=

N7 AL AL AL NILLUANABSANNR A bUNTZ LI UL UL AN A UN 1AL

u

= g
UNANYTT NBIYINA

ﬁmmﬁwuéﬂﬂuzﬁqwﬁmqmiﬁm:mmwﬁﬂqmﬂ?mmﬁmmmmmumﬁmﬁm
a1 ATInanseaNianesuazmaluladaisaumna
NARTIATIAATAATLALANUINNIAANNILAAT
ANLEANENANART ANIAINTRINUNINENAY
Tnnsfinuen 2555
A1&nEaesinasnInfuinands

3D-MODEL RENDERING IN CHINESE BRUSH STYLE

Miss Nucharee Thongthungwong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science and Information Technology
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2012
Copyright of Chulalongkorn University

Thesis Title
By
Field of Study

Thesis Advisor

3D-MODEL RENDERING IN CHINESE BRUSH STYLE
Miss Nucharee Thongthungwong

Computer Science and Information Technology
Rajalida Lipikorn,Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master’'s Degree

.. Dean of the Faculty of Science
(Professor Supot Hannongbua,Dr.rer.nat.)

THESIS COMMITTEE

... Chairman
(Assistant Professor Suphakant Phimoltares,Ph.D.)

... Thesis Advisor
(Assistant Professor Rajalida Lipikorn,Ph.D.)

... Examiner
(Assistant Professor Nagul Cooharojananone,Ph.D.)

... External Examiner
(Associate Professor Viwat Udompitisup)

WiIT oA gL ALAZ NI LILANA AN lNITLR UL LA LAY
v;iﬁu%'u (3D-MODEL RENDERING IN CHINESE BRUSH STYLE) a.
MBNEINLTNUTUAN : WA, 9. F1an1 Atingnd, 25 wii.

A9 AL AILAT L UUANANANNAR nAaluntanluaan1sn N unssauna
nmeupslssinnifan Teendiundnaziilunisliuasaruuuanaesa Nl gl
dl a U 1 dlrz; :J/ [~ 1 a . Q‘I v z U
wuungaNassauanaantiangy amiiiuiuduniweitaaiasadlunwnaieauson
PANAAARS wAnTZIiuARINARANLWINIanEa TN 1T L AL AL INNURIL LA ARV NR A
Imﬂummmmm@mﬂumwa@ﬂmmmeumwmmiumm@ﬁviml,uumwj Fannsfiaz 1y
LAILAY mLLuum@@mmmImﬂnmmmmumwmmuu $1flugesBuannnisvndui
%mmummmmmmmmm%mmqmquﬂugﬂLLuummmim LANTELIUNITAUIU
PNABAINANITU TN TNENTLAZLIAIRE 1NN N3NNI 7AW TR ATUNINHAE
al ?:/ all % [2// | dl dl o o va
anvisnanldarnnisauuiuiuniwglssresdu dainnazin ldwmunldinsesuaunuy
e lwdsAady Anenfinuseruiiianedsasnisanuaunlifiadselend waznag
AFAUNLAPIL LR AR N AN AN T UN LW uNAaazFanszurun ULl wEaRaly
Taeadfulinnszuounuuaeduyiuaniuilszisudfny

|
A

AT INLINITABNAUAATUALNATUIAT AVTRWNA AVUNDTATRR oo

77] 1
= =

fUn1sfnn 2555 ANENATA 2. NUFNHIINUNINUTUAN

5273606023 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS : NON-PHOTOREALISTIC RENDERING / 3D OBJECT / ANIMATION / LINE
RENDERING / SILHOUETTE

NUCHAREE THONGTHUNGWONG : 3D-MODEL RENDERING IN CHINESE
BRUSH STYLE. ADVISOR : ASST.PROF.RAJALIDA LIPIKORN Ph.D., 25 pp.

3D rendering has become popular in the film industry. However, for the
animation industry, they tend to find a method for rendering in artistic style. There are so
many approaches for creating stylized rendering. One of which is to create traditional
animation’s look, which has edge lines or silhouette edges. In order to succeed this
idea, it's necessary to find silhouette edges on 3D model. However, calculation for
finding silhouette edges on 3D model is time and resource consuming because of
redundant calculation. Also the results of calculation mostly are images or fragments of
line, which are hard to stylize. This thesis presents a technique for reducing redundant

calculation and stylize silhouette line focusing on Chinese brush paint style.

