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CHAPTER 1

INTRODUCTION

1.1 Definitions and Notations

Definition 1.1. [2] A hypergraph H = (V,E) consists of a nonempty finite set
V' of vertices with a family £ of subsets of V', called (hyper)edges. The notation
V(H) and £(H) denote the set of vertices and the set of edges of a hypergraph H,

respectively. If each edge of ‘H has size k, we say that H is a k-uniform hypergraph.

Definition 1.2. [2] The complete k-uniform hypergraph on n vertices, denoted
by Kfzk), has all k-subsets of an n-set of vertices as edges.
A 2-uniform hypergraph is simply the ordinary graph and the hypergraph Kéz)

is the complete graph K.

Definition 1.3 (Katona [6]). A cycle of length ¢ in a k-uniform hypergraph is
a cyclic ordering of its ¢ vertices such that each consecutive k-tuple of vertices
is an edge. In other words, let C' = (vg,v1,...,v,—1) be a cyclic ordering of ¢
vertices in a k-uniform hypergraph H. Then C' is a cycle of length ¢ in H if
{Vi, Vig1, Vigo, .., Vizg—1} € E(H) for all ¢ € {0,1,...,¢ — 1}, where the addition
of indices is calculated under the integer modulo ¢.

A path of length ¢ — k + 1 in a k-uniform hypergraph is a noncyclic ordering
of its ¢ vertices such that each consecutive k-tuple of vertices is an edge. That is,
if P = [vg,v1,...,v_1] is a path of length £ — k + 1 in a k-uniform hypergraph H,

then {’Ui, Vit+1,UVit2, - - - ;Ui+k—1} € 5(%) for all 7 € {0, 1, Ce ,E — /{Z}



If H has n vertices, a cycle of length n is called a Hamiltonian cycle and a

path of length n — k + 1 is called a Hamiltonian path.

Definition 1.4. [2] A Hamiltonian decomposition of a hypergraph is a partition

of the set of edges into Hamiltonian cycles.

Definition 1.5. Let % = (V, &) be a k-uniform hypergraph and let H = (V&)
be its copy. Let v € V denote a copy of v € V. The prism over ‘H, denoted by

Prism(?H), is a hypergraph obtained from H and H by adding a collection of edges
T ={{v,0}UAd:veV,AC (VUV)\{v,8},]|4| = k —2}.

A pair of vertices {v, 0} is called a transition node and an edge containing a
transition node is called a junction. An edge in H and H is called an ordinary

edge. For concurrent notation, we define v = v.

Example 1.1. For k = 3, let ‘H denote the complete 3-uniform hypergraph K f’)
whose 4 vertices are 1,2,3 and 4. The following list shows all edges of Prism(#),
where the first line and the second line are edges of H and 7/-2, respectively, and

the remaining edges are junctions.



Definition 1.6. A complete tripartite k-uniform hypergraph has the vertex set
V' partitioned into three subsets Vy, V) and V5 and the edge set £ such that
E={e:eC Vel =kand|enV;] <k for all i € {0,1,2}}, and denoted by
Kpimm when [V| = [Vi] = [Va] = m.

Example 1.2. Let Vy = {0,1,2}, Vi = {0,1,2} and V3 = {0,1,2}. For k = 3
and m = 3, the complete tripartite 3-uniform hypergraph K §3§3 whose vertex set

is Vo U Vi U V5 has edges as follows.

{0,0,0}, {0,0,1}, {0,0,2}, {1,0,0}, {1,0,T}, {1,0,2}, {2,0,0}, {2,0,1}, {2,0,2},
{0,1,0},{0,1,1},{0,1,2}, {1,1,0}, {1, 1,1}, {1,1,2}, {2, 1,0}, {2, 1,1}, {2, 1,2},
{0,2,0}, {0,2,1}, {0,2,2}, {1,2,0}, {1,2, T}, {1,2,2}, {2,2,0}, {2,2,1}, {2,2,2},

{0,1,0}, {0,2,0}, {1,2,0}, {0, 1, T}, {0,2,T}, {1,2, T}, {0,1,2}, {0,2,2}, {1,2,2},
{0,1,0}, {0,2,0}, {1,2,0}, {0, 1,1}, {0,2, T}, {1,2,1}, {0, 1,2}, {0, 2,2}, {1,2,2},

{0,1,0}, {0,2,0}, {1,2,0}, {0,1,1}, {0,2,1}, {1,2,1}, {0,1, 2}, {0, 2,2}, {1, 2,2},
{0,1,0}, {0,2,0}, {1,2,0}, {0,1,1}, {0,2, 1}, {1,2,1}, {0, 1,2}, {0, 2,2}, {1,2,2},
{0,1,0}, {0,2,0}, {1,2,0}, {0,1,1}, {0, 2,1}, {1,2,1}, {0, 1,2}, {0, 2, 2}, {1,2,2},
{0,1,0}, {0,2,0}, {1,2,0}, {0,1,1}, {0,2, 1}, {1,2,1}, {0, 1,2}, {0, 2,2}, {1,2,2}

1.2 History and Overview

The study of Hamiltonian decomposition was begun in graph theory before be-
ing generalized in hypergraph theory. In graph theory, it is well-known that a com-
plete graph Ky, 1 has a Hamiltonian decomposition by Walecki’s construction [1].
Other graphs such as complete bipartite graphs and complete multipartite graphs
were also studied. Next, the problem of finding Hamiltonian decompositions of

hypergraphs is also questioned. However, a Hamiltonian cycle in a hypergraph



can be defined in many ways. The first definition of a Hamiltonian cycle in a
hypergraph was defined by Berge [3]. Berge’s cycle of a hypergraph H = (V&)
is a sequence (vg, By, vy, Fa, ..., v 1, En,v0), where {vg,v1,...,v,-1} = V and
Ey, Es, ..., E, are distinct edges in & such that v;_1,v; € E; (i is of modulo n).
By 1994, the problem of decomposing complete 3-uniform hypergraph K into
Hamiltonian cycles of Berge type was completely solved by Verrall [10]. Later,
Katona and Kiearstead [6] introduced a stronger definition of Hamiltonian cy-
cle in 1999 as we stated in Definition 1.3. Now, Katona-Kierstead’s cycle is
widely used in later publications. In 2010, Bailey and Stevens [2] decomposed
K into Hamiltonian cycles of Katona-Kiearstead type by computer program-
ming using the clique finding method for n € {7,8} and a difference method for
n € {10,11,16}. Along with Meszka and Rosa [9], they used an extension of
difference method to obtain Hamiltonian decompositions of K for all feasible
n < 32. This work for K leads us to begin new study for Prism(Kff’)). Other
hypergraphs such as complete bipartite 3-uniform hypergraphs KT(ZSBZ defined by
Definition 1.7 and complete k-uniform k-partite hypergraphs K ,g'i)m defined by
Definition 1.8 are also decomposable into Hamiltonian cycles of Katona-Kierstead
type. In 2001, Jirimutu and Wang [5] found Hamiltonian decompositions of Ké?q)
for every prime number ¢ using ordered odd 2-splitting of an integer. Soon after,
Xu and Wang [12] completely solved Hamiltonian decompositions of Kfﬁ,)l for all
n > 2 with a simple idea of mixing two Hamiltonian cycles from two complete

graphs. By 2013, Kuhl and Schroeder [7] studied Hamiltonian decomposition of

e

vom and got results for all m such that &k | m by classified each Hamiltonian

cycle to a permissible k-tuple and partition the ZF~! space. With these works,
we extend the study from “bi” partite to “tri” partite which is different from Kuhl

and Schroeder’s in [7].



Definition 1.7 (Jirimutu [5]). A complete bipartite k-uniform hypergraph K,gf)n
has two partite sets V; and V, such that |Vi| = m and |V3| = n and the edge set

Esuchthat E={e CViUVy:le|=k,enV] # T, enNVy # o}

Definition 1.8 (Kuhl [7]). A complete k-uniform k-partite hypergraph K ,gli)m has
k partite sets, Vp, Vi, ..., Vi_1, of equal size m, and each edge e of size k is in the

form e = {vo,v1,...,v5_1}, where v; € Vj for all i € {0,1,...,k — 1}.

Note that the complete 3-uniform 3-partite hypergraph defined by Kuhl and
Schroeder in Definition 1.8 is a subhypergraph of the complete tripartite 3-uniform
hypergraph Kr(,f’)mm defined by us in Definition 1.6.

At the beginning of this study, we usually calculate the necessary condition

for the existence of a Hamiltonian decomposition by Proposition 1.1.

Proposition 1.1. If a k-uniform hypergraph has a Hamiltonian decomposition,

then the length of a Hamiltonian cycle divides the size of the edge set.

We consider the number of overall edges in the target hypergraph in the for-
mula of some parameters such as the number of vertices. This number will sug-
gest the method to find Hamiltonian cycles in the decomposition. A collection
of Hamiltonian cycles which is a candidate to be a Hamiltonian decomposition
must gather the same number of overall edges in the hypergraph. There are two
ways to prove that the candidate is the solution. The first way is to show that all
edges in the collection are distinct. The other way is to show that each edge in
the hypergraph is in unique Hamiltonian cycle.

The study of Hamiltonian decomposition of Prism(KS’)) and Kf,i)m,m are sep-

arated into Chapter 2 and Chapter 3, respectively. The last chapter summarizes

the results of the study and suggests some further works.



