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CHAPTER I

INTRODUCTION

1.1 Definitions and Notations

Definition 1.1. [2] A hypergraph H = (V, E) consists of a nonempty finite set

V of vertices with a family E of subsets of V , called (hyper)edges. The notation

V (H) and E(H) denote the set of vertices and the set of edges of a hypergraph H,

respectively. If each edge ofH has size k, we say thatH is a k-uniform hypergraph.

Definition 1.2. [2] The complete k-uniform hypergraph on n vertices, denoted

by K
(k)
n , has all k-subsets of an n-set of vertices as edges.

A 2-uniform hypergraph is simply the ordinary graph and the hypergraph K
(2)
n

is the complete graph Kn.

Definition 1.3 (Katona [6]). A cycle of length ` in a k-uniform hypergraph is

a cyclic ordering of its ` vertices such that each consecutive k-tuple of vertices

is an edge. In other words, let C = (v0, v1, . . . , v`−1) be a cyclic ordering of `

vertices in a k-uniform hypergraph H. Then C is a cycle of length ` in H if

{vi, vi+1, vi+2, . . . , vi+k−1} ∈ E(H) for all i ∈ {0, 1, . . . , ` − 1}, where the addition

of indices is calculated under the integer modulo `.

A path of length ` − k + 1 in a k-uniform hypergraph is a noncyclic ordering

of its ` vertices such that each consecutive k-tuple of vertices is an edge. That is,

if P = [v0, v1, . . . , v`−1] is a path of length `− k+ 1 in a k-uniform hypergraph H,

then {vi, vi+1, vi+2, . . . , vi+k−1} ∈ E(H) for all i ∈ {0, 1, . . . , `− k}.
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If H has n vertices, a cycle of length n is called a Hamiltonian cycle and a

path of length n− k + 1 is called a Hamiltonian path.

Definition 1.4. [2] A Hamiltonian decomposition of a hypergraph is a partition

of the set of edges into Hamiltonian cycles.

Definition 1.5. Let H = (V, E) be a k-uniform hypergraph and let Ĥ = (V̂ , Ê)

be its copy. Let v̂ ∈ V̂ denote a copy of v ∈ V . The prism over H, denoted by

Prism(H), is a hypergraph obtained from H and Ĥ by adding a collection of edges

J = {{v, v̂} ∪ A : v ∈ V,A ⊆ (V ∪ V̂ )\{v, v̂}, |A| = k − 2}.

A pair of vertices {v, v̂} is called a transition node and an edge containing a

transition node is called a junction. An edge in H and Ĥ is called an ordinary

edge. For concurrent notation, we define ˆ̂v = v.

Example 1.1. For k = 3, let H denote the complete 3-uniform hypergraph K
(3)
4

whose 4 vertices are 1, 2, 3 and 4. The following list shows all edges of Prism(H),

where the first line and the second line are edges of H and Ĥ, respectively, and

the remaining edges are junctions.

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},

{1̂, 2̂, 3̂}, {1̂, 2̂, 4̂}, {1̂, 3̂, 4̂}, {2̂, 3̂, 4̂},

{2, 1, 1̂}, {1, 2, 2̂}, {1, 3, 3̂}, {1, 4, 4̂},

{3, 1, 1̂}, {3, 2, 2̂}, {2, 3, 3̂}, {2, 4, 4̂},

{4, 1, 1̂}, {4, 2, 2̂}, {4, 3, 3̂}, {3, 4, 4̂},

{1, 1̂, 2̂}, {2, 2̂, 1̂}, {3, 3̂, 1̂}, {4, 4̂, 1̂},

{1, 1̂, 3̂}, {2, 2̂, 3̂}, {3, 3̂, 2̂}, {4, 4̂, 2̂},

{1, 1̂, 4̂}, {2, 2̂, 4̂}, {3, 3̂, 4̂}, {4, 4̂, 3̂}.
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Definition 1.6. A complete tripartite k-uniform hypergraph has the vertex set

V partitioned into three subsets V0, V1 and V2 and the edge set E such that

E = {e : e ⊆ V, |e| = k and |e ∩ Vi| < k for all i ∈ {0, 1, 2}}, and denoted by

K
(k)
m,m,m when |V0| = |V1| = |V2| = m.

Example 1.2. Let V0 = {0, 1, 2}, V1 = {0, 1, 2} and V2 = {0, 1, 2}. For k = 3

and m = 3, the complete tripartite 3-uniform hypergraph K
(3)
3,3,3 whose vertex set

is V0 ∪ V1 ∪ V2 has edges as follows.

{0, 0, 0}, {0, 0, 1}, {0, 0, 2}, {1, 0, 0}, {1, 0, 1}, {1, 0, 2}, {2, 0, 0}, {2, 0, 1}, {2, 0, 2},

{0, 1, 0}, {0, 1, 1}, {0, 1, 2}, {1, 1, 0}, {1, 1, 1}, {1, 1, 2}, {2, 1, 0}, {2, 1, 1}, {2, 1, 2},

{0, 2, 0}, {0, 2, 1}, {0, 2, 2}, {1, 2, 0}, {1, 2, 1}, {1, 2, 2}, {2, 2, 0}, {2, 2, 1}, {2, 2, 2},

{0, 1, 0}, {0, 2, 0}, {1, 2, 0}, {0, 1, 1}, {0, 2, 1}, {1, 2, 1}, {0, 1, 2}, {0, 2, 2}, {1, 2, 2},

{0, 1, 0}, {0, 2, 0}, {1, 2, 0}, {0, 1, 1}, {0, 2, 1}, {1, 2, 1}, {0, 1, 2}, {0, 2, 2}, {1, 2, 2},

{0, 1, 0}, {0, 2, 0}, {1, 2, 0}, {0, 1, 1}, {0, 2, 1}, {1, 2, 1}, {0, 1, 2}, {0, 2, 2}, {1, 2, 2},

{0, 1, 0}, {0, 2, 0}, {1, 2, 0}, {0, 1, 1}, {0, 2, 1}, {1, 2, 1}, {0, 1, 2}, {0, 2, 2}, {1, 2, 2},

{0, 1, 0}, {0, 2, 0}, {1, 2, 0}, {0, 1, 1}, {0, 2, 1}, {1, 2, 1}, {0, 1, 2}, {0, 2, 2}, {1, 2, 2},

{0, 1, 0}, {0, 2, 0}, {1, 2, 0}, {0, 1, 1}, {0, 2, 1}, {1, 2, 1}, {0, 1, 2}, {0, 2, 2}, {1, 2, 2}.

Note that subsets {0, 1, 2}, {0, 1, 2} and {0, 1, 2} are not edges in K
(3)
3,3,3.

1.2 History and Overview

The study of Hamiltonian decomposition was begun in graph theory before be-

ing generalized in hypergraph theory. In graph theory, it is well-known that a com-

plete graph K2n+1 has a Hamiltonian decomposition by Walecki’s construction [1].

Other graphs such as complete bipartite graphs and complete multipartite graphs

were also studied. Next, the problem of finding Hamiltonian decompositions of

hypergraphs is also questioned. However, a Hamiltonian cycle in a hypergraph
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can be defined in many ways. The first definition of a Hamiltonian cycle in a

hypergraph was defined by Berge [3]. Berge’s cycle of a hypergraph H = (V, E)

is a sequence (v0, E1, v1, E2, . . . , vn−1, En, v0), where {v0, v1, . . . , vn−1} = V and

E1, E2, . . . , En are distinct edges in E such that vi−1, vi ∈ Ei (i is of modulo n).

By 1994, the problem of decomposing complete 3-uniform hypergraph K
(3)
n into

Hamiltonian cycles of Berge type was completely solved by Verrall [10]. Later,

Katona and Kiearstead [6] introduced a stronger definition of Hamiltonian cy-

cle in 1999 as we stated in Definition 1.3. Now, Katona-Kierstead’s cycle is

widely used in later publications. In 2010, Bailey and Stevens [2] decomposed

K
(3)
n into Hamiltonian cycles of Katona-Kiearstead type by computer program-

ming using the clique finding method for n ∈ {7, 8} and a difference method for

n ∈ {10, 11, 16}. Along with Meszka and Rosa [9], they used an extension of

difference method to obtain Hamiltonian decompositions of K
(3)
n for all feasible

n ≤ 32. This work for K
(3)
n leads us to begin new study for Prism(K

(3)
n ). Other

hypergraphs such as complete bipartite 3-uniform hypergraphs K
(3)
n,n defined by

Definition 1.7 and complete k-uniform k-partite hypergraphs K
(k)
k×m defined by

Definition 1.8 are also decomposable into Hamiltonian cycles of Katona-Kierstead

type. In 2001, Jirimutu and Wang [5] found Hamiltonian decompositions of K
(3)
q,q

for every prime number q using ordered odd 2-splitting of an integer. Soon after,

Xu and Wang [12] completely solved Hamiltonian decompositions of K
(3)
n,n for all

n ≥ 2 with a simple idea of mixing two Hamiltonian cycles from two complete

graphs. By 2013, Kuhl and Schroeder [7] studied Hamiltonian decomposition of

K
(k)
k×m and got results for all m such that k | m by classified each Hamiltonian

cycle to a permissible k-tuple and partition the Zk−1
m space. With these works,

we extend the study from “bi”partite to “tri”partite which is different from Kuhl

and Schroeder’s in [7].
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Definition 1.7 (Jirimutu [5]). A complete bipartite k-uniform hypergraph K
(k)
m,n

has two partite sets V1 and V2 such that |V1| = m and |V2| = n and the edge set

E such that E = {e ⊆ V1 ∪ V2 : |e| = k, e ∩ V1 6= ∅, e ∩ V2 6= ∅}.

Definition 1.8 (Kuhl [7]). A complete k-uniform k-partite hypergraph K
(k)
k×m has

k partite sets, V0, V1, . . . , Vk−1, of equal size m, and each edge e of size k is in the

form e = {v0, v1, . . . , vk−1}, where vi ∈ Vi for all i ∈ {0, 1, . . . , k − 1}.

Note that the complete 3-uniform 3-partite hypergraph defined by Kuhl and

Schroeder in Definition 1.8 is a subhypergraph of the complete tripartite 3-uniform

hypergraph K
(3)
m,m,m defined by us in Definition 1.6.

At the beginning of this study, we usually calculate the necessary condition

for the existence of a Hamiltonian decomposition by Proposition 1.1.

Proposition 1.1. If a k-uniform hypergraph has a Hamiltonian decomposition,

then the length of a Hamiltonian cycle divides the size of the edge set.

We consider the number of overall edges in the target hypergraph in the for-

mula of some parameters such as the number of vertices. This number will sug-

gest the method to find Hamiltonian cycles in the decomposition. A collection

of Hamiltonian cycles which is a candidate to be a Hamiltonian decomposition

must gather the same number of overall edges in the hypergraph. There are two

ways to prove that the candidate is the solution. The first way is to show that all

edges in the collection are distinct. The other way is to show that each edge in

the hypergraph is in unique Hamiltonian cycle.

