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CHAPTER I 
 

INTRODUCTION 
 
 

1.1 General 

Nowadays, smart materials and smart composites have found 
increasing applications in the fields of science and engineering such as 
aerospace structures, intelligent or smart structures, nondestructive testing 
devices, medical devices, and sensing and actuation applications. Several 
types of smart materials have already been developed, namely, piezoelectric 
materials, shape memory alloys, magenetostrictive or piezomagnetic 
materials, etc. Among others, piezoelectric materials have gained the most 
attention and widely used in practical applications. Piezoelectric materials 
exhibit electro–mechanical coupling phenomenon; that is, they produce an 
electric field when deformed under a mechanical stress (direct piezoelectric 
effect) and, conversely, undergo deformation when subjected to an electric 
field (converse piezoelectric effect). From this inherent property, 
piezoelectrics can be used as both actuator and sensor in a variety of 
applications including hydrophones, micropositioning devices, 
accelerometers, and structural actuators.  

The low fracture strength, high stiffness, difficulty in producing complex 
shapes, and high density of the monolithic piezoceramic actuators all attribute 
to the development of the composite of piezoelectric materials. Many recent 
studies have examined the fabrication of piezoelectric composites and their 
properties (Bent et al., 1995; Nelson, 2002). Composites of piezoelectric 
material are classified according to their connectivity (Newnham et al., 1978). 
This thesis is concerned with a class of piezoelectric composites commonly 
known as 1–3 piezocomposites. Figure 1.1 shows a typical 1–3 
piezocomposite in which the piezoceramic constituent is continuous in one 
direction while the matrix material is connected in all 3 orthogonal directions. 
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Type 1–3 connectivity piezocomposite can be designed to maximize the 
electromechanical coupling. The combination of fine and strong piezoceramic 
fibers in a polymer matrix provides load transfer mechanisms characteristic of 
piezoelectric fiber–reinforced composites. The soft epoxy matrix supports the 
brittle piezoelectric fibers and also offers more conformability of 
piezocomposite. Moreover, 1–3 piezocomposites exhibit higher sensitivity and 
lower mechanical losses than monolithic piezoelectric ceramics. 

In making a 1–3 piezocomposite, several parameters can be varied: the 
elastic properties of the matrix material, the material properties of the 
piezoelectric fibers, and the volume fraction of the piezoelectric phase. Small 
diameter fibers can improve the performance of 1–3 piezocomposites and also 
offer the possibility for fiber arrangements within the composites. Three major 
techniques are currently used to produce fibers suitable for use in 1–3 
piezocomposites: extrusion of polymer supported powders, sol–gel spinning, 
and the viscous suspension spinning process (VSSP). Extrusion has only been 
capable of producing fibers >100 µm in diameter, whereas sol–gel spinning 
and VSSP are capable of producing fibers with diameters as small as 10 µm. 
The optimum properties of 1–3 piezocomposites are achieved for volume 
fraction of the piezoelectric phase around 20% (Li and Sottos, 1996; 
Montgomery and Richard, 1996; Rajapakse and Chen, 2008). For this volume 
fraction, the distance between the neighboring fibers is about four times of 
fiber–radius and it is reasonable to neglect the fiber–to–fiber interaction as a 
first approximation to study the fundamental mechanics of piezoelectric fiber–
reinforced composites. 

Performance and reliability of piezocomposites are governed by the 
interaction between the piezoelectric phase and the surrounding matrix 
material, which is controlled by the volume fraction of the piezoelectric phase, 
the material properties of the two phases and the interfacial properties. 
Understanding of the coupled electroelastic responses is very important to the 
design and reliability of devices containing piezocomposite elements. This 
research is an attempt to obtain a fundamental understanding of the coupled 
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electro–mechanical piezoelectric fiber–elastic matrix interaction in a 1–3 
piezocomposite. Analytical solutions corresponding to an infinite piezoelectric 
fiber with a vertical body force and an infinite transversely isotropic elastic 
medium with a cylindrical hole are derived by using Fourier integral 
transforms. Based on the derived general solutions, the electro–mechanical 
load transfer and interfacial fracture in piezoelectric fiber–reinforced 
composites are formulated. A computer program is developed to analyze the 
load transfer and the interfacial fracture problems, and to investigate the 
influence of various parameters on the electroelastic responses in 
piezocomposites. 

1.2 Objectives of Present Study 

 The objectives of this research are given as follows. 

1) To derive the analytical general solutions for an infinite piezoelectric 
fiber with body forces and electric charge, and an infinite transversely 
isotropic elastic media with a cylindrical hole. These general solutions are 
necessary for the analysis of the load transfer mechanism and the interface 
dislocation in a piezoelectric fiber–reinforced composite. 

2) To conduct a comprehensive study on the electro–mechanical load 
transfer mechanism of a piezoelectric fiber–reinforced composite and 
investigate the effect of various parameters, e.g. fiber and matrix material 
properties, electrical boundary conditions, interface conditions etc., on the 
electroelastic responses of a piezocomposite. 

3) To conduct a theoretical study on the fracture mechanics of a 
piezoelectric fiber–reinforced composite with a cylindrical interface crack 
based on the displacement discontinuity method and the fundamental 
solutions of interface dislocation. 
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1.3 Scopes of Present Study 

This thesis is concerned with the theoretical study of the electroelastic 
responses in piezocomposites. The case of a long cylindrical piezoelectric 
fiber embedded in an infinite transversely isotropic elastic matrix is 
considered. Both fiber and matrix are assumed to be transversely isotropic 
with the principal material directions parallel to the fiber direction. The 
electroelastic load transfer and interfacial fracture of piezocomposites are 
studied in details. For the load transfer problem, the imperfect fiber–matrix 
interface is represented by a spring–factor model. Except along the crack 
surfaces, the fiber–matrix is assumed to be perfectly bonded in the analysis of 
interfacial fracture. Only axisymmetric loading and geometry are considered in 
this study. 

1.4 Basic Assumptions 

 The electro–mechanical interaction between a piezoelectric fiber and 
an elastic matrix considered in this study is based on the following 
assumptions: 

1. A piezoelectric fiber is homogeneous, transversely isotropic and 
governed by linear piezoelectricity theory. 

2. The fiber–to–fiber effect in a 1–3 piezocomposite is negligible. 
3. A matrix is a transversely isotropic elastic material. 
4. The bond between the fiber and the matrix is assumed to be perfect 

except along the crack surfaces. The imperfect interface 
considered in the study of electroelastic load transfer mechanism is 
represented by a spring–factor model. 
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Figure 1.1 A 1–3 piezocomposite. 

 



CHAPTER II 
 

LITERATURE REVIEWS 
 
 

2.1 General 

Piezoelectric materials have been extensively used as transducers and 
sensors due to their intrinsic direct and converse piezoelectric effects that 
take place between electric fields and mechanical deformation, and they are 
playing a key role as active components in many branches of engineering and 
technology science (Rao & Sunar, 1994). Early studies by Mindlin (1974), 
Chen (1980), Deeg (1980) and others have addressed some fundamental 
problems related to mechanics of piezoelectric materials. The theoretical 
foundation and electroelastic governing equations of piezoelectric materials 
are presented by Parton and Kudryavtsev (1988). Thereafter, many 
researchers provided the theoretical study and analytical solution for plane 
problem of piezoelectric materials, e.g. Sosa (1991), Rajapakse (1997), Xu 
and Rajapakse (2000a, 2001). Piezoceramic cylinders, which are the common 
forms of structural elements used in sensor and actuator applications, have 
also been studied by Rajapakse and Zhou (1997) for the case of infinite 
piezoelectric solid cylinder subjected to a radial ring load and a ring electric 
charge; and by Rajapakse et al. (2005) and Senjuntichai et al. (2008) for 
piezoelectric annular and solid finite cylinder respectively. 

2.2 Fiber–Matrix Interaction 

Performance and reliability of composite materials are governed by 
several parameters, such as the volume ratio, the interfacial properties, and 
the properties of the fiber and the surrounding matrix material. The study of 
the fiber–matrix interaction is therefore the key issue for better design and 
development of reliable composite materials in advanced engineering 
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applications. The study of fiber–matrix interaction in the conventional 
composite materials has a rich history. Muki and Sternberg (1969) examined 
the three–dimensional interaction of a single infinitely long cylindrical fiber in 
an isotropic matrix by studying the diffusion of an axial load from the fiber into 
the matrix. They gave an exact analytical solution based on the theory of 
elasticity for a circular fiber and proposed an approximate solution scheme for 
a fiber with an arbitrary cross section. Thereafter, the load transfer mechanics 
between fiber and matrix have been studied by several researchers, namely, 
Pak and Gobert (1993), Slaughter and Sanders (1991), etc. In the context of 
civil engineering, this problem is mathematically identical to load transfer from 
a pile into the surrounding earth (Niumpradit & Karasudhi, 1981; Selvadurai & 
Rajapakse, 1990; Senjuntichai et al., 2007).  

Most of the works presented in the literature on the mechanics of 
composite materials have concerned with the classical situation where the 
displacements and surface tractions are continuous across the fiber–matrix 
boundary, the so–called perfect bonding condition. It is well known, however, 
that load transfer mechanism depends significantly on the properties of the 
interphasial layer which leads to an imperfect bonding between the fiber and 
the matrix. The imperfect interface is encountered in the composite materials 
for various reasons, for example, thin interphase of adhesion coating, 
chemical action during manufacturing process, or interfacial damage between 
the fiber and matrix.  

The interphasial layer between fibers and matrix has very complicated 
microstructure and has different material properties from both the fiber and 
the matrix. Generally, there are unlikely to have detailed information about the 
thickness or the material properties of the interphase. Therefore, assumptions 
are employed in the modeling, such as the widely used spring–factor model 
which assumes the displacement jump across the interface to be proportional 
to the corresponding interfacial stresses (Mal and Bose, 1975; Hammamia et 
al., 2006). The spring–factor model for imperfect interface were employed by 
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Nairn and Liu (1996) and Lenci and Menditto (2000) among others, in the 
analysis of elastic fiber–reinforced composites.  

A review of literature indicates that the studies on fiber–matrix 
interaction in piezocomposites are very limited. Rajapakse (1996) examined 
the electroelasticfield of a long elastic cylinder with a piezoelectric core 
subjected to an external radial pressure band. Liu et al. (2003) and  Gu et al. 
(2006) studied the interaction between the stress and electric fields for a 
single piezoelectric fiber pullout from an elastic matrix under mechanical and 
electric loads. Their analysis are simplified by ignoring the radial variations of 
the stresses and strains in both the fiber and matrix and the electric field in 
the fiber. A rigorous study of the fiber–matrix interaction and electro–
mechanical load transfer in 1–3 piezocomposites with the consideration of the 
imperfect interface is currently not available. 

2.3 Cracks in Piezocomposites 

Naturally, fiber–reinforced composites consist of several constituents of 
different geometry and properties, joined along the interfaces. These factors 
usually contribute to fracture problems in the composites. The common forms 
of a fracture problem in fiber–reinforced composites are voids and crackings 
near or on the fiber–matrix interface introduced during fabrications and under 
service loading. A majority of studies considered the problem of cracks with 
plane surfaces, and only a few were concerned with curved surfaces, which 
are mathematically more difficult. When crack–like defects on the interface are 
distributing in the circumferential direction around a fiber, a cylindrical crack 
must be considered in the fracture modeling. Demir et al. (1992) analyzed the 
pressurized cylindrical crack in an infinite homogeneous isotropic elastic 
medium and obtained the stress and displacement field around the crack 
based on the fundamental solutions of the Somigliana ring dislocation. 
Erdogan and Özbek (1969) considered an elastic fiber reinforced composite 
with a cylindrical interface crack using a singular integral equation method. 
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The counterpart problems in transversely isotropic elasticity were also studied 
by Kasano et al. (1984). 

The subject of cracks in piezoelectric materials, for various failure 
modes, has received considerable attention in the last decade. Fracture 
mechanics experiments were performed by several researchers for three–point 
bending, compact tension and double cantilever beam specimens under 
mechanical and/or electrical loading (Park and Sun, 1995; Heyer et al., 1998). 
Several analytical methods, such as integral transformation, singular integral 
equations, Lekhnitskii’s approach (Lekhnitskii, 1981) and Stroh’s formulation 
(Stroh, 1958 & 1962), have been adopted for linear elastic fracture mechanics 
(LEFM) analysis of piezoelectric materials (Deeg,1980; Sosa and Pak, 1990; 
Suo et al., 1992; Sosa, 1992; Pak, 1992; Park and Sun, 1995; Xu and 
Rajapakse, 1999 & 2000a).  

