004 -0.244 1.000 0.010 0.999 99.440 0.000
20 0.720 -0.001 0.001 -2.753 0.999 0.010 0.999 3.560 0.000
21 0.689 -0.002 0.009 -0.252 1.000 0.036 1.000 99.220 0.000
22 0.684 -0.001 0.004 -0.259 1.000 0.010 0.999 99.000 0.000
23 0.670 -0.001 0.004 -0.281 1.000 0.010 0.999 97.890 0.000

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of
leveraged return, which is calculated by averaging the return per trade from simulation paths in each
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Table 30: In sample result for each bad news scenario using Limit Long order strategy trading on simulation

Limit Long Strategy

Scenario Scale
Ratio

1 1.021
2 0.958
3 0.948
4 0.909
5 0.883
6 0.862
7 0.855
8 0.839
9 0.838
10 0.811
11 0.807
12 0.806
13 0.795
14 0.792
15 0.777
16 0.776
17 0.775
18 0.756
19 0.739
20 0.720
21 0.689
22 0.684
23 0.670

Return (%)

18.689
19.481
20.970
11.132
13.524
19.262
12.653
15.274
15.294
15.931
19.006
17.324
22.382
22.916
21.697
21.712
22.448
21.207
33.282
26.909
42.319
34.397
47.387

Std. (%)

14.420
13.046
13.136
7.663
8.088
8.838
9.602
12.166
12.167
9.192
8.981
10.593
10.564
10.545
10.872
10.874
10.792
12.111
11.493
9.274
8.991
8.503
8.008

Sharpe Ratio

1.296
1.493
1.596
1.453
1.672
2.179
1.318
1.256
1.257
1.733
2.116
1.636
2.119
2.173
1.996
1.997
2.080
1.751
2.896
2.902
4.707
4.045
5.917

Open

0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999

Lot

96.704
93.868
94.628
89.336
93.504
93.966
97.817
107.242
107.258
90.478
89.655
101.529
104.848
105.068
105.703
105.729
105.715
117.161
106.484
110.301
110.323
111.165
120.000

Target

1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.000

%Matched

6.330
5.890
5.780
5.000
4.890
4.000
4.110
4.000
4.000
3.890
3.670
3.670
3.440
3.440
3.670
3.670
3.670
3.220
2.890
2.330
1.890
1.890
1.220

%Forced

19.300
11.320
9.620
0.000
2.270
2.780
18.920
27.780
27.780
2.860
0.000
21.210
12.900
12.900
15.150
15.150
12.120
41.380
3.850
4.760
0.000
0.000
9.090

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of
leveraged return, which is calculated by averaging the return per trade from simulation paths in each
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Table 31: In sample result for each bad news scenario using Limit Short order strategy trading on simulation

Limit Short Strategy
Scenario  Scale  Return (%)  Std. (%)  Sharpe Ratio  Open Lot Target  %Matched  %Forced
Ratio
1 1.021 16.305 13.231 1.232 1.001 80.502 0.999 8.000 1.390
2 0.958 18.109 15.257 1.187 1.001 86.571 0.999 7.780 7.140
3 0.948 20.980 16.743 1.253 1.001 90.181 0.999 7.780 11.430
4 0.909 21.744 15.351 1.416 1.001 86.689 0.999 7.000 3.170
5 0.883 21.793 14.275 1.527 1.001 85.093 0.999 7.110 0.000
6 0.862 22.680 15.872 1.429 1.001 91.977 0.999 6.670 10.000
7 0.855 24.130 15.590 1.548 1.001 92.158 0.999 6.220 8.930
8 0.839 11.310 15.459 0.732 1.001 116.010 0.999 5.560 48.000
9 0.838 11.268 15.443 0.730 1.001 115.960 0.999 5.560 48.000
10 0.811 15.107 14.233 1.061 1.001 111.033 0.999 4.780 30.230
11 0.807 11.336 15.739 0.720 1.001 120.000 0.999 4.780 51.160
12 0.806 24.932 12.899 1.933 1.001 90.098 0.999 4.670 2.380
13 0.795 15.065 12.592 1.196 1.001 102.709 0.999 4.780 16.280
14 0.792 15.333 12.069 1.270 1.001 100.312 0.999 4.780 9.300
15 0.777 20.666 11.451 1.805 1.001 100.651 0.999 4.110 8.110
16 0.776 24.294 11.786 2.061 1.001 100.619 0.999 4.110 5.410
17 0.775 23.588 11.863 1.988 1.001 100.725 0.999 4.220 5.260
18 0.756 21.525 12.886 1.670 1.001 112.883 0.999 4.000 27.780
19 0.739 29.290 13.405 2.185 1.001 110.127 0.999 3.560 21.880
20 0.720 22.664 10.142 2.235 1.001 97.217 0.999 3.560 3.130
21 0.689 31.702 11.796 2.687 1.001 111.036 0.999 3.440 16.130
22 0.684 29.083 11.702 2.485 1.001 111.723 0.999 3.670 12.120
23 0.670 32.072 11.602 2.764 1.001 111.224 0.999 3.440 9.680

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of
leveraged return, which is calculated by averaging the return per trade from simulation paths in each
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from
optimization. %$Matched shows the probability that the sent order will be matched from 5,000 trading
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Appendix 5: Leveraged returns of out-of-sample trading

This appendix shows the results from Section 5.3 using leveraged return. The returns which
are shown in this appendix is the percentage of leveraged realized profit/loss using the fixed
margin (B) at 100,000 US dollar per contract and the leverage ratio (L) at 2,000 times for the
out-of-sample trade.