The study of Hamiltonian decomposition of Prism(K
(3)
n ) and K

(3)
m,m,m are sep-

arated into Chapter 2 and Chapter 3, respectively. The last chapter summarizes

the results of the study and suggests some further works.



CHAPTER II

HAMILTONIAN DECOMPOSITIONS OF Prism(K
(3)
n )

First, we must consider the necessary condition for the existence of Hamilto-

nian decomposition of Prism(K
(3)
n ) which is calculated in Lemma 2.1. With fill-out

method and cyclic method for finding the decomposition, we get some results on

n ∈ {4, 5, 7, 8} which is described in Section 2.2.

2.1 Preliminaries

We investigate some possible ways to find a Hamiltonian decomposition of

Prism(K
(3)
n ). Beginning with a familiar method in graph theory, a Hamiltonian

decomposition of Prism(K
(3)
n ) cannot be constructed in the same way. Next, we

consider the number of junctions to find a suitable combination of Hamiltonian

cycles in Prism(K
(3)
n ) as we describe in Lemma 2.3.

Lemma 2.1. If a Hamiltonian decomposition of Prism(K
(3)
n ) exists, then 3 - n.

Proof. Suppose that a Hamiltonian decomposition of Prism(K
(3)
n ) exists. We

count the number of edges of Prism(K
(3)
n ). There are

(
n
3

)
edges in K

(3)
n , as

same as K̂
(3)
n , and 2n(n − 1) junctions. Since the number of edges in a Hamil-

tonian cycle in Prism(K
(3)
n ) is 2n and the number of edges of Prism(K

(3)
n ) is

2
(
n
3

)
+ 2n(n − 1) = n(n − 1)(n + 4)/3, there are (n − 1)(n + 4)/6 Hamiltonian

cycles in the decomposition which must be an integer. Therefore, n ≡ 1 or 2

(mod 3), that is 3 - n.
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First, consider a graph Prism(Kn). The complete graph Kn+1 is decomposable

into Hamiltonian cycles by Walecki’s construction in [1] which is used to decom-

pose the complete graph Kn into Hamiltonian paths where n is even. Thus, when

n is even, Prism(Kn) is obviously decomposable into Hamiltonian cycles by joining

two copies of each Hamiltonian path with edges at each end vertices. Figure 2.1

shows a prism over a complete graph K4 and its Hamiltonian decomposition.

Figure 2.1: Left: Prism(K4) constructed from two copies of K4 and edges (drawn

as bold line) connecting the copy of each vertex. Right: a Hamiltonian decom-

position of Prism(K4) consists of two Hamiltonian cycles drawn as bold line and

light line.

Next, consider a hypergraph Prism(K
(3)
n ). We try to use Hamiltonian paths as

same as the method in graph to find a Hamiltonian decomposition of a hypergraph

Prism(K
(3)
n ). We use a Hamiltonian decomposition of K

(k)
n+1 and delete one vertex

to retrieve Hamiltonian paths of K
(k)
n . The result is Lemma 2.2.

Lemma 2.2. If K
(k)
n+1 is decomposable into Hamiltonian cycles, then K

(k)
n is de-

composable into Hamiltonian paths.

Proof. Suppose that K
(k)
n+1 is decomposable into Hamiltonian cycles. Let S be

a Hamiltonian decomposition of K
(k)
n+1. If we delete a vertex v together with all

edges containing v in K
(k)
n+1, then each Hamiltonian cycle in S becomes noncyclic
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and is a Hamiltonian path in K
(k)
n+1 − {v} which is isomorphic to K

(k)
n . Hence, all

edge-disjoint Hamiltonian cycles in K
(k)
n+1 become edge-disjoint Hamiltonian paths

in K
(k)
n . Therefore, K

(k)
n is decomposable into Hamiltonian paths.

Theorem 2.1 is the result of joining the Hamiltonian paths to decompose

Prism(K
(3)
n ) into Hamiltonian cycles. Unfortunately, this method is not com-

plete the decomposition. However, we obtain a lower bound of the number of

edge-disjoint Hamiltonian cycles in Prism(K
(3)
n ).

Theorem 2.1. If K
(3)
n+1 is decomposable into Hamiltonian cycles, then Prism(K

(3)
n )

has at least n(n− 1)/6 edge-disjoint Hamiltonian cycles.

Proof. Assume that K
(3)
n+1 is decomposable into Hamiltonian cycles. Lemma 2.2

implies K
(3)
n is decomposable into Hamiltonian paths. The number of Hamilto-

nian cycles in a Hamiltonian decomposition of K
(3)
n+1 is

(
n+1
3

)
/(n + 1) = n(n −

1)/6 =
(
n
3

)
/(n − 2) which is equal to the number of Hamiltonian paths in a

decomposition of K
(3)
n into Hamiltonian paths. Let t = n(n − 1)/6 and S =

{P1, P2, . . . , Pt} be a decomposition of K
(3)
n into Hamiltonian paths obtained by

deleting a vertex v of K
(3)
n+1. We shall construct t edge-disjoint Hamiltonian cycles

in Prism(K
(3)
n ) in the following way. For each Pi ∈ S, if Pi = [v1, v2, . . . , vn],

then P̂i = [v̂n, v̂n−1, . . . , v̂1] is a Hamiltonian path in K̂
(3)
n . Next, define C(Pi) =

(v1, v2, . . . , vn, v̂n, v̂n−1, . . . , v̂1). Thus, C(Pi) is a Hamiltonian cycle in Prism(K
(3)
n )

for all i ∈ {1, 2, . . . , t}.

To show that any pair of Hamiltonian cycles obtained by this method are

disjoint, we shall show that there is no repeated junction. Suppose that C(Pi)

and C(Pj) have an identical junction T for some distinct path Pi, Pj ∈ S. Without

loss of generality, let T = {a, x, x̂}, where a, x ∈ K(3)
n and x̂ is the copy of x. Thus,

{a, x} are successive end vertices of Pi and also Pj. Since Pi and Pj are obtained
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by deleting a vertex v of K
(3)
n+1, an edge {a, x, v} is in two disjoint Hamiltonian

cycles in K
(3)
n+1, which is a contradiction. Hence, all junctions are different.

Since the total number of Hamiltonian cycles of Prism(K
(3)
n ) if exists is (n −

1)(n+ 4)/6, constructing n(n− 1)/6 edge-disjoint Hamiltonian cycles is not com-

plete the Hamiltonian decomposition of Prism(K
(3)
n ). We can only conclude that

Prism(K
(3)
n ) has at least n(n− 1)/6 edge-disjoint Hamiltonian cycles.

To develop new method, we find some constraints stated in Lemma 2.3 to

reduce the scope of finding a Hamiltonian decomposition of Prism(K
(3)
n ).

Lemma 2.3. Suppose that Prism(K
(3)
n ) has a Hamiltonian decomposition. Let

xi be the number of Hamiltonian cycles in the decomposition with 2i transition

nodes. Then {x1, x2, . . . , xj} with j = bn/2c satisfies two equations:

2x1 + 4x2 + 6x3 + . . .+ 2jxj = n(n− 1) (2.1)

x1 + x2 + x3 + . . .+ xj = (n− 1)(n+ 4)/6 (2.2)

Proof. A Hamiltonian cycle passes through every vertex in Prism(K
(3)
n ), so it

will transit from K
(3)
n to its copy and come back. Thus, there are even number of

transition nodes in each Hamiltonian cycle. Each transition in Prism(K
(3)
n ) always

requires two junctions, from K
(3)
n and to its copy, so we can count the number

just only one side of prism. The sum of the number of one-side junctions for each

Hamiltonian cycle must equal a half of the number of junctions in Prism(K
(3)
n ), as

in Equation (2.1). Equation (2.2) refers to the sum of the number of Hamiltonian

cycles.

The number of edges used in Lemma 2.3 of Prism(K
(3)
n ) with n ∈ {4, 5, 7, 8} are

shown in Table 2.1. By calculation, there are unique admissible {xi} for n ∈ {4, 5}

satisfying two equations in Lemma 2.3. However, for n > 5, there are many {xi}’s
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satisfying these two equations as shown for the case n = 7 in Table 2.4. Table 2.2

shows some values of xi associated to a Hamiltonian decomposition of Prism(K
(3)
n )

for some n, where n ∈ {4, 5} and n ≡ 2 (mod 6). The case n ≡ 2 (mod 6) is

interesting because each xi is divisible by n− 1.

n
(
n
3

)
n(n− 1) (n− 1)(n+ 4)/6

4 4 12 4

5 10 20 6

7 35 42 11

8 56 56 14

Table 2.1: The number of one-side ordinary edges, one-side junctions, and Hamil-

tonian cycles associated to Prism(K
(3)
n )

n (n− 1)(n+ 4)/6 x1 x2 x3 x4 x5

4 4 2 2

5 6 2 4

8 14 7 7

14 39 13 13 13

20 76 19 19 19 19

26 125 25 25 50 25

32 186 62 31 31 31 31

Table 2.2: Some values of {xi}’s associated to a Hamiltonian decomposition of

Prism(K
(3)
n )
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2.2 Results

2.2.1 n ∈ {4, 5}

To find a Hamiltonian decomposition of Prism(K
(3)
n ), we use a fill-out method

which is a trial-and-error method of drawing lines to connect vertices between two

copies. The aim is try to draw distinct hyperedges which are distinct consecutive

three vertices. We write vertices in two columns. Begin with choosing transition

nodes for each cycle and then fill out junctions by connecting one vertex from the

same side to each transition node. Try to make all junctions distinct. Next, draw

lines to place each ordinary edge in a unique cycle. If it is not solved, then try

another choice of junction and continue the process. Finally, we get the results

for n ∈ {4, 5}.

Theorem 2.2. A Hamiltonian decomposition of Prism(K
(3)
4 ) exists.

1

2

3

4

1̂

2̂

3̂

4̂

(a)

1

2

3

4

1̂

2̂

3̂

4̂

(b)

1

2

3

4

1̂

2̂

3̂

4̂

(c)

1

2

3

4

1̂

2̂

3̂

4̂

(d)

Figure 2.2: A Hamiltonian decomposition of Prism(K
(3)
4 )

Proof. Let the vertex set of K
(3)
4 be {1, 2, 3, 4}. The following is a Hamiltonian

decomposition of Prism(K
(3)
4 ) illustrated in Figure 2.2:

(2, 3, 4, 1, 1̂, 4̂, 3̂, 2̂), (1, 1̂, 2̂, 2, 4, 4̂, 3̂, 3),

(3, 2, 1, 4, 4̂, 1̂, 2̂, 3̂), (1, 1̂, 3̂, 3, 4, 4̂, 2̂, 2).

Check edge-disjoint Hamiltonian cycles in Figure 2.2 as follows.
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1. Junctions containing {1, 1̂} are in cycle (a), (c) and (d).

2. Junctions containing {2, 2̂} are in cycle (a), (c) and (d).

3. Junctions containing {3, 3̂} are in cycle (b), (c) and (d).

4. Junctions containing {4, 4̂} are in cycle (b), (c) and (d).

5. Ordinary edges are in cycle (a) and (b).

We see that each edge is in a unique Hamiltonian cycle, so we get a Hamiltonian

decomposition of Prism(K
(3)
4 ).