CHAPTER II

HAMILTONIAN DECOMPOSITIONS OF Prism(K.Y)

First, we must consider the necessary condition for the existence of Hamilto-
nian decomposition of Prism (K ,(13)) which is calculated in Lemma 2.1. With fill-out
method and cyclic method for finding the decomposition, we get some results on

n € {4,5,7,8} which is described in Section 2.2.

2.1 Preliminaries

We investigate some possible ways to find a Hamiltonian decomposition of
Prism(Kff)). Beginning with a familiar method in graph theory, a Hamiltonian
decomposition of Prism(KT(Lg)) cannot be constructed in the same way. Next, we
consider the number of junctions to find a suitable combination of Hamiltonian

cycles in Prism(K,({Q’)) as we describe in Lemma 2.3.
Lemma 2.1. If a Hamiltonian decomposition of Prism(KS’)) exists, then 3 1 n.

Proof. Suppose that a Hamiltonian decomposition of Prism(Kég)) exists. We

count the number of edges of Prism(K.”). There are (5) edges in K as

—

same as K}Lg), and 2n(n — 1) junctions. Since the number of edges in a Hamil-
tonian cycle in Prism(K,ss)) is 2n and the number of edges of Prism(K,ss)) is
2(3) +2n(n — 1) = n(n — 1)(n + 4)/3, there are (n — 1)(n + 4)/6 Hamiltonian

cycles in the decomposition which must be an integer. Therefore, n = 1 or 2

(mod 3), that is 3 t n. O



First, consider a graph Prism(K,,). The complete graph K, is decomposable
into Hamiltonian cycles by Walecki’s construction in [1] which is used to decom-
pose the complete graph K,, into Hamiltonian paths where n is even. Thus, when
n is even, Prism(K,) is obviously decomposable into Hamiltonian cycles by joining
two copies of each Hamiltonian path with edges at each end vertices. Figure 2.1

shows a prism over a complete graph K, and its Hamiltonian decomposition.

Figure 2.1: Left: Prism (/) constructed from two copies of K, and edges (drawn
as bold line) connecting the copy of each vertex. Right: a Hamiltonian decom-
position of Prism (/) consists of two Hamiltonian cycles drawn as bold line and

light line.

Next, consider a hypergraph Prism (K5 ®) ). We try to use Hamiltonian paths as
same as the method in graph to find a Hamiltonian decomposition of a hypergraph
Prism(Ky ) ). We use a Hamiltonian decomposition of K +)1 and delete one vertex

to retrieve Hamiltonian paths of Kflk). The result is Lemma 2.2.

(k)

Lemma 2.2. [fK 41 ts decomposable into Hamiltonian cycles, then Ky~ is de-

composable into Hamiltonian paths.

Proof. Suppose that K Jr)l is decomposable into Hamiltonian cycles. Let S be

a Hamiltonian decomposition of K +)1 If we delete a vertex v together with all

edges containing v in K,(L +)1, then each Hamiltonian cycle in § becomes noncyclic



), Hence, all

and is a Hamiltonian path in Kn /1 — {v} which is isomorphic to Ky
edge-disjoint Hamiltonian cycles in Kn +1 become edge-disjoint Hamiltonian paths

in Kflk). Therefore, Kr(f) is decomposable into Hamiltonian paths. O

Theorem 2.1 is the result of joining the Hamiltonian paths to decompose
Prism(Kf{g)) into Hamiltonian cycles. Unfortunately, this method is not com-
plete the decomposition. However, we obtain a lower bound of the number of

edge-disjoint Hamiltonian cycles in Prism(K,(LS)).

Theorem 2.1. If K +1 18 decomposable into Hamiltonian cycles, then Prlsm(K(g))

has at least n(n — 1)/6 edge-disjoint Hamiltonian cycles.

Proof. Assume that KT(L le is decomposable into Hamiltonian cycles. Lemma 2.2

implies Kq(f’) is decomposable into Hamiltonian paths. The number of Hamilto-

nian cycles in a Hamiltonian decomposition of Knﬁl (";rl)/(n +1) = n(n —

1)/6 = (%)/(n — 2) which is equal to the number of Hamiltonian paths in a

decomposition of KT({%)

into Hamiltonian paths. Let t = n(n — 1)/6 and S =
{Py, Py, ..., P} be a decomposition of K% into Hamiltonian paths obtained by

deleting a vertex v of K®

N +1 We shall construct ¢ edge-disjoint Hamiltonian cycles

in Prism(KT(L?’)) in the following way. For each P, € S, if P, = [v1,v2,...,0,],
then ]31 = [Op, Un—1,...,01] is a Hamiltonian path in l;(l\?’) Next, define C(F;) =
(v1,V9, ..., Up, Oy Op—1, - .., 01). Thus, C'(P;) is a Hamiltonian cycle in Prlsm(K(?’))
for all : € {1,2,...,t}.

To show that any pair of Hamiltonian cycles obtained by this method are
disjoint, we shall show that there is no repeated junction. Suppose that C(F;)
and C(P;) have an identical junction 7" for some distinct path P;, P; € S. Without

loss of generality, let T' = {a, z, 2}, where a,z € K and 7 is the copy of z. Thus,

{a,z} are successive end vertices of P, and also P;. Since P, and P; are obtained



by deleting a vertex v of Kffil, an edge {a,x,v} is in two disjoint Hamiltonian
cycles in Kﬂl, which is a contradiction. Hence, all junctions are different.

Since the total number of Hamiltonian cycles of Prism(Kf{?)) if exists is (n —
1)(n+4)/6, constructing n(n —1)/6 edge-disjoint Hamiltonian cycles is not com-
plete the Hamiltonian decomposition of Prism(K,({O’)). We can only conclude that

Prism(Kf{g)) has at least n(n — 1)/6 edge-disjoint Hamiltonian cycles. O

To develop new method, we find some constraints stated in Lemma 2.3 to

reduce the scope of finding a Hamiltonian decomposition of Prism(KS’)).

Lemma 2.3. Suppose that Prism(Kr([?)) has a Hamiltonian decomposition. Let

x; be the number of Hamiltonian cycles in the decomposition with 2i transition

nodes. Then {x1,xa,...,x;} with j = |n/2] satisfies two equations:
ri+ra+rs+...+zr;=Mn—-1)(n+4)/6 (2.2)

Proof. A Hamiltonian cycle passes through every vertex in Prism(K,(f’)), so it
will transit from K to its copy and come back. Thus, there are even number of
transition nodes in each Hamiltonian cycle. Each transition in Prism(KT(L?’)) always
requires two junctions, from Kff’) and to its copy, so we can count the number
just only one side of prism. The sum of the number of one-side junctions for each
Hamiltonian cycle must equal a half of the number of junctions in Prism(KT(L?’)), as
in Equation (2.1). Equation (2.2) refers to the sum of the number of Hamiltonian

cycles. O]

The number of edges used in Lemma 2.3 of Prism(KT(LS)) withn € {4,5,7,8} are
shown in Table 2.1. By calculation, there are unique admissible {x;} for n € {4,5}

satisfying two equations in Lemma 2.3. However, for n > 5, there are many {x;}’s



10

satisfying these two equations as shown for the case n = 7 in Table 2.4. Table 2.2
shows some values of x; associated to a Hamiltonian decomposition of Prism(K, 723))
for some n, where n € {4,5} and n = 2 (mod 6). The case n = 2 (mod 6) is

interesting because each x; is divisible by n — 1.

n| (%) |nn—1)|(n-1)(n+4)/6
4| 4 12 4
5| 10 20 6
7| 35 42 11
8 | 56 o6 14

Table 2.1: The number of one-side ordinary edges, one-side junctions, and Hamil-

tonian cycles associated to Prism(KS’))

n|(n—=1)(n+4)/6| x| 22| 23| x4 | x5
4 4 2| 2

5 6 2 | 4

8 14 7 7

14 39 13 | 13 13

20 76 1911919 |19

26 125 25125150 |25

32 186 62|31 |31]31]|31

Table 2.2: Some values of {x;}’s associated to a Hamiltonian decomposition of

Prism(KfzS))
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2.2 Results

2.2.1 ne{4,5}

To find a Hamiltonian decomposition of Prism(KT(Lg)), we use a fill-out method
which is a trial-and-error method of drawing lines to connect vertices between two
copies. The aim is try to draw distinct hyperedges which are distinct consecutive
three vertices. We write vertices in two columns. Begin with choosing transition
nodes for each cycle and then fill out junctions by connecting one vertex from the
same side to each transition node. Try to make all junctions distinct. Next, draw
lines to place each ordinary edge in a unique cycle. If it is not solved, then try
another choice of junction and continue the process. Finally, we get the results

for n € {4,5}.

Theorem 2.2. A Hamiltonian decomposition of Prism(Kf’)) exists.