ACKNOWLEDGEMENTS

| would like to express my great appreciation to my advisor, Asst. Prof.
Rajalida Lipikorn who generously offers guidance and support during my study here.
She helps me a lot in understanding how mathematics formulation works on computer,
also how to do object oriented programming. | would also like to thank to Asst. Prof.
Nagul Cooharojananone, who taught me on algorithm and data structure which play
important roles in this thesis. My grateful thanks are also extended to Asst. Prof.
Supakant Phimoltares, his Computer Vision class helps me a lot in comparing
computer’s perception of image with artist’'s perception, and to Assoc. Prof. Viwat Udom
pitisup who expands my vision of Chinese brush painting style. Without their support,

the completion of this thesis would not have been possible

CONTENTS

P o1 (=T f Qa1) I USRS iv
ADSTACE (ENGISN) ©vtiiiieiee ettt v
ACKNOWIBAGEIMENTS ...ttt e ettt e et e e Vi
(070101151 1 TR TP USROS Vii
LIST OF FIQUIES ettt ettt et e bt et et e et eeanbee e viii
CHAPTER | INTRODUGCTION ...ttt ettt ettt ettt ee ettt et e e e e eneenneeenaeanneenneeas 1
ODJECTIVES ettt ettt e e 1
Problem FOrMUIBLIONcoii e 1
SCOPES OF WOTK 1ttt ettt ettt et eenneeas 1
MELNOAOIOGY .ttt 2
CHAPTER I LITERATURE REVIEW ...ttt ettt 3
BaSIC 3D FENAEIING ...ttt 3
NON-PhOtorealistic FENAEIING . v.iiiiiiii i 6
Brush stylization @pproacCh........coviiiii 8
REIEVANT FESEAITH .. 10
CHAPTER [l METHODOLOGY ...ttt ettt ettt ee et eee e tee e ene e e nae e e nnee s 12
Type of €dges 0N 3D MOAEL.......uiiiiiiiiiii e 12
COlleCHNG 3D LA ..t 12
FINAING SIINOUETE BAGES ..ouvvieiiiiiiii et 13
Reducing data by using depth Mapcc.eeviiiiiii e 15
Creating Chinese DruSh STYIEiiiiiiiii e 16
CHAPTER IV RESEARCH RESULT ...ttt ettt ettt nnee e e e 17
CHAPTER V CONCLUSIONS AND DISCUSSIONS ...ttt 20
GENEral CONCIUSION......iiiiie ittt e e 20
DISCUSSIONS .ttt ettt e bt e et e 20
REFFERENCES ...ttt ettt ettt ettt et e e e e e e bt e et e ee e abeeaneeeneeeeee e 21
AAPPENDIX ettt ettt R et R e Rttt ae e Rttt eae et b e et ee e eaeeenteaneeeneas 23
RV PSPPSR 25

LIST OF FIGURES

Figures Page
1 lllustration of Physical COMNEIl BOX......cciuiiiiiiiiiiiii it 4
2 lllustration of FINdiNg SIlNOUEIE @AGEeoiiiiiiiiii e 7
3 lllustration of Comparing pen-painted image and ink-painted image..........ccccvveevviiiieeiiiiineeene 8
4 llustration of GONGDI SLYIEuiiiiiie e 9
5 USTration OF XIEYT STYIE ..couiiiiiiie et 10
6 lllustration of Collection 3D data as ODJECT.......uuiiiiiiiiiiiiie e 13
7 llustration of Silhouette edge calculation’s rESUIL...........coieiiiiiiiiiic e 15
8 lllustration of StroKe TP IMAGEeiiiiiiiiie e 16
9 Ilustration Of TOMUS FENAEIING «..vveiiieieiiiie ettt e e 17
10 lllustration of Tree branch rendering with watercolor surface shader..........cccccoveiiiiiinen 17
11 lllustration of Scene rendering with background of Chinese brush paintingc.cccccooeene 18
12 lllustration of ANIMAtING TOTUS ...eeiiiiieiiii et 19

13 lllustration of Comparing computer generated stroke and physical strokeccccceeee 19

CHAPTER |

INTRODUCTION

3D rendering has become popular in the film industry. However, for the
animation industry, they tend to find a method for rendering in artistic style. This trend is
called non-photorealistic rendering. There are so many approaches for creating stylized
rendering. One direction is to create traditional animation’s look, which has edge lines
or silhouette edges. In order to succeed this idea, it's necessary to find silhouette
edges on 3D model and do projection on 2D plane as vector lines. Then it can be

stylized such as Chinese brush painting style.
Objectives

This research aims at developing an algorithm for creating the Chinese
brush style on 3D animation rendering. The objectives are:

1. To generate silhouette lines from 3D model.

2. To create continuity of 3D-based silhouette lines in frame sequence.

3. To render lines in Chinese brush style.
Problem Formulation

1. Extracting lines in 3D model is time consuming, and also the extracted

line is hard to control for shading in artistic style.

2. Most recent line shader does not interact with the light source which
causes the misunderstanding of light and shape of the 3D model when doing the non-

photorealistic rendering.
Scopes of work

1. The 3D models used in this thesis are created by modeling in 3D

applications.

2. The 3D models used in this thesis must be non-manifold polygon.

3. The 3D models should have the number of polygons no more than
5,000 triangle faces (or 2,500 quad face), which are considered as medium resolution

character model in game industry.