The study on fracture mechanics for piezoelectric solids based on the 
analytical approaches are mostly restricted to simple geometries and loading 
conditions. Boundary element–based methods for fracture analysis are 
versatile tools that can be used for the analysis of complex fracture 
mechanics problems (Cruise, 1988). Pan (1999) and Rajapakse and Xu (2001) 
reported a single–domain BEM formulation for fracture mechanics analysis in 
cracked 2D piezoelectric solids. The displacement discontinuity method 
(DDM), which is an indirect boundary element method proposed by Crouch 
and Starfield (1983), can be extended to consider fracture mechanics of 
piezoelectric solids. The DDM has been demonstrated to be successful for 
two and three dimensional elastostatic problems (Crouch & Starfield, 1983; 
Sladek & Sladek, 1982). 

The field intensity factor is an important concept in fracture mechanics. 
Based on an impermeable crack model, Sosa (1992) and Suo et al. (1992) 
introduced an electric intensity factor for cracks in a piezoelectric material in 
addition to the well known stress intensity factors. For cracks in a 
homogeneous piezoelectric material, the mechanical stresses and the electric 
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displacements show a classical square root singularity at the crack tip. 
Howerver, cracks at the interface of piezocomposites may contain singularity 
beside the classcal 1/2 singularity. Based on the extended Stroh formalism, Suo 
et al. (1992) discussed the singularities of interfacial cracks in bonded 
anisotropic piezoelectric media. Ou (2003) and Ou and Chen (2004) studied the 
crack–tip singularity of interfacial cracks in transversely isotropic piezoelectric 
bimaterials and presented the numerical evaluations of the singularity index 
for composites of commercially available piezoelectric ceramics. A 
comprehensive treatment of singularities in multi–material piezoelectric 
wedges and junctions was also presented by Xu and Rajapakse [40] by 
extending Lekhnitskii's formalism for elastic anisotropic solids.  

 



CHAPTER III 
 

BASIC EQUATIONS AND GENERAL SOLUTIONS  
 
 

 In this chapter, the basic equations for piezoelectricity and the governing 
equations for torsionless three–dimensional axisymmetric deformations of a 
transversely isotropic piezoelectric material expressed in terms of displacements 
and electric potential are presented. The general solutions for axisymmetric 
deformations of piezoelectric and elastic materials are then derived by solving 
the governing equations through the application of Fourier integral transforms. 
These general solutions will be used to analyze the load transfer problem of 
fiber–reinforced composite and to derive the fundamental solutions of interface 
dislocations in the analysis of interfacial crack in piezoelectric fiber–reinforced 
composites in the subsequent chapters. 

3.1 Basic Equations 

Consider a smart composite consisting of an infinite cylindrical 
piezoelectric fiber of radius “ a ” embedded in an unbounded elastic matrix. Both 
piezoelectric fiber and elastic matrix are transversely isotropic. A cylindrical polar 
coordinate system ( r ,θ , z ) is used with the z –axis parallel to the axis of 
symmetry of both the fiber and the matrix (Figure 3.1).  

The constitutive equations for a piezoelectric material that are transversely 
isotropic or poled along the z –axis can be expressed as (Parton & Kudryavtsev, 
1988), 
 11 12 13 31

f f f f
rr rr zz zc c c e Eθθσ ε ε ε= + + −  (3.1a)  

 12 11 13 31
f f f f

rr zz zc c c e Eθθ θθσ ε ε ε= + + −  (3.1b) 
 13 13 33 33

f f f f
zz rr zz zc c c e Eθθσ ε ε ε= + + −    (3.1c) 

 44 152 f f
rz rz rc e Eσ ε= −   (3.1d) 

 31 31 33 33
f f f f

z rr zz zD e e e Eθθε ε ε ε= + + +    (3.1e) 
 15 112 f f

r rz rD e Eε ε= +   (3.1f)  
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where rrσ , θθσ , zzσ  and rzσ  denote the stress components; rrε , θθε , zzε  and 
rzε  denote the strain components; rD  and zD  denote the electric displacement 

vectors in the r – and z –directions respectively; rE  and zE  denote the electric 
fields in the r – and z –directions respectively; 11

fc , 12
fc , 13

fc , 33
fc  and 44

fc  denote 
the elastic constants under zero or constant electric field; 31

fe , 33
fe  and 15

fe  denote 
the piezoelectric constants; and 11

fε  and 33
fε  denote the dielectric constants 

under zero or constant strain.  

It is noted that the constitutive equations for a transversely isotropic matrix 
material can be obtained from equations (3.1a)–(3.1d) by setting 0f f

ij ije ε= ≡  and 
replacing f

ijc  by m
ijc . The strain–displacement relations are given by 

 r
rr

u
r

ε ∂
=
∂

;   ru
rθθε = ;   z

zz
u
z

ε ∂
=
∂

;   1
2

r z
zr

u u
z r

ε ∂ ∂ = + ∂ ∂ 
 (3.2) 

where ru  and zu  denote the displacements in the r – and z –directions 
respectively. 

The field equations of a piezoelectric material undergoing axisymmetric 
deformations about the z –axis can be expressed as  

 0rrrr rz
rF

r z r
θθσ σσ σ −∂ ∂

+ + + =
∂ ∂

 (3.3a) 

 0rz zz rz
zF

r z r
σ σ σ∂ ∂

+ + + =
∂ ∂

 (3.3b) 

 0r z rD D D Q
r z r

∂ ∂
+ + − =

∂ ∂
 (3.3c) 

where rF  and zF  denote the body forces in the r – and z –directions respectively, 
and Q  denotes the electric body charge. 

 The electric field ( , )iE i r z=  and the electric potential ( , )r zφ  are related 
by 

 rE
r
φ∂

= −
∂

;     zE
z
φ∂

= −
∂

 (3.4) 
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 Substitution of equations (3.1), (3.2) and (3.4) in the field equations (3.3) 
results in the following governing equations in terms of the displacement ru  and 

zu  in the r – and z –directions and the electric potential ( , )r zφ  (Rajapakse and 
Zhou, 1997):  
 

 
2 2 2

11 44 13 442 2 2
1 1 ( )( )f f f fr r r z

r
u u u uc u c c c

r r r zr r z
∂ ∂ ∂ ∂

+ − + + +
∂ ∂ ∂∂ ∂

 

 
2

31 15( ) 0f f
re e F

r z
φ∂

+ + + =
∂ ∂

 (3.5a) 

 
2 2 2

44 33 13 442 2
1 1( )( ) ( )f f f fz z z r ru u u u uc c c c
r r r z r zr z

∂ ∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂∂ ∂
 

 
2 2

15 332 2
1 0( )f f

ze e F
r rr z

φ φ φ∂ ∂ ∂
+ + + + =

∂∂ ∂
 (3.5b) 

 
2 2 2

15 33 31 152 2
1 1( )( ) ( )f f f fz z z r ru u u u ue e e e
r r r z r zr z

∂ ∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂∂ ∂
 

 
2 2

11 332 2
1 0( )f f Q
r rr z

φ φ φε ε∂ ∂ ∂
− + − − =

∂∂ ∂
 (3.5c) 

3.2 General Solutions of Piezoelectric Materials  

A generalized displacement potential function ( , )r zψ  is introduced by 
relating it to the displacements ru  and zu  and the electric potential φ  in the 
following manner (Wang and Zheng, 1995): 

 ru
r
ψ∂

=
∂

;     1zu k
z
ψ∂

=
∂

;     2k
z
ψφ ∂

=
∂

 (3.6) 

where 1k  and 2k  are unknown constants to be determined. 

 The substitution of equation (3.6) into equations (3.5) results in the 
following governing equations to determine ψ , 1k  and 2k . 
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 { }
2 2

11 44 13 44 1 31 15 22 2
1 ( ) ( ) 0f f f f f f

rc c c c k e e k F
r r rr z

ψ ψ ψ  ∂ ∂ ∂ ∂
+ + + + + + + =  ∂ ∂∂ ∂   

 (3.7a)  

 ( )
2 2

13 44 44 1 15 2 33 1 33 22 2
1 ( ) 0f f f f f f

zc c c k e k c k e k F
z r rr z

ψ ψ ψ  ∂ ∂ ∂ ∂
+ + + + + + + =  ∂ ∂∂ ∂   

 (3.7b) 

 ( )
2 2

31 15 15 1 11 2 33 1 33 22 2
1 ( ) 0f f f f f fe e e k k e k k Q

z r rr z
ψ ψ ψε ε

  ∂ ∂ ∂ ∂
+ + − + + − − =  ∂ ∂∂ ∂   

 (3.7c)  

 The solution for the potential function ( , )r zψ  composes of the 
homogeneous solution, denoted by ( , )h r zψ , and the particular solution, denoted 
by ( , )p r zψ  such that, 

 ( , ) ( , ) ( , )h pr z r z r zψ ψ ψ= +  (3.8) 

3.2.1 Homogeneous Solution  

The homogeneous solution of the potential function, ( , )h r zψ , is derived 
from equations (3.7a)–(3.7c) by setting 0r zF F Q= = =  and applying Fourier 
integral transforms with respect to z . The Fourier integral transform of a function 

( , )f r z  with respect to z and its inverse are defined by (Sneddon, 1970) 

 1( , ) ( , )
2

i zf r f r z e dzξξ
π

∞

−∞
= ∫  (3.9a) 

 1( , ) ( , )
2

i zf r z f r e dξ
ξ ξ

π

∞ −

−∞
= ∫  (3.9b) 

where ξ  denotes the Fourier transform parameter. 

Applying the Fourier integral transforms to equations (3.7a)–(3.7c) with 
0r zF F Q= = = , the following homogeneous solution can be obtained, 

 3

0 0
1

( , ) ( ) ( ) ( ) ( )h
j j j j

j
r I r A K r Bψ ξ ξ ξ ξ ξ

=
 = + ∑  (3.10a) 

where    
 j jvξ ξ= ;   j = 1, 2, 3 (3.10b) 
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and hψ  ( j =1,2,3) is the Fourier transform of the homogeneous solution of the 
potential function; jv (j = 1,2,3)  is a set of roots of the characteristic equation 
corresponding to equations (3.7) and defined in the Appendix A; ( )jA ξ and 

( )jB ξ  ( j  = 1, 2, 3) are arbitrary functions to be determined from the boundary 
and continuity conditions; nI and nK  denote the modified Bessel functions of the 
first and the second kinds of order n  respectively (Watson, 1962).  

Let 1
h
jk  and 2

h
jk  denote the constants 1k  and 2k  of the homogeneous 

solution corresponding to the root jv . It can be shown that 

 11 44 15 31 2
1

13 44

( )f f f f h
j jh

j f f

c c e e k
k

c c
ν − − +

=
+

 (3.11a) 

 
2

11 44 33 44 13 44
2

15 31 33 44 13 44 33 15

( )( ) ( )
( )( ) ( )( )

f f f f f f
j j jh

j f f f f f f f f
j j

c c c c c c
k

e e c c c c e e
ν ν ν

ν ν
− − − +

=
+ − − + −

 (3.11b) 

 Note that the homogenous general solution given by equation (3.10) 
corresponds to an infinite annular piezoelectric cylinder. The solution for a solid 
piezoelectric fiber of finite radius can be obtained from equation (3.10a) by 
setting 0jB = .  

3.2.2 Particular Solution  

The particular solutions of the equations (3.7) under a non–zero axial body 
force and a body charge are derived in this section. This particular solution does 
not exist in the literature. First, consider the case of a vertical body force ( )zF z  in 
the absence of a radial body force rF  and a body charge Q . To satisfy equation 
(3.7) for any arbitrary r –value, the particular solution pψ  must be independent of 
r. Consequently, the terms 2 2[( / ) (1/ )( / )]p pr r rψ ψ∂ ∂ + ∂ ∂  appeared in equation 
(3.7) are vanished. The constants 1k  and 2k  of the particular solution 
corresponding to a vertical body force are denoted by 1

pzk  and 2
pzk . These 

constants can be determined from equations (3.7a) and (3.7c) with 0rF Q= =  as 
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 44 33
1

31 15 33 13 44 33( ) ( )

f f
pz

f f f f f f
ck

e e e c c
ε

ε
−

=
+ + +

 (3.12a) 

 33
2 1

33

f
pz pz

f
ek k
ε

=  (3.12b) 

Applying Fourier transforms to equation (3.7b), the following solution for 
the Fourier transform of the particular solution of the potential function can be 
obtained.  