OZRONNONROBOSROIOSRO
OWSOINIONNOINOWOIOWO
ORNOIOARO/NO WOIOW O
©» O @W_W

(2 (v) (© (@)

Figure 2.2: A Hamiltonian decomposition of Prism (K. ig))

Proof. Let the vertex set of K f’) be {1,2,3,4}. The following is a Hamiltonian

decomposition of Prism (K. ig)) illustrated in Figure 2.2:

(2,3,4,1,1,4,3,2), (1,1,2,2,4,4,3,3),

>

(3,2,1,4,4,1,2,3), (1,1,3,3,4,

IASSY

D>

[\
SN—

Check edge-disjoint Hamiltonian cycles in Figure 2.2 as follows.
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1. Junctions containing {1,1} are in cycle (a), (c¢) and (d).
2. Junctions containing {2,2} are in cycle (a), (c) and (d).
3. Junctions containing {3, 3} are in cycle (b), (c) and (d).
4. Junctions containing {4,4} are in cycle (b), (c¢) and (d).
5. Ordinary edges are in cycle (a) and (b).

We see that each edge is in a unique Hamiltonian cycle, so we get a Hamiltonian

decomposition of Prism (K f')). O

Theorem 2.3. A Hamiltonian decomposition of Prism(Ké?’)) exists.
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Figure 2.3: A Hamiltonian decomposition of Prism (K] 5(,3))
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Proof. Let the vertex set of K ) be {00,0,1,2,3}. The following is a Hamiltonian

decomposition of Prism (K| ég)) illustrated in Figure 2.3:

~

(0,2,2,1,3,3 ), (1,0,00,2,3,3,0,c0,2,1),
(00,3 320, 0,2,1,1,00), (2,1,00,3,0,0,1,%,3,2),
(00 0,0,3,1 oo),
(00,1,1,0,2,2,0,3,3, ).

Check edge-disjoint Hamiltonian cycles in Figure 2.3 as follows.

1. Junctions containing {co, 0} are in cycle (a), (b), (c¢) and (d).
2. Junctions containing {0,0} are in cycle (a), (b), (c) and (f).
3. Junctions containing {1,1} are in cycle (b), (c), (d) and (e).
4. Junctions containing {2,2} are in cycle (a), (c), (d) and (f).
5. Junctions containing {3,3} are in cycle (a), (b), (d) and (e).
6. Ordinary edges containing oo or co are in cycle (e) and (f).

7. Ordinary edges with no co or co are in cycle (a), (b), (c¢) and (d).

We see that each edge is in a unique Hamiltonian cycle, so we get a Hamiltonian
decomposition of Prism(K ég)). Moreover, we found that a Hamiltonian decompo-
sition of Prism(K 5(3)) has cyclic structure by developing two initial cycles modulo

4, where co + 1 = oo for all © € Zy. O

2.2.2 ne{7,8}

In [2], Bailey and Stevens defined a difference pattern of triples and used it

to partition the edges of K

into equivalence classes that are helpful to find a
Hamiltonian decomposition of K by computer search. We modify the definition

of difference pattern to agree with edges of Prism(KS’)), as we see below.
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Definition 2.1. Let the vertex set of K be Z,_; U {oo} and let T = {a, b, c}
be an edge in Prism(K,({g’)). The difference pattern of T, denoted by 7 (T'), is an

equivalence class mapped T to the value as follows.

1. For a,b,¢c € Z,_1, w(T) is the cyclic ordering (b — a,c — b,a — ¢) where

{a,b,c} are arranged in ascending order.

2. For a,b € Z,_1 and ¢ = 0,

m(T) = (min{b — a (mod n — 1),a — b (mod n — 1))}, 00).
3. For a,b € Z,_1 U{oo} and ¢ = b, 7(T) = b —a.

4. Otherwise, T is an edge of the form {a, b, ¢} corresponding to one of three
types above. Calculate 7(7") in the same way and put hat (*) over each

difference value.

The differences are taken under modulo n—1, and it is assumed that co—a = oo
and b — oo = —o0 for all a,b € Z,_1.

For example, if n = 8, then we calculate under modulo 7. We have

1. 7({1,0,3}) = =({0,1,3}) = (1,2,4) which is equivalent to (2,4,1) and

(4,1,2) but is not equivalent to (1,4,2), (4,2,1) nor (2,1,4).
2. 7({00,6,5}) = (1,00) and 7({1,50,6}) = (2, 50).

3. 7({3,3,2}) =1, 7({2,2,3}) = 6, 7({c0, 00,1}) = 0o and

4. 7({0,1,3)) = (1,2,4), 7({%,6,5}) = (1,%0) and ©({3,3,2}) = 1.

Moreover, let C' be a Hamiltonian cycle of Prism(K,(f’)). The difference type of

C', denoted by 7(C), is a collection of difference patterns of its edges.
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For example, let C' = (00,2,2,1,3,3,1,0,0,%) which is a Hamiltonian cycle
of Prism(K§3)) in Theorem 2.3. All edges of C' are {00,2,2}, {2,2,1}, {2,1,3},

{1,3,3}, {3,3,1},{3,1,0}, {1,0,0}, {0,0, %0}, {0, %0, 00} and {co, 00, 2}. Thus,
7(C) = {=00,1,(1,1,2),2,2,(1,2,1),3, =0, %0, 00}.

We see that the difference patterns in 7(C) are all distinct and the translations
of C, {C +1i|i € Z4} taken under modulo 4 and oo + i = 0o, are edge-disjoint
Hamiltonian cycles. For convenience, the translation of an initial cycle is called the
cyclic method . The following lemma will show that this property is also satisfied
for all n = 2 (mod 6), and lead to a construction of Hamiltonian decomposition

of Prism(Kg’)).

Lemma 2.4. Suppose that ged(n —1,6) = 1. Let the vertex set of K® be 7, U
{oo} and let C' be a Hamiltonian cycle of Prism(K,Ss)). If difference patterns in
7(C) are all distinct, then {C +i | i € Z,_1} taken under modulo n — 1, where

oo +1i =00 foralli € Z,_1, are edge-disjoint Hamiltonian cycles.

Proof. Let all translations be under modulo n—1. We first note that 7(7") = w(1”)
for some edges T' and 7" of Prism(Kr(Ls)) if and only if 7" = T'+i for some i € Z;,_1.
For any edge T of Prism(KT(LS)), we obtain the followings.

Case 1: If 7(7T) is in the form (b — a,c — b,a — ¢) and n — 1 is not a multiple
of 3, let T = {a,b,c}, where a,b,c € Z,_; are distinct. If T = T + ¢ for some
i € Zp_1, then {a,b,c} = {a+1i,b+i,c+i}. Suppose that T = T + i for some
i € Zp—y and i # 0. Without loss of generality, we have a = b+ ¢ (mod n — 1),
b=c+i (modn—1)and c=a+i (mod n—1). Thus, a+b+c=a+b+c+3i
(mod n—1). Deduce that 3t =0 (mod n—1). Since i # 0 and i € Z,,_1, we have

i = (n—1)/3 is an integer. Thus, we must assume that n — 1 is not a multiple

of 3, so that i = (n — 1)/3 is not an integer and T'= T + ¢ only if ¢« = 0. By this
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assumption, {T'+ i : i € Z,_1} are distinct.

Case 2: If 7(T) is in the form (min{b —a,(n —1) — (b —a)},00) and n — 1
is odd, let T" = {a, b, 00}, where a,b € Z,_, are distinct. If T = T + i for some
i € Zyp_1, then {a,b,00} = {a+1i,b+i,00}. Suppose that T = T + i for some
i € Zyp—1and i #0. We have a =b+i (modn—1) and b=a+i (mod n —1).
Thus, a +b = a+ b+ 2i (mod n — 1). Deduce that 2i = 0 (mod n — 1). Since
i #0and i € Z,_1, we have i = (n — 1)/2 is an integer. Thus, we must assume
that n — 1 is odd, so that ¢ = (n — 1)/2 is not an integer and T'= T + i only if
i = 0. By this assumption, {T"+i:i € Z,_;} are distinct.

Case 3: If 7(T) is in the form b —a, let T = {a,b,b}, where a,b € Z,_; U {oo}
are distinct. If T'=T + i for some i € Z,_4, then {a,b, l;} ={a+1i,b+1, b/—l—\z}
Notice that b must be equal to b+ i. Thus, i = 0 when b € Z,,_,. If b = oo, then
a = a + i which implies ¢ = 0. Therefore, {T'+ i : i € Z,,_1} are distinct because
T =T+1donlyif?=0.

Hence, when ged(n —1,6) =1, {T'+i: i € Z,_1} are all distinct for each edge T.

Let C be a Hamiltonian cycle of Prism(K,(f’)) containing 17, Ts, ..., T, as edges.
Then C'+1i contains Ty +14, To+1, ..., T, +1 as edges. By assumption that difference
patterns in 7(C') are all distinct, that is, 7(Ty) # 7(T}) for all & # k', we get
Tp+i# T+ forall k £k ori#i. Thus, {C+i|i€ Z, 1} are edge-disjoint

Hamiltonian cycles. O]

From Table 2.2, one possible solution of {z1, xq, 23} for Prism(Ké?’)) is {7,0,7}.
We shall construct a Hamiltonian decomposition of Prism(Kg’)) by fixing one
vertex as co. Next, construct two Hamiltonian cycles in which consist of six
transition nodes and two transition nodes by fill-out the ordering. Try to fill-
out edges of distinct difference patterns. Difference type of two cycles must be

disjoint. Finally, develop two initial cycles under modulo 7 and get the result.
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Proof. Let the vertex set of Kég) be {00,0,1,2,3,4,5,6}. A Hamiltonian decom-

position of Prism (K,

(3)
8

where oo 4+ ¢ = oo for all ¢ € Z;. Those two initial cycles are

A A

Cl = (0073737 2a 2707 174a4707

Cy=(2,4,1,00,6,5,3,0,0,5,1,50,3,4,6,2).