4. Only lines extracted from the 3D models will be rendered (Not render

the surfaces).

5. One light source per one shader will be used as a reference line

rendering.
Methodology

The methodology for this research consists of 2 parts. The first part is to
generate silhouette lines, and another is to create the Chinese brush style rendering.

To generate silhouette lines or edge detection, which can be stylized, the
geometry-based approach is considered. Though it might take time for computing,
GPU technique could help fixing this problem. Point cloud technique is recommended
for storing the lighting data in order to synchronize the edge lines of a changing model
in animation.

Moreover, in order to reduce the amount of edge comparison, the
geometry data should be collected, especially the edge data. It should be organized as
tree data structure, which can create the relationship of each edge so that in
comparison level, only related edges would be compared.

The extracted lines from 3D model should be vector lines so that we
can apply the line shader, and have the light source for controlling the line weight and
thickness.

For the Chinese brush stylization, the 3D brush technique would be
adapted to imitate the brush stroke rendering. The light data on geometry vertex might
be used for controlling the weight of brush. Also the line direction might affect the 3D

brush shape.

CHAPTER I

LITERATURE REVIEW

Basic 3D rendering

3D rendering is the technique to create computer generated 2D image
based on 3D modeling. This is similar to taking a photo or filming a scene via camera in
real life. Several 3D rendering methods have been developed and also can create
various visual presentations such as wireframe, smooth shading, photo realistic and

non-photorealistic, etc.

“Rendering” in term of artist is to draw, paint, or present visual art based
on artist’'s perception. Basically, artist's fundamental of perception is to see or to view
things. People can see things, because light falls on an object and reflects to human’s
eyes. Light, in Physics, is a range of electromagnetic radiation that can be detected by
human eyes. Therefore, what people actually see is the light distribution on an object,

which is called shading in 3D rendering.

In Computer Graphics, how an object is seen on viewing camera, can be
explained by ray tracing. Physically, ray tracing is described as: light rays are emitted
from light sources, bounce around in a scene, reflecting off objects and picking up their
color, and finally strike the film in a camera. However, in 3D rendering, ray tracing does
not follow rays outward from the light source, because most of rays do not come to the
camera. Also it consumes too much resource to compute every ray from light source,
and pick only ones that can make their way to the camera. Instead of following rays
from the light source, ray tracing rendering tends to trace a ray from a viewing camera
through each pixel on a viewing plane, and calculate color of visible objects. At this
state, it is called ray casting. When ray hits a surface, it could produce up to 3 new
types of ray: reflection, refraction and shadow. Reflection ray is a mirror-reflection
direction from shiny surface, and then it is intersected with objects in the scene. The
closest object intersects with the ray will be seen in the reflection. Similarly, refraction
ray travels though transparent objects with refractive index. Shadow ray is sent to a
source and is used to determine if a point on surface is visible to a light. After ray
casting, ray tracing will generate up to 3 new types of ray and calculate the final color of

that pixel on screen.

Though ray tracing works well in explaining light effects in real life, it is
not enough. As mentioned earlier, physical light is a range of electromagnetic radiation.
Electromagnetic radiation can be both waves and particles. Ray tracing explains light
distribution as wave pretty well, but it still misses some light effects, for example global

illumination, that can be well explained by particle with energy called photon.

Global illumination is the calculation of how light affects an entire scene,
especially the contribution of light reflected between surfaces. This is opposed to
coming straight from a light source. Jeremy Birn (lighting technical director at Pixar and
author of Digital Lighting and Rendering, 2006) defines global illumination as “any
rendering algorithm that simulates the inter-reflection of light between two surfaces.
When rendering with global illumination, you do not need to add bounce lights to
simulate indirect light, because the software calculates indirect light for you based on

the direct illumination hitting the surfaces in your scene”.

- -,

Figure 1 lllustration of Physical Cornell Box

As ray tracing generates up to 3 new ray types to determine the final
color, global illumination assumes ray, travelling from a light source at a point on
surface, would distribute new rays. These new rays would be considered as a new light
source for further calculation. The light from distributed ray on a surface is called

indirect light. Cornell Box (figure 1) is a good example to explain this kind of light effects.

Created by Cornell University (Goral et al., 1984), Cornell Box is a test aimed at
determining the accuracy of rendering software by comparing the rendered scene with
an actual photograph of the same scene. A model of the box consists of one light
source in the center of a white ceiling, a green light wall, a red left wall, a white back wall
and a white floor. White objects are often placed inside the box to show the effects of
global illumination. For example, some light should reflect off the red and green walls
and bounce on to the white wall so part of the white wall should appear slightly red or
green. Also the white objects should be tinted by the color of the wall since the light,
travelling from the light source to the colored wall, bounces colored ray and becomes
indirect light that would affect the color on object’s surface. Sometimes this kind of

effects is called color bleeding.

