CHAPTER IV

SOME OTHER SEMIGROUPS

The following semigroups are considered in this chapter: infinite cyclic semigroups, left zero semigroups, right zero semigroups, Kronecker semigroups, dihedral groups, alternating groups. We characterize when they admit a right nearring structure and a left nearring structure.

Theorem 4.1. Let S be an infinite cyclic semigroup. Then $S \notin \mathcal{RNR}$ and $S \notin \mathcal{LNR}$.

Proof. Let S be generated by $a \in S$. Then $S = \{a^n \mid n \in \mathbb{N}\}$ and $a^i \neq a^j$ for all distinct $i, j \in \mathbb{N}$. Suppose that $S \in \mathcal{RNR}$. Since S has no (left) zero, there is an operation + on S^0 such that $(S^0, +, \cdot)$ is a right nearring where \cdot is the operation on S^0 . Then $a + a^k = 0$ for some $k \in \mathbb{N}$.

Case 1: k > 1. Then $k - 1 \in \mathbb{N}$ and

$$a^{k} + a^{2k-1} = (a + a^{k})a^{k-1} = 0a^{k-1} = 0 = a + a^{k} = a^{k} + a$$

which implies that $a^{2k-1} = a$. This is a contradiction since 2k - 1 > 1.

Case 2: k = 1. Then a + a = 0. Hence $a^i + a^i = 0$ for all $i \in \mathbb{N}$ and $a + a^2 \neq 0$, so $a + a^2 = a^j$ for some $j \in \mathbb{N}$. Since $(S^0, +)$ is cancellative, it follows that j > 2. Consequently,

$$a = a^{j} + (-a^{2}) = a^{j} + a^{2} = (a^{j-1} + a)a.$$

Since j-1>1, we have that $a^{j-1}+a=a^{\ell}$ for some $\ell\in\mathbb{N}$. Hence

$$a = (a^{j-1} + a)a = a^{\ell}a = a^{\ell+1}$$

which is a contradiction since $\ell + 1 > 1$.

We can show analogously that $S \notin \mathcal{LNR}$.

Theorem 4.2. (i) Every left zero semigroup belongs to RNR.

(ii) If S is a left zero semigroup, then $S \in \mathcal{LNR}$ if and only if |S| = 1.

Proof. Let S be a left zero semigroup. Note that every element of S is a left zero of S. By Theorem 2.2, there is an operation + on S such that (S, +) is an abelian group. Since

$$(x+y)z = x + y = xz + yz$$
 for all $x, y, z \in S$,

it follows that $(S, +, \cdot)$ is a right nearring where \cdot is the operation on S. Hence $S \in \mathcal{RNR}$.

Assume that $S \in \mathcal{LNR}$ and |S| > 1. Then S has no right zero. Thus there is an operation \oplus on S^0 such that (S^0, \oplus, \cdot) is a left nearring. Let $a, b \in S$ be distinct elements of S. Then $a \oplus b = c$ for some $c \in S^0$. Then

$$a \oplus a = aa \oplus ab = a(a \oplus b) = ac.$$

Case 1: c = 0. Then $a \oplus b = 0 = a \oplus a$. Thus a = b, a contradiction.

Case 2: $c \neq 0$. Then $a \oplus a = a$, so a = 0 which is a contradiction.

This proves that $S \in \mathcal{LNR}$ implies |S| = 1. The converse is trivial.

The following theorem is proved dually to Theorem 4.2

Theorem 4.3. (i) Every right zero semigroup belongs to LNR.

(ii) If S is a right zero semigroup, then $S \in \mathcal{RNR}$ if and only if |S| = 1.

Theorem 4.4. Let S be a Kronecker semigroup.

- (i) $S \in \mathcal{RNR}$ if and only if $|S| \leq 2$.
- (ii) $S \in \mathcal{LNR}$ if and only if $|S| \leq 2$.

Proof. (i) Assume that $S \in \mathcal{RNR}$ and suppose that |S| > 2. Let + be the operation on S such that $(S, +, \cdot)$ is a right nearring where \cdot is the operation on S. Let $a, b \in S \setminus \{0\}$ be distinct. Then a + b = c for some $c \in S$.

Case 1: c = a. Then a + b = a, so b = 0, a contradiction.

Case 2: c = b. Then a + b = b, so a = 0, a contradiction.

Case 3: $c \in S \setminus \{a, b\}$. Then $0 = ca = (a + b)a = a^2 + ba = a + 0 = a$, a contradiction.

This proves that if $S \in \mathcal{RNR}$, then $|S| \leq 2$.

Since

$$S = \begin{cases} \{0\} & \text{if } |S| = 1, \\ \{0, a\} \cong (\mathbb{Z}_2, \cdot) & \text{if } |S| = 2, \end{cases}$$

it follows that $S \in \mathcal{R} \subseteq \mathcal{RNR} \cap \mathcal{LNR}$.

(ii) can be proved similarly to (i).

Theorem 4.4 and its proof provide the following result.

Corollary 4.5. Let S be a Kronecker semigroup. Then the following statements are equivalent.

- (i) $S \in \mathcal{RNR}$.
- (ii) $S \in \mathcal{LNR}$.
- (iii) $S \in \mathcal{R}$.
- (iv) $|S| \le 2$.