Theorem 2.3. A Hamiltonian decomposition of Prism(K
(3)
5 ) exists.

1

0

1

2

3

1̂

0̂

1̂
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1
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(b)

1
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0̂

1̂

2̂

3̂

(c)

1

0

1

2

3

1̂

0̂

1̂

2̂

3̂

(d)

1

0

1

2

3

1̂

0̂

1̂

2̂

3̂

(e)

1

0

1

2

3

1̂

0̂

1̂

2̂

3̂

(f)

Figure 2.3: A Hamiltonian decomposition of Prism(K
(3)
5 )
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Proof. Let the vertex set of K
(3)
5 be {∞, 0, 1, 2, 3}. The following is a Hamiltonian

decomposition of Prism(K
(3)
5 ) illustrated in Figure 2.3:

(∞, 2, 2̂, 1̂, 3̂, 3, 1, 0, 0̂, ∞̂), (1, 0,∞, 2, 3, 3̂, 0̂, ∞̂, 2̂, 1̂),

(∞, 3, 3̂, 2̂, 0̂, 0, 2, 1, 1̂, ∞̂), (2, 1,∞, 3, 0, 0̂, 1̂, ∞̂, 3̂, 2̂),

(∞, 0, 0̂, 3̂, 1̂, 1, 3, 2, 2̂, ∞̂),

(∞, 1, 1̂, 0̂, 2̂, 2, 0, 3, 3̂, ∞̂).

Check edge-disjoint Hamiltonian cycles in Figure 2.3 as follows.

1. Junctions containing {∞, ∞̂} are in cycle (a), (b), (c) and (d).

2. Junctions containing {0, 0̂} are in cycle (a), (b), (c) and (f).

3. Junctions containing {1, 1̂} are in cycle (b), (c), (d) and (e).

4. Junctions containing {2, 2̂} are in cycle (a), (c), (d) and (f).

5. Junctions containing {3, 3̂} are in cycle (a), (b), (d) and (e).

6. Ordinary edges containing ∞ or ∞̂ are in cycle (e) and (f).

7. Ordinary edges with no ∞ or ∞̂ are in cycle (a), (b), (c) and (d).

We see that each edge is in a unique Hamiltonian cycle, so we get a Hamiltonian

decomposition of Prism(K
(3)
5 ). Moreover, we found that a Hamiltonian decompo-

sition of Prism(K
(3)
5 ) has cyclic structure by developing two initial cycles modulo

4, where ∞+ i =∞ for all i ∈ Z4.

2.2.2 n ∈ {7, 8}

In [2], Bailey and Stevens defined a difference pattern of triples and used it

to partition the edges of K
(3)
n into equivalence classes that are helpful to find a

Hamiltonian decomposition of K
(3)
n by computer search. We modify the definition

of difference pattern to agree with edges of Prism(K
(3)
n ), as we see below.
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Definition 2.1. Let the vertex set of K
(3)
n be Zn−1 ∪ {∞} and let T = {a, b, c}

be an edge in Prism(K
(3)
n ). The difference pattern of T , denoted by π(T ), is an

equivalence class mapped T to the value as follows.

1. For a, b, c ∈ Zn−1, π(T ) is the cyclic ordering (b − a, c − b, a − c) where

{a, b, c} are arranged in ascending order.

2. For a, b ∈ Zn−1 and c =∞,

π(T ) = (min{b− a (mod n− 1), a− b (mod n− 1))},∞).

3. For a, b ∈ Zn−1 ∪ {∞} and c = b̂, π(T ) = b− a.

4. Otherwise, T is an edge of the form {â, b̂, ĉ} corresponding to one of three

types above. Calculate π(T ) in the same way and put hat (̂ ) over each

difference value.

The differences are taken under modulo n−1, and it is assumed that∞−a =∞

and b−∞ = −∞ for all a, b ∈ Zn−1.

For example, if n = 8, then we calculate under modulo 7. We have

1. π({1, 0, 3}) = π({0, 1, 3}) = (1, 2, 4) which is equivalent to (2, 4, 1) and

(4, 1, 2) but is not equivalent to (1, 4, 2), (4, 2, 1) nor (2, 1, 4).

2. π({∞, 6, 5}) = (1,∞) and π({1,∞, 6}) = (2,∞).

3. π({3̂, 3, 2}) = 1, π({2̂, 2, 3}) = 6, π({∞̂,∞, 1}) =∞ and

π({1̂, 1,∞}) = −∞.

4. π({0̂, 1̂, 3̂}) = (1̂, 2̂, 4̂), π({∞̂, 6̂, 5̂}) = (1̂, ∞̂) and π({3, 3̂, 2̂}) = 1̂.

Moreover, let C be a Hamiltonian cycle of Prism(K
(3)
n ). The difference type of

C, denoted by τ(C), is a collection of difference patterns of its edges.
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For example, let C = (∞, 2, 2̂, 1̂, 3̂, 3, 1, 0, 0̂, ∞̂) which is a Hamiltonian cycle

of Prism(K
(3)
5 ) in Theorem 2.3. All edges of C are {∞, 2, 2̂}, {2, 2̂, 1̂}, {2̂, 1̂, 3̂},

{1̂, 3̂, 3}, {3̂, 3, 1}, {3, 1, 0}, {1, 0, 0̂}, {0, 0̂, ∞̂}, {0̂, ∞̂,∞} and {∞̂,∞, 2}. Thus,

τ(C) = {−∞, 1̂, (1̂, 1̂, 2̂), 2̂, 2, (1, 2, 1), 3,−∞̂, ∞̂,∞}.

We see that the difference patterns in τ(C) are all distinct and the translations

of C, {C + i | i ∈ Z4} taken under modulo 4 and ∞ + i = ∞, are edge-disjoint

Hamiltonian cycles. For convenience, the translation of an initial cycle is called the

cyclic method . The following lemma will show that this property is also satisfied

for all n ≡ 2 (mod 6), and lead to a construction of Hamiltonian decomposition

of Prism(K
(3)
8 ).

Lemma 2.4. Suppose that gcd(n− 1, 6) = 1. Let the vertex set of K
(3)
n be Zn−1 ∪

{∞} and let C be a Hamiltonian cycle of Prism(K
(3)
n ). If difference patterns in

τ(C) are all distinct, then {C + i | i ∈ Zn−1} taken under modulo n − 1, where

∞+ i =∞ for all i ∈ Zn−1, are edge-disjoint Hamiltonian cycles.

Proof. Let all translations be under modulo n−1. We first note that π(T ) = π(T ′)

for some edges T and T ′ of Prism(K
(3)
n ) if and only if T ′ = T+i for some i ∈ Zn−1.

For any edge T of Prism(K
(3)
n ), we obtain the followings.

Case 1: If π(T ) is in the form (b− a, c− b, a− c) and n− 1 is not a multiple

of 3, let T = {a, b, c}, where a, b, c ∈ Zn−1 are distinct. If T = T + i for some

i ∈ Zn−1, then {a, b, c} = {a + i, b + i, c + i}. Suppose that T = T + i for some

i ∈ Zn−1 and i 6= 0. Without loss of generality, we have a ≡ b + i (mod n − 1),

b ≡ c+ i (mod n− 1) and c ≡ a+ i (mod n− 1). Thus, a+ b+ c ≡ a+ b+ c+ 3i

(mod n− 1). Deduce that 3i ≡ 0 (mod n− 1). Since i 6= 0 and i ∈ Zn−1, we have

i = (n − 1)/3 is an integer. Thus, we must assume that n − 1 is not a multiple

of 3, so that i = (n− 1)/3 is not an integer and T = T + i only if i = 0. By this
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assumption, {T + i : i ∈ Zn−1} are distinct.

Case 2: If π(T ) is in the form (min{b − a, (n − 1) − (b − a)},∞) and n − 1

is odd, let T = {a, b,∞}, where a, b ∈ Zn−1 are distinct. If T = T + i for some

i ∈ Zn−1, then {a, b,∞} = {a + i, b + i,∞}. Suppose that T = T + i for some

i ∈ Zn−1 and i 6= 0. We have a ≡ b + i (mod n − 1) and b ≡ a + i (mod n− 1).

Thus, a + b ≡ a + b + 2i (mod n − 1). Deduce that 2i ≡ 0 (mod n − 1). Since

i 6= 0 and i ∈ Zn−1, we have i = (n − 1)/2 is an integer. Thus, we must assume

that n − 1 is odd, so that i = (n − 1)/2 is not an integer and T = T + i only if

i = 0. By this assumption, {T + i : i ∈ Zn−1} are distinct.

Case 3: If π(T ) is in the form b− a, let T = {a, b, b̂}, where a, b ∈ Zn−1 ∪{∞}

are distinct. If T = T + i for some i ∈ Zn−1, then {a, b, b̂} = {a + i, b + i, b̂+ i}.

Notice that b̂ must be equal to b̂+ i. Thus, i = 0 when b ∈ Zn−1. If b =∞, then

a = a + i which implies i = 0. Therefore, {T + i : i ∈ Zn−1} are distinct because

T = T + i only if i = 0.

Hence, when gcd(n− 1, 6) = 1, {T + i : i ∈ Zn−1} are all distinct for each edge T .

Let C be a Hamiltonian cycle of Prism(K
(3)
n ) containing T1, T2, . . . , Tn as edges.

Then C+i contains T1+i, T2+i, . . . , Tn+i as edges. By assumption that difference

patterns in τ(C) are all distinct, that is, π(Tk) 6= π(Tk′) for all k 6= k′, we get

Tk + i 6= Tk′ + i′ for all k 6= k′ or i 6= i′. Thus, {C + i | i ∈ Zn−1} are edge-disjoint

Hamiltonian cycles.

From Table 2.2, one possible solution of {x1, x2, x3} for Prism(K
(3)
8 ) is {7, 0, 7}.

We shall construct a Hamiltonian decomposition of Prism(K
(3)
8 ) by fixing one

vertex as ∞. Next, construct two Hamiltonian cycles in which consist of six

transition nodes and two transition nodes by fill-out the ordering. Try to fill-

out edges of distinct difference patterns. Difference type of two cycles must be

disjoint. Finally, develop two initial cycles under modulo 7 and get the result.
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Theorem 2.4. A Hamiltonian decomposition of Prism(K
(3)
8 ) exists.

Proof. Let the vertex set of K
(3)
8 be {∞, 0, 1, 2, 3, 4, 5, 6}. A Hamiltonian decom-

position of Prism(K
(3)
8 ) is constructed by developing two initial cycles modulo 7,

where ∞+ i =∞ for all i ∈ Z7. Those two initial cycles are

C1 = (∞, 3, 3̂, 2̂, 2, 0, 1, 4, 4̂, 0̂, 1̂, 6̂, 6, 5, 5̂, ∞̂),

C2 = (2, 4, 1,∞, 6, 5, 3, 0, 0̂, 5̂, 1̂, ∞̂, 3̂, 4̂, 6̂, 2̂).