There are several methods to calculate global illumination in 3D
rendering. Conventional radiosity is the first method of global illumination to become
available. It is assumed that indirect light is transmitted between surfaces by diffuse
reflection. The light leaving a surface (its radiosity) consists of self-emitted light and
reflected or transmitted indirect light. The amount of light arriving at a surface requires a
complete specification of the geometric relationships among all reflecting and
transmitting surfaces, as well as the light leaving every surface. Greenberg et al.’s
equation (Greenberg et al., 1986) explained that the amount of light energy leaving
particular surface is equal to the self-emitted light plus the reflected light. The reflected
light is equal to the light leaving every other surface multiplied by both the fraction of
that light which reaches the surface in question, and the reflectivity of the receiving
surface. The sum of the reflected light from a given surface plus the light emitted
directly from the surface is its radiosity. To render an image, the discretized radiosity
information is used to create continuous shading across a given surface. This means it
is needed to increase more poly count in order to achieve more detail, and if the objects

are animated or moving, it needs to be recomputed every frame.

Photon mapping is a two-pass global illumination method developed by
Henrik Wann Jansen (Jensen, 1996). The first pass is to construct photon maps by
emitting packets of energy (photons) from the light source and storing these as they hit
surfaces within the scene. The second pass is to render image using a distribution ray
tracing algorithm optimized by using the information in the photon maps. The speed
and accuracy of the photon map depends on the number of photons. Photon mapping
is used to simulate realistically the interaction of light with different objects, especially

the refraction of through a transparent substance such as glass or water.

Non-photorealistic rendering

When talking about 3D model rendering, most people are thinking of
realistic rendering as mentioned previously. It's an attempt to create the final image to
be like realistic photograph with correct light effects’ calculation. There are many
researches and developments in realistic rendering that are now using a lot in live action

films as well as in animations.

However, the film industry, especially animation industry, is expecting for
some stylized rendering. They are expecting for some kind of rendering that goes
beyond realistic, some kind of rendering that looks like artist’'s painting. These are
called non-photorealistic rendering. There are many attempts in creating non-
photorealistic rendering for 3D objects. For example, in 1996 Disney attempted to
create Monet’s painting style on 3D rendering (Meier, 1996). This technique creates
particle around 3D object, then renders the particle with brush map with stroke direction.
Comparing to artistic painting technique, the Disney’s technique is similar to volumetric
painting technique. The volumetric painting technique is to paint what the artist see in an

area of shape. There’s no rough line sketch, nor line to define the shape.

According to artistic technique, there is also a technique of drawing line
to represent object’'s shape. This technique is quite popular in traditional animation
(hand-drawn animation) and anime (Japanese style animation). In computer-generated
animation, there is an attempt to render 3D model to have the final image to be like
traditional animation or anime. Cel shading or Toon shading is a very popular approach
for creating anime style rendering. It is done by reducing the total number of colors
from smooth to a limited range of color palette, and then accentuating the object’s
borders and lines. The borders and lines in Cel shading can be created by various
methods. One popular method is to use back-face culling. Firstly, invert back-face
culling (polygon’s normal vector), back facing polygon would be rendered as black thick
line. Then set back-face culling to normal and render surface with stylized shader. Final
image is done by compositing via Z-buffering, as the back-faces are always deeper in
the scene than the front-faces, therefore, the object is rendered as black outline with
interior contour line. Another method for creating borders and lines in Cel shading is to
use edge detection filter. It is done by firstly rendering scene’s depth and world-space
surface normal. Then use edge detection filter such as Sobel filter to apply to

normal/depth image to generate edge image. After that, render color image with

stylized shader. Finally edge image and color image are composited to produce final

rendered image.

However, the final rendered image created by Cel shading has some
issues, especially the issue about the borders and lines. Are these lines actually
representing 3D shape? Do these lines really happen in traditional drawing? This
comes to a question of how artist knows which line to draw. Cole et al. (Cole et al.,
2008) has done a research of comparing artist's line drawing and 3D object edge
detection. The result is that lines drawn by educated artists overlapped almost 75% of
3D object edge detection, particularly detected by Silhouette Edge Detection algorithm.
It can be assumed that 3D object edge detection can explain 3D shape similar to artist’s

line drawing.

There are various approaches for rendering the edge line from 3D
modeling which can be classified into three main approaches. The first one is the
geometry-based approach. One of the concepts of this approach is to detect silhouette
edges by finding the edges, which have both front facing and back facing (figure 2). In
order to find the silhouette edges, it is necessary to compare every edge of the
geometry. It is time-consuming, complicated and difficult to implement. This approach

is also inappropriate to work with changing meshes (animation sequence).