) is constructed by developing two initial cycles modulo 7,

(1,1,5) (1,2,4) (1,3,3) (1,4,2) (2,2,3) (1, 00) (2, 00) (3,00)
{0,1,2}C, | {0,1,3} [{0,1,4}C; | {0,1,5} | {0,2,4} | {00,0,1} | {o0,0,2} {c,0,3}
{1,2,3} | {1,2,4}Cy | {1,2,5} | {1,2,6} | {1,3,5} | {o0,1,2} | {o0,1,3} | {o0,1,4}Cs
{2,3,4y | {2,3,5} | {2,3,6} | {2,3,0} | {2,4,6} | {00,2,3} | {00,2,4} {0,2,5}
{3,4,5} | {3,4,6} | {3,4,0} | {3,4,1} |{3,5,0}Cy| {00,3,4} | {0,3,5} {0,3,6}
{4,5,6} | {4,5,0} | {4,5,1} | {4,5,2} | {4,6,1} | {00,4,5} | {00,4,6} {c0,4,0}
{5,6,0} | {5,6,1} | {5,6,2} |{5,6,3}Cy| {5,0,2} | {00,5,6}Cy | {o0,5,0} {0, 5,1}
{6,0,1} | {6,0,2} | {6,0,3} | {6,0,4} | {6,1,3} | {00,6,0} |{00,6,1}Cs| {00,6,2}
6 5 4 3 2 1 —o0 %
{0,0,1} | {0,0,2} [{0,0,3}Co| {0,0,4} | {0,0,5} {0,0,6} {0,0,00} | {o0,00,0}
{i,1,2} | {i,1,3} | {i,1,4} | {i,1,5} | {i,1,6} {i,1,0} {1,1,00} | {0,00,1}
{2,2,3} | {2,2,4}Cy | {2,2,5} {2,2,6} |{2,2,0}C1 | {2,2,1} {2,2,00} | {0,00,2}
{3,3,4} {3,3,5} {3,3,6} {3,3,0} {3,3,1} {3,3,2) | {3,3,00}C} | {c0,00,3}C
{4,4,5} {4,4,6} {4,4,0} | {4,4,13C, | {4,4,2} {4,4,3} {4,4,00} {0, 00,4}
{5,5,6}C, | {5,5,0} | {5,51} {5,5,2} {5,5,3} {5,5,4} {5,5,00} | {0,00,5}
{6,6,0} {6,6,1} | {6,6,2} {6,6,3} {6,6,4} | {6,6,5}C, | {6,6,00} {0, 00,6}
(1,1,5) (1,2,4) (1,3,3) (1,4,2) (2,2,3) (1,%) (2, %) (3, %)
{0,1,2) | {0,1,3}y [{0,1,4}C, |{0,1,5}Cy]| {0,2,4} | {0,0,1} | {0,0,2} {%,0,3)
{i,2,3y | {i,2,4} | {1,2,5} | {1,2,6} | {i,3,5} | {c0,1,2} | {c0,1,3}Co| {c0,1,4}
{2,3,4} {2,3,5) {2,3,6} {2,3,0} |{2,4,6)Cy | {0,238} {%0,2,4} {%,2,5}
{3,4,5) | {3,4,6}C, | {3,4,0} | {3,4,1} | {3,5,0} |{x,3,4}C5| {x,3,5} {c0,3,6}
{4,5,6} | {4,5,0} | {4,5,1} | {4,5,2} | {4,6,1} | {c0,4,5} | {c0,4,6} {c0,4,0}
5,600 | 5,61} | 562 | (563 | (502} | {%50) | {050} | {0510
{6,0,1yCc1 | {6,0,2} | {6,0,3} | {6,0,4} | {6,1,3} | {c0,6,0} | {c0,6,1} {c0,6,2}
6 5 4 3 p) 1 —% &

{0,0,1} | {0,0,2} | {0,0,3} | {0,0,4} |{0,0,5}Cy| {0,0,6} {0,0,%0} | {00, 0,0}
{1,1,2} {1,1,3y | {1,1,4} {1,1,5} {1,1,6} {1,1,0} {1,1, 5%} {0, 0,1}
{2,2,3)01 | {2,2,4) {2,2,5} |{2,2,60C2 | {2,2,0} {2,2,1} {2,2,50} {00, 50,2}
{3,3,4} {3,3,5} {3,3,6} {3,3,0} {3,3,1} | {3,3,2}C1 | {3,3, %} {00, %0, 3}
{4,4,5} {4,4,6} | {4,4,0C, | {4,4,1} {4,4,2} {4,4,3} {4,4,50} {00, 50,4}
{5,5,6} {5,5,0} {5,5,1} {5,5,9} {5,5,3} {5,5,4} | {5,5,%}C, | {c0,50,5}C
{6,6,0} |{6,6,1}Cy | {6,6,2} {6,6,3} {6,6,4} {6,6,5} {6,6,50} {00, 0,6}

Table 2.3: The list of edges of Prism(X, §3)) classified by their difference patterns.

Edges that appear in C'; and C5 in Theorem 2.4 are labeled with C; and Cj.

Table 2.3 shows difference patterns for all edges in C and Cy and their trans-

lations. We see that both 7(C}) and 7(C3) contain distinct difference patterns
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and 7(C7) N 7(Cy) = @. By Lemma 2.4, {C; +i|i € Z;} U{Co+1i | i € Z7}
are 14 edge-disjoint Hamiltonian cycles and form a Hamiltonian decomposition of

Prism(K§3)). O

For Prism(K §3)), actually, there are many choices to potentially form a Hamil-

tonian decomposition as shown in Table 2.4.

Ty T2 I3
1 10 O
2 8 1
3 6 2
4 4 3
5 2 4
6 0 5

Table 2.4: All possible admissible {z;}’s for a Hamiltonian decomposition of

Prism(K§3))

Let the vertex set of Kég) be {1,2,3,4,5,6,7}. Using {1, 29,23} = {6,0,5}
and fixing vertices 6 and 7, we almost get a Hamiltonian decomposition. However,
we get 10 Hamiltonian cycles, two cycles of length 5 from ordinary edges, and one
cycle from four junctions, as follows:

AAAAAAA

57 67 2? 1737 774?47 37 77 ]‘?67 27 5)7

AAAAAAAAAAAA

( (
( (
(2,6,4,3,5,7,1,1,5,7,3,6,4,2), (
( (
( (

AAAAAAA

37 67 5? 47 17 77 2? 27 17 77 47 67 57 3)7
For n = 2 (mod 6), we notice that each z; in Table 2.2, is a multiple of

n — 1. We suggest that the cyclic method can be used to construct a Hamiltonian
decomposition of Prism(Kf)) for all n = 2 (mod 6). In conclusion, we have done

just the case of n € {4,5,8}.



CHAPTER III

HAMILTONIAN DECOMPOSITIONS OF K,(g,)m,m

The necessary condition for the existence of Hamiltonian decompositions of
K mis 3 | m since the number of edges in Kg}mm, which is (3;”) —3(’%), must
be divisible by the length of a Hamiltonian cycle which is equal to 3m. We will
show that Kfr?,)m,m is Hamiltonian decomposable for all m =0 (mod 3). First, we
study the structure of Ky(;‘i)m,m and find possible Hamiltonian cycles in Section 3.1.
Then a collection of Hamiltonian cycles can be constructed from some particular
initial cycles by using one of the four algorithms given in Section 3.2. Finally, the
combinations of various Hamiltonian cycles form Hamiltonian decompositions of

K,gf,)m,m in Section 3.3.

3.1 Preliminaries

The complete tripartite 3-uniform hypergraph K. S,)m,m defined in Definition 1.6

contains two types of edges, abc-edges and rxy-edges.
e An abc-edge has vertices from each of three partite sets.

e An zzy-edge has two vertices from the same partite set and a vertex from

another partite set.

We may describe these in other words as follows.

e An abc-edge is an edge {u,, up, u.} where u, € Vi, up, € Vi and u, € V5.
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e An zxy-edge is an edge {u,,u),u,} where u,, v, € V; and u, € V; with

i # j, where 7,7 € {0,1,2}.

Since there are three partite sets, we have 6 variations of zxy denoted by aab,
aac, bba, bbc, cca and ccb. Now, we investigate possible Hamiltonian cycles in
K.

Due to Definition 1.3 of Katona-Kierstead cycle, a Hamiltonian cycle in K| S}m,m,
which is in the form of cyclic ordering, requires that every consecutive three ver-
tices in the ordering must not come from the same partite set. Let a,b and c
indicate three different partite sets where vertices in the ordering come from. We
find some possible patterns of indicators a,b and ¢ to form a Hamiltonian cycle
in K,(S,)m,m. For each 3-consecutive indicators, we must avoid aaa, bbb and ccc to
be occurred in the pattern and expect that all six variations of xzy occur evenly
in the pattern. Thus, we get four interesting patterns of a Hamiltonian cycle in

K,(S,)m,m as follows:

1. (abccabbca)*,  where m = 3t,
2. (aabbec)*abe,  where m = 2t + 1,
3. (aabbce)*, where m = 2¢, and

4. (abe)*, where m = t.