 3
33 1 33 2

( )( )
( )

pz z
f pz f pz
iF

c k e k
ξψ ξ

ξ
=

+
 (3.13) 

where ( )zF ξ denotes the Fourier transform of the vertical body force. 

Next consider the case of an electric body charge with 0r zF F= = . 
Similar to the case of a vertical body force, the expressions for 1

pqk  and 2
pqk  for 

the case of an electric body charge can be determined from equations (3.7a) and 
(3.7b) as  

 44 33
1

31 15 33 13 44 33( ) ( )

f f
pq

f f f f f f
c ek

e e c c c e
=

+ − +
 (3.14a) 

 33
2 1

33

f
pq pq

f
ck k
e

= −  (3.14b) 

The Fourier transform of the particular solution pqψ  corresponding to the 
case of an electric charge ( )Q z  is obtained from equation (3.7c) as  

 3
33 1 33 2

( )( )
( )

pq
f pq f pq

iQ
e k k

ξψ ξ
ξ ε

−
=

−
 (3.15) 

where ( )Q ξ denotes the Fourier transform of the body charge. 

3.2.3 Complete General Solutions 

By using the homogeneous and particular solutions presented in the 
foregoing subsections, the complete general solutions for the Fourier transforms 
of the electroelastic fields of a piezoelectric fiber can be expressed as 
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3

1
1

( , ) ( ) ( )r j j j
j

u r I r Aξ ξ ξ ξ
=

= ∑  (3.16a) 

3

1 0 1 1
1

( , ) ( ) ( ) ( ) ( )h pz pz pq pq
z j j j

j
u r i k I r A k kξ ξ ξ ξ ψ ξ ψ ξ

=

 
= − + + 

 
∑  (3.16b) 

3

2 0 2 2
1

( , ) ( ) ( ) ( ) ( )h pz pz pq pq
j j j

j
r i k I r A k kφ ξ ξ ξ ξ ψ ξ ψ ξ

=

 
= − + + 

 
∑  (3.16c) 

{ }3 2 1
11 13 1 31 2 0 12 11 1

1
( , ) ( ) ( ) ( ) ( )f f h f h f f

rr j j j j j j j
j

r c v c k e k I r c c r I r Aσ ξ ξ ξ ξ ξ ξ−

=
 = − − + − ∑       

                          2
13 1 31 2 13 1 31 2( ) ( ) ( ) ( )f pz f pz pz f pq f pq pqc k e k c k e kξ ψ ξ ψ ξ − + + +   (3.16d) 

{ }3 2 1
12 13 1 31 2 0 11 12 1

1
( , ) ( ) ( ) ( ) ( )f f h f h f f

j j j j j j j
j

r c v c k e k I r c c r I r Aθθσ ξ ξ ξ ξ ξ ξ−

=
 = − − + − ∑       

                          2
13 1 31 2 13 1 31 2( ) ( ) ( ) ( )f pz f pz pz f pq f pq pqc k e k c k e kξ ψ ξ ψ ξ − + + +   (3.16e) 

3 2
13 33 1 33 2 0

1
( , ) ( ) ( )f f h f h

zz j j j j j
j

r c v c k e k I r Aσ ξ ξ ξ ξ
=

 = − − ∑  

                          2
33 1 33 2 33 1 33 2( ) ( ) ( ) ( )f pz f pz pz f pq f pq pqc k e k c k e kξ ψ ξ ψ ξ − + + +   (3.16f) 

3

44 1 15 2 1
1

( , ) [ (1 ) ] ( ) ( )f h f h
rz j j j j j

j
r i c k e k I r Aσ ξ ξ ξ ξ ξ

=
= − + −∑  (3.16g) 

3

15 1 11 2 1
1

( , ) [ (1 ) ] ( ) ( )f h f h
r j j j j j

j
D r i e k k I r Aξ ξ ξ ε ξ ξ

=
= − + −∑  (3.16h) 

3 2
31 33 1 33 2 0

1
( , ) [ ] ( ) ( )f f h f h

z j j j j j
j

D r e v e k k I r Aξ ξ ε ξ ξ
=

= − +∑  

                          2
33 1 33 2 33 1 33 2( ) ( ) ( ) ( )f pz f pz pz f pq f pq pqe k k e k kξ ε ψ ξ ε ψ ξ − − + −   (3.16i) 

The three arbitrary functions jA  (j =1, 2, 3) appearing in equations (3.16) 
can be determined from the three boundary conditions (two mechanical and one 
electric conditions) associated with the outer surface of the piezoelectric fiber.  

3.3 General Solutions of Transversely Isotropic Elastic Materials 
 Let consider the surrounding elastic matrix in a piezocomposite shown in 
Figure 3.1. The matrix is transversely isotropic and free from any body force. The 
general solution can be derived by following a similar procedure given in Section 
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3.2 for the piezoelectric case, and setting 0f f
ij ije ε= ≡  and replacing f

ijc  by m
ijc . It 

can be shown that the analytical general solutions for the Fourier transforms of 
displacements and stresses for a transversely isotropic elastic matrix with a 
cylindrical hole are given by 

 2

1
1

( , ) ( ) ( )r k k k
k

u r K r Cξ ξ ξ ξ
=

= ∑  (3.17a) 

 2

0
1

( , ) ( ) ( )z k k k
k

u r i n K r Cξ ξ ξ ξ
=

= − ∑  (3.17b) 

 {2 2
11 13 0

1
( , ) [ ] ( )m m

rr k k k
k

r c w c n K rσ ξ ξ ξ
=

= −∑   

 }1
12 11 1[ ] ( ) ( )m m

k k kc c r K r Cξ ξ ξ−− −  (3.17c) 

 {2 2
12 13 0

1
( , ) [ ] ( )m m

k k k
k

r c w c n K r
θθ

σ ξ ξ ξ
=

= −∑   

 }1
11 12 1[ ] ( ) ( )m m

k k kc c r K r Cξ ξ ξ−− −  (3.17d) 
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13 33 0

1
( , ) [ ] ( ) ( )m m

zz k k k k
k

r c w c n K r Cσ ξ ξ ξ ξ
=

= −∑  (3.17e) 

 2

44 1
1

( , ) [1 ] ( ) ( )m
rz k k k k

k
r i c n K r Cσ ξ ξ ξ ξ ξ

=
= +∑  (3.17f) 

where m
ijc  denotes the elastic constants of the matrix material; ( )kC ξ ( k  =1, 2) 

are the arbitrary functions to be determined from the boundary and continuity 
conditions; and 

 k kwξ ξ= ;      11 44

13 44

m m
k

k m m
c w cn
c c

−
=

+
;   k  =1, 2 (3.18) 

In addition, kw  ( k  =1, 2) are the roots of the following equation. 

 ( )22
11 44 13 13 44 11 33 33 442 0m m m m m m m m m

k kc c w c c c c c w c c + + − + =  
 (3.19) 
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Figure 3.1 A piezoelectric fiber–reinforced composite. 
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CHAPTER IV 
 

ELECTRO–MECHANICAL LOAD TRANSFER IN PIEZOCOMPOSITES  
 
 

 In this chapter, the electro–mechanical interaction between a fiber and a 
matrix material in a piezocomposite due to an axial load and electric charge 
applied to the fiber as shown in Figure 4.1 is considered. The fiber–matrix 
interface is considered to be mechanically imperfect and is represented by a 
spring–factor model. The interface is either electrically open– or short–circuited. 
The general solutions presented in the preceding Chapter are used to formulate 
the load transfer boundary–value problem. Numerical results for the axial force, 
electric field, displacements and interfacial stresses are presented to 
demonstrate electro–mechanical interaction in a fiber–matrix system. Finally, the 
influence of the interface stiffness on the electromechanical load diffusion in a 
piezoelectric fiber–reinforced composite is investigated. 

4.1 Problem Formulation 

The general solutions derived in the preceding chapter are used in the 
analysis of the fundamental electro–mechanical fiber–matrix interaction problem 
shown in Figure 4.1. The fiber–matrix interface is assumed to be either 
electrically open– or short–circuited and mechanically imperfect. The general 
solution of the fiber and matrix are given by equations (3.16) and (3.17) 
respectively. These equations involve five arbitrary functions, 1A , 2A , 3A , 1C  and 

2C  which can be determined from the continuity conditions along the fiber–matrix 
interface for a specified body force ( )zF z  and/or electric charge ( )Q z . In this 
study, the fundamental solutions involving an axial force and an electric charge 
applied uniformly over the fiber cross section at z = 0 (Figure 4.1) are 
considered. The total magnitude of the applied axial force and electric charge 
are 0P  and 0Q  respectively. The corresponding body force functions ( )zF z  and 

( )Q z  can be expressed as 
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 2
0( ) ( ) /( )zF z P z aδ π= −  (4.1a) 

 2
0( ) ( ) /( )Q z Q z aδ π= −  (4.1b) 

The stress continuity conditions and electrically impermeable condition 
(open–circuited) along the fiber–matrix interface ( r a= ) can be expressed as 

 ( , ) ( , )f m
rr rra z a zσ σ=  (4.2a) 

 ( , ) ( , )f m
rz rza z a zσ σ=  (4.2b) 

 ( , ) 0f
rD a z =  (4.2c) 

in which the superscript f  and m  are used to identify the quantities 
corresponding to the piezoelectric fiber (0 r a≤ ≤ ) and the elastic matrix 
( a r≤ < ∞ ) respectively. 

Alternately, the electric boundary condition in equation (4.2) can be 
replaced by ( , )f a zφ = 0 which implies short–circuited condition. The two 
conditions represent the extreme electric boundary conditions at the fiber–matrix 
interface. 

 In the present study, the mechanically imperfect fiber–matrix interface is 
represented by a spring–factor model, which assumes that sufficient cohesion 
exists on the interface to prevent separation in the radial direction, and relates 
the vertical displacement jump along the interface and the interface shear stress 
through a spring–factor parameter as follows 

 ( , ) ( , )f m
r ru a z u a z=     (4.3a) 

 [ ( , ) ( , ) ] ( , )m f f
s z z rzk u a z u a z a zσ− =  (4.3b) 

where sk  denotes the spring–factor parameter.  

For a perfectly bonded interface, sk → ∞  and ( , ) ( , )f m
z zu a z u a z= . 

Equations (4.1)–(4.3) can be easily expressed in the Fourier transform domain 
and the substitution of general solutions given by equations (3.16) and (3.17) in 
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equations (4.2) and (4.3) results in a linear algebraic simultaneous equation 
system to determine the arbitrary functions 1A , 2A , 3A , 1C  and 2C . Once the 
arbitrary functions are determined, the full electroelastic field of the system 
shown in Figure 4.1 can be determined.   

Application of the inverse Fourier integral transforms to equation (3.16f) 
results in the following solution for normal stress ( , )f

zz r zσ  in the piezoelectric 
fiber. 

{ 2
13 33 1 33 2 0

1( , ) ( ) ( )
2

f f f h f h
zz j j j j jr z c v c k e k I r Aσ ξ ξ ξ

π

∞

−∞

 = − − ∫  

                   }2
33 1 33 2 33 1 33 2( ) ( ) ( ) ( )f pz f pz pz f pq f pq pq i zc k e k c k e k e dξξ ψ ξ ψ ξ ξ− − + + +   (4.4) 

The resultant axial force ( )P z  in the piezoelectric fiber at a given cross 
section can be determined from 

 
0

( ) 2 ( , )
a

f
zzP z r z r drπ σ= ∫ ;   z−∞ < < ∞  (4.5) 

Substitution of the solution of ( , )f
zz r zσ  into equation (4.5) and use of the 

following identity (Watson, 1972) 

 1
0

( )( ) r I rr I r dr ξξ
ξ

=∫  (4.6) 

yields   

{ 3

13 33 1 33 2 1
1

( ) 2 ( ) ( ) ( )f f h f h
j j j j j

j j

P z a c v c k e k I a A
v
ξ

π ξ ξ
∞

=−∞
= − −∑∫  

              }
2

13 1 31 2 13 1 31 2( ) ( ) ( ) ( )
2

f pz f pz pz f pq f pq pq i za c k e k c k e k e dξξ ψ ξ ψ ξ ξ− − + + +   (4.7) 

 The interfacial shear stress and the electric field along the z –axis are 
given by 

{ }3

44 1 15 2 1
1

1( , ) (1 ) ( ) ( )
2

f h f h i z
rz j j j j j

j
a z i c k e k I a A e dξσ ξ ξ ξ ξ ξ

π

∞
−

=−∞
= − + −∑∫  (4.8a) 

{ }32
2 2 2

1

1(0, ) ( ) ( ) ( )
2

h pz pz pq pq i z
z j j

j
E z k A k k e dξξ ξ ψ ξ ψ ξ ξ

π

∞
−

=−∞
= + +∑∫  (4.8b) 
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4.2 Numerical Results and Discussion  

The computation of the electroelastic field corresponding to the problem 
shown in Figure 4.1 requires the numerical evaluation of the infinite integral given 
by equation (3.9b). This integral can be converted to a semi–infinite integral by 
using the symmetric and anti–symmetric properties of the integrands. In the 
present study, a globally adaptive numerical quadrature scheme is employed to 
evaluate the integral (Piessens et al., 1983). The scheme subdivides the interval 
of integration and uses a 21–point Gauss–Kronrod rule to estimate the integral 
over each subinterval. The error for each subinterval is estimated by comparing 
between the result obtained from 21–point Gauss–Kronrod rule and that from 10–
point Gauss–Kronrod rule. The subinterval with the largest estimated error is then 
bisected, and this procedure is applied to both halves. This bisection procedure 
is continued until the error criterion is reached.  