0 ./ . S; = Normal vector of red surface
<3 H S; = Normal vector of blue surface
: 83 =Normal vector of green surface
C = Normal vector of camera

If (S10C) x (S:#C) = 0 : found silhouette or ridge edge

Figure 2 lllustration of Finding silhouette edge

The second one is image-based approach (Gooch et al., 1998), which
focuses on depict only the portion of the silhouettes that contribute to the final 2D image.
It uses 2D image-processing technique such as edge detection filter, leveling the
contrast of light and shadow, and so on. This technique lacks the control for the line

thickness, and also hard to generate the stylization of the brush stroke.

The third approach is the hybrid technique (Markosian et al., 2000), which
combines the edge detection technique and image-based approach together. It detects
edge by geometry-based approach, but stylizes the line with image-based approach.
Some of the hybrid approach recommends using randomized algorithm for edge
detection in order to reduce time-consumption. This approach still lacks the interaction
with the light source. In order to do the line shading or stroke stylization, a hybrid
approach is considered since the line extraction from this technique is available to apply

the shader.
Brush stylization approach

Physically traditional drawing and painting could be stylized by various
approaches such as tool, artist’'s perspective, artist’'s skill, etc. Drawing tool is a
fundamental approach that affects drawing and paint. Different tools have different
properties that can create stroke and shading effects. For example, comparing pen-
painted image and ink-painted image (figure 3), pen painting (figure 3 left) shows lines
and strokes clearly with almost the same thickness throughout each line whereas ink

painting (figure 2 right) is doing well in shading and gradient.

Figure 3 lllustration of Comparing pen-painted image and ink-painted image.

Nevertheless, ink painting by brush sometime does not only work on
shading and gradient, but also work on stroke like silhouette line. Chinese calligraphy is
a well-known Chinese brush technique that presents the brush effect in strokes. Also

Chinese painting has unique styles created by brush. Chinese painting can be divided

into two main styles: Gongbi style and Xieyi style. Gongbi is a meticulous technique. It
is usually referred to as “court-style” painting. It features on carefully detailed drawing,
emphasizes the beauty of lines. It needs close attention to detail and fine brushwork
(figure 4). Xieyi is a freehand technique. It is usually termed watercolor or brushwork.
Water and ink is the core of Xieyi that the painter uses for exaggerating forms. Different
from Gongbi, Xieyi generalizes shapes and displays rich brushwork and ink technique

(figure 5).

Figure 4 and figure 5 are from http://www.absolutechinatours.com/china-

travel/Traditional-Painting-Techniques.html.

Figure 4 lllustration of Gongbi style

10

Figure 5 lllustration of Xieyi style

Microsoft research (Baxter and Govindaraju, 2010) has done a research
on modeling 3D brushes for using in realistic painting program. It explained brush stroke
in mathematical term very well. The relationship of brush deformation, bend energy and
friction is really useful for understanding brush effect and implementing for Computer

Graphics.
Relevant research

Due to the expensiveness of CPU computation, there are many attempts
to speed up the calculation including porting to GPU computation. Brown University
(McGuire and Huges, 2004) presented featured-edge detection that runs entirely in
GPU, and used it to create thick screen-space contours with end-cap that join adjacent
thick line segments. Their technique is pretty complex to imply and it produces noise

when working on tessellated meshes.

Kowalski et al. (Kowalski et al., 1999) suggested an algorithm to render
3D scene in a stylized stroke. Their algorithm is implemented to support procedural
stroke-based textures, called “graftal textures”, on polygonal models. The result is to

create effects fur, grass and trees. However, their technique has a problem of frame-to-

1"

frame coherence. It has no inherent interframe consistency, which causes flickering in

final rendered playback video.

Kalnins et al. (Kalnins et al., 2003) presented a methodology to render
stylized silhouette path of animated 3D model. They used an ID image to determine
visibility of silhouette path, and also to produce temporal coherence from one frame to
the next frame. This can reduce noise and flickering during playback. However,

because of the read-back of the ID image, it can slow down the frame rate.

Zakaria and Seidel (Zakaria and Seidel, 2004) presented a method to
detect and render stylized silhouettes for point-sampled geometry. This kind of
geometry can be obtained via 3D scanning device. Their method is firstly to project
points lying on the silhouette onto color buffer, each with unique color value. Then
deploy fast point-linking algorithm to form silhouette lines. This technique is really useful
for supporting a new approach of modeling 3D objects. However, their work did not

address the animation issue.

CHAPTER Il

METHODOLOGY

In order to create stylized rendering, firstly the silhouette edges of 3D
model are needed to be collected. However, there are many definitions of silhouette
edges. Choudhury (Choudhury et al., 2009) has given the definitions of edges that can

happen on 3D model to which this research would refer.

Type of edges on 3D model

1. Silhouette line: edge that lies against the background, which appears
as the boundary of an object.

2. Self-occluding silhouette line: edge that lies against the same object
portion of which is further behind.

3. Intersection line: line that marks the intersection of two 3D objects.

4. Crease line: line that defines the discontinuity of surface normal or

defines the sharp edge.