(1, 1, 5) (1, 2, 4) (1, 3, 3) (1, 4, 2) (2, 2, 3) (1,1) (2,1) (3,1)
{0, 1, 2}C1 {0, 1, 3} {0, 1, 4}C1 {0, 1, 5} {0, 2, 4} {1, 0, 1} {1, 0, 2} {1, 0, 3}
{1, 2, 3} {1, 2, 4}C2 {1, 2, 5} {1, 2, 6} {1, 3, 5} {1, 1, 2} {1, 1, 3} {1, 1, 4}C2

{2, 3, 4} {2, 3, 5} {2, 3, 6} {2, 3, 0} {2, 4, 6} {1, 2, 3} {1, 2, 4} {1, 2, 5}
{3, 4, 5} {3, 4, 6} {3, 4, 0} {3, 4, 1} {3, 5, 0}C2 {1, 3, 4} {1, 3, 5} {1, 3, 6}
{4, 5, 6} {4, 5, 0} {4, 5, 1} {4, 5, 2} {4, 6, 1} {1, 4, 5} {1, 4, 6} {1, 4, 0}
{5, 6, 0} {5, 6, 1} {5, 6, 2} {5, 6, 3}C2 {5, 0, 2} {1, 5, 6}C2 {1, 5, 0} {1, 5, 1}
{6, 0, 1} {6, 0, 2} {6, 0, 3} {6, 0, 4} {6, 1, 3} {1, 6, 0} {1, 6, 1}C2 {1, 6, 2}

6 5 4 3 2 1 �1 1
{0̂, 0, 1} {0̂, 0, 2} {0̂, 0, 3}C2 {0̂, 0, 4} {0̂, 0, 5} {0̂, 0, 6} {0̂, 0,1} {1̂,1, 0}
{1̂, 1, 2} {1̂, 1, 3} {1̂, 1, 4} {1̂, 1, 5} {1̂, 1, 6} {1̂, 1, 0} {1̂, 1,1} {1̂,1, 1}
{2̂, 2, 3} {2̂, 2, 4}C2 {2̂, 2, 5} {2̂, 2, 6} {2̂, 2, 0}C1 {2̂, 2, 1} {2̂, 2,1} {1̂,1, 2}
{3̂, 3, 4} {3̂, 3, 5} {3̂, 3, 6} {3̂, 3, 0} {3̂, 3, 1} {3̂, 3, 2} {3̂, 3,1}C1 {1̂,1, 3}C1

{4̂, 4, 5} {4̂, 4, 6} {4̂, 4, 0} {4̂, 4, 1}C1 {4̂, 4, 2} {4̂, 4, 3} {4̂, 4,1} {1̂,1, 4}
{5̂, 5, 6}C1 {5̂, 5, 0} {5̂, 5, 1} {5̂, 5, 2} {5̂, 5, 3} {5̂, 5, 4} {5̂, 5,1} {1̂,1, 5}
{6̂, 6, 0} {6̂, 6, 1} {6̂, 6, 2} {6̂, 6, 3} {6̂, 6, 4} {6̂, 6, 5}C1 {6̂, 6,1} {1̂,1, 6}
(1̂, 1̂, 5̂) (1̂, 2̂, 4̂) (1̂, 3̂, 3̂) (1̂, 4̂, 2̂) (2̂, 2̂, 3̂) (1̂, 1̂) (2̂, 1̂) (3̂, 1̂)

{0̂, 1̂, 2̂} {0̂, 1̂, 3̂} {0̂, 1̂, 4̂}C1 {0̂, 1̂, 5̂}C2 {0̂, 2̂, 4̂} {1̂, 0̂, 1̂} {1̂, 0̂, 2̂} {1̂, 0̂, 3̂}
{1̂, 2̂, 3̂} {1̂, 2̂, 4̂} {1̂, 2̂, 5̂} {1̂, 2̂, 6̂} {1̂, 3̂, 5̂} {1̂, 1̂, 2̂} {1̂, 1̂, 3̂}C2 {1̂, 1̂, 4̂}
{2̂, 3̂, 4̂} {2̂, 3̂, 5̂} {2̂, 3̂, 6̂} {2̂, 3̂, 0̂} {2̂, 4̂, 6̂}C2 {1̂, 2̂, 3̂} {1̂, 2̂, 4̂} {1̂, 2̂, 5̂}
{3̂, 4̂, 5̂} {3̂, 4̂, 6̂}C2 {3̂, 4̂, 0̂} {3̂, 4̂, 1̂} {3̂, 5̂, 0̂} {1̂, 3̂, 4̂}C2 {1̂, 3̂, 5̂} {1̂, 3̂, 6̂}
{4̂, 5̂, 6̂} {4̂, 5̂, 0̂} {4̂, 5̂, 1̂} {4̂, 5̂, 2̂} {4̂, 6̂, 1̂} {1̂, 4̂, 5̂} {1̂, 4̂, 6̂} {1̂, 4̂, 0̂}
{5̂, 6̂, 0̂} {5̂, 6̂, 1̂} {5̂, 6̂, 2̂} {5̂, 6̂, 3̂} {5̂, 0̂, 2̂} {1̂, 5̂, 6̂} {1̂, 5̂, 0̂} {1̂, 5̂, 1̂}C2

{6̂, 0̂, 1̂}C1 {6̂, 0̂, 2̂} {6̂, 0̂, 3̂} {6̂, 0̂, 4̂} {6̂, 1̂, 3̂} {1̂, 6̂, 0̂} {1̂, 6̂, 1̂} {1̂, 6̂, 2̂}
6̂ 5̂ 4̂ 3̂ 2̂ 1̂ �1̂ 1̂

{0, 0̂, 1̂} {0, 0̂, 2̂} {0, 0̂, 3̂} {0, 0̂, 4̂} {0, 0̂, 5̂}C2 {0, 0̂, 6̂} {0, 0̂, 1̂} {1, 1̂, 0̂}
{1, 1̂, 2̂} {1, 1̂, 3̂} {1, 1̂, 4̂} {1, 1̂, 5̂} {1, 1̂, 6̂} {1, 1̂, 0̂} {1, 1̂, 1̂} {1̂, 1̂, 1}

{2, 2̂, 3̂}C1 {2, 2̂, 4̂} {2, 2̂, 5̂} {2, 2̂, 6̂}C2 {2, 2̂, 0̂} {2, 2̂, 1̂} {2, 2̂, 1̂} {1, 1̂, 2̂}
{3, 3̂, 4̂} {3, 3̂, 5̂} {3, 3̂, 6̂} {3, 3̂, 0̂} {3, 3̂, 1̂} {3, 3̂, 2̂}C1 {3, 3̂, 1̂} {1, 1̂, 3̂}
{4, 4̂, 5̂} {4, 4̂, 6̂} {4, 4̂, 0̂}C1 {4, 4̂, 1̂} {4, 4̂, 2̂} {4, 4̂, 3̂} {4, 4̂, 1̂} {1, 1̂, 4̂}
{5, 5̂, 6̂} {5, 5̂, 0̂} {5, 5̂, 1̂} {5, 5̂, 2̂} {5, 5̂, 3̂} {5, 5̂, 4̂} {5, 5̂, 1̂}C1 {1, 1̂, 5̂}C1

{6, 6̂, 0̂} {6, 6̂, 1̂}C1 {6, 6̂, 2̂} {6, 6̂, 3̂} {6, 6̂, 4̂} {6, 6̂, 5̂} {6, 6̂, 1̂} {1, 1̂, 6̂}

Table 2.3: The list of edges of Prism(K
(3)
8 ) classified by their difference patterns.

Edges that appear in C1 and C2 in Theorem 2.4 are labeled with C1 and C2.

Table 2.3 shows difference patterns for all edges in C1 and C2 and their trans-

lations. We see that both τ(C1) and τ(C2) contain distinct difference patterns
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and τ(C1) ∩ τ(C2) = ∅. By Lemma 2.4, {C1 + i | i ∈ Z7} ∪ {C2 + i | i ∈ Z7}

are 14 edge-disjoint Hamiltonian cycles and form a Hamiltonian decomposition of

Prism(K
(3)
8 ).

For Prism(K
(3)
7 ), actually, there are many choices to potentially form a Hamil-

tonian decomposition as shown in Table 2.4.

x1 x2 x3
1 10 0
2 8 1
3 6 2
4 4 3
5 2 4
6 0 5

Table 2.4: All possible admissible {xi}’s for a Hamiltonian decomposition of

Prism(K
(3)
7 )

Let the vertex set of K
(3)
7 be {1, 2, 3, 4, 5, 6, 7}. Using {x1, x2, x3} = {6, 0, 5}

and fixing vertices 6 and 7, we almost get a Hamiltonian decomposition. However,

we get 10 Hamiltonian cycles, two cycles of length 5 from ordinary edges, and one

cycle from four junctions, as follows:

(5, 6, 2, 1, 3, 7, 4, 4̂, 3̂, 7̂, 1̂, 6̂, 2̂, 5̂), (2, 5, 5̂, 1̂, 3̂, 3, 4, 4̂, 7̂, 7, 1, 6, 6̂, 2̂) (1, 3, 5, 2, 4),

(1, 6, 3, 2, 4, 7, 5, 5̂, 4̂, 7̂, 2̂, 6̂, 3̂, 1̂), (3, 1, 1̂, 2̂, 4̂, 4, 5, 5̂, 7̂, 7, 2, 6, 6̂, 3̂), (1̂, 2̂, 3̂, 4̂, 5̂),

(2, 6, 4, 3, 5, 7, 1, 1̂, 5̂, 7̂, 3̂, 6̂, 4̂, 2̂), (4, 2, 2̂, 3̂, 5̂, 5, 1, 1̂, 7̂, 7, 3, 6, 6̂, 4̂), (6, 6̂, 7̂, 7),

(3, 6, 5, 4, 1, 7, 2, 2̂, 1̂, 7̂, 4̂, 6̂, 5̂, 3̂), (5, 3, 3̂, 4̂, 1̂, 1, 2, 2̂, 7̂, 7, 4, 6, 6̂, 5̂),

(4, 6, 1, 5, 2, 7, 3, 3̂, 2̂, 7̂, 5̂, 6̂, 1̂, 4̂), (1, 4, 4̂, 5̂, 2̂, 2, 3, 3̂, 7̂, 7, 5, 6, 6̂, 1̂).

For n ≡ 2 (mod 6), we notice that each xi in Table 2.2, is a multiple of

n− 1. We suggest that the cyclic method can be used to construct a Hamiltonian

decomposition of Prism(K
(3)
n ) for all n ≡ 2 (mod 6). In conclusion, we have done

just the case of n ∈ {4, 5, 8}.



CHAPTER III

HAMILTONIAN DECOMPOSITIONS OF K
(3)
m,m,m

The necessary condition for the existence of Hamiltonian decompositions of

K
(3)
m,m,m is 3 | m since the number of edges in K

(3)
m,m,m, which is

(
3m
3

)
− 3
(
m
3

)
, must

be divisible by the length of a Hamiltonian cycle which is equal to 3m. We will

show that K
(3)
m,m,m is Hamiltonian decomposable for all m ≡ 0 (mod 3). First, we

study the structure of K
(3)
m,m,m and find possible Hamiltonian cycles in Section 3.1.