4.2.1 Comparison with Existing Solutions 

The accuracy of the present scheme is first verified by comparing with the 
existing solutions for an ideal elastic composite system. The present solution 
scheme can be used to analyze the axial load transfer in an elastic fiber–
reinforced composite by setting the piezoelectric coefficients of the fiber to 
negligibly small values ( 0ije ≈ ). Figure 4.2 presents a comparison of the 
numerical solutions for the fibre axial force of a perfectly bonded fiber with those 
presented by Muki and Sternberg (1969). The Poisson’s ratios of the fiber and 
matrix are equal to 0.25, and fE  and mE  denote Young’s moduli of the fiber and 
matrix respectively. The solutions presented in Figure 4.2 show an excellent 
agreement for various values of /f mE E  confirming the accuracy of the present 
solution. 

Further comparisons are presented by considering the case of elastic 
composites with imperfect fiber–matrix interfaces (Lenci & Menditto, 2000). The 
elastic modulus of the fiber, fE =68.954 GPa, Poisson’s ratio of the matrix 
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ν = 0.34 and shear modulus of the matrix µ = 2.59 GPa. Lenci and Menditto 
(2000) simplified the analysis by modeling the fiber as a one–dimensional bar 
whereas the present solution allows the fiber to be considered as a three–
dimensional continuum. A comparison of the fiber axial force, and interfacial 
shear and radial stresses are presented in Figure 4.3 for various nondimensional 
interface stiffness values, /( )f

sE k a , in which sk  and a  denote the interface 
stiffness (spring–factor) and radius of the fiber respectively. It can be seen from 
Figures 4.3(a) and (b) that the results given by Lenci and Menditto (2000) and 
the present scheme agree closely for the fiber axial force and interfacial shear 
stress. In the case of interfacial radial stress. Figure 4.3(c) shows two solutions 
obtained from the present scheme: one corresponding to full radial displacement 
compatibility between the fiber and matrix and the other with the constraint that 
interfacial radial displacement is zero. In the vicinity of the loading plane, the two 
solutions from the present scheme and the results of Lenci & Menditto (2000) 
agree closely but the differences are noted between the full radial displacement 
compatibility solution and the solution from Lenci & Menditto (2000) as the 
distance in z –direction increases. This is due to the fact that the radial 
deformation is not accounted by the 1–D fiber model of Lenci and Menditto 
(2000). On the other hand, the present solution for interfacial radial stress with 
the constraint ( , ) 0f

ru a z =  agrees very closely with the corresponding solution of 
Lenci and Menditto (2000) for all values of /z a .  

4.2.2 Force and Charge Diffusion in Piezocomposites 

In this section, selected numerical solutions are presented to demonstrate 
the basic features of the electromechanical load diffusion process in 
piezoelectric fiber–reinforced composites. Two elastic polymer matrix materials, 
identified as matrix A and matrix B, with three different piezoelectric fibers, 
namely, PZT–6B, PZT–4 and BaTiO3 are considered in the numerical study. The 
properties of these materials are given in Table 4.1.  
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The case of piezocomposites with perfect bonding along the fiber–matrix 
interface is first examined. The corresponding solutions are presented in Figures 
4.4–4.9 for fibers with open– and short–circuited conditions along the interface. 
Note that solutions are presented only for z ≥ 0 as all quantities are either 
symmetric or anti–symmetric with respect to the loading plane z  = 0.  

Consider the diffusion of an axial load of magnitude 0P  applied uniformly 
over the cross section at z = 0 of the fiber (Figure 4.1). The variation of 
nondimensional resultant axial force along the fiber length is shown in Figure 
4.4(a) for the open–circuited case. Naturally, the nondimensional axial load has a 
unit magnitude at z = 0 and decreases gradually with z . The decay of axial load 
in the fiber depends on the type of fiber and matrix material. As the matrix A is 
stiffer than matrix B (Table 4.1), the axial load is more rapidly transferred to 
matrix A when compared to matrix B. For example, at a distance six times the 
fiber–radius from the loading plane, the fiber axial load is approximately 10% and 
30% of the applied load for matrix A and matrix B respectively. The dependence 
of fiber axial load on fiber material properties is quite negligible when compared 
to its dependence on the matrix material properties. 

In the case of piezocomposites, particular interest for sensor applications 
is the electric field generated in the fiber due to the applied mechanical loading. 
Figure 4.4(b) shows the nondimensional vertical electric field, * 2

15 0/f
z zE E e a P= , 

along the axis of the piezoelectric fiber. The peak value of vertical electric field 
occurs near the loading plane ( /z a  < 1) and thereafter *

zE  gradually decreases 
with z . The decay of *

zE  along the fiber length is significantly affected by the 
properties of the fiber and matrix. The PZT–4 fiber has the highest *

zE  followed by 
the BaTiO3 and PZT–6B fibers implying that PZT–4 is more suitable for 
applications involving sensing. A softer matrix material results in a higher vertical 
electric field in the fiber as lesser load is transferred to the matrix. In addition, the 
decay of electric field is relatively slow in the case of a softer matrix allowing 
better sensing properties.   
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The variations of nondimensional shear stress, * 2
0/rz rza Pσ σ=  , and radial 

stress, * 2
0/rr rra Pσ σ= , along the fiber–matrix interface ( /r a = 1) are presented  

in Figures 4.5(a) and 4.5(b) respectively. Similar to the case of the fiber axial 
force, interfacial stresses are mostly influenced by the matrix material when 
compared to the properties of the fiber. Shear stress along the interface has its 
maximum value at the loading plane and decreases rapidly in the vertical (fiber) 
direction. Stiffer matrix materials result in higher interfacial stresses as the load 
transfer to the matrix is more rapid in this case. Consequently, such composites 
are more prone to interfacial failure provided that the shear strength at the 
interface is the same. Radial stress along the fiber–matrix interface is zero at 
z = 0 and increases rapidly with z  reaching a peak value near /z a = 1 and 
thereafter decreases rapidly with z . The peak value of the interface radial stress 
is less than 10% of the peak interface shear stress. Therefore, interfacial strength 
is mostly governed by the cohesion at the interface instead of Coulomb friction in 
the present model. 

Next, consider the diffusion of a patch electric charge from a fiber 
perfectly bonded to a matrix. Nondimensional vertical 
stress, ** 2

15 44 0/f f
zz zz e a c Qσ σ=  , and vertical electric field, ** 2 2

15 44 0( ) /f f
z zE E e a c Q= , 

along the z –axis are presented in Figures 4.6(a) and 4.6(b) respectively. A 
substantial dependence of vertical stress on the fiber type is noted. Vertical 
stress is zero at the loading plane and initially increases rapidly and then 
decreases slowly along the fiber axis. It is tensile along the upper fiber length, 
and PZT–4 has the highest nondimensional value. Figure 4.6(b) shows the 
variation of  **

zE  along the fiber axis. In this case, BaTiO3  and PZT–6B fibers 
have nearly equal but substantially smaller values of **

zE  when compared to a 
PZT–4 fiber. The decay of the vertical electric field along the fiber length is not 
rapid.  Nondimensional shear stress, ** 2

15 44 0/f f
rz rz e a c Qσ σ= , and radial stress, 

** 2
15 44 0/f f

rr rr e a c Qσ σ= , at the fiber–matrix interface due to an electric charge are 
shown in Figures 4.7(a) and 4.8(b) respectively. The variation of shear and radial 
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stresses along the interface is somewhat similar to the results shown in Figure 
4.5. However, the dependence of the interface stresses on the fiber and matrix 
material type is more pronounced in the case of electric charge loading when 
compared to the axial loading.  

Figure 4.8 shows the resultant axial force and vertical electric field of a 
short–circuited fiber bonded to an elastic matrix due to an axial force 0P . The 
axial force profiles are similar to those shown in Figure 4.4(a) but the load 
transfer is slightly more rapid than the open–circuited case and the influence of 
the fiber properties on the force profiles are higher. Vertical electric field decays 
very rapidly along the fiber length in contrast to Figure 4.4(b) and show less 
dependence on the matrix material. The interfacial stresses for the short–
circuited case show similar behavior to Figure 4.5 but the magnitudes are higher 
by 20–50%. Figure 4.9 shows the variation of vertical stress and vertical electric 
field when a short–circuited fiber is subjected to an electric charge 0Q . The 
profiles are very different from those shown in Figure 4.6 and show very rapid 
decay of axial stress and vertical electric field along the fiber length. The 
magnitudes show considerable dependence on the fiber properties but negligible 
influence of matrix material. As in the case of Figure 4.6 the maximum values of 
nondimensional axial stress and vertical electric field correspond to PZT–4. 
Comparisons with Figure 4.6 also shows that axial stress and vertical electric 
field are much smaller in the short–circuited case. 

Figures 4.10(a) and 4.10(b) show the nondimensional shear stress along 
the r –axis at the z =0 plane, and the nondimensional radial stress at /z a =1 
respectively, due to the axial load applied to the open–circuited piezoelectric 
fiber–reinforced composites. The radial variations of shear stress at z =0 and 
radial stresses at /z a =1 for piezocomposites under an applied electric charge 
are also presented in Figures 4.11(a) and 4.11(b) respectively. It is evident from 
Figures 4.10 and 4.11 that the stresses profiles decrease rapidly along the 
transverse direction. At /r a =4, which corresponds to the fiber–to–fiber distance 
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for the optimized piezoelectric volume fraction of 20%, the shear and radial 
stresses reduce to relatively small values when compared to the corresponding 
values at /r a =1 for both electric charge and axial load cases. The radial profiles 
of stress fields for the closed–circuited piezoelectric fiber–reinforced composites 
are also investigated and show the similar behavior as the opened–circuited 
case. The solutions in transverse direction shown in Figures 4.10 and 4.11 
confirm that the assumption of negligible fiber–to–fiber effect is reasonable for 
the analysis of piezoelectric fiber–reinforced composites and the 1–3 
piezocomposite (Figure 1.1) can be modeled by an infinite elastic matrix with a 
single piezoelectric fiber as shown in Figure 3.1.  

The effect of imperfect fiber–matrix bonding on the load diffusion 
characteristics is presented in Figures 4.12–4.15. Two cases of piezocomposites 
are considered in the numerical study, i.e., composites of PZT–6B fiber with 
matrix A and PZT–4 fiber with matrix B. The interface behavior is characterized by 
the spring–factor model described in equation (4.3b). Five values of 
nondimensional spring–factor, *

44( ) / f
s sk k a c= = 10, 1, 0.1, 0.01 and 0.001 are 

considered in the numerical study. Figures 4.12 and 4.13 show the electroelastic 
field of composites of PZT–6B fiber with matrix A and PZT–4 fiber with matrix B 
respectively under an applied axial load. Numerical results presented in Figures 
4.12 and 4.13 demonstrate a substantial dependence of the electroelastic field of 
both composites on the interface stiffness. Figures 4.12(a) and 4.13(a) shows 
that fiber axial force significantly depends on the stiffness of the interface and as 

*
sk  decreases (weaker interface) the load transferred to the matrix is obviously 

reduced. The magnitudes of interfacial shear stress and radial stress obviously 
decrease as the interface bonding becomes weaker and the decay along the 
interface becomes less rapid. On the other hand, vertical electric field of the fiber 
increases in the case of a weaker interface due to less load transfer to the matrix. 
The magnitude of fiber vertical electric field can be considered as a measure of 
the interface condition (weaker interface yields a higher fiber electric field). 
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Therefore, it is possible to obtain a qualitative non–destructive assessment of the 
interface bond condition by comparing vertical electric field of fibers. A 
comparison of Figures 4.12 and 4.13 indicates that an imperfect interface has a 
relatively lesser effect on the load diffusion in a PZT–4/Matrix B composite and 
the interfacial stresses are also smaller.  