Silhouette line can define an object’'s boundary where as self-occluding
silhouette lines can define important detail of an object. These lines can be defined by
the edges of 3D polygonal object, which from now on, we will call them as silhouette
edges. However, they are not static edges if an object is moving or a camera is moving.
Since the edges keep changing as each frame passes, they lose the continuity of the
line between each frame. Moreover, finding silhouette edges on 3D objects is time

consuming because it needs to compare every face in every frame.

This research will redefine 3D data structure, which would create
relationship of each silhouette edge between individual frames. This also reduces

repetition of calculating unnecessary edges, which results in faster rendering.
Collecting 3D data

The common file formats for storing 3D object data, which is widely used
in animation industry are Wavefront OBJ and Autodesk FBX (originally created by
Kaydara which later was acquired by Autodesk). Wavefront OBJ stores 3D object’s
components as vertices, faces, vertex normal and texture normal. All of them have only
one frame data. They do not contain animation data at all. Whereas Autodesk FBX is

widely used for cross-platform file transfer for 3D animated model, it only works well with

13

skeleton-based animation. It does not support deformation animation like blend shape

and surface scaling.

In order to define polygon mesh, there are two necessary elements:
vertices and faces. Each vertex would contain x, y, z coordinates in world space, and
each face would contain the vertices that make the face. The vertices of each face are
collected in counterclockwise direction that affect in defining face normal vector. These
components’ collection is similar to Wavefront OBJ, but we omit the texture coordinate
and vertex/texture normal. Though each vertex may change its position as frame goes
by, the relationship of face and edge are still the same. Our approach proposes to
collect edge component, which would composed of two vertices and two face numbers
that related to each edge (figure 6). The edge collection will help us define continuous
silhouette line. The edge data will be stored as tree data structure. Also we would have

array of vertex array, which would collect each vertex position for each frame.

3D Object
vertex
edge
face
face T edge
vertex vertex
vertex
edgeNumber X faceNumber
y
z

Figure 6 lllustration of Collecting 3D data as object.

Finding Silhouette edges

Firstly we need to create an array for checking edges. The size of an
array is the same as the quantity of an object’s edges. If necessary, we choose the pre-
calculation frame by picking the frame that shows the detail of an object the most. Then
we begin with the first edge, the proposed approach checks to see if this edge is
silhouette edge or not. If yes, it picks a vertex from this edge and finds the connected
edge for calculating silhouette edge. It also marks on the position in an array of
checking edge. Before checking the new edge, we should check if the edge is already
checked or not. By this method, we'll have an array of edges, which has continuous

vertices. For the next frame, instead of calculating the whole edges, we calculate only

14

the previous silhouette edge and the edges that connect to the start and end points of

each continuous silhouette edge as described in the following algorithm:

Calculation for silhouette edge:

For each edge in mesh:

If (edge is marked in EdgeCheck array)
Else,

Do dot product with camera normal and each face normal in relation to current
edge. (C®face1, C®face2)

Do cross product with the result of previous dot products. (C®face1 x C®face2)
If (C®face1 x C®face2 <=0)

/[This edge is silhouette edge.

Mark on EdgeCheck array

Store in SilhouetteEdge array

Pick next continuous edge.

If (edge is not marked in EdgeCheck array)
Do Calculation for silhouette edge
Else
Mark on EdgeCheck array

End if

On each frame, we calculate and render the silhouette line from the
EdgeCheck array and a bit more on continuous edge in relation to silhouette edge. With
this approach we can create animated vector lines, which can represent a 3D object on
2D plane. The SilhouetteEdge array stores the results of silhouette edge calculation. We
store this array as tree format so that we can use the tree relation as the continuity of our
silhouette edge whereas the tree’s branches can define the amount of silhouette lines on
the scene (Figure 7). Moreover, we can use this array as a reference for calculating the

next frame, which help reducing the faces for calculating silhouette edges.

15

On the next frame, we reset the EdgeCheck array, then do calculate the
silhouette edges based on the SilhouetteEdge array of the previous frame. After
finishing the loop based on SilhouetteEdge array, we pick the root and the external
nodes of the new SilhouetteEdge array for finding the continuing edge and checking if it
can be silhouette edge or not. With this method we can reduce the calculation on

upcoming frame, and we can also get the continuous line between frames as well.

e8
/'\’/0\"\\90
e.-
l e9) Pl
v \ ’
&2
V6

V2]
Figure 7 lllustration of Silhouette edge calculation’s result.
Reducing data by using depth map

The silhouette edges that we get now are still having a problem. The
silhouette edges, which should not be seen, because they are behind polygon mesh,
are still showing. We need to get rid of them as well. We purpose to use depth map to
check if an edge in Silhouette edges is covered by faces that are at the front. Depth
map is an image that contains depth of field data. We create depth map by checking
depth of field of each face in objects; however, we store only data of the nearest value.
Then we compare the edge’s depth of field with depth map at edge’s position. If edge’s
depth of field value is further than the depth map, we can omit that edge by removing it
from silhouette edge tree. The amount of root nodes in silhouette edge tree is the same
as the amount of silhouette lines in each frame. Also the root node is used for defining

the beginning of each vector line.