Theorem 4.6. Let D_n be the dihedral group. Then $D_n \notin \mathcal{RNR}$ and $D_n \notin \mathcal{LNR}$.

Proof. By the definition of D_n ,

$$D_n = \{1, a, \dots, a^{n-1}, b, ab, a^2b, \dots, a^{n-1}b\}$$

where $a^n = b^2 = 1$ and $ba = a^{n-1}b$.

Then $|D_n| = 2n$. Since $(ab)(ba^{n-1})^{-1} = abab = aa^{n-1}bb = 1$, we have that $ab = ba^{n-1}$. Suppose that $D_n \in \mathcal{RNR}$. Since D_n has no left zero, there is an operation + on D_n^0 such that $(D_n^0, +, \cdot)$ is a right nearring. Then a+b=c for some $c \in D_n^0$ which implies that $c \neq a$ and $c \neq b$.

Case 1: $a + b = a^i$ for some $i \in \{2, ..., n\}$. Then

$$a^{i}b = (a+b)b = ab+1$$

= $1 + ab = a^{n} + ba^{n-1} = (a+b)a^{n-1} = a^{i}a^{n-1} = a^{i-1}$,

so ab = 1 which is a contradiction.

Case 2: $a + b = a^i b$ for some $i \in \{1, ..., n-1\}$. Then

$$a^{i} = (a+b)b = ab+1$$

= $1 + ab = a^{n} + ba^{n-1} = (a+b)a^{n-1} = a^{i}ba^{n-1} = a^{i}ab = a^{i+1}b$

which implies that ab = 1, a contradiction.

Case 3: a + b = 0. Then $1 + b \neq 0$, $1 + b \neq 1$ and $1 + b \neq b$.

Subcase 3.1: $1 + b = a^i$ for some $i \in \{1, ..., n-1\}$. Then

$$a^{i} = 1 + b = b + 1 = b + b^{2} = (1 + b)b = a^{i}b,$$

so b = 1, a contradiction.

Subcase 3.2: $1 + b = a^{i}b$ for some $i \in \{1, ..., n - 1\}$. Then

$$a^{i}b = 1 + b = b + b^{2} = (1 + b)b = a^{i}b^{2} = a^{i},$$

thus b = 1, a contradiction.

This proves that $D_n \notin \mathcal{RNR}$. We can show similarly that $D_n \notin \mathcal{LNR}$.

Theorem 4.7. Let A_n be the alternating group of degree n.

- (i) $A_n \in \mathcal{RNR}$ if and only if $n \leq 3$.
- (ii) $A_n \in \mathcal{LNR}$ if and only if $n \leq 3$.

Proof. (i) Assume that $A_n \in \mathcal{RNR}$ and suppose that n > 3. Then $|A_n| = \frac{n!}{2} \ge 12$. Thus $(A_n^0, +, \cdot)$ is a right nearring for some operation + on A_n^0 where \cdot is the operation on A_n^0 . Since $n \ge 4$, $(1\ 2)(3\ 4)$ and $(1\ 3)(2\ 4)$ belong to A_n . Then $(1) + (1\ 2)(3\ 4) = f$ for some $f \in A_n^0$.

Case 1: $f \neq 0$. Then

$$f(1\ 2)(3\ 4) = ((1) + (1\ 2)(3\ 4))(1\ 2)(3\ 4)$$
$$= (1\ 2)(3\ 4) + (1) = f$$

which implies that $(1\ 2)(3\ 4) = (1)$, a contradiction.

Case 2: f = 0. Then $(1) + (1 \ 3)(2 \ 4) = g$ for some $g \in A_n$. Hence

$$g(1\ 3)(2\ 4) = ((1) + (1\ 3)(2\ 4))(1\ 3)(2\ 4)$$
$$= (1\ 3)(2\ 4) + (1) = g.$$

This implies that $(1\ 3)(2\ 4) = (1)$, a contradiction.

This shows that if $A_n \in \mathcal{RNR}$, then $n \leq 3$.

Since $|A_1| = |A_2| = 1$, then $A_1, A_2 \in \mathcal{RNR}$. Observe that

$$A_3^0 = \{0, (1), (1\ 2\ 3), (1\ 3\ 2)\}.$$

Let $a = (1\ 2\ 3)$ and $b = (1\ 3\ 2)$. Define an operation + on A_n^0 by

It is straightforward to verify that $(A_3^0, +)$ is an abelian group. Since $|A_3| = 3$, (A_3, \cdot) is an abelian group. Note that $a^2 = b$, $b^2 = a$ and $a^{-1} = b$. Also, we can

check directly that \cdot is distributive over +. Hence $(A_3^0, +, \cdot)$ is a ring. Therefore we deduce that $A_3 \in \mathcal{R} \subseteq \mathcal{RNR} \cap \mathcal{LNR}$.

(ii) It can be proved similarly to (i).

As a consequence of Theorem 4.7 and its proof, we have

Corollary 4.8. The following statements are equivalent.

- (i) $A_n \in \mathcal{RNR}$.
- (ii) $A_n \in \mathcal{LNR}$.
- (iii) $A_n \in \mathcal{R}$.
- (iv) $n \leq 3$.