The effect of an imperfect interface on electric charge transfer is shown in 
Figure 4.14 for a composite of PZT–6B fibers with matrix A and in Figure 4.15 for 
a composite of PZT–4 fibers with matrix B. The influence of interface bonding 
condition is relatively small when compared to the effects observed in Figures 
4.12 and 4.13 for an axial load. Vertical electric field is negative, and its absolute 
value is increased as the interface becomes weaker. The fiber tensile axial stress 
is also increased as the interface becomes weaker. However, near the loading 
plane vertical stress and electric field show negligible influence of the interface 
stiffness. Nondimensional shear and radial stresses indicate that interfacial 
stresses decrease as the interface becomes weaker similar to the behavior 
observed for the axial load diffusion but the stresses have signs opposite to 
those corresponding to the axial load transfer case. A comparison of Figures 4.14 
and 4.15 shows that the influence of interface stiffness is less in the case of  
PZT–4/Matrix B composites under electric charge loading similar to the case of 
axial loading. 
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Table 4.1 Material properties used in the numerical study 

  

                       

 

 PZT–6B PZT–4 BaTiO3 Matrix A Matrix B 

11c  (×1010 N/m2) 16.8 13.9 15.0 1.49 0.2827 

33c  (×1010 N/m2) 16.3 11.5 14.6 4.72 0.2827 

12c  (×1010 N/m2) 6.0 7.78 6.6 0.66 0.1211 

13c  (×1010 N/m2) 6.0 7.43 6.6 0.52 0.1200 

44c  (×1010 N/m2) 2.71 2.56 4.4 0.47 0.0808 

31e    (C/m2) –0.9 –5.2 –4.35 0.0 0.0 

33e    (C/m2) 7.1 15.1 17.5 0.0 0.0 

15e    (C/m2) 4.6 12.7 11.4 0.0 0.0 

11ε  (×10–9 F/m) 3.6 6.45 9.87 0.0 0.0 

33ε  (×10–9 F/m) 3.4 5.62 11.15 0.0 0.0 
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Figure 4.1 A piezoelectric fiber–reinforced composite with imperfect interface.  
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Figure 4.2 Comparison of the fiber axial force for elastic composites with perfect 
interface.  
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Figure 4.3 Comparison of (a) fiber axial force; (b) interfacial shear stress and    

(c) interfacial radial stress for elastic composite with imperfect interface. 
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Figure 4.4 (a) Resultant axial force and (b) vertical electric field along the z –axis 
of piezoelectric fiber (open–circuited) under applied axial load.  
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                                                                  (b) 

Figure 4.5 (a) Shear and (b) radial stresses along the fiber–matrix interface of 
piezoelectric composite (open–circuited) under applied axial load.  
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Figure 4.6 (a) Vertical stress and (b) vertical electric field along the z –axis of 
piezoelectric fiber (open–circuited) under applied electric charge. 
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Figure 4.7 (a) Shear and (b) radial stresses along the fiber–matrix interface of 
piezoelectric composite (open–circuited) under applied electric charge. 
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Figure 4.8 (a) Resultant axial force and (b) vertical electric field along the z –axis 
of piezoelectric fiber (short–circuited) under applied axial load.   
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                                                                 (b) 

Figure 4.9 (a) Vertical stress and (b) vertical electric field along the z –axis of 
piezoelectric fiber (short–circuited) under applied electric charge.  
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                                                                 (b) 

Figure 4.10 (a) Shear stress profiles along the r –axis at z =0 and                       
(b) radial stress profiles along the r –axis at /z a =1 (open–circuited)                  

under applied axial load.  



    40

r / a
1 2 3 4 5 6

*

--0.01

-0.00

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

PZT-6B fiber
PZT-4 fiber
BaTiO3 fiber
Matrix A
Matrix B

0

 

                                                                 (a) 

r / a
1 2 3 4 5 6

*

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

 

                                                                 (b) 

Figure 4.11 (a) Shear stress profiles along the r –axis at z =0 and                      
(b) radial stress profiles along the r –axis at /z a =1 (open–circuited)             

under applied electric charge.  
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Figure 4.12 Composite of PZT–6B fiber with Matrix A (a) resultant axial 

force and (b) vertical electric field along the z –axis of 
piezoelectric fiber; (c) shear and (d) radial stresses along the 
fiber–matrix interface (open–circuited) under applied axial load 
for different interface stiffness values. 
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Figure 4.13 Composite of PZT–4 fiber with Matrix B (a) resultant axial force 

and (b) vertical electric field along the z –axis of piezoelectric 
fiber; (c) shear and (d) radial stresses along the fiber–matrix 
interface (open–circuited) under applied axial load for different 
interface stiffness values. 
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Figure 4.14 Composite of PZT–6B fiber with Matrix A (a) vertical stress and 

(b) vertical electric field along the z –axis of piezoelectric fiber; 
(c) shear and (d) radial stresses along the fiber–matrix 
interface of piezoelectric composite (open–circuited) under 
applied electric charge for different interface stiffness values. 
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Figure 4.15 Composite of PZT–4 fiber with Matrix B (a) vertical stress and 

(b) vertical electric field along the z –axis of piezoelectric fiber; 
(c) shear and (d) radial stresses along the fiber–matrix 
interface of piezoelectric composite (open–circuited) under 
applied electric charge for different interface stiffness values. 

  

 



CHAPTER V 
 

CYLINDRICAL INTERFACE CRACK IN PIEZOCOMPOSITES  
 
 

 In this chapter, three–dimensional axisymmetric interface crack in a 
piezoelectric fiber–reinforced composite is examined by adopting the 
displacement discontinuity method (DDM) based on the fundamental solutions of  
interface dislocations. The general solutions of piezoelectric fiber and elastic 
matrix presented in chapter 3 are used to derive the required fundamental 
solutions of interface dislocations. A special crack tip element is introduced in 
the DDM formulation for improving the accuracy of the field quantities in the 
vicinity of the crack tip. The explicit solutions interface dislocations are given. 
The mathematical implementation and the intensity factors for interface crack in 
piezocomposite are discussed. The validity of the present scheme is confirmed 
by comparison with existing solutions for elastic case reported in the literature. 
Selected numerical results for crack opening displacements and field intensity 
factors are presented and discussed.  

5.1 Problem Formulation  
Consider a piezocomposite that consists of a cylindrical piezoelectric fiber 

of radius “ a ” perfectly bonded to an elastic matrix but contains a cylindrical 
interface crack of length “2 c ” as shown in Figure 5.1. The piezoelectric fiber and 
the elastic matrix are assumed to be transversely isotropic, and the boundary 
condition along the fiber interface is electrically impermeable. A polar             
co–ordinate system is used in which z –axis coincides with the principal axis of 
transversely isotropy. The displacement discontinuity method (DDM), originally 
developed for plane elasticity, is extended for the analysis of this fracture 
problem. The DDM analysis of the interface crack requires fundamental solutions 
of the interface dislocation in a piezocomposite as shown in Figure 5.3. The 
analytical general solutions corresponding to piezoelectric fiber and an elastic 
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matrix presented in Chapter 3 are used to determine the required fundamental 
solutions for the present scheme. Details on the DDM formulation and derivation 
of the fundamental solutions are explained in the subsequent sections. 

5.1.1 Displacement Discontinuity Method (DDM)  
The displacement discontinuity method (DDM), introduced by Crouch and 

Starfield (1983), is extended for the analysis of interface crack in a 
piezocomposite as shown in Figure 5.1. Based on the DDM formulation, the crack 
surface is subdivided into N  segments as shown in Figure 5.2. Each segment 
contains a constant displacement discontinuity id ( ,i r z= ), which is defined by 

 ( , ) ( , )f m
i i id u a z u a z= − ,   ,i r z=  (5.1) 

The influence of a single displacement discontinuity from each element on 
the field quantities at an arbitrary point in the material can be determined. 
Specifically, the radial and tangential stresses at the midpoint of the i th element 
can be expressed in terms of the displacement discontinuity components at the 
j th element as  

 , 1, 2,...,
i ij j ij j
rr rr r rz z
i ij j ij j
rz zr r zz z

A d A d
i j N

A d A d

σ

σ

= +  =
= + 

 (5.2) 

where ij
rrA , ij

rzA , ij
zrA  and ij

zzA  are the influence coefficients for the stresses along 
the fiber–matrix interface. For example, the coefficient ij

rzA  represents the 
interface radial stress ( rrσ ) at the midpoint of the i th element due to a unit 
displacement discontinuity ( zd =1) over the j th element. These influence 
coefficients can be obtained from the fundamental solutions of interface 
dislocations in a piezocomposite in which the explicit solutions are given in 
section 5.1.2. 

The specified values of the radial and tangential stresses for each 
element, i

rrσ  and i
zσ , lead to a system of 2 N  linear equations for 2 N  unknowns, 
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which are the elemental displacement discontinuity components i
rd  and i

zd . After 
solving the above equations for i

rd  and i
zd  ( i = 1, 2, …, N ), the displacements, 

stresses and electric field at designated points in the composite material can be 
determined by considering the corresponding influence funtions, given by 
equation (3.16) for the fiber and equation (3.17) for the matrix respectively, 
together with the principle of superposition. 

5.1.2 Fundamental Solutions for Interface Dislocations  
The required influence coefficients in equation (5.2) are determined from 

the fundamental solutions of elemental interface dislocation in a piezocomposite 
as shown in Figure 5.3. The general solutions of piezoelectric fiber and elastic 
matrix presented in chapter 3 are used to determine these fundamental solutions. 
Details on the derivation of the fundamental solutions for interface dislocation in 
piezocomposite are given in the following subsections. 

5.1.2.1 Radial Interface Dislocation 

Consider a piezoelectric fiber–reinforced composite with constant radial 
displacement discontinuity, rd , of a finite cylindrical region with radius “ a ” and 
length “ 2h ”at the fiber–matrix interface (Figure 5.3). The fiber–matrix interface is 
assumed to be electrically impermeable and perfectly bonded. The boundary and 
continuity conditions along the fiber–matrix interface ( r a= ) can be expressed as 

Displacement continuity 
 [ ]( , ) ( , ) ( ) ( )f m

r r ru a z u a z d H z h H z h− = + − −  (5.3a) 
 ( , ) ( , ) 0f m

z zu a z u a z− =  (5.3b) 

Stresst continuity 
 ( , ) ( , ) 0f m

rr rra z a zσ σ− =  (5.3c) 
 ( , ) ( , ) 0f m

rz rza z a zσ σ− =  (5.3d) 
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Electrical boundary condition 
 ( , ) 0f

rD a z =  (5.3e) 

where ( )H  denotes the Heaviside step function. Note that the superscript “ f ” 
and “ m ” are used to identify the quantities corresponding to the fiber (0 r a≤ ≤ ) 
and matrix ( a r≤ < ∞ ) respectively. 

The general solutions of piezoelectric fiber and elastic matrix are 
expressed by equation (3.16) with arbitrary functions 1A , 2A  and 3A  and 
equation (3.17) with arbitrary 1C  and 2C  respectively. Application of Fourier 
integral transform to equation (5.3), the substitution of general solutions and after 
lengthy manipulations result in the following solutions for arbitrary functions 1A , 

2A , 3A , 1C  and 2C  as follows. 