16

The first frame calculation consumes most CPU and time usage since it
needs to create the starting silhouette edge tree. Depth map comparison is done after
finding the starting silhouette edge tree. Then on the next frame, instead of checking
every edge again, silhouette edge tree of the previous frame will be checked if each
edge still appears on the current frame. At each root node and leaf node of silhouette
edge tree, pick its continuing node in the initial edge tree data and do check if the newly
picked edge appears on the current frame. Normally, if the new silhouette edges
appear, they are the continuity of previous silhouette edges. After finishing checking for
current frame silhouette edges, depth map of the current frame should be compared so
that the only visible edges can exist. This technique dedicates the first frame rendering
time for preparing the data and using it to reduce the redundant calculation on the next

frame.

Creating Chinese brush style

Due to the limitation of OpenGL, normal shader cannot be applied
directly to the lines. Lines should be implemented as polygonal quad strips, and then it

can be applied by textured mapping. The texture map is an image of stroke tip.

Figure 8 lllustration of Stroke tip image.

Converting line to polygonal quad strip can be done by firstly finding
vectors that are perpendicular to an edge in silhouette edge tree at the starting vertex
and ending vertex. There should be two vectors of opposite directions at each vertex.
Then set the length of each vector as half of the desired line thickness value. At this
state, the four vectors can be implied as the four new vertices. The four new vertices of

each visible silhouette edge will be used for defining quad strips in OpenGL

After getting quad strips of each visible silhouette line, apply the shader
with stroke tip image to create the brush like look. The stroke tip image (figure 8) is a
gray scale image of brush tip shape. It will work as alpha channel of the shader so that

the color of the line can be define later.

CHAPTER IV

RESEARCH RESULT

This research is experimented in Objective-C based OpenGL. Itis run on
2.66 GHz Intel Core i7 with 4Gb memory. The test run in the beginning is very slow due
to the amount of data collection. It is recommended to start testing research’s renderer
with fundamental geometry like torus. Torus is chosen, because its shape is not too
simple. Also it has self-including silhouette edges, which are the main edges that would
be problem when finding silhouette. The result does not perform well with Chinese brush

shader, It does not look like brush stroke as expected (figure 9).

Figure 9 lllustration of Torus rendering.

Figure 10 lllustration of Tree branch rendering with watercolor surface shader.

18

Surface shader has been attempted (figure 10) with expectation of
helping the line stylization look more brush alike, but it only gets better a little bit. When

comparing to genuine Chinese brush painting (figure 11), it looks much different.

Figure 11 lllustration of Scene rendering with background of Chinese brush painting.

The final result still looks cartoony, because of the color theme and the
surface shader. However, the speed of rendering is working well since there is less
repetition of edge calculation. Without redundant deduction technique, it could take
more than 3 hours to calculate 100 frames of silhouette line of three-dimensional rotating
torus. However, with presented techniqgue, it takes less than 2 hours to calculate the

same animated torus.

Unfortunately, there is no consistency of line’s starting point between
each frame. This event often happens with silhouette line that has loop property of
which the starting point is the same one as its ending point. Therefore, when doing

playback, the loop lines perform jittering (figure 12).

Also there is a question about the result of the rendered image that if it is
really similar to the physical Chinese brush stroke. The uncomplicated methodology to
compare is suggested by Cole et al. by superimposing images over each other and use
difference filter to see the compound area. Testing with circular stroke (figure 13), the
left image is the computer rendered stroke of 3D sphere. The middle image is Zen’s
circle calligraphy by Kanjuro Shibata. It is done by using ink and big round tip brush.

The right image is the comparison of previously mentioned images by using difference

19

filter. The yellow area shares the space that both strokes are taking. The blue area is
the space that computer generated stroke is taking, but the physical stroke is not. The
black area is where the physical stroke is taking, but the computer generated one is not.
When merging the black area and the blue area, it seems that both images overlap

almost 75% as recommended in Cole et al.’s research.

Figure 12 lllustration of Animating torus.

a2 H

Figure 13 lllustration of Comparing computer generated stroke and physical stroke.