The syntax (- - - )* means repeated pattern in the parentheses t times. Each pattern
has a corresponding construction in Section 3.2 summarized in Table 3.1.

. . 3 .
For convenience, we denote the vertices of Kr(n)mm with
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By these notation, abc-edges are in the form {u,v,w}, where u,v,w € Z,,. For
rry-edges with six variations aab, aac, bba, bbc, cca and ccb, we fix the form of
these edges by {u,v,w}, {u,v,w},{w,v,w}, {w,v,w},{u,v,w} and {u,v,w}, re-
spectively, where u,v,w € Z,,. All variations of rzy-edges are determined to
the form {x,2’,y}, where x, 2" € Z,, are under the same partite set and y € Z,,
is under another partite set. Throughout this chapter, for u,v € Z,,, we define

|lu — o] by

||lu — v|| = min{(u — v) (mod m), (v —u) (mod m)}.

3.2 Hamiltonian Cycles Constructions

We provide four constructions of Hamiltonian cycles in ng’,)m,m as follows:

1. C(i,j),
2. C'(i, j),

3. Cyr(i) and C, (i),

4. h(z,y).

Pattern Condition Construction Indices
(abecabbea)* | m =0 (mod 3) C(i,7) i, € L,
(aabbce)*abe m is odd C'(i,7) iyj € Ly

(aabbec)* m is even Cu(i),Coy(@) | 1 € Lo

(abe)” - h(z,y) | (z.y) € Z7,

Table 3.1: Hamiltonian cycle patterns and constructions in ng}mm
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3.2.1 C(i, )

For m =0 (mod 3), define a Hamiltonian cycle C(i, j) of K m by

C(i,j) =(ap+i,bo+j,co+i+j,c1+i+ a1 +1,by +J,bo+J,00 i+ j,a0 +1,

a3+i,b3+j,03+i+j,c4+i+j,a4+i,b4+j,b5—I—j,c5+i+j,a5+i,

"'7am—3+i)bm—3 +jycm—3+i+jacm—2+i+j7am—2+i;bm—2+j;

bmfl +jacm71 +i+j,am,1+i),

where ’L,j S Zm7 {ao,al, e ,am_l} = Zm7 {bo,bl, ce ,bm_l} = Zm, and

{00,017 e acm—l} =T

Lemma 3.1. Let m = 0 (mod 3). Suppose C(0,0) has properties that c; —
by = ¢ — by for all kK € Zy, with k # k', and ||asg—1 — asg|| # |lagy—1 —
agpe ||, bk — baksa|| 7 [[bsws1 — bawaell, [lesk — caerall # |lesw — capall for all
kk' e {0,1,...,% — 1} with k # k. Then {C(i,7) : i,j € Zm} is a set of m?

edge-disjoint Hamiltonian cycles of K,Sf,)m,m.

Proof. For abc-edges, we will show that if {ay + i,bx + j,cx +i+ 7} = {ar +

i o + g e +7 + 7'}, theni =7, j =7 and k = k.

Suppose that {ay + 1, by, —|—j,ck+—i—l—j} = {ap + 7, by —l—j’,ck/—i——i’—l—j’} for
some 4,4, 7,7, k. k' € Z,,. Then
ap +i=ap +17 (mod m),
by +j=bw+j (mod m),
ckt+it+j=cw+17+j5  (modm).
Since ¢ — by, = ¢ — by, we get @ = 4'. Thus, a, = ap, so k = k’. Hence, j = j'.
For aab-edges, we will show that if {asy_y + ,asx +4,bsx + 5} = {aspw_1 +

i/, asg + i/, b3k/ +j/}, then ¢ = il, ] = jl and k = k'
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Suppose that {asg_1 + i, a3k + 7, b3 + j} = {asp—_1 + 7', agp + ', bspr + 5’} for
some i, j, j' € Loy, and k, k" € {0,1,..., % —1}. Then
asp—1 +1 = asy/—1 + ’i/ (mod m),
ask +1=agw +47  (mod m),
s+ =bgw + 5 (mod m),

or

ask—1+1=agp +14¢  (mod m),
asy +1=asp_1+1i (mod m),

bar. +j =bsp + 7 (mod m).
C(0,0) has property that ||lasg_1 — ask|| # ||asw—1 — asw|| for all k& # k', but we
have asy_1 — asp = agrr—1 — asp (mod m) or asg_1 — azx = agr — asp—1 (mod m).
Thus, we can conclude that & = k’. It follows immediately that i = ¢’ and j = j'.
For other xzxy-edges: aac, bba, bbc, cca and cch, we can prove the same result in
a similar manner. Thus, all 3m x m? edges of {C(i, ) : i,j € Z,,} are distinct and

{C(i,7) 4,7 € Zp} is a set of m? edge-disjoint Hamiltonian cycles of K,gij’?mm. O

Lemma 3.2. Let m =0 (mod 3). Let ¢; = b; = x; and a; = x;11 for all i € L,

where

3k/2 if k 1s even,
T3k =
(3k+1)/2 if k is odd,
T3pr1 = 3k + 1,
[m/2] + 3k/2 if k is even,
L3k+2 =

[m/2] + 3k +1)/2 if k is odd,

andk € {0,1,...,%—1}. Then C(0,0) has properties as in Lemma 3.1. Moreover,

||z —2'|| =1 or 2 (mod 3) for all xzy-edges of the form {z, 2’ ,y} in C(0,0).
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Proof. By this setting, we have ¢, — by, = ¢ — by = 0 for all k, k' € Z,, with

k#K. Forke{0,1,...,2 —1},

(
(3k+2)/2  if kis even,
lazk—1 — azi|| = [|73x — T3p1a|| =
\(3k +1)/2 if k is odd,
[m/2] — (3k +2)/2 if £k is even,
[[b3k+1 — barral| = |[Tarr1 — Tarpal| =
jm/ﬂ —(3k+1)/2 if k£ is odd,
(
(3k +2)/2 if k is even,
sk — carrall = [|z3x — T3p41]] =
\(Sk +1)/2 if k is odd.

Thus, Ha?)kfl - GSkH # Hay,kul - @3k"|7 Hb3k+1 - b3k+2H # Hb3k’+1 - b3k/+2|\, chk -
Cap1|| 7 ||caw — cawqa|| for all k, K € {0,1,..., % —1} with & # k" and ||z —2'[| =

1 or 2 (mod 3) for all zzy-edges of the form {x,2', y}. O

Example 3.1. Let m = 6. The cycle C(0,0) in Lemma 3.2 is

727 57175737 0)‘

ol

C(0,0) = (1,0,0,1,3,1,3,3,2,4,2,

3.2.2  C'(i, )

For an odd integer m, define a Hamiltonian cycle C’(i, j) of Kg’)mm by

C'(4,5) = (a0 + j,a1 + j,bo + i+ 4, by + i+, co + 20 + j, c1 + 20 + J,

(12—|—j,a3+j,b2+’i—|—j,b3+i+j,02+2i+j,63+2i+j,...,

-3+ Jy@m—2+ J b3 + 14+ 7,02 + 1+ 7,

Cm—3+2i+j7cm—2+2i+ja

Am—1 +j,bm—1+i+jvcm—l+2i+j>a

where i,j € Zp, {ao,a1,...,0m—1} = Zpm, {bo,b1,...,byu_1} = Zy,, and

{CO, Cly- - 7Cm71} = L.
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A similar argument as in the proof of Lemma 3.1 can be used to prove

Lemma 3.3.

Lemma 3.3. For an odd integer m, suppose C'(0,0) has properties that ag +
Cm-1 7 -1+ C—2 (mod m) and [|agk1 — azk|| # [|azw 11— azw|], [|bas1 —ba|| #
||bokr+1 — bawr|]s || carsr — carl| # |lcaws1 — caw|] for all k k' € {0,1,..., m74 -1}
with k # k. Then {C'(i,7) : i,j € Zpn} is a set of m? edge-disjoint Hamiltonian

cycles of ng,)m,m.

Proof. For abc-edges, we will show that if {ay + j, b1 +1+7,c0+2i+j} =

{aw +§' b +7 +J,co +20 +j'}, theni=4#, j=j k=Fk and { = 0.

Suppose that {ax + 7,01 +i+j,co+ 20+ 5} = {aw + 7,01 +7 + 7,
co + 20" + j'} for some i,4', j, j € Zp,, and (k, 0), (K, ¢') € {(0,m—1),(m—1,m—

1),(m—1,m —2)}. Then

ar+j=ap +3j (mod m),
bn1+i+ji=bu1+i+7 (modm),
c+2i+j=cpy+2¢+35  (modm).

If kK =F, then j =5, i=14and £ = ¢. Suppose that k& # k. Without loss
of generality, assume that £ = 0 and &' = m — 1. We will make a contradiction.
By the values of k and ¥, f =m —1land ' =m—1orm—2. lf £ =0 =m — 1,
then ¢ =4, j = j' and a9 = a,,_1, a contradiction. Next, let ¢/ = m — 2. We get
a0+ Cm—1+2i42) = p-1+Cm—o+2'+25" (mod m). Thus, ag+cmn-1 = Gm_1+Cm—2
(mod m). This contradicts to the assumption that ag+ ¢—1 # apm_1+ ¢m_o (mod
m).

For aab-edges, we will show that if {asy + J, aors1 + J, bor +1 + 5} = {agw +
3 aopi1 + ' bog + 7 + '}, then i =i, j = j/ and k = k.