 { }1 1 1 1 1 1 1 1 1 2 1 1 1 2[ ( )] ( ) /r a a a a b b c b a bA d I h I p h I I p I I Wγ γ γ= + + + + +  (5.4a) 

 { }2 2 2 1 2 2 2 2 2 2 2 2 2 2[ ( )] ( ) /r a a a a b b c b a bA d I h I p h I I p I I Wγ γ γ= − + + + + +  (5.4b) 

 { }3 3 3 1 3 3 3 3 3 2 3 3 3 2[ ( )] ( ) /r a a a a b b c b a bA d I h I p h I I p I I Wγ γ γ= + + + + +  (5.4c) 

 { }1 02 2 4 5 2 12 12 02 6( ) ( ) /rC d K n s K y K Wγ γ ξ γ= + + +  (5.4d) 

 { }2 01 1 4 5 1 11 11 01 6( ) ( ) /rC d K n s K y K Wγ γ ξ γ= − + + +  (5.4e) 

where 

 

{ }

{ }
{ }

1 02 11 2 1 01 12 1 2 01 02 2 11 1 12

1 02 11 2 11 2 01 12 1 22 6 11 12 2 1 1 2

2
6 01 12 2 11 02 11 1 12 11 12 2 21 1 22

4 5 02 11 2 1 01 12 1 2

( )

( )

( )

( )( /( 2 / sin( ) / )

W K K n s K K n s K K n y n y

K K n y K K n y K K s w s w

K K w y K K w y K K w y w y

K K n w K K n w h

β ξ

β β ξ γ

ξ γ

ξ γ γ π ξ ξ

= − + −
+ − + −

+ − + −

+ + − + 

 (5.5) 

 
The functions appearing in equations (5.4)–(5.5) are related to the fiber 

and matrix’s material properties and given in Appendix B. 
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5.1.2.2 Axial Interface Dislocation 

The boundary and continuity conditions along the fiber–matrix interface for 
this case can be expressed as 

Displacement continuity 
 ( , ) ( , ) 0f m

r ru a z u a z− =  (5.6a) 
 [ ]( , ) ( , ) ( ) ( )f m

z z zu a z u a z d H z h H z h− = + − −  (5.6b) 

Stresst continuity 
 ( , ) ( , ) 0f m

rr rra z a zσ σ− =  (5.6c) 
 ( , ) ( , ) 0f m

rz rza z a zσ σ− =  (5.6d) 

Electrical boundary condition 
 ( , ) 0f

rD a z =  (5.6e) 

 A procedure identical to the case of the radial displacement discontinuity 
results in the following solutions for arbitrary functions 1A , 2A , 3A , 1C  and 2C : 

{ }1 1 1 7 8 1 22 2 21 1 1 1 1 1( ) ( )[ ( ) ] /z a a d a a b c bA d I h k w y w y I p I I h Wξ γ γ ξ= + + − + +  (5.7a) 

{ }2 2 2 7 8 1 22 2 21 2 2 2 2 2( ) ( )[ ( ) ] /z a a d a a b c bA d I h k w y w y I p I I h Wξ γ γ ξ= − + + − + +  (5.7b) 

{ }3 3 3 7 8 1 22 2 21 3 3 3 3 3( ) ( )[ ( ) ] /z a a d a a b c bA d I h k w y w y I p I I h Wξ γ γ ξ= + + − + +   (5.7c) 

{ }1 12 2 4 5 12 2 02 12 1 12 22 2( ) ( ) /zC d K w K s K y K y Wξ γ γ ξ β β= + + + +  (5.7d) 

{ }2 11 1 4 5 11 1 01 11 1 11 21 2( ) ( ) /zC d K w K s K y K y Wξ γ γ ξ β β= − + + + +  (5.7e) 

5.1.3 Order of Singularity and Field Intensity Factors 

The field intensity factor is an important concept in fracture mechanics. 
This invariant nature of the crack tip stresses reduces the analysis to the 
determination of the intensity factors for the specific problem of interest. 
Analytical solutions to the problem of crack in a homogeneous material show that 
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the stress fields in the neighborhood of a crack tip have square root singularities. 
The interface crack in composite bi–materials may contain singularity beside the 
classical square root. The order of singularity for the interface crack can be 
determined by using Stroh’s formulation or Lekhnitskii’s approach. It is noted that 
the order of singularity for the crack can be determined using any orthogonal 
coordinate system and therefore the axisymmetric interface crack and the plane 
interface crack at the same composite material have the same characteristics of 
singularity. 

Based on Stroh’s formulation, Suo et al. (1992) derived the solution for 
plane problem of an impermeable interface crack in general anisotropic 
piezoelectric bimaterials in the form 

 1/ 2( ) ih z z γ− += w  (5.8) 

which satifies the Hilbert problem  

 2e πγ=Hw Hw  (5.9) 

where H  depends upon the material constants. 

The Hilbert problem of equation (5.9) can be reduced to the eigenvalue 
problem given by 

1( ) 0iβ− + =D W I w ,  1 4 2 0i b cβ β β− + = + + =D W I w  (5.10a) 

1[tanh ( )] /γ β π−= − ,  { }1 2( ) / 4b tr − =  D W ,  1c −= D W  (5.10b) 

where   

Re[ ]=D H ,  Im[ ]=W H ,   1 2= +H Y Y ,  1i −=Y AB   (5.10c) 

The matrices A  and B  are depending upon the material constants. 
Denoting the real and imaginary roots of the characteristic equation (5.10a) by 
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ε±  and κ±  respectively, where both ε  and κ  are real numbers and are 
expressed by 

     { }1/ 21 2 1/ 2tanh ( ) /b c bε π−  = − −  ,  { }1/ 21 2 1/ 2tanh ( ) /b c bκ π−  = − +    (5.11) 

 With four distinct eigenvalues ε , ε− , iκ , iκ−  and four linearly 
independent eigenvectors 1w , 1w , 3w , 4w , where 3w  and 4w  are real vectors, the 
solution can be written as 

            1/ 2 1/ 2 1/ 2 1/ 2
1 1 2 1 3 3 4 4( ) i iz h z h z h z h zε ε κ κ− + − − − − − += + + +h w w w w  (5.12) 

where 1h , 2h , 3h  and 4h  are arbitrary complex constants. The crack–tip stress 
field can then be obtained as 

              2 21 22 23 2[ ] [ , , , ] 2Re[ ( )]i D zσ σ σ σ= = h   (5.13) 

 A reduced class from the generalized anisotropic piezoelectric materials 
is the transversely isotropic piezoelectric (TIP) materials, which is more practical 
significance, because most of piezoelectric materials commercially used today 
can be classified into this category. For the interface crack perpendicular to the 
poling direction of TIP bimaterials, it has been shown that one of the two 
parameters ε  and κ  vanishes (Ou, 2003; Ou and Chen, 2004). When the order 
of stress singularity in such that ε ≠ 0, the displacement becomes oscillatory 
near r =0 and the two crack surfaces penetrate each other. This is a physically 
unacceptable phenomenon, although the region of penetration is rather small 
(England, 1965; Erdogan and Gupta, 1972). There have been several studies on 
the problem to eliminate the unrealistic oscillatory phenomenon by introducing a 
contact zone near the crack tip (Comninou, 1977; Govorukha and Loboda, 2000; 
Herrmann et al. 2001; Herrmann and Loboda, 2003). Nevertheless, the 
calculation show that the singularity indices   and   for interface crack at a 
piezoelectric composite are relatively small compared to the classical 1/2 
singularity (Ou, 2003; Ou and Chen, 2004). The classical square root singularity 
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is therefore the dominate term for an interface crack and the singularity index   
and can be treated as zero for practical applications. 

It should be noted that not all inteface crack have the interpenetration 
problem. By considering equations (5.10)–(5.11), ε =0 if =W 0  or H  is real. The 
non-complex ( ε =0) singularity for interface crack happens when some 
conditions or symmetry are met. For interface crack in isotropic bimaterial, the 
non-complex singularity occurs when the value of (1-2ν)/µ for the two materials 
are identical (Ting, 1986). It can be proved that the interface crack parallel to the 
principal material direction has a classical (non-complex) singularity (Suo et al., 
1992; Xu and Rajapakse, 2000b). In the present study, the extended field 
intensity factors for the axisymmetric cylindrical crack at the interface of a 
piezocomposite are defined by  

               ( )lim 2 ( )I rr r az c
K z cπ σ

=→
= −  (5.14a) 

               ( )lim 2 ( )II rz r az c
K z cπ σ

=→
= −   (5.14b) 

               ( )lim 2 ( )D r r az c
K z c Dπ

=→
= −  (5.14c)  

Note that the mode III deformation vanishes for the axisymmtric crack 
problem. A comprehensive treatment of electroelastic singularities in multi–
material piezoelectric wedges and junctions for elastic anisotropic solids can be 
found in Xu and Rajapakse (2000b). 

5.1.4 DDM Crack Tip Element 

The modeling of a crack tip is an important key for the determination of 
field intensity factors in fracture mechanics. A corollary of the 1/ 2r−  variation in 
stress near the crack tip is that the relative displacement between the crack 
surfaces is proportional to 1/ 2r  close to the tip, where r  is measured from the tip 
along the crack. This requirement encourages us to introduce a special element 
at the crack tip to replace a constant displacement discontinuity element. The 
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schematic of the DDM crack tip element is shown in Figure 5.4. The displacement 
discontinuity functions for a special crack tip element used in the present model 
can be expressed by 

 1/ 2ˆ ( ) ( , ) ( , ) ( / ) , 0 2 , ,f m
i i i iu z u a z u a z d z a z h i r z= − = ≤ ≤ =  (5.15) 

where ˆ ( , )iu i r z=  is the relative displacement between the crack surface and 2h  
is the length of the crack tip element.  

The fundamental solution corresponding to the crack tip displacement 
discontinuity functions can be determined by replacing equation (5.3a) by (5.15) 
and solving the relevant boundary–value problem. The crack tip element is 
implemented in the DDM formulation at each end of the discretized element by 
substituting the influence coefficients, ij

rrA , ij
rzA , ij

zrA  and ij
zzA , in equation (5.2) by 

the corresponding crack tip influence functions for i = 1 and i = N . 

5.2 Numerical Results and Discussion  

A computer code based on the DDM formulation presented in the 
preceding section has been developed to study the problem of interface cracks 
in piezocomposites (Figure 5.1). The required influence functions for the interface 
dislocation are obtained by evaluating the inverse Fourier integral transform, 
defined in equation (3.9b), with respect to ξ . A globally adaptive numerical 
quadrature scheme is employed to evaluate the integrals. For the purpose of 
numerical evaluation, the modified Bessel functions ( )nI x  and ( )nK x  appeared 
in the integrand are evaluated by using the scaled modified Bessel functions 
ˆ ( )nI x  and ˆ ( )nK x  defined by (Abramowitz and Stegun, 1970) 

 ˆ ( ) ( )x
n nI x e I x−=  (5.16a) 

 ˆ ( ) ( )x
n nK x e K x=  (5.16b) 
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5.2.1 Comparison with Existing Solutions 

 The validity and accuracy of the present formulation is first verified by 
comparing with the solutions reported by Kasano et al. (1984) for a cylindrical 
crack in a transversely isotropic elastic body. Their results correspond to a 
constant pressure on the crack surfaces for E.glass/epoxy and graphite/epoxy 
composites and isotropic material with the elastic constants given in Table 5.1 
where E , G  and ν  represent the longitudinal and transverse moduli and 
Poisson’s ratio in the plane of isotropic respectively, while E′ , G′  and ν ′  are the 
corresponding properties in the principal material direction. A material with same 
elastic properties as Kasano et al. (1984) is selected and the piezoelectric 
constants are set to negligibly small values in the present scheme. 

Figure 5.5 shows a comparison of crack opening displacements, 
44 /f

rc d pa , for a pressurized crack with different crack length  /c a  = 0.1, 1 and 
10. The solutions shown in Figure 5.5 are in good agreement for various types of 
materials and different values of /c a . The comparison of solutions for the stress 
intensity factors /IK p cπ  and /IIK p cπ  obtained from the present study and 
those presented by Kasano et al. (1984) is shown in Figure 5.6. Very close 
agreement is obtained between the two sets of results. Note that electric 
displacement intensity factor is zero in this case. 

The interface cylindrical crack in elastic fiber embedded in an infinite 
matrix of different elastic materials was considered by Erdogan and Ozbek 
(1969). The elastic constants for the fiber are fE = 1.0×107 psi and Poisson’s 
ratio ν =0.20, and for the matrix are mE = 4.5×105 psi and ν =0.35. The mode I 
and II stress intensity factors with /a c  presented by Erdogan and Ozbek (1969) 
are compared with the present study as shown in Figure 5.7. Once again, very 
good agreement between the two solutions confirms the accuracy of the present 
scheme at the limiting case of an ideal elastic composite. 
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5.2.2 Interface Cracks in Piezocomposites 

The numerical results corresponding to the cylindrical crack along the 
interface of the piezocomposite as shown in Figure 5.1 is presented in this 
section. The fiber and matrix is perfectly bonded except along the crack surfaces 
( c z c− < < ) where the constant pressure “ p ” is applied. The boundary condition 
along the piezoelectric fiber interface is assumed to be electrically impermeable. 
Two types of piezocomposites are used in the numerical study, i.e., PZT–
6B/Matrix A and PZT–6B/Matrix B. The material properties for PZT–6B, Matrix A 
and Matrix B are given in Table 4.1.  