CHAPTER V

CONCLUSION AND DISCUSSIONS
General Conclusion

This thesis presents the technique to manage 3D data for detecting
silhouette edges on 3D animated model. Then it uses that data for finding silhouetted
edges and creating Chinese brush stylization. The result in time-consuming aspect is
very satisfied. By managing 3D data, it helps reducing calculation repetition. Moreover,
it also creates the continuity of line when rendering as sequence. However, the result in
brush shading aspect is still having a problem. It still lacks some Chinese brush
painting properties like bristle effect. Also it is because of OpenGL limitation for stylizing
line stroke. It would be better if there is a procedural shader that supports vector line

rendering.
Discussions

Though the results do not look like Chinese brush stroke as expected
due to OpenGL limitation, it can still create brush alike stylization. There are also some
disadvantages of presenting calculation reduction. If the starting frame does not show
every silhouette line that should appear in some frame of animation then that line is lost
forever. Also if some silhouette lines are missing as frame goes by, they will never
happen again after that frame. There should be a method to give weight of silhouette

line that can be used for determining re-checking after its invisibility.

Moreover, there’s still a problem of jittering image during sequence. It is
the problem of line consistency between frame which occurs in many researches.
However, in this thesis, the problem of line consistency often happens with the loop
lines. There is still no certain methodology to explain which point of loop line should be
the starting point. Even though having artists drawing the same loop stroke, different
artists do the different starting point. However, if setting some rule like the starting line
should be related to something fixed in the scene, the starting points are almost the
same. Therefore, light source should be able to guide the starting point since some

artists tend to have stroke pressure and thickness depended on light intensity.

REFERENCES

Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B. Modeling the Interaction of
Light Between Diffuse Surfaces: Proceedings of the 11th annual conference on
Computer graphics an interactive techniques (SIGGRAPH'84). pp. 213-222, ACM
New York, USA., 1984.

Greenberg, D.P., Cohen, M.F., and Torrance K.E. Radiosity: A method for computing
global illumination. The Visual Computer (1986): 291-297.

Jensen, H.W. Global lllumination using Photo Maps: Proceedings of the 7" Eurographics
Workshops on Rendering. pp. 21-30, 1996

Meier, B.J. Painterly Rendering for Animation: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques (SIGGRAPH '96).
pp. 477-484, ACM New York, USA., 1996

Cole et al. Where Do People Draw Lines?: Proceedings of ACM SIGGRAPH '08, ACM
New York, USA., 2008

Gooch, A., Gooch, B. Shirley, P., Cohen, E. A Non-Photorealistic Lighting Model For
Automatic Technical lllustration: ACM Proceedings of the 25th annual conference
on Computer graphics and interactive techniques (SIGGRAPH'98). pp. 477-452,
1998.

Northrup, J., Markosian, L. Artistic Silhouettes: A Hybrid Approach: ACM Proceedings of
the 1st international symposium on Non-photorealistic animation and rendering
(NPAR '00). pp. 31-37, 2000.

Baxter, W., Govindaraju, N. Simple Data-Driven Modeling of Brushes: ACM Proceedings
of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games
(I3D"10). pp. 135-142, 2010.

McGuire, M. and Hughes, J.F. Hardware-Determined Feature Edges: Proceedings of the
3rd international symposium on Non-photorealistic animation and rendering
(NPAR ’04). pp. 35-47, 2004.

Kowalski, M., et al. Art-Based Rendering of Fur, Grass, and Trees: ACM Proceedings of
the 26th annual conference on Computer graphics and interactive techniques
(SIGGRAPH'99). pp. 433-438, 1999.

Kalnins, R., Davidson, P., Markosian, L., Finkelstein, A. Coherent Stylized Silhouettes:
ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2003,
Volume 22 Issue 3, July 2003. pp. 856-861, 2003.

Zakaria, N., and Seidel, H.P. Interactive Stylized Silhouette for Point-Sampled Geometry:
Proceedings of the 2nd international conference on Computer graphics and
interactive techniques in Australasia and South East Asia (GRAPHITE '04). pp.
242-249, 2004.

Choudhury, AN.M.I. and Parker, S.G. Ray Tracing NPR-Style Feature Line: Proceedings
of the 7th International Symposium on Non-Photorealistic Animation and
Rendering. pp. 5-14, ACM New York, USA., 2009.

APPENDIX

LIST OF PUBLICATIONS

Part of this work is published in the following articles.

International Conference Proceedings

Nucharee Thongthungwong and Rajalida Lipikorn, “Data Reduction for Finding Silhouette
edges on 3D-Animated Model”, 5th International Conference on Future Computer and
Communication (ICFCC2013), Phuket, Thailand, May 26-27, 2013.

VITAE

Nucharee Thongthungwong was born in Bangkok, Thailand, on 28" November,
1977. She received her Bachelor degree of Architecture major in Industrial Design from King
Mongkut Institute of Technology Ladkrabang in 2002. She had worked as graphic designer for A26
Advertising Company for a year, then moved to work with Dida Video Production as 3D Motion
Capture and animator for 2 years. Currently, she is working on her master degree in image
rendering at Computer Science and Information Technology Program, Department of Mathematics

and Computer Science Faculty of Science, Chulalongkorn University.