Then a collection of Hamiltonian cycles can be constructed from some particular

initial cycles by using one of the four algorithms given in Section 3.2. Finally, the

combinations of various Hamiltonian cycles form Hamiltonian decompositions of

K
(3)
m,m,m in Section 3.3.

3.1 Preliminaries

The complete tripartite 3-uniform hypergraph K
(3)
m,m,m defined in Definition 1.6

contains two types of edges, abc-edges and xxy-edges.

• An abc-edge has vertices from each of three partite sets.

• An xxy-edge has two vertices from the same partite set and a vertex from

another partite set.

We may describe these in other words as follows.

• An abc-edge is an edge {ua, ub, uc} where ua ∈ V0, ub ∈ V1 and uc ∈ V2.
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• An xxy-edge is an edge {ux, u′x, uy} where ux, u
′
x ∈ Vi and uy ∈ Vj with

i 6= j, where i, j ∈ {0, 1, 2}.

Since there are three partite sets, we have 6 variations of xxy denoted by aab,

aac, bba, bbc, cca and ccb. Now, we investigate possible Hamiltonian cycles in

K
(3)
m,m,m.

Due to Definition 1.3 of Katona-Kierstead cycle, a Hamiltonian cycle inK
(3)
m,m,m,

which is in the form of cyclic ordering, requires that every consecutive three ver-

tices in the ordering must not come from the same partite set. Let a, b and c

indicate three different partite sets where vertices in the ordering come from. We

find some possible patterns of indicators a, b and c to form a Hamiltonian cycle

in K
(3)
m,m,m. For each 3-consecutive indicators, we must avoid aaa, bbb and ccc to

be occurred in the pattern and expect that all six variations of xxy occur evenly

in the pattern. Thus, we get four interesting patterns of a Hamiltonian cycle in

K
(3)
m,m,m as follows:

1. (abccabbca)∗, where m = 3t,

2. (aabbcc)∗abc, where m = 2t+ 1,

3. (aabbcc)∗, where m = 2t, and

4. (abc)∗, where m = t.

The syntax (· · · )∗ means repeated pattern in the parentheses t times. Each pattern

has a corresponding construction in Section 3.2 summarized in Table 3.1.

For convenience, we denote the vertices of K
(3)
m,m,m with

V0 ={0, 1, . . . ,m− 1},

V1 ={0, 1, . . . ,m− 1},

V2 ={0, 1, . . . ,m− 1}.
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By these notation, abc-edges are in the form {u, v, w}, where u, v, w ∈ Zm. For

xxy-edges with six variations aab, aac, bba, bbc, cca and ccb, we fix the form of

these edges by {u, v, w}, {u, v, w}, {u, v, w}, {u, v, w}, {u, v, w} and {u, v, w}, re-

spectively, where u, v, w ∈ Zm. All variations of xxy-edges are determined to

the form {x, x′, y}, where x, x′ ∈ Zm are under the same partite set and y ∈ Zm

is under another partite set. Throughout this chapter, for u, v ∈ Zm, we define

||u− v|| by

||u− v|| = min{(u− v) (mod m), (v − u) (mod m)}.

3.2 Hamiltonian Cycles Constructions

We provide four constructions of Hamiltonian cycles in K
(3)
m,m,m as follows:

1. C(i, j),

2. C ′(i, j),

3. CM(i) and C ′M(i),

4. h(x, y).

Pattern Condition Construction Indices

(abccabbca)∗ m ≡ 0 (mod 3) C(i, j) i, j ∈ Zm

(aabbcc)∗abc m is odd C ′(i, j) i, j ∈ Zm

(aabbcc)∗ m is even CM(i), C ′M(i) i ∈ Zm/2

(abc)∗ – h(x, y) (x, y) ∈ Z2
m

Table 3.1: Hamiltonian cycle patterns and constructions in K
(3)
m,m,m
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3.2.1 C(i, j)

For m ≡ 0 (mod 3), define a Hamiltonian cycle C(i, j) of K
(3)
m,m,m by

C(i, j) = (a0 + i, b0 + j, c0 + i+ j, c1 + i+ j, a1 + i, b1 + j, b2 + j, c2 + i+ j, a2 + i,

a3 + i, b3 + j, c3 + i+ j, c4 + i+ j, a4 + i, b4 + j, b5 + j, c5 + i+ j, a5 + i,

. . . , am−3 + i, bm−3 + j, cm−3 + i+ j, cm−2 + i+ j, am−2 + i, bm−2 + j,

bm−1 + j, cm−1 + i+ j, am−1 + i),

where i, j ∈ Zm, {a0, a1, . . . , am−1} = Zm, {b0, b1, . . . , bm−1} = Zm, and

{c0, c1, . . . , cm−1} = Zm.

Lemma 3.1. Let m ≡ 0 (mod 3). Suppose C(0, 0) has properties that ck −

bk = ck′ − bk′ for all k, k′ ∈ Zm with k 6= k′, and ||a3k−1 − a3k|| 6= ||a3k′−1 −

a3k′||, ||b3k+1 − b3k+2|| 6= ||b3k′+1 − b3k′+2||, ||c3k − c3k+1|| 6= ||c3k′ − c3k′+1|| for all

k, k′ ∈ {0, 1, . . . , m
3
− 1} with k 6= k′. Then {C(i, j) : i, j ∈ Zm} is a set of m2

edge-disjoint Hamiltonian cycles of K
(3)
m,m,m.

Proof. For abc-edges, we will show that if {ak + i, bk + j, ck + i+ j} = {ak′ +

i′, bk′ + j′, ck′ + i′ + j′}, then i = i′, j = j′ and k = k′.

Suppose that {ak + i, bk + j, ck + i+ j} = {ak′ + i′, bk′ + j′, ck′ + i′ + j′} for

some i, i′, j, j′, k, k′ ∈ Zm. Then

ak + i ≡ ak′ + i′ (mod m),

bk + j ≡ bk′ + j′ (mod m),

ck + i+ j ≡ ck′ + i′ + j′ (mod m).

Since ck − bk = ck′ − bk′ , we get i = i′. Thus, ak = ak′ , so k = k′. Hence, j = j′.

For aab-edges, we will show that if {a3k−1 + i, a3k + i, b3k + j} = {a3k′−1 +

i′, a3k′ + i′, b3k′ + j′}, then i = i′, j = j′ and k = k′.
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Suppose that {a3k−1 + i, a3k + i, b3k + j} = {a3k′−1 + i′, a3k′ + i′, b3k′ + j′} for

some i, i′, j, j′ ∈ Zm and k, k′ ∈ {0, 1, . . . , m
3
− 1}. Then

a3k−1 + i ≡ a3k′−1 + i′ (mod m),

a3k + i ≡ a3k′ + i′ (mod m),

b3k + j ≡ b3k′ + j′ (mod m),

or

a3k−1 + i ≡ a3k′ + i′ (mod m),

a3k + i ≡ a3k′−1 + i′ (mod m),

b3k + j ≡ b3k′ + j′ (mod m).

C(0, 0) has property that ||a3k−1 − a3k|| 6= ||a3k′−1 − a3k′|| for all k 6= k′, but we

have a3k−1− a3k ≡ a3k′−1− a3k′ (mod m) or a3k−1− a3k ≡ a3k′ − a3k′−1 (mod m).

Thus, we can conclude that k = k′. It follows immediately that i = i′ and j = j′.

For other xxy-edges: aac, bba, bbc, cca and ccb, we can prove the same result in

a similar manner. Thus, all 3m×m2 edges of {C(i, j) : i, j ∈ Zm} are distinct and

{C(i, j) : i, j ∈ Zm} is a set of m2 edge-disjoint Hamiltonian cycles of K
(3)
m,m,m.

Lemma 3.2. Let m ≡ 0 (mod 3). Let ci = bi = xi and ai = xi+1 for all i ∈ Zm,

where

x3k =


3k/2 if k is even,

(3k + 1)/2 if k is odd,

x3k+1 = 3k + 1,

x3k+2 =


dm/2e+ 3k/2 if k is even,

dm/2e+ (3k + 1)/2 if k is odd,

and k ∈ {0, 1, . . . , m
3
−1}. Then C(0, 0) has properties as in Lemma 3.1. Moreover,

||x− x′|| ≡ 1 or 2 (mod 3) for all xxy-edges of the form {x, x′, y} in C(0, 0).
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Proof. By this setting, we have ck − bk = ck′ − bk′ = 0 for all k, k′ ∈ Zm with

k 6= k′. For k ∈ {0, 1, . . . , m
3
− 1},

||a3k−1 − a3k|| = ||x3k − x3k+1|| =


(3k + 2)/2 if k is even,

(3k + 1)/2 if k is odd,

||b3k+1 − b3k+2|| = ||x3k+1 − x3k+2|| =


dm/2e − (3k + 2)/2 if k is even,

dm/2e − (3k + 1)/2 if k is odd,

||c3k − c3k+1|| = ||x3k − x3k+1|| =


(3k + 2)/2 if k is even,

(3k + 1)/2 if k is odd.

Thus, ||a3k−1 − a3k|| 6= ||a3k′−1 − a3k′||, ||b3k+1 − b3k+2|| 6= ||b3k′+1 − b3k′+2||, ||c3k −

c3k+1|| 6= ||c3k′−c3k′+1|| for all k, k′ ∈ {0, 1, . . . , m
3
−1} with k 6= k′ and ||x−x′|| ≡

1 or 2 (mod 3) for all xxy-edges of the form {x, x′, y}.

Example 3.1. Let m = 6. The cycle C(0, 0) in Lemma 3.2 is

C(0, 0) = (1, 0, 0, 1, 3, 1, 3, 3, 2, 4, 2, 2, 4, 5, 4, 5, 5, 0).

3.2.2 C ′(i, j)

For an odd integer m, define a Hamiltonian cycle C ′(i, j) of K
(3)
m,m,m by

C ′(i, j) = (a0 + j, a1 + j, b0 + i+ j, b1 + i+ j, c0 + 2i+ j, c1 + 2i+ j,

a2 + j, a3 + j, b2 + i+ j, b3 + i+ j, c2 + 2i+ j, c3 + 2i+ j, . . . ,

am−3 + j, am−2 + j, bm−3 + i+ j, bm−2 + i+ j,

cm−3 + 2i+ j, cm−2 + 2i+ j,

am−1 + j, bm−1 + i+ j, cm−1 + 2i+ j),

where i, j ∈ Zm, {a0, a1, . . . , am−1} = Zm, {b0, b1, . . . , bm−1} = Zm, and

{c0, c1, . . . , cm−1} = Zm.
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A similar argument as in the proof of Lemma 3.1 can be used to prove

Lemma 3.3.

Lemma 3.3. For an odd integer m, suppose C ′(0, 0) has properties that a0 +

cm−1 6= am−1+cm−2 (mod m) and ||a2k+1−a2k|| 6= ||a2k′+1−a2k′ ||, ||b2k+1−b2k|| 6=

||b2k′+1 − b2k′||, ||c2k+1 − c2k|| 6= ||c2k′+1 − c2k′ || for all k, k′ ∈ {0, 1, . . . , m−1
2
− 1}

with k 6= k′. Then {C ′(i, j) : i, j ∈ Zm} is a set of m2 edge-disjoint Hamiltonian

cycles of K
(3)
m,m,m.