Table 32: Detailed out-of-sample trading for good news using 2-PDJ model with Stop Short order and three

benchmark strategies (2,000 times leverage ratio is applied)

Good News 2-Regimes Pure Diffusion with Jump (2-PDJ)
Return (%)
Scale Ratio  Stop Short order Strategy ~ Optimal ~ Optimal ~ Opened Optimal

Open Target Price Lot Sizes
1 1.1116 N/A N/A N/A N/A N/A
2 0.9775 N/A N/A N/A N/A N/A
3 0.9182 N/A N/A N/A N/A N/A
4 0.8809 -10.253 0.99998 0.99900 0.99998 24.33028
5 0.8602 -7.466 0.99999 0.99900 0.99998 32.99715
6 0.8424 -8.225 0.99995 0.99900 0.99998 57.31578
7 0.8419 -8.891 1.00002 0.99900 0.99998 58.70820
8 0.8398 3.205 1.00004 0.99900 0.99999 33.03402
9 0.8376 10.744 1.00005 0.99900 0.99985 34.32839
10 0.8142 -6.089 1.00001 0.99900 0.99998 32.81075
11 0.7946 -0.726 1.00005 0.99900 1.00000 32.85535
12 0.7830 -19.053 1.00005 0.99900 0.99985 32.30013
13 0.7569 1.201 1.00000 0.99900 0.99991 32.10029
14 0.7266 0.108 1.00000 0.99906 0.99998 0.85629
15 0.7130 N/A N/A N/A N/A N/A
16 0.6910 0.115 1.00001 0.99906 0.99999 1.56578
17 0.6734 N/A N/A N/A N/A N/A
18 0.6719 N/A N/A N/A N/A N/A

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the leveraged
return from using the Stop Short order strategy in out-of-sample trade. Optimal Open shows the
optimal Open price. Optimal Target shows the optimal Closing price. Opened Price shows the actual
normalized bid-ask quote price when news is announced. This depends on strategy: we use bid price
for short and ask price for long positions. Optimal Lot Sizes shows the optimal lot sizes. “N/A” in
Return (%) column means we do not submit an order because the chosen strategy suggests a negative
mean return from the trading simulation.
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Table 33: Detailed out-of-sample trading for bad news using 2-MRJ model with Stop Long order and three

benchmark strategies (2,000 times leverage ratio is applied)

Bad News 2-Regimes Mean-Reverting with Jump (2-MRJ)

Return (%)
Scale Ratio  Stop Long order Strategy ~ Optimal ~ Optimal ~ Opened Optimal

Open Target Price Lot Sizes

1 1.0213 6.896 0.99971 1.00100 1.00002 62.68645
2 0.9577 19.189 1.00000 1.00100 1.00001 56.43788
3 0.9484 -15.588 0.99936 1.00100 1.00002 47.23739
4 0.9090 0.000 0.99994 1.00100 1.00002 62.57991
5 0.8834 5.198 0.99900 1.00100 1.00002 43.32004
6 0.8615 -10.017 1.00000 1.00100 1.00002 40.06876
7 0.8546 -10.784 1.00000 1.00100 1.00002 41.47650
8 0.8388 0.735 0.99999 1.00100 1.00001 36.72956
9 0.8380 0.735 1.00000 1.00100 1.00002 36.73550
10 0.8111 N/A N/A N/A N/A N/A

11 0.8066 3.787 0.99924 1.00100 1.00002 47.34020
12 0.8058 -7.424 0.99900 1.00100 1.00003 30.93170
13 0.7947 -1.724 0.99900 1.00067 1.00001 57.46999
14 0.7922 N/A N/A N/A N/A N/A

15 0.7770 7.760 0.99983 1.00100 1.00015 64.67080
16 0.7764 -10.799 1.00000 1.00100 1.00000 31.76168
17 0.7752 -4.322 0.99990 1.00100 1.00000 61.74571
18 0.7564 -2.515 0.99969 1.00100 0.99999 62.87445
19 0.7389 -3.382 1.00000 1.00100 1.00001 37.57832
20 0.7195 0.000 0.99966 1.00100 1.00001 37.66578
21 0.6885 -10.441 0.99999 1.00100 0.99999 34.80360
22 0.6838 -5.192 0.99901 1.00077 0.99999 51.92372
23 0.6695 -2.651 0.99979 1.00100 0.99997 44.18797

Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the leveraged
return from using the Stop Short order strategy in out-of-sample trade. Optimal Open shows the
optimal Open price. Optimal Target shows the optimal Closing price. Opened Price shows the actual
normalized bid-ask quote price when news is announced. This depends on strategy: we use bid price
for short and ask price for long positions. Optimal Lot Sizes shows the optimal lot sizes. “N/A” in
Return (%) column means we do not submit an order because the chosen strategy suggests a negative
mean return from the trading simulation
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Table 34: Out-of-sample trading summary result using Stop Short order with 2-PDJ model for good news

announced and three benchmark strategies (2,000 times leverage ratio is applied)

Good News Out-Of-Sample
Strategy : Stop Short order Stop Short
Total News 18
Number of Trading Scenarios 12
Leveraged Average return (%) -3.778
STD Leveraged return (%) 7.439
Sharpe Ratio -0.508
Percent Win given trade (%) 41.67
Force Close Occurrence given trade (%) 0.00%
Number of Out-of-sample loss Trade 7
Forecasting Performance (%) 67%

Table 35: Out-of-sample trading summary result using Stop Long order with 2-MRJ model for bad news

announced and three benchmark strategies (2,000 times leverage ratio is applied)

Bad News Out-Of-Sample
Strategy : Stop Long order Stop Long

Total News 23
Number of Trading Scenarios 21

Currency Average return (%) -1.930

STD Currency return (%) 7.727

Sharpe Ratio -0.250

Percent Win given trade (%) 42.85%

Force Close Occurrence given trade (%) 0.00%
Number of Out-of-sample loss Trade 12

Forecasting Performance (%) 50%
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