Suppose that {ask+J, askr1+7, bog + i + 7} = {aow+7", asw i1+, bow + 7 + 5}
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for some ,',j, j' € Zy, and k, k' € {0,1,..., %+ —1}. Then
agr + j = agw + 5 (mod m),
a2k+-1 ‘l‘] = Q2k'+1 + j/ (mOd m)a

bor +i+j=byw +1 + 5 (mod m),
or

ask +J = a1 + 5 (mod m),
Aoyl +J = agrr + 7 (mod m),

bor +i+j=bow +7 +7 (modm).
C’(0,0) has property that ||asgi1 — agk|| # ||a2k+1 — agw|| for all k # k| but we
have agy1 — Gop = Goprp1 — Agpr (Mod M) Or aggy1 — Gop = Gopr — g1 (mod m).
Thus, we can conclude that k = k’. It follows immediately that j = j' and ¢ = ¢'.
For other xxy-edges: aac, bba, bbc, cca and cch, we can prove the same result in
a similar manner. Thus, all 3m xm? edges of {C"(i, ) : i,j € Z,,} are distinct and
{C"(1,7) :4,] € Z} is a set of m? edge-disjoint Hamiltonian cycles of Kﬁ)m,m. O
Lemma 3.4. For an odd integer m, let a; = b; = x; for all i € Zy,, Cpn_3 = Tg,
Cm—2 = X1, Cm—1 = Tpm_1 and ¢; = Tiyo for alli € {0,1,...,m — 4}, where
Tt = 1,
T =m — k,
Topp1 = b+ 2,

and k € {0,1,.. .,mT_l — 1}. Then C'(0,0) has properties as in Lemma 3.3.

Moreover, by,—1 — @yp—1 = 0,bpp—1 —ag=1,¢p—1 — byp_1 = 0, Cp_a — b1 = 1.
Proof. By this setting, we have ag + ¢,,_1 = 1 and a,,,_1 + ¢p_o = 3.

For k € {0,1,..., 5% — 1},

|agk+1 — agkl| = ||boks1 — bok|| = ||war+1 — zorl|

= min{2k + 2, m — (2k + 2)}.
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For k € {0,1,..., 25+ — 2},

l[cor1 — corl| = |[Tarts — Torsal|

=min{2k +4,m — 2k +4)}

and ¢—9 — Cp_z = T1 — To = 2.
Since m is odd, {||wors1 — zar|| : k€ {0,1,..., 22 —1}} = {1,2,..., 24}
Thus, ag+cm—1 # am—1+Cm—2 (mod m) and ||agy 1 —azk|| # [|azk+1—azw ||, |[bak1—

bok|| # |[bar41—baw ||, [|caesr — Canl| # |lcows1 — cow || for all k, K € {0,1,. .., 252 —

1} with k& # k. O

Example 3.2. Let m = 9. The cycle C’(0,0) in Lemma 3.4 is

Il
=l

C'(0,0) = (0,2,0,2,8,3,8,3,8,3,7,4,7,4,7,4,6,5,6,5,6,5,0,2, 1,1, 1).

3.2.3 Cy(i) and C', (i)

For an even integer m, we will construct a family of Hamiltonian cycles Cj;(7)
and C,(7) which contain no abc-edges. It requires the knowledge of 1-factors and

orthogonal quasigroups.

Definition 3.1. [4] Let G be a graph. A 1-factor of G is a subgraph of G in
which every vertex has degree 1. A 1-factorization of G is a partition of an edge

set of GG into 1-factors.
Definition 3.2. [8] (Z,, o) is a quasigroup if
(1)ioj € Z, for all i, j € Z, and
(2)ioj#ioj andioj#i ojforalli,je€Z, withi#d j#j.
Note that the multiplication table of (Z,,0) is a Latin square.
Definition 3.3. [8] (Z,,0,) and (Z,, o3) are orthogonal if for (i,5) # (i',j') € Z2,

101j =14 o1 j implies i 0oy j #£ i’ 09 j'.
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The following Lemma is the well-known result concerning Latin squares.

Lemma 3.5. [8] There ezists a pair of mutually orthogonal Latin squares of order

n for every n # 2 or 6.

For an even integer m, let M = {xox1, xox3, T4Z5, . . ., Tm_oTm—1} be a 1-factor
of a graph with Z,, = {zo,x1,...,Zm_1} as a vertex set. By Lemma 3.5, there
exists a pair of orthogonal quasigroups, (Zm 2, 01) and (Zy, 2, 02) for m # 4 or 12.

For i € Zy, /2, define Hamiltonian cycles of K m, C (i) and Cf;(3), by

CM(Z) = (%, T15 L2(i010) 5 L2(i010)+15 L2(5020) s L2(i020)+15

L2, T35 T2(j011)s L2(>i011)4+1) L2(i0g1)s L2(i0g1) 41y« - « »

Tm—2, Tm—15 Ta(jo; m=2), Lo(jo; m=2)41) Lo(jon m52): xZ(iOQ—mf)Jrl)

and

/ .
OM(Z) = (951, L0y T2(i010)+15 L2(i010)» L2(5020)+15 L2(020)5

L3, X2, T2(io11)+15 L2(i011)» L2(i091)+15 L2(j021)1 « + - »

Tm—1, Tm—25 T(jo m=2) 415 T2(joy m52)5 L(jop mo2) 41 332(1‘02"‘7—2))-

Example 3.3. Let m = 6. The multiplication tables of orthogonal quasigroups

(Z3,01) and (Zs, 09) are as follows.

0,10 1 2 o0,]0 1 2

0[0 1 2 010 1 2
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Let M = {xox1, xox3, 2425} = {03,14,25}. Then

c,(1) =(3,0,4,1,5,2,4,1,5,2,3,0,5,2,3,0,4, 1

Cu(2)

I
—~
w
=
o
N
Rl
Ll
-~
“}—‘
wl
<l
ol
Nl
ot
N
N
\.}_‘I
ol
=l

For m = 4 and 12, there are no orthogonal quasigroups (Zm, 2, 01) and (Zy, 2, 02).
Therefore, Cy (i) and C,(i) will be constructed by the following.

For m =4, let M = {xoz1,z923}. Then

CM(O) = (x07x17x_07x_17x_07x_17 x27x37x_27x_37x_27x_3)7
CM(l) = (mo,xl,l'_g,.f_g,l'_g, :U_Za x27$37fh Z'_0,$_1,$_0),
/ R, — R, —
CM(O) = (3:1,1'0,1'1,1'(),1’2,1'3,1'3,272,1'3,1'2,1'0,1’1),

! —_—— = —_—— =
CM(l) = ($17$0a902»$3>$1,$0,$3,$27$0,I1,$3,$2)'

For m = 12, let (Zy,/4,03) and (Zy,/4,04) be orthogonal quasigroups. For

i € L2, define Cy(i) and C, (i) by

CM(Z) = (.130, R bo(l), bl(l), C()(’i), Cl<i),

To, T3, bg(l), bg(’L), CQ(i), C3<i>, ey

Tm—2, Tm—1, bm72<i)7 bmfl(i)v Cme(Z)a Cmfl<i>>
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and

0 (i) = (1, 20, 0 (1), b (1), (i)

3, T, by (1), U5(2), c5(1), c5(2), - .-

)
=~
—

~.
N—

Tm—1,Tm—2, b/m72<7:)7 bgnfl(i)u ClmfZ(i)7 c;nfl(i)))

where for j,k € {0,1,..., % — 1},

bak(j) = b%+2k+1(j + %) = blzk+1<j) = b/%+2k(j + %) = T2(josk)>

cor(J) = czyon1(J + F) = pn (U + F) = ok (7) = Tagjoun);

bory1(j) = bm o (j + 5) = by (j) = b/%+2k:+1(j + 1) = T2(josk)+1,

Cort1(j) = cmyo(j + ) = .+ 5) = C/%+2k+1(j) = T2(josk)+15

bars1(J + ) = bzyaw(f) = 0y (j + ) = Vi o1 () = T2 42(j05b),

Car1(J + F) = cziau(f) = & (f) = o1 (G + F) = T2 423040,

bor(j + %) = b%+2k+1(j) = b/2k+1(j + %) = b/%+2k(j) = T2 4+2(jogk)+1)
con(j +7) = cmponi1 () = a1 () = myon (G + F) = T2 s2Gj0k)41-

Lemma 3.6. For an even integer m, given a 1-factor M of a graph with Z,, as

a vertex set, {Cn(1),Chy (i) 1 @ € Zuyyya} is a set of m edge-disjoint Hamiltonian

cycles of Kﬁf’,)m,m.

Proof. Let M = {xozr1,x923,...,Tm_2%m_1}. Consider the case where m ¢
{4,12}. For aab-edges, we will show that if {Zox, Tor11, Ta(iork)+s b = T2k Taw+1,
To(orky 1y }> then i =i, j = 7" and k = k.

Suppose that {Tak, Tokt1, Tagork)4s } = T2k Tak'+1, Ta(ior k)14 ¢ for some 7,4,

k,K' € Zymjy and j, 5 € {0,1}. Then

2k = 2K/,

2(@ 01 kf) —l—] - 2(2, 01 k/) +]l
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That is k = k', j = j' and i 0y k = i’ o1 k. Since (Zy,/2,01) is a quasigroup, i = 7'.