Proof. For abc-edges, we will show that if {ak + j, bm−1 + i+ j, c` + 2i+ j} =

{ak′ + j′, bm−1 + i′ + j′, c`′ + 2i′ + j′}, then i = i′, j = j′, k = k′ and ` = `′.

Suppose that {ak + j, bm−1 + i+ j, c` + 2i+ j} = {ak′ + j′, bm−1 + i′ + j′,

c`′ + 2i′ + j′} for some i, i′, j, j′ ∈ Zm, and (k, `), (k′, `′) ∈ {(0,m−1), (m−1,m−

1), (m− 1,m− 2)}. Then

ak + j ≡ ak′ + j′ (mod m),

bm−1 + i+ j ≡ bm−1 + i′ + j′ (mod m),

c` + 2i+ j ≡ c`′ + 2i′ + j′ (mod m).

If k = k′, then j = j′, i = i′ and ` = `′. Suppose that k 6= k′. Without loss

of generality, assume that k = 0 and k′ = m − 1. We will make a contradiction.

By the values of k and k′, ` = m− 1 and `′ = m− 1 or m− 2. If ` = `′ = m− 1,

then i = i′, j = j′ and a0 = am−1, a contradiction. Next, let `′ = m− 2. We get

a0+cm−1+2i+2j ≡ am−1+cm−2+2i′+2j′ (mod m). Thus, a0+cm−1 ≡ am−1+cm−2

(mod m). This contradicts to the assumption that a0 + cm−1 6= am−1 + cm−2 (mod

m).

For aab-edges, we will show that if {a2k + j, a2k+1 + j, b2k + i+ j} = {a2k′ +

j′, a2k′+1 + j′, b2k′ + i′ + j′}, then i = i′, j = j′ and k = k′.

Suppose that {a2k+j, a2k+1+j, b2k + i+ j} = {a2k′+j′, a2k′+1+j
′, b2k′ + i′ + j′}
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for some i, i′, j, j′ ∈ Zm and k, k′ ∈ {0, 1, . . . , m−1
2
− 1}. Then

a2k + j ≡ a2k′ + j′ (mod m),

a2k+1 + j ≡ a2k′+1 + j′ (mod m),

b2k + i+ j ≡ b2k′ + i′ + j′ (mod m),

or

a2k + j ≡ a2k′+1 + j′ (mod m),

a2k+1 + j ≡ a2k′ + j′ (mod m),

b2k + i+ j ≡ b2k′ + i′ + j′ (mod m).

C ′(0, 0) has property that ||a2k+1 − a2k|| 6= ||a2k′+1 − a2k′ || for all k 6= k′, but we

have a2k+1− a2k ≡ a2k′+1− a2k′ (mod m) or a2k+1− a2k ≡ a2k′ − a2k′+1 (mod m).

Thus, we can conclude that k = k′. It follows immediately that j = j′ and i = i′.

For other xxy-edges: aac, bba, bbc, cca and ccb, we can prove the same result in

a similar manner. Thus, all 3m×m2 edges of {C ′(i, j) : i, j ∈ Zm} are distinct and

{C ′(i, j) : i, j ∈ Zm} is a set of m2 edge-disjoint Hamiltonian cycles of K
(3)
m,m,m.

Lemma 3.4. For an odd integer m, let ai = bi = xi for all i ∈ Zm, cm−3 = x0,

cm−2 = x1, cm−1 = xm−1 and ci = xi+2 for all i ∈ {0, 1, . . . ,m− 4}, where

xm−1 = 1,

x2k = m− k,

x2k+1 = k + 2,

and k ∈ {0, 1, . . . , m−1
2
− 1}. Then C ′(0, 0) has properties as in Lemma 3.3.

Moreover, bm−1 − am−1 = 0, bm−1 − a0 = 1, cm−1 − bm−1 = 0, cm−2 − bm−1 = 1.

Proof. By this setting, we have a0 + cm−1 = 1 and am−1 + cm−2 = 3.

For k ∈ {0, 1, . . . , m−1
2
− 1},

||a2k+1 − a2k|| = ||b2k+1 − b2k|| = ||x2k+1 − x2k||

= min{2k + 2,m− (2k + 2)}.
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For k ∈ {0, 1, . . . , m−1
2
− 2},

||c2k+1 − c2k|| = ||x2k+3 − x2k+2||

= min{2k + 4,m− (2k + 4)}

and cm−2 − cm−3 = x1 − x0 = 2.

Since m is odd, {||x2k+1 − x2k|| : k ∈ {0, 1, . . . , m−1
2
− 1}} = {1, 2, . . . , m−1

2
}.

Thus, a0+cm−1 6= am−1+cm−2 (modm) and ||a2k+1−a2k|| 6= ||a2k′+1−a2k′||, ||b2k+1−

b2k|| 6= ||b2k′+1−b2k′||, ||c2k+1−c2k|| 6= ||c2k′+1−c2k′|| for all k, k′ ∈ {0, 1, . . . , m−1
2
−

1} with k 6= k′.

Example 3.2. Let m = 9. The cycle C ′(0, 0) in Lemma 3.4 is

C ′(0, 0) = (0, 2, 0, 2, 8, 3, 8, 3, 8, 3, 7, 4, 7, 4, 7, 4, 6, 5, 6, 5, 6, 5, 0, 2, 1, 1, 1).

3.2.3 CM(i) and C ′M(i)

For an even integer m, we will construct a family of Hamiltonian cycles CM(i)

and C ′M(i) which contain no abc-edges. It requires the knowledge of 1-factors and

orthogonal quasigroups.

Definition 3.1. [4] Let G be a graph. A 1-factor of G is a subgraph of G in

which every vertex has degree 1. A 1-factorization of G is a partition of an edge

set of G into 1-factors.

Definition 3.2. [8] (Zn, ◦) is a quasigroup if

(1) i ◦ j ∈ Zn for all i, j ∈ Zn and

(2) i ◦ j 6= i ◦ j′ and i ◦ j 6= i′ ◦ j for all i, j ∈ Zn with i 6= i′, j 6= j′.

Note that the multiplication table of (Zn, ◦) is a Latin square.

Definition 3.3. [8] (Zn, ◦1) and (Zn, ◦2) are orthogonal if for (i, j) 6= (i′, j′) ∈ Z2
n,

i ◦1 j = i′ ◦1 j′ implies i ◦2 j 6= i′ ◦2 j′.
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The following Lemma is the well-known result concerning Latin squares.

Lemma 3.5. [8] There exists a pair of mutually orthogonal Latin squares of order

n for every n 6= 2 or 6.

For an even integer m, let M = {x0x1, x2x3, x4x5, . . . , xm−2xm−1} be a 1-factor

of a graph with Zm = {x0, x1, . . . , xm−1} as a vertex set. By Lemma 3.5, there

exists a pair of orthogonal quasigroups, (Zm/2, ◦1) and (Zm/2, ◦2) for m 6= 4 or 12.

For i ∈ Zm/2, define Hamiltonian cycles of K
(3)
m,m,m, CM(i) and C ′M(i), by

CM(i) = (x0, x1, x2(i◦10), x2(i◦10)+1, x2(i◦20), x2(i◦20)+1,

x2, x3, x2(i◦11), x2(i◦11)+1, x2(i◦21), x2(i◦21)+1, . . . ,

xm−2, xm−1, x2(i◦1 m−2
2

), x2(i◦1 m−2
2

)+1, x2(i◦2 m−2
2

), x2(i◦2 m−2
2

)+1)

and

C ′M(i) = (x1, x0, x2(i◦10)+1, x2(i◦10), x2(i◦20)+1, x2(i◦20),

x3, x2, x2(i◦11)+1, x2(i◦11), x2(i◦21)+1, x2(i◦21), . . . ,

xm−1, xm−2, x2(i◦1 m−2
2

)+1, x2(i◦1 m−2
2

), x2(i◦2 m−2
2

)+1, x2(i◦2 m−2
2

)).

Example 3.3. Let m = 6. The multiplication tables of orthogonal quasigroups

(Z3, ◦1) and (Z3, ◦2) are as follows.

◦1 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

◦2 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0
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Let M = {x0x1, x2x3, x4x5} = {03, 14, 25}. Then

CM(0) = (0, 3, 0, 3, 0, 3, 1, 4, 1, 4, 1, 4, 2, 5, 2, 5, 2, 5),

CM(1) = (0, 3, 1, 4, 2, 5, 1, 4, 2, 5, 0, 3, 2, 5, 0, 3, 1, 4),

CM(2) = (0, 3, 2, 5, 1, 4, 1, 4, 0, 3, 2, 5, 2, 5, 1, 4, 0, 3),

C ′M(0) = (3, 0, 3, 0, 3, 0, 4, 1, 4, 1, 4, 1, 5, 2, 5, 2, 5, 2),

C ′M(1) = (3, 0, 4, 1, 5, 2, 4, 1, 5, 2, 3, 0, 5, 2, 3, 0, 4, 1),

C ′M(2) = (3, 0, 5, 2, 4, 1, 4, 1, 3, 0, 5, 2, 5, 2, 4, 1, 3, 0).

Form = 4 and 12, there are no orthogonal quasigroups (Zm/2, ◦1) and (Zm/2, ◦2).

Therefore, CM(i) and C ′M(i) will be constructed by the following.

For m = 4, let M = {x0x1, x2x3}. Then

CM(0) = (x0, x1, x0, x1, x0, x1, x2, x3, x2, x3, x2, x3),

CM(1) = (x0, x1, x3, x2, x3, x2, x2, x3, x1, x0, x1, x0),

C ′M(0) = (x1, x0, x1, x0, x2, x3, x3, x2, x3, x2, x0, x1),

C ′M(1) = (x1, x0, x2, x3, x1, x0, x3, x2, x0, x1, x3, x2).

For m = 12, let (Zm/4, ◦3) and (Zm/4, ◦4) be orthogonal quasigroups. For

i ∈ Zm/2, define CM(i) and C ′M(i) by

CM(i) = (x0, x1, b0(i), b1(i), c0(i), c1(i),

x2, x3, b2(i), b3(i), c2(i), c3(i), . . . ,

xm−2, xm−1, bm−2(i), bm−1(i), cm−2(i), cm−1(i))
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and

C ′M(i) = (x1, x0, b′0(i), b
′
1(i), c

′
0(i), c

′
1(i),

x3, x2, b′2(i), b
′
3(i), c

′
2(i), c

′
3(i), . . . ,

xm−1, xm−2, b′m−2(i), b
′
m−1(i), c

′
m−2(i), c

′
m−1(i)),

where for j, k ∈ {0, 1, . . . , m
4
− 1},

b2k(j) = bm
2
+2k+1(j + m

4
) = b′2k+1(j) = b′m

2
+2k(j + m

4
) = x2(j◦3k),

c2k(j) = cm
2
+2k+1(j + m

4
) = c′2k+1(j + m

4
) = c′m

2
+2k(j) = x2(j◦4k),

b2k+1(j) = bm
2
+2k(j + m

4
) = b′2k(j) = b′m

2
+2k+1(j + m

4
) = x2(j◦3k)+1,

c2k+1(j) = cm
2
+2k(j + m

4
) = c′2k(j + m

4
) = c′m

2
+2k+1(j) = x2(j◦4k)+1,

b2k+1(j + m
4

) = bm
2
+2k(j) = b′2k(j + m

4
) = b′m

2
+2k+1(j) = xm

2
+2(j◦3k),

c2k+1(j + m
4

) = cm
2
+2k(j) = c′2k(j) = c′m

2
+2k+1(j + m

4
) = xm

2
+2(j◦4k),

b2k(j + m
4

) = bm
2
+2k+1(j) = b′2k+1(j + m

4
) = b′m

2
+2k(j) = xm

2
+2(j◦3k)+1,

c2k(j + m
4

) = cm
2
+2k+1(j) = c′2k+1(j) = c′m

2
+2k(j + m

4
) = xm

2
+2(j◦4k)+1.