 Figure 5.8 presents the crack opening displacement 44 /f
rc d pa  for 

different crack–length, i.e., /c a  = 0.1, 0.5, 1, 2, 5 and 10. The displacement has 
the largest values at the center of the crack surfaces. The value of maximum 
displacements at the center increases when the crack–length increases. In 
addition, the profiles of the crack opening displacement in the region close to the 
center of the crack sureface is more uniform when the crack–length increases. 
For /c a =10, the displacement profiles are almost constant within the region       
–6< /z a <6. The opening displacement for piezocomposite with Matrix A is larger 
by 10–20% than that of Matrix B for the specific crack–length. The difference in 
crack opening displacements between the two composites increases when the 
crack–length increases.  

The variations of field intensity factors /IK p cπ , /IIK p cπ  and 
/DK p cπ  with crack–length are presented in Figure 5.9. When the crack–length 

is sufficiently small ( /c a → 0), the solutions approach the plane strain solutions 
where Mode I stress intensity factor is independent of the material properties and 

IIK  vanishes. For non–zero crack–length, all three intensity factors IK , IIK  and 
DK  do not vanish. The magnitudes of /IK p cπ  and /DK p cπ  decrease with 

increasing crack–length while the variation of /IIK p cπ  increases from zero for 
/c a =0 and then gradually decreases for /c a >1. Note that IIIK  vanishes for an 
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axisymmetric crack problem. In addition, it is observed from Figure 5.9 that the 
mode II intensity factor is considerably small for a cylindrical interface crack 
under a constant pressure when compared to IK  and DK .  
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Table 5.1 Material properties used by Kasano et al. (1984) 

  

 /E E′  /G G′  ν  ν ′  

E.glass/Epoxy 16.8 13.9 15.0 0.2827 
Graphite/Epoxy 16.3 11.5 14.6 0.2827 
Isotropic 3.4 5.62 11.15 0.0 
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Figure 5.1 A piezoelectric fiber–reinforced composite wit h interface crack. 

 

           

Figure 5.2 Discretization of crack surface into N  segments. 
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Figure 5.3 A piezocomposite with an elemental displacement discontinuity element. 

          

 

 

        
 

Figure 5.4 DDM crack tip element. 
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  (c)  /c a  = 0.1 

Figure 5.5 Comparison of crack opening displacement for cylindrical crack in 
elastic materials. 
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Figure 5.6 Comparison of stress intensity factors for cylindrical crack in        

elastic materials.  
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Figure 5.7 Comparison of stress intensity factors for cylindrical interface crack                     

in elastic composite. 
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Figure 5.8 Crack opening displacements for cylindrical interface crack in 

piezocomposites with different c/a. 
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Figure 5.9 Field intensity factors for cylindrical interface crack in 

piezocomposites.  

(a) 

 

(c) 



CHAPTER VI 
 

CONCLUSIONS 
 
 

6.1 Summary 
This research presents a comprehensive theoretical study of 

electroelastic responses of a piezoelectric fiber–reinforced composite with the 
imperfect interface. The case of an infinitely long cylindrical piezoelectric fiber 
embedded in a transversely isotropic elastic matrix is considered in the study. 
Both fiber and matrix are assumed to be transversely isotropic and the 
principal material directions are in the fiber direction. The main contributions 
of this research are summarized below. 

1. The general solutions for coupled axisymmetric electroelastic fields of a 
piezoelectric material with a vertical body force and an electric body charge 
have been derived by using the Fourier integral transforms. The general solutions 
for piezoelectric materials presented in this work together with the general 
solutions for a transversely isotropic elastic material are useful for the study of 
load–transfer mechanisms and interfacial fracture of cylindrical piezoelectric 
fiber–reinforced composite.  

2. The applicability of the general solutions to analyze the boundary–
valued problem of electromechanical load transfer and interface dislocations 
in piezocomposites has been successfully established. For the load transfer 
problem, the fiber–matrix interface is considered to be either mechanically 
perfect or imperfect, and either electrically open– or short–circuited. The 
three–dimensional axisymmetric interfacial cracks in a piezoelectric fiber–
reinforced composite is also studied by adopting the displacement 
discontinuity method (DDM) based on the fundamental solutions of interface 
dislocation. 
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3.  A computer code based on the formulation for axial load and 
electric charge transfer and interfacial fracture in piezocomposite has been 
developed. The validity and accuracy of the solution scheme is confirmed by 
comparing with the solutions for the limiting case of an ideal elastic material 
reported in the literature. 

4. The effect of various parameters on the axial load and electric 
charge transfer and interfacial fracture in piezocomposites has been 
investigated. The major finding concluded from the numerical results are  

 4.1 The coupled electro–elastic responses in piezoelectric fiber–
reinforced composites are very complicated and significantly influenced by 
the piezoelectric fiber and matrix material properties, the electrical boundary 
conditions and , the interface conditions such as imperfect fiber–matrix 
bonding and the presence of interface cracks. 

 4.2 The stress profiles decrease rapidly in the transverse fiber 
direction. The magnitude of stresses reduce to relatively small values at 

/r a =4 which is distance between the adjacent fibers for piezoelectric volume 
fraction of 20%. This result indicate that the fiber–to–fiber effect has less 
influence on the composite response and therefore the 1–3 piezocomposite can 
be modeled by an infinite elastic matrix with a single piezoelectric fiber. 

 4.3 Under the application of axial load, electric field generated 
in PZT–4 fiber has the highest values followed by the BaTiO3 and PZT–6B 
fibers which implies that PZT–4 is more suitable for applications involving 
sensing. A softer matrix material result in a higher vertical electric field in the 
fiber as lesser load is transferred to the matrix. Nevertheless, the fiber axial 
force and interfacial stresses are primarily controlled by the stiffness of the 
matrix material and show less dependence on the piezoelectric fiber 
properties. 
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 4.4 The dependence of interface stresses on the fiber and matrix 
material type is more pronounced in the case of electric charge loading when 
compared to the axial loading. Moreover, the vertical stress and electric field 
show a substantial dependence on the type of piezoelectric fiber. 

 4.5 The presence of the imperfect interface results in lower axial 
load transfer to the matrix and hence lower interfacial stresses but a higher 
fiber vertical electrical field. In the case of electric charge transfer, interfacial 
stresses decrease and fiber vertical electric field increases as the interface 
becomes weaker. 

 4.6 The electric boundary condition (short– or open–circuit) of 
the fiber shows significant influence on the fiber electric field and interfacial 
stresses particularly in the electric charge loading case. 

 4.7 The numerical examples for interface cylindrical crack in 
piezocomposite show that a crack opening displacement and a stress and 
electric displacement factors depend on the composite properties and the 
ratio of crack–length to fiber radius ( /c a ). 

 4.8 The opening displacement is maximum at the center of the 
crack surfaces and the value of maximum displacement increases when the 
crack–length increases. For the limiting case of a vanishingly small crack–
length ( /c a → 0), mode I stress intensity factor is independent of the 
composite material while mode II intensity factor vanishes. The electric 
displacement intensity factor /DK p cπ  is largest for /c a =0 and decreases as 

/c a  increases. 

6.2 Suggestions for Further Study on Piezocomposites  
The results presented in this thesis provide an insight into the 

fundamental understanding of coupled electroelastic responses in the 
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composite of piezoelectric materials. The suggestions for further study on 
mechanics of piezocomposite are 

1. The consideration of more complex problems such as composites of 
piezoelectric fiber with arbitrary cross–section, the interaction of multiple 
cracks, etc. 

2. The study of effective properties of piezoelectric fiber–reinforced 
composites by employing the micromechanics scheme with the consideration 
of the effect of piezoelectric fiber volume ratio, fiber and matrix properties and 
the interface cracks. 



REFERENCES 
 
 

Abramowitz, M. and Stegun, I.A. 1970. Handbook of Mathematical Functions. 
New York : Dover Publications. 

Bent, A.A., Hagood, N.W, and Rodgers, J.P. 1995. Anisotropic actuation with 
piezoelectric fiber composites. J. Intell. Material. Syst. Structures 6 : 338–
349. 

Chen, P.J. 1980. Three–dimensional dynamic electromechanical constitutive 
relations for ferroelectric materials. Int. J. Solids Structures 16 : 1059–1067. 

Comninou, M. 1977. The interface crack. J. Appl. Mech. 44 : 631–636.  

Crouch, S.L. and Starfield, A.M. 1983. Boundary Element Methods in Solid 
Mechanics. London : George Allen and Unwin. 

Cruise, T.A. 1988. Boundary element analysis in computational fracture 
mechanics. Boston : Kluwer academic publishers. 

Deeg, W.F. 1980. The analysis of dislocation, crack and inclusion problems in 
piezoelectric solids. Ph.D. Dissertation, Department of Materials Science and 
Engineering, Stanford University.  

Demir, I., Hirth, J.P. and Zbib, H.M. 1992. The extended stress field around a 
cylindrical crack using the theory of dislocation pile–ups. Int. J. Engng Sci. 
31 : 829–845. 

Erdogan, F. and Özbek, T. 1969. Stresses in fibre–reinforced composites with 
imperfect bonding. J. Appl. Mech. 36 : 865–869. 



 69

Govorukha, V.B. and Loboda, V.V. 2000. Contact zone models for an interface 
crack in a piezoelectric material. Acta Mechanica 130 : 233–246. 

Gu, B., Liu, H.Y., and Mai, Y.W. 2006. A theoretical model on piezoelectric fibre 
pullout with electric input. Eng. Fract. Mech. 73 : 2053–2066. 

Hammamia, H., Arousb, M., Lagachea, M. and Kallel, A. 2006. Experimental 
study of relaxations in unidirectional piezoelectric composites. Composites A 
37 : 1–8. 

Herrmann, K.P., Loboda, V.V. and Govorukha, V.B. 2001. On contact zone 
models for an electrically impermeable interface crack in a piezoelectric 
biomaterial. Int. J. Fracture 111 : 203–227.  

Herrmann, K.P. and  Loboda, V.V.   2003. Fracture mechanical assessment of 
interface cracks with contact zones in piezoelectric bimaterials under 
thermoelectromechanical loadings I. Electrically permeable interface cracks. 
Int. J. Solids Structures 40 : 4191–4217.  

Heyer, V., Schneider, G.A., Balke, H., Drescher, J. and Bahr, H.A. 1998. A 
fracture criterion for conducting cracks in homogeneously poled 
piezoelectric PZT–PIC151 ceramics. Acta Materialia 46 : 6615–6622. 

Kasano, H., Matsumoto, H. and Nakahara, I. 1984. A torsion–free axisymmetric 
problem of a cylindrical crack in a transversely isotropic body. Bull JSME. 27 
: 1323–1332. 

Kasano, H., Matsumoto, H. and Nakahara, I. 1986. A cylindrical interface crack 
in a nonhomogeneous anisotropic elastic body. Bull JSME. 29 : 1973–1981. 

Kuriyama, K. and Mizuta, Y. 1993. Three–dimensional elastic analysis by the 
displacement discontinuity method with boundary division into triangle leaf 
elements. Int. J. Rock Mech. Min. Sci. Geomech. 30 : 111–123. 



 70

Lekhnitskii, S.G. 1963. Theory of elasticity of an anisotropic elastic body. New 
York : Holden–Day. 

Lenci, S. and Menditto, G. 2000. Weak interface in long fiber composites. Int. J. 
Solids Structures 37 : 4239–4260. 

Li, L. and Sottos, N.R. 1996. A design for optimizing the hydrostatic 
performance of   1–3 piezocomposites. Ferroelect Lett. 21 : 41–46. 

Liu, H.Y., Qin, Q.H. and Mai Y.W. 2003. Theoretical model of piezoelectric fibre 
pullout. Int. J. Solids Structures  40 : 5511–5519. 

Mal, A.K. and Bose, S.K. 1975. Dynamic elastic moduli of a suspension of 
imperfectly bonded spheres. Proc. Cambridge Phil. Soc. 76 : 587–600. 