The proof for aac-edges can be done in the same way.

For bbc-edges, we will show that if {Z3(i0, %), T2(io,k)+1> T2(ioak)+j } = 1Z2(i01k)

L2(i'01 k') +1, x?(i’OQk’)—&—j’}u then 2 = ?:/, j = j, and k = k.

Suppose that {Taio, k), Ta(ior k) 115 T2(ioak) 15 } = \T2(@01k')s T2(ior k)41 T2(i'ozk') 15’ }

for some i,7', k, k' € Zy,)2 and j, 5" € {0,1}. Then

iolk:ilolk,,

iogk:ilogk/,

-/

J=17-
Since (Zp/2,01) and (Zy, 2, 02) are orthogonal quasigroups, we have i = ' and
k=FK.

The proof for other xxy-edges: bba, cca and ccb can also be done in the same
way. Thus, all 3m x m edges of {Cy(i),C(i) : © € Zpyo} are distinct and
{Cm (i), Cy (i) @ € Zy,ya} is aset of m edge-disjoint Hamiltonian cycles of K m.

For m = 4, it is easy to see that Cj/(0), Cp(1), C9,(0) and C%,(1) as shown
before are mutually edge-disjoint Hamiltonian cycles of K,(f,)m,m.

For m = 12, consider aab-edges: e; = {xok, Tor+1,T; } and eg = {$%+2k, Tmyopi1,
T;}, where k € Zp,/4 and i € Zy,. Note that {2(j o3 k),2(j os k) + 1, % + 2(j o3
k), % +2(josk)+1:7,k € Zpu} = Ly by means of a quasigroup.

If i = 2(j o3 k), then e; € Cp(j) and ex € Oy (5 + F).

If i = 2(j o3 k) + 1, then e; € C'(j) and ey € O (5 + ).

If i = +2(j o3 k), then e; € C,(j + F) and ez € Cu(j)-

Ifi=2 +2(josk)+1, then e; € Cy(j + %) and ey € C(j).

Thus, each aab-edge is in a unique Hamiltonian cycle. We can also use this argu-

ment to show the same result for aac-edges.

For bbe-edges: {Ta(josh), Ta(josh) 115 Ti} (OF {TH 1 2(jo5h) TE 12(josk) 11, Ti}), We will
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show that if {xg(jo?)k), xg(jogk)+1, x:l} = {Q}'Q(j/ogk/), xg(j/03k1)+17x=7y}, then ¢ = i,, ] = j,

and k =K'

Suppose that {Taosk): Tajosk) 11+ T} = {T2(j70sk)s Ta(jrosk’) 11+ L1 } fOr some j, 5,

k,k' € Zpys and i € Zy,. Then

There are four possibilities for i: 2(josk), 2(josk)+1, F+2(josk) or F+2(josk)+1
(also for ': 2(j" o4 k'), 2(j' 04 k') + 1, B +2(j 04 k') or F 4+ 2(j" 04 k') + 1). Since
i =1', in any cases, we have j o4 k = j' o4 k’. The orthogonality of (Z,,,4, 03) and
(Zapya, 04) implies j = 7" and k = k.

Other xzy-edges: bba, cca and ccb can be showed by using the same technique.

This completes the proof. n

3.2.4 h(zx,y)

For (z,y) € Z2,, define a Hamiltonian cycle of K m, h(z,y) by

h(%Q):(Oaf7x+y;m—17m—1+$,m—1+$+y,,1,1+x,1+x—|—y)

We lend this construction of Hamiltonian cycle of Kr(i)m,m from Kuhl and
Schroeder in [7]. They assign the difference type (v — u,w — v) to each abc-edges
{u,v,w}. In Kr(,i)mm, there are m? distinct difference types and there are m edges
with a specific difference type. Each h(z,y) has 3m abc-edges and contains all

abc-edges of difference types (z,y), (z + 1,y) and (z,y + 1).

Lemma 3.7. [7] Letm = 0 (mod 3) and Ay = {(x,y) € Z?, : x—y =0 (mod 3)}.
Then {h(z,y) : (z,y) € Ao} is a set of m*/3 edge-disjoint Hamiltonian cycles of

K .
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Example 3.4. From Lemma 3.7, in the case of m = 6, we obtain Ay = {(0,0),
(17 ]‘)7 (27 2)7 (3) 3)7 (4’4)7 (575)’ (073)7 (1’4)7 (2’5)’ (370>’ (47 ]')7 (57 2)} and

h(z,y), where (x,y) € A are listed below.

3.3 Results

We will show that Kr(,i)mm is decomposable into Hamiltonian cycles for all
m = 0 (mod 3). We separate the cases of m into odd and even, that is m = 0
(mod 6) and m = 3 (mod 6), and add a special case of m = 3.

Let H be a subhypergraph of K\ m. Let ny (H) and ny(H) denote the number
of abc-edges and zxy-edges in H, respectively. Each Hamiltonian cycle H in
Section 3.2, C'(i,7), C'(i,7), (Cpm (i) and C}, (7)), and h(x,y) can be regarded as

a subhypergraph of Kr(,i)mm. The number of edges in K,Si)mm, (3;“) — 3(’;) which
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is equal to 4m?® — 3m? can be divided into m3 abc-edges and 3m?® — 3m? zay-
edges. We count nq(H) and ny(H) as shown in Table 3.2. If H is a Hamiltonian

decomposition of Ky m, then Yonenm(H) = m? and Y0 no(H) = 3m® —

3m?.
H ni(H) | nolH) Condition
Kﬁ)mm m3 | 3m3 — 3m?2 .
C(i, ) m 2m m =0 (mod 3)
C'(i, 7) 3 3m—3 m is odd
Ch (i), Chy(7) 0 3m m is even
h(z,y) 3m 0 -

Table 3.2: The number of abc-edges, ni(H), and zzy-edges, no(H), in H

Let C(0,0) be a Hamiltonian cycle in Lemma 3.2 and C(0, 0) be a Hamiltonian

cycle in Lemma 3.4. We obtain several results as follows.

3.3.1 m =0 (mod 6)

For m = 0 (mod 6), we have two families H; and #H, of Hamiltonian cycles
forming two Hamiltonian decompositions of Kg}m,m.

First, let F; be a 1-factorization of a graph G with V(G) = Z,,, = [0]U[1]U[2],
the union of the classes of modulo 3, and E(G) = {uv : u,v € Z,,||u —v|| =0
(mod 3)}. G is isomorphic to 3K,,/3, three copies of K,,/3. Each component

consists of vertices in the same class of modulo 3. An example of G is shown in

Figure 3.1. Then
Hi = {C(l,]) 11,7 € Zm} U {CM(Z),C]/M(Z) 11 € Zm/g, M e fl}

Next, let Ag = {(x,y) € Z2, : v —y = 0 (mod 3)} and F, is a 1-factorization of
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K, with Z,, as a vertex set. Then

Ho = {h(z,y) : (z,y) € Ao} U{Cm(i),Cyy(3) 1 1 € Ly jo, M € Fo}.

Figure 3.1: A graph G with V(G) = Z;2 and its 1-factorization F; indicated each

1-factor in the same edge style

Since K3, is factorizable into 2n — 1 1-factors [11}, we have |F1| = % — 1 and
|F2| = m — 1. Then we calculate the number of edges in Hy, >y, ni(H) =
m? xm=m?and Yy, na(H) = m? x 2m+m(%g — 1) x 3m = 3m® — 3m* and
the number of edges in Ha, D pycqy, 11 (H) = %2 x 3m =m®and Yy no(H) =

m(m — 1) x 3m = 3m?> — 3m?.

Here are some facts that we can easily obtain.

F1 For any two 1-factors M and M’ in K,,, we see that if M and M’ are disjoint,

then Cy(i) and Cyp (i) are also disjoint for all ¢ € Z,, s.

F2 For all zxy-edges {z,2',y} in {C(i,j) : i,j € Zn}, ||t —2'|| = 1 or 2

(mod 3) as in Lemma 3.2.

F3 For all zay-edges {x, 2", y} in {Crs (i), Oy (1) 1 & € Zypyo, M € Fi}, ||z—2'|| =

0 (mod 3) by the construction of Fj.
F4 {h(z,y) : (x,y) € Ay} contains only abc-edges.

F5 {Cn (i), Cyy (i) 1 1 € Ly, M € Fy} contains only zxy-edges.



36

With F2 and F3, any Hamiltonian cycles in {C(i,7) : ¢,j € Z,} and any
Hamiltonian cycles in {Cy (i), Cy;(9) : @ € Zyyya, M € F1} are disjoint because of
distinct xzy-edges. By Lemma 3.1 and Lemma 3.6 with F1-3, we see that H; is
a Hamiltonian decomposition of Kfs)mm With F4 and F5 along with Lemma 3.7

and F1, it is clear that H, is a Hamiltonian decomposition of K,Si”}m,m.

Example 3.5. For m = 6, the Hamiltonian decomposition #; consists of C(i, 7)
where i, j € Zg, with C(0,0) given in Example 3.1 and C), (i), C},(7), where i € Zs,
and M = {03, 14,25} given in Example 3.3. The Hamiltonian decomposition H,
consists of {h(z,y) : (z,y) € Ay} given in Example 3.4 and Cy,(7), C,(7), where

i € Zs, and M € {{01,25,34},{02, 31,45}, {03, 42,51}, {04, 53, 12}, {05, 14, 23} }.