Lemma 3.6. For an even integer m, given a 1-factor M of a graph with Zm as

a vertex set, {CM(i), C ′M(i) : i ∈ Zm/2} is a set of m edge-disjoint Hamiltonian

cycles of K
(3)
m,m,m.

Proof. Let M = {x0x1, x2x3, . . . , xm−2xm−1}. Consider the case where m /∈

{4, 12}. For aab-edges, we will show that if {x2k, x2k+1, x2(i◦1k)+j} = {x2k′ , x2k′+1,

x2(i′◦1k′)+j′}, then i = i′, j = j′ and k = k′.

Suppose that {x2k, x2k+1, x2(i◦1k)+j} = {x2k′ , x2k′+1, x2(i′◦1k′)+j′} for some i, i′,

k, k′ ∈ Zm/2 and j, j′ ∈ {0, 1}. Then

2k = 2k′,

2(i ◦1 k) + j = 2(i′ ◦1 k′) + j′.
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That is k = k′, j = j′ and i ◦1 k = i′ ◦1 k. Since (Zm/2, ◦1) is a quasigroup, i = i′.

The proof for aac-edges can be done in the same way.

For bbc-edges, we will show that if {x2(i◦1k), x2(i◦1k)+1, x2(i◦2k)+j} = {x2(i′◦1k′),

x2(i′◦1k′)+1, x2(i′◦2k′)+j′}, then i = i′, j = j′ and k = k′.

Suppose that {x2(i◦1k), x2(i◦1k)+1, x2(i◦2k)+j} = {x2(i′◦1k′), x2(i′◦1k′)+1, x2(i′◦2k′)+j′}

for some i, i′, k, k′ ∈ Zm/2 and j, j′ ∈ {0, 1}. Then

i ◦1 k = i′ ◦1 k′,

i ◦2 k = i′ ◦2 k′,

j = j′.

Since (Zm/2, ◦1) and (Zm/2, ◦2) are orthogonal quasigroups, we have i = i′ and

k = k′.

The proof for other xxy-edges: bba, cca and ccb can also be done in the same

way. Thus, all 3m × m edges of {CM(i), C ′M(i) : i ∈ Zm/2} are distinct and

{CM(i), C ′M(i) : i ∈ Zm/2} is a set ofm edge-disjoint Hamiltonian cycles ofK
(3)
m,m,m.

For m = 4, it is easy to see that CM(0), CM(1), C ′M(0) and C ′M(1) as shown

before are mutually edge-disjoint Hamiltonian cycles of K
(3)
m,m,m.

Form = 12, consider aab-edges: e1 = {x2k, x2k+1, xi} and e2 = {xm
2
+2k, xm

2
+2k+1,

xi}, where k ∈ Zm/4 and i ∈ Zm. Note that {2(j ◦3 k), 2(j ◦3 k) + 1, m
2

+ 2(j ◦3

k), m
2

+ 2(j ◦3 k) + 1 : j, k ∈ Zm/4} = Zm by means of a quasigroup.

If i = 2(j ◦3 k), then e1 ∈ CM(j) and e2 ∈ C ′M(j + m
4

).

If i = 2(j ◦3 k) + 1, then e1 ∈ C ′M(j) and e2 ∈ CM(j + m
4

).

If i = m
2

+ 2(j ◦3 k), then e1 ∈ C ′M(j + m
4

) and e2 ∈ CM(j).

If i = m
2

+ 2(j ◦3 k) + 1, then e1 ∈ CM(j + m
4

) and e2 ∈ C ′M(j).

Thus, each aab-edge is in a unique Hamiltonian cycle. We can also use this argu-

ment to show the same result for aac-edges.

For bbc-edges: {x2(j◦3k), x2(j◦3k)+1, xi} (or {xm
2
+2(j◦3k), xm

2
+2(j◦3k)+1, xi}), we will



32

show that if {x2(j◦3k), x2(j◦3k)+1, xi} = {x2(j′◦3k′), x2(j′◦3k′)+1, xi′}, then i = i′, j = j′

and k = k′.

Suppose that {x2(j◦3k), x2(j◦3k)+1, xi} = {x2(j′◦3k′), x2(j′◦3k′)+1, xi′} for some j, j′,

k, k′ ∈ Zm/4 and i ∈ Zm. Then

j ◦3 k = j′ ◦3 k′,

i = i′.

There are four possibilities for i: 2(j◦4k), 2(j◦4k)+1, m
2

+2(j◦4k) or m
2

+2(j◦4k)+1

(also for i′: 2(j′ ◦4 k′), 2(j′ ◦4 k′) + 1, m
2

+ 2(j′ ◦4 k′) or m
2

+ 2(j′ ◦4 k′) + 1). Since

i = i′, in any cases, we have j ◦4 k = j′ ◦4 k′. The orthogonality of (Zm/4, ◦3) and

(Zm/4, ◦4) implies j = j′ and k = k′.

Other xxy-edges: bba, cca and ccb can be showed by using the same technique.

This completes the proof.

3.2.4 h(x, y)

For (x, y) ∈ Z2
m, define a Hamiltonian cycle of K

(3)
m,m,m, h(x, y) by

h(x, y) = (0, x, x+ y,m− 1,m− 1 + x,m− 1 + x+ y, . . . , 1, 1 + x, 1 + x+ y).

We lend this construction of Hamiltonian cycle of K
(3)
m,m,m from Kuhl and

Schroeder in [7]. They assign the difference type (v − u,w − v) to each abc-edges

{u, v, w}. In K
(3)
m,m,m, there are m2 distinct difference types and there are m edges

with a specific difference type. Each h(x, y) has 3m abc-edges and contains all

abc-edges of difference types (x, y), (x+ 1, y) and (x, y + 1).

Lemma 3.7. [7] Let m ≡ 0 (mod 3) and A0 = {(x, y) ∈ Z2
m : x−y ≡ 0 (mod 3)}.

Then {h(x, y) : (x, y) ∈ A0} is a set of m2/3 edge-disjoint Hamiltonian cycles of

K
(3)
m,m,m.
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Example 3.4. From Lemma 3.7, in the case of m = 6, we obtain A0 = {(0, 0),

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)} and

h(x, y), where (x, y) ∈ A0 are listed below.

h(0, 0) = (0, 0, 0, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1),

h(1, 1) = (0, 1, 2, 5, 0, 1, 4, 5, 0, 3, 4, 5, 2, 3, 4, 1, 2, 3),

h(2, 2) = (0, 2, 4, 5, 1, 3, 4, 0, 2, 3, 5, 1, 2, 4, 0, 1, 3, 5),

h(3, 3) = (0, 3, 0, 5, 2, 5, 4, 1, 4, 3, 0, 3, 2, 5, 2, 1, 4, 1),

h(4, 4) = (0, 4, 2, 5, 3, 1, 4, 2, 0, 3, 1, 5, 2, 0, 4, 1, 5, 3),

h(5, 5) = (0, 5, 4, 5, 4, 3, 4, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0, 5),

h(0, 3) = (0, 0, 3, 5, 5, 2, 4, 4, 1, 3, 3, 0, 2, 2, 5, 1, 1, 4),

h(1, 4) = (0, 1, 5, 5, 0, 4, 4, 5, 3, 3, 4, 2, 2, 3, 1, 1, 2, 0),

h(2, 5) = (0, 2, 1, 5, 1, 0, 4, 0, 5, 3, 5, 4, 2, 4, 3, 1, 3, 2),

h(3, 0) = (0, 3, 3, 5, 2, 2, 4, 1, 1, 3, 0, 0, 2, 5, 5, 1, 4, 4),

h(4, 1) = (0, 4, 5, 5, 3, 4, 4, 2, 3, 3, 1, 2, 2, 0, 1, 1, 5, 0),

h(5, 2) = (0, 5, 1, 5, 4, 0, 4, 3, 5, 3, 2, 4, 2, 1, 3, 1, 0, 2).

3.3 Results

We will show that K
(3)
m,m,m is decomposable into Hamiltonian cycles for all

m ≡ 0 (mod 3). We separate the cases of m into odd and even, that is m ≡ 0

(mod 6) and m ≡ 3 (mod 6), and add a special case of m = 3.

LetH be a subhypergraph ofK
(3)
m,m,m. Let n1(H) and n2(H) denote the number

of abc-edges and xxy-edges in H, respectively. Each Hamiltonian cycle H in

Section 3.2, C(i, j), C ′(i, j), (CM(i) and C ′M(i)), and h(x, y) can be regarded as

a subhypergraph of K
(3)
m,m,m. The number of edges in K

(3)
m,m,m,

(
3m
3

)
− 3
(
m
3

)
which
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is equal to 4m3 − 3m2 can be divided into m3 abc-edges and 3m3 − 3m2 xxy-

edges. We count n1(H) and n2(H) as shown in Table 3.2. If H is a Hamiltonian

decomposition of K
(3)
m,m,m, then

∑
H∈H n1(H) = m3 and

∑
H∈H n2(H) = 3m3 −

3m2.

H n1(H) n2(H) Condition

K
(3)
m,m,m m3 3m3 − 3m2 −

C(i, j) m 2m m ≡ 0 (mod 3)

C ′(i, j) 3 3m− 3 m is odd

CM(i), C ′M(i) 0 3m m is even

h(x, y) 3m 0 −

Table 3.2: The number of abc-edges, n1(H), and xxy-edges, n2(H), in H

Let C(0, 0) be a Hamiltonian cycle in Lemma 3.2 and C ′(0, 0) be a Hamiltonian

cycle in Lemma 3.4. We obtain several results as follows.

3.3.1 m ≡ 0 (mod 6)

For m ≡ 0 (mod 6), we have two families H1 and H2 of Hamiltonian cycles

forming two Hamiltonian decompositions of K
(3)
m,m,m.

First, let F1 be a 1-factorization of a graph G with V (G) = Zm = [0̄]∪ [1̄]∪ [2̄],

the union of the classes of modulo 3, and E(G) = {uv : u, v ∈ Zm, ||u − v|| ≡ 0

(mod 3)}. G is isomorphic to 3Km/3, three copies of Km/3. Each component

consists of vertices in the same class of modulo 3. An example of G is shown in

Figure 3.1. Then

H1 = {C(i, j) : i, j ∈ Zm} ∪ {CM(i), C ′M(i) : i ∈ Zm/2,M ∈ F1}.