Mindlin, R.D. 1974. Equations of high frequency vibrations of 
thermopiezoelectric crystal plates. Int. J. Solids Structures 10 : 625–637. 

Montgomery, R.E. and Richard, C. 1996. A model for the hydrostatic pressure 
response of a 1–3 composite. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 
43 : 457–66. 

Muki, R. and Sternberg, E. 1969. On the diffusion of an axial load from an 
infinite cylindrical bar embedded in an elastic medium. Int. J. Solids 
Structures 5 : 587–605. 

Nairn, J.A. and Liu, Y.C. 1996. Stress transfer into a fragmented anisotropic 
fiber through an imperfect interface. Int. J. Solids Structures 34 : 1255–1281. 

Nelson, L.J. 2002. Smart piezoelectric fibre composites. Mat. Sci. Tech. 18 : 
1245–1256. 

Newnham, R.E., Skinner, D.P. and Cross, L.E. 1978. Connectivity and 
piezoelectric–pyroelectric composites. Mater. Res. Bull. 13 : 525–536. 



 71

Niumpradit, B. and Karasudhi, P. 1981. Load transfer from an elastic pile to a 
saturated porous elastic soil. Int. J. Numer. and Anal. Meth. Geomech. 5 : 
115–138. 

Ou, Z.C. and Wu, X. 2003. On the crack–tip stress singularity of interfacial 
cracks in transversely isotropic piezoelectric bimaterials. Int. J. Solids 
Structures 40 : 7499–7511.  

Ou, Z.C. and Chen, Y.H. 2004. Interface crack problem in elastic 
dielectric/piezoelectric bimaterials. Int. J. Fracture 130 : 427–454.  

Pak, R.Y.S. and Gobert, A.T. 1993. Axisymmetric problems of a partially 
embedded rod with radial deformation. Int. J. Solids Structures 29 : 1745–
1759. 

Pak, Y.E. 1992. Linear electroelastic fracture mechanics of piezoelectric 
materials. Int. J. Fracture 54 : 79–100. 

Pan, E. 1999. A BEM analysis of fracture mechanics in 2D anisotropic 
piezoelectric solids. Engrg. Anal. Bound. Elem. 23 : 67–76. 

Park, S.B. and Sun, C.T. 1995. Fracture criteria for piezoelectric ceramics. J. 
Am. Ceram. Soc.  78 : 1475–1480. 

Parton, V.Z. and Kudryavtsev, B.A. 1988. Electromagnetoelasticity. New York : 
Gordon and Breach Science Publishers. 

Piessens, R., Doncker, E., Uberhuber, C., Kahaner, D. 1983. QUADPACK: a 
subroutine package for automatic integration. Berlin: Springer.  

Rajapakse, R.K.N.D. 1996. Electroelastic response of a composite cylinder with 
a piezoceramic core. Proceedings of SPIE, California 2715 : 84–94. 



 72

Rajapakse, R.K.N.D. 1997. Plane strain/stress solutions for piezoelectric solids. 
Composites B 28 : 385–396. 

Rajapakse, R.K.N.D., Chen, Y. and Senjuntichai, T. 2005. Electroelastic field of 
a piezoelectric annular finite cylinder. Int. J. Solids Structures 42 : 3487–
3508. 

Rajapakse, R.K.N.D. and Chen, Y. 2008. A coupled analytical model for 
hydrostatic response of 1–3 piezocomposites. IEEE Trans. Ultrason. 
Ferroelect. Freq. Contr. 55 : 1847–1858. 

Rajapakse, R.K.N.D. and Xu, X.L. 2001. Boundary element modeling of cracks 
in piezoelectric solids. Engng. Analysis Boundary Elem. 25 : 771–781. 

Rajapakse, R.K.N.D. and Zhou, Y. 1997. Stress analysis of piezoceramic 
cylinders. Smart Mat. Structures 62 : 169–177. 

Rao, S.S. and Sunar, M. 1994. Piezoelectricity and its use in disturbance 
sensing and control of flexible structures: A survey. Appl. Mech. Rev. 47 : 
113–123. 

Selvadurai, A.P.S. and Rajapakse, R.K.N.D. 1990. Axial stiffness of anchoring 
rods embedded in elastic media. Can. J. Civ. Eng. 173 : 321–328. 

Senjuntichai, T., Sornpakdee, N., Teerawong, J., Rajapakse, R.K.N.D. 2007. 
Time dependent response of an axially loaded elastic bar in a multi–layered 
poroelastic medium. J. Engng. Mech., ASCE May : 578–587.  

Senjuntichai, T., Kaewjuea, W. and Rajapakse, R.K.N.D. 2008. Piezoelectric 
cylinder under voltage and axial loading. Int. J. Appl. Electromagnetics 
Mech. 47–50 : 789–792. 



 73

Slaughter, W.S. and Sanders, J.L. 1991. A model for the load–transfer from an 
embedded fiber to an elastic matrix. Int. J. Solids Structures 28 : 1041–1052. 

Sneddon, I. 1970. The use of integral transforms. New York : McGraw–Hill. 

Sosa, H. 1991. Plane problems in piezoelectric media with defects. Int. J. Solids 
Structures  28 : 491–505. 

Sosa, H. 1992. On the fracture mechanics of piezoelectric solids. Int. J. Solids 
Structures 29 : 2613–2622. 

Sosa, H. and Pak, Y.E. 1990. Three–dimensional eigenfunction analysis of a 
crack in a piezoelectric material. Int. J. Solids Structures 26 : 1–15. 

Suo, Z., Kuo, C.M., Barnett, D.M. and Wilis, J.R. 1992. Fracture mechanics for 
piezoelectric ceramics. J. Mechs. Phys. Solids 404 : 739–765. 

Stroh, A.N. 1962. Steady state problems in anisotropic elasticity. J. 
Mathematics Physics 41 : 77–103. 

Ting, T.C.T. 1986. Explicit solution and invariance of the singularities at an 
interface crack in anisotropic composites. Int. J. Solids Structures 9: 965–
983. 

Wang, Z. and Zheng, B. 1995. The general solution of three–dimensional 
problems in piezoelectric media. Int. J. Solids Structures 32 : 105–115. 

Watson, G.N. 1972. A treatise on the theory of bessel functions. Cambridge 
University Press. 

Xu, X.L. and Rajapakse, R.K.N.D. 1999. Analytical solution for an arbitrarily 
oriented void/crack and fracture of piezoceramics. Acta Materialia 47 :1735–
1747. 



 74

Xu, X.L. and Rajapakse, R.K.N.D. 2000a. A theoretical study of branched cracks 
in piezoelectrics. Acta materialia 48 : 1865–1882 

Xu, X.L. and Rajapakse, R.K.N.D. 2000b. On singularities in composite 
piezoelectric wedges and junctions. Int. J. Solids Structures 37 : 3253–3275. 

Xu, X.L. and Rajapakse, R.K.N.D. 2001. On a plane crack in piezoelectric 
solids. Int. J. Solids Structures 38 : 7643–7658. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 



APPENDIX A 

The characteristic roots jv  appearing in equation (3.10) are determined 
from the following equation: 

 3 2 0Av Bv Cv D+ + + =  (A.1) 

where the coefficients A , B , C  and D  are constants expressed in terms of 
material properties as  

 { }2
11 15 44 11( )f f f fA c e c ε= +  (A.2) 

 { }13 15 13 44 11 13 44 11 15 33 33 11 44 332 ( 2 ) ( 2 ) (2 )f f f f f f f f f f f f f fB c e c c c c c e e c cε ε ε= + + + − + +  (A.3) 

 { } { }2
11 33 33 33 13 33 15 31 33 13 44( ) ) 2 ( ) ( 2 )f f f f f f f f f f fC c e c c e e e c cε ε= + + + + +  

                                                2
33 15 31 44 31 33 33 11( ) (2 )f f f f f f f fc e e c e e c ε+ + + −  (A.4) 

 { }2
44 33 33 33( )f f f fD c e c ε=− +  (A.5) 

The three roots of equation (A.1) are denoted by jv  ( j = 1, 2, 3) with 1v  
assumed to be a positive real number and 2v  and 3v  either positive real 
numbers or a pair of complex conjugates with positive real parts. The 
characteristic roots, obtained from equation (A.1), for the piezoelectric 
materials PZT-6B, PZT-4 and BaTiO3 (see Table 4.1) are presented in Table A.1 
and the characteristic roots for the Matrix A and Matrix B, determined from 
equation (3.19), are given in Table A.2. 



 77

 

Table A.1 Characteristic roots for piezoelectric materials. 

 
 
 
 

Table A.2 Characteristic roots for Matrix A and Matrix B. 

 
 

         1v             2v          3v  

    PZT–6B (1.9320, 0.0) (1.9320, 0.0) (1.9320, 0.0) 
    PZT–4 (0.8307, 0.0) (0.9037, 0.1697) (0.9037, -0.1697) 
    BaTiO3 (1.0631, 0.0) (0.9468, 0.2162) (0.9468, -0.2162) 

        1w             2w  

    Matrix A (2.9308, 0.0) (0.6073, 0.0) 
    Matrix B (1.0720, 0.0) (0.9328, 0.0) 



APPENDIX B 

The functions appearing in equations (5.4)-(5.7) are related to the fiber 
and matrix ‘s material properties and defined as 

( )mj m jI I aξ= ;  ( )mk m kK K aξ= ; ( 0,1m = ; 1,2,3j = ; 1,2k = ) (B.1) 

1 11 13 1 13 2
f f f

j j j jh c v c k e k= − − ;  2 44 1 15 2(1 )f f
j j j jh i c k e kξ  = + −   

3 15 1 11 2(1 )f f
j j j jh i e k d kξ  = + −  ; 12 11( ) /f f

j jg c c aν= − ;  1
h

j jm k=  (B.2) 

1 11 13
m m

k k ky c w c n= − ;  12 11( ) /m m
k js w c c a= −  

1 12 13aI I I= ;  2 11 13aI I I= ;  3 11 12aI I I=  

1 03 12bI I I= ;  2 03 11bI I I= ;  3 02 11bI I I=  

1 02 13cI I I= ;  2 01 13cI I I= ;  3 01 12cI I I=  (B.3) 

1 01 12 13dI I I I= ;    2 02 11 13dI I I I= ;     

3 03 11 12dI I I I= ;  11 12 13eI I I I=  

02 11aK K K= ;    01 12bK K K= ;    01 02cK K K= ;   11 12dK K K=  (B.4) 

1 22 33 23 32ah h h h h= − ;    2 21 33 23 31ah h h h h= − ;    3 21 32 22 31ah h h h h= −  

1 12 33 13 32bh h h h h= − ;    2 11 33 13 31bh h h h h= − ;    3 11 32 12 31bh h h h h= −  (B.5) 

1 2 33 3 32ap g h g h= − ;    2 1 33 3 31ap g h g h= − ;    3 1 32 2 31p g h g h= −  

1 2 33 3 32bp m h m h= − ;    2 1 33 3 31bp m h m h= − ;    3 1 32 2 31bp m h m h= −  (B.6) 

1 2 23 3 22cp g h g h= − ;    2 1 23 3 21cp g h g h= − ;    3 1 22 2 21cp g h g h= −  

1 1 1 2 2 3 3( )e a a aI h v h v h vβ ξ= + +  

2 1 1 2 2 3 3( )e a a aI p v p v p vβ ξ= + +  (B.7) 
 



 79

 

1 2 1 1 2 2 11 1 12 02 01 13 23 12 11 11 12( ) ( )a b cK n s K n s K n y n y I I I h k h k hγ ξ= − + − + −  

2 2 21 1 22a bn y K n y Kγ ξ= −  

3 2 21 1 22 12 21 11 22( ) ( )d a bs y s y K y y K y y Kγ ξ= − + −  

4 11 1 1 12 2 2 13 3 3( )a d a d a dh h I h h I h h Iγ ξ= + +  (B.8) 

5 31 1 32 2 33 3( )e c c cI h p h p h pγ = + +  

6 1 1 1 2 2 2 3 3 3d a d a d aI m h I m h I m hγ = + +  

7 1 12 2 11 2 1 1 2( ) ( )a b dK w z K w z K s w s wγ ξ= − + −  

8 33 2 32 3 12 21 11 22 2 21 1 22( ) ( ) ( )a b dh v h v z z K z z K K s z s zγ ξ= −  − + −    
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