3.3.2 m =3 (mod 6)

For m =3 (mod 6), let

Ha ={C"(3,5) :4,§ € Zim} U{N(z,y) : (z,y) € Ao, # y},

where Ay = {(z,y) € Z%, : x —y = 0 (mod 3)}. We calculate the number of
edges in Hs, > yeq, m(H) = m? x 3+ (™ —m) x 3m = m® and > en, 2(H) =
m? x (3m — 3) = 3m® — 3m?.

To show that Hj is a Hamiltonian decomposition of Kg}m,m, we must show
that {C"(4,J) : i,J € Zy,} contains all abc-edges of difference types (z,v), (z+1,y),

and (z,y + 1) for all z,y € Z,, with x = y.
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Three abc-edges in C'(i, j) for each i, j € Z,, have difference types

(bm—l — Qp—1 + i, Cm—2 — bm—l + l) - (Za 1+ ]-)

for the edge {am—_1 + J,bm_1 + %+ J,Cm—2 + 20 + j},

(bm—l —Upm-1+1,Cp1 — b1 + Z) = (27 7’)

for the edge {am—1+ j,0m—1+ 1+ J,Cm_1 ++20 + 5},

(bm—l —ap + Z.a Cm—1 — bm—l + l) = (Z + 172)

for the edge {ag + j,bm—1+ 1+ J,Cm_1+2i + j}.

Since each ,j corresponds to m different values of Z,,, {C'(i,j) : i,j € Zn}
contains all edges of difference type (i,7), (i + 1,7) and (¢,7 + 1) as desired.

Thus, Hs is a Hamiltonian decompositions of Kr(,i)m,m, where m = 3 (mod 6).

Example 3.6. For m = 9, the Hamiltonian decomposition #H3 consists of C’(1, j),
where i,j € Zg, with C’(0,0) given in Example 3.2 and h(z,y) where (z,y) €
{(0,3), (1,4), (2,5), (3,6), (4,7), (5,8), (6,0), (7,1), (8,2), (0,6), (1,7), (2,8),
(3,0), (4,1), (5,2), (6,3), (7,4), (8,5)}. See Figure 3.2 for the demographic of

(x,y) for h(x,y) in Hs.

3.3.3 A special case, m =3

The case of m = 3 is special because it is also in the case of m = 3 (mod 6)
but h(z,y) is not required, and we can get another solution as in the case of m = 0
(mod 6) but Cy(i) and C},(i) are not required. We count the number of edges
nl(Kéfg?g) = 27 and nz(KgB) = 54. The sets of Hamiltonian cycles C; = {C(i, j) :
i,j € Ly} and Co = {C'(i,§) : i,j € Z} both have m? Hamiltonian cycles. The
number of edges in C1, Y e, m(H) = m® = 27 and Y- ;0 n2(H) = 2m® = 54,

and the number of edges in Ca, Yo, mi(H) = 3m* =27 and ), no(H) =
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Figure 3.2: The coordinates (z,y) of h(x,y) in Example 3.6 shown as black cells

with | showing (z,y + 1) and - showing (z + 1,y)

3m?® —3m? = 54. By Lemma 3.1 and Lemma 3.3, we can conclude that C; and C,

are both Hamiltonian decompositions of K. §3§3

Example 3.7. Let C'(0,0) = (0,0, 6, T,l,T, 2, 5, 2). Then the Hamiltonian de-

composition C; of K?(,:q’;g obtained from Section 3.2.1 is shown below.

k=l
el
\'H
\t_kl
o
Dol
)
o

C(0,0) = (0,0,
C(0,1) = (0,1,1,2,1,2,0,0,2),
C(0,2) = (0,2,2,0,1,0,1,1,2),

C(1,0) = (1,0,1,2,2,1,2,0,0),
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Let C’(0,0) = (0,2,0,2, 0,2,1,1, T) The Hamiltonian decomposition Cy of K:)E???,:a

follows from Section 3.2.2.

We summarize these results in Table 3.3, and Theorem 3.1 concludes all the

results.
The number of
Decomposition Condition

C(i,g) | €', 3) | Cu(2), Cap (i) | Dl y)
Hy m =0 (mod 6) | m? — m(% —1)
Ho m =0 (mod 6) - - m(m — 1) %2
Hs m =3 (mod 6) — m? — %2—m
C m=3 9 - _ _
Co m =3 - 9 - —

Table 3.3: The combinations of Hamiltonian cycles in decompositions of K

,1, MM

Theorem 3.1. Kf;:’)mm 1s decomposable into Hamiltonian cycles if and only if

m =0 (mod 3).



CHAPTER IV

CONCLUSION

We have investigated two families of hypergraphs: prisms over complete 3-
uniform hypergraphs, Prism (K ,(13)), and complete tripartite 3-uniform hypergraphs,
K m.

For Prism(KfL?’) ), the difficulty of finding its Hamiltonian decomposition is
increasing rapidly as n is getting larger. We use the fill-out method to find solu-
tions for n € {4,5} and develop some knowledge of cyclic method from Bailey and
Stevens [2] to find a Hamiltonian decomposition of Prism (K| é?’)). The question on
a Hamiltonian decomposition of Prism(KéB)) is still unsolved. However, we see
the possibility of the cyclic method for n = 2 (mod 6) by calculating number of
Hamiltonian cycles satisfying Lemma 2.3. In conclusion, we have done only the
case of n € {4,5,8}.

For K,gi)m,m, we have completely found its Hamiltonian decomposition for all
necessary condition of m. We provide four patterns of partite set ordering that can
be formed a Hamiltonian cycle in K, ,(s’,)m,m. Next, we develop the constructions that
produce the set of disjoint Hamiltonian cycles for each pattern. The constructions
of C(i,7) and C’(i,7) give the sense of cyclic method in 2-dimension while C)(7)
and () use 1-factors and orthogonal Latin squares. With Kuhl and Schroeder’s
work in [7], the construction of h(z,y) fulfills the hole of the decompositions. A
Hamiltonian decomposition of Ky(,?)mm is a combination of various sets of edge-

disjoint Hamiltonian cycles. The cases where m is odd and m is even are solved

separately. Finally, we can conclude that a Hamiltonian decomposition of Kr(,i)mm
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exists for all integer m such that m is a multiple of 3.

Further Works

We suggest the following tasks to do beyond this dissertation.

1. Find initial cycles and use the cyclic method for finding Hamiltonian de-

compositions of Prism(KfLB)), where n = 2 (mod 6).

2. Find the Hamiltonian decomposition of Kﬁ,?,)m,m — I, where [ is a 1-factor of

ng’)mm and 3 1 m.



[10]

[11]

[12]

REFERENCES

Alspach, B.: The wonderful Walecki construction, Bulletin of the Institute
of Combinatorics and its Applications. 52, 7-20 (2008).

Bailey, R.F., Stevens, B.: Hamiltonian decompositions of complete k-uniform
hypergraphs, Discrete Mathematics. 310, 3088-3095 (2010).

Berge, C.: Graphs and hypergraphs, Translated by Edward Minieka, North-
Holland, Amsterdam-London (1973).

Chartrand, C., Zhang, P.: Introduction to Graph Theory, McGraw-Hill, Sin-
gapore (2005).

Jirimutu, Wang, J.: Hamiltonian decomposition of complete bipartite -
hypergraphs, Acta Mathematicae Applicatae Sinica English Series. 17, 563—
566 (2001).

Katona, G.Y., Kierstead, H.A.: Hamiltonian chains in hypergraphs, Journal
of Graph Theory. 30, 205-212 (1999).

Kuhl, J., Schroeder, M.W.: Hamilton cycle decompositions of k-uniform
k-partite hypergraphs, Australasian Journal of Combinatorics. 56, 23-37
(2013).

Lindner, C., Rodger, C.: Design Theory. CRC Press, Boca Raton (1997).

Meszka, M., Rosa, A.: Decomposing complete 3-uniform hypergraphs into
Hamiltonian cycles, Australasian Journal of Combinatorics. 45, 291-302
(2009).

Verrall, H.: Hamilton decompositions of complete 3-uniform hypergraphs,
Discrete Mathematics. 132, 333-348 (1994).

Wallis, W.: Introduction to Combinatorial Designs, second edition, Chapman

& Hall/CRC, Boca Raton (2007).

Xu, B., Wang, J.: On the Hamiltonian cycle decompositions of complete 3-
uniform hypergraphs, FElectronic Notes in Discrete Mathematics. 11, 722-733
(2002).



Name
Date of Birth

Place of Birth

Education

Scholarship

43

VITA

Miss Sansanee Termtanasombat
16 April 1988
Ratchaburi, Thailand

B.Sc.(Mathematics) (First Class Honors),

Mahidol University, 2010

Science Achievement Scholarship of Thailand (SAST)



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	1.1 De�nitions and Notations
	1.2 History and Overview

	CHAPTER II HAMILTONIAN DECOMPOSITIONS OF Prism(K(3)n )
	2.1 Preliminaries
	2.2 Results

	CHAPTER III HAMILTONIAN DECOMPOSITIONS OF K(3)m;m;m
	3.1 Preliminaries
	3.2 Hamiltonian Cycles Constructions
	3.3 Results

	CHAPTER IV CONCLUSION
	REFERENCES 
	VITA