Next, let A0 = {(x, y) ∈ Z2
m : x − y ≡ 0 (mod 3)} and F2 is a 1-factorization of
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Km with Zm as a vertex set. Then

H2 = {h(x, y) : (x, y) ∈ A0} ∪ {CM(i), C ′M(i) : i ∈ Zm/2,M ∈ F2}.

0

3

6

9

1

4

7

10

2

5

8

11

Figure 3.1: A graph G with V (G) = Z12 and its 1-factorization F1 indicated each

1-factor in the same edge style

Since K2n is factorizable into 2n− 1 1-factors [11], we have |F1| = m
3
− 1 and

|F2| = m − 1. Then we calculate the number of edges in H1,
∑

H∈H1
n1(H) =

m2×m = m3 and
∑

H∈H1
n2(H) = m2× 2m+m(m

3
− 1)× 3m = 3m3− 3m2 and

the number of edges in H2,
∑

H∈H2
n1(H) = m2

3
× 3m = m3 and

∑
H∈H2

n2(H) =

m(m− 1)× 3m = 3m3 − 3m2.

Here are some facts that we can easily obtain.

F1 For any two 1-factors M and M ′ in Km, we see that if M and M ′ are disjoint,

then CM(i) and CM ′(i) are also disjoint for all i ∈ Zm/2.

F2 For all xxy-edges {x, x′, y} in {C(i, j) : i, j ∈ Zm}, ||x − x′|| ≡ 1 or 2

(mod 3) as in Lemma 3.2.

F3 For all xxy-edges {x, x′, y} in {CM(i), C ′M(i) : i ∈ Zm/2,M ∈ F1}, ||x−x′|| ≡

0 (mod 3) by the construction of F1.

F4 {h(x, y) : (x, y) ∈ A0} contains only abc-edges.

F5 {CM(i), C ′M(i) : i ∈ Zm/2,M ∈ F2} contains only xxy-edges.
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With F2 and F3, any Hamiltonian cycles in {C(i, j) : i, j ∈ Zm} and any

Hamiltonian cycles in {CM(i), C ′M(i) : i ∈ Zm/2,M ∈ F1} are disjoint because of

distinct xxy-edges. By Lemma 3.1 and Lemma 3.6 with F1-3, we see that H1 is

a Hamiltonian decomposition of K
(3)
m,m,m. With F4 and F5 along with Lemma 3.7

and F1, it is clear that H2 is a Hamiltonian decomposition of K
(3)
m,m,m.

Example 3.5. For m = 6, the Hamiltonian decomposition H1 consists of C(i, j)

where i, j ∈ Z6, with C(0, 0) given in Example 3.1 and CM(i), C ′M(i), where i ∈ Z3,

and M = {03, 14, 25} given in Example 3.3. The Hamiltonian decomposition H2

consists of {h(x, y) : (x, y) ∈ A0} given in Example 3.4 and CM(i), C ′M(i), where

i ∈ Z3, and M ∈ {{01, 25, 34}, {02, 31, 45}, {03, 42, 51}, {04, 53, 12}, {05, 14, 23}}.

3.3.2 m ≡ 3 (mod 6)

For m ≡ 3 (mod 6), let

H3 = {C ′(i, j) : i, j ∈ Zm} ∪ {h(x, y) : (x, y) ∈ A0, x 6= y},

where A0 = {(x, y) ∈ Z2
m : x − y ≡ 0 (mod 3)}. We calculate the number of

edges in H3,
∑

H∈H3
n1(H) = m2×3 + (m

2

3
−m)×3m = m3 and

∑
H∈H3

n2(H) =

m2 × (3m− 3) = 3m3 − 3m2.

To show that H3 is a Hamiltonian decomposition of K
(3)
m,m,m, we must show

that {C ′(i, j) : i, j ∈ Zm} contains all abc-edges of difference types (x, y), (x+1, y),

and (x, y + 1) for all x, y ∈ Zm with x = y.
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Three abc-edges in C ′(i, j) for each i, j ∈ Zm have difference types

(bm−1 − am−1 + i, cm−2 − bm−1 + i) = (i, i+ 1)

for the edge {am−1 + j, bm−1 + i+ j, cm−2 + 2i+ j},

(bm−1 − am−1 + i, cm−1 − bm−1 + i) = (i, i)

for the edge {am−1 + j, bm−1 + i+ j, cm−1 + +2i+ j},

(bm−1 − a0 + i, cm−1 − bm−1 + i) = (i+ 1, i)

for the edge {a0 + j, bm−1 + i+ j, cm−1 + 2i+ j}.

Since each i, j corresponds to m different values of Zm, {C ′(i, j) : i, j ∈ Zm}

contains all edges of difference type (i, i), (i+ 1, i) and (i, i+ 1) as desired.

Thus, H3 is a Hamiltonian decompositions of K
(3)
m,m,m, where m ≡ 3 (mod 6).

Example 3.6. For m = 9, the Hamiltonian decomposition H3 consists of C ′(i, j),

where i, j ∈ Z9, with C ′(0, 0) given in Example 3.2 and h(x, y) where (x, y) ∈

{(0, 3), (1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 0), (7, 1), (8, 2), (0, 6), (1, 7), (2, 8),

(3, 0), (4, 1), (5, 2), (6, 3), (7, 4), (8, 5)}. See Figure 3.2 for the demographic of

(x, y) for h(x, y) in H3.

3.3.3 A special case, m = 3

The case of m = 3 is special because it is also in the case of m ≡ 3 (mod 6)

but h(x, y) is not required, and we can get another solution as in the case of m ≡ 0

(mod 6) but CM(i) and C ′M(i) are not required. We count the number of edges

n1(K
(3)
3,3,3) = 27 and n2(K

(3)
3,3,3) = 54. The sets of Hamiltonian cycles C1 = {C(i, j) :

i, j ∈ Zm} and C2 = {C ′(i, j) : i, j ∈ Zm} both have m2 Hamiltonian cycles. The

number of edges in C1,
∑

H∈C1 n1(H) = m3 = 27 and
∑

H∈C1 n2(H) = 2m3 = 54,

and the number of edges in C2,
∑

H∈C2 n1(H) = 3m2 = 27 and
∑

H∈C2 n2(H) =
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8 | - | -

7 | - | -

6 - | - |
5 - | - |
4 | - | -

3 - | - |
2 - | - |
1 | - | -

0 | - | -

y
x

0 1 2 3 4 5 6 7 8

Figure 3.2: The coordinates (x, y) of h(x, y) in Example 3.6 shown as black cells

with | showing (x, y + 1) and - showing (x+ 1, y)

3m3− 3m2 = 54. By Lemma 3.1 and Lemma 3.3, we can conclude that C1 and C2

are both Hamiltonian decompositions of K
(3)
3,3,3.

Example 3.7. Let C(0, 0) = (0, 0, 0, 1, 1, 1, 2, 2, 2). Then the Hamiltonian de-

composition C1 of K
(3)
3,3,3 obtained from Section 3.2.1 is shown below.

C(0, 0) = (0, 0, 0, 1, 1, 1, 2, 2, 2),

C(0, 1) = (0, 1, 1, 2, 1, 2, 0, 0, 2),

C(0, 2) = (0, 2, 2, 0, 1, 0, 1, 1, 2),

C(1, 0) = (1, 0, 1, 2, 2, 1, 2, 0, 0),

C(1, 1) = (1, 1, 2, 0, 2, 2, 0, 1, 0),

C(1, 2) = (1, 2, 0, 1, 2, 0, 1, 2, 0),

C(2, 0) = (2, 0, 2, 0, 0, 1, 2, 1, 1),

C(2, 1) = (2, 1, 0, 1, 0, 2, 0, 2, 1),

C(2, 2) = (2, 2, 1, 2, 0, 0, 1, 0, 1).
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Let C ′(0, 0) = (0, 2, 0, 2, 0, 2, 1, 1, 1). The Hamiltonian decomposition C2 of K
(3)
3,3,3

follows from Section 3.2.2.

We summarize these results in Table 3.3, and Theorem 3.1 concludes all the

results.

Decomposition Condition
The number of

C(i, j) C ′(i, j) CM(i), C ′M(i) h(x, y)

H1 m ≡ 0 (mod 6) m2 – m(m
3
− 1) –

H2 m ≡ 0 (mod 6) – – m(m− 1) m2

3

H3 m ≡ 3 (mod 6) – m2 – m2

3
−m

C1 m = 3 9 – – –

C2 m = 3 – 9 – –

Table 3.3: The combinations of Hamiltonian cycles in decompositions of K
(3)
m,m,m

Theorem 3.1. K
(3)
m,m,m is decomposable into Hamiltonian cycles if and only if

m ≡ 0 (mod 3).



CHAPTER IV

CONCLUSION

We have investigated two families of hypergraphs: prisms over complete 3-

uniform hypergraphs, Prism(K
(3)
n ), and complete tripartite 3-uniform hypergraphs,

K
(3)
m,m,m.

For Prism(K
(3)
n ), the difficulty of finding its Hamiltonian decomposition is

increasing rapidly as n is getting larger. We use the fill-out method to find solu-

tions for n ∈ {4, 5} and develop some knowledge of cyclic method from Bailey and

Stevens [2] to find a Hamiltonian decomposition of Prism(K
(3)
8 ). The question on

a Hamiltonian decomposition of Prism(K
(3)
7 ) is still unsolved. However, we see

the possibility of the cyclic method for n ≡ 2 (mod 6) by calculating number of

Hamiltonian cycles satisfying Lemma 2.3. In conclusion, we have done only the

case of n ∈ {4, 5, 8}.

For K
(3)
m,m,m, we have completely found its Hamiltonian decomposition for all

necessary condition of m. We provide four patterns of partite set ordering that can

be formed a Hamiltonian cycle in K
(3)
m,m,m. Next, we develop the constructions that

produce the set of disjoint Hamiltonian cycles for each pattern. The constructions

of C(i, j) and C ′(i, j) give the sense of cyclic method in 2-dimension while CM(i)

and C ′M(i) use 1-factors and orthogonal Latin squares. With Kuhl and Schroeder’s

work in [7], the construction of h(x, y) fulfills the hole of the decompositions. A

Hamiltonian decomposition of K
(3)
m,m,m is a combination of various sets of edge-

disjoint Hamiltonian cycles. The cases where m is odd and m is even are solved

separately. Finally, we can conclude that a Hamiltonian decomposition of K
(3)
m,m,m
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exists for all integer m such that m is a multiple of 3.

Further Works

We suggest the following tasks to do beyond this dissertation.

1. Find initial cycles and use the cyclic method for finding Hamiltonian de-

compositions of Prism(K
(3)
n ), where n ≡ 2 (mod 6).

2. Find the Hamiltonian decomposition of K
(3)
m,m,m− I, where I is a 1-factor of

K
(3)
m,m,m and 3 - m.
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