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Let n,k be integers greater than or equal to 2 and € a bounded open subset of the
Euclidean space R" . A (minimizing) harmonic map to sphere u : Q — S* is a function in
the Sobolev space HI(Q,SH) which satisfies the following system of nonlinear partial

differential equation

2
2

—Au = u|Vu

and u minimizes the functional E(u) :§IQ| Vu |*dx among those we H'(Q,5"") such
that u = w in a neighborhood of 0C2 .

The key theorem for distingushing the singular and the regular points of harmonic
maps is the small energy regularity theorem. In this thesis we give an alternative proof for

this theorem when the target spaces are spheres via the penalty approximation technique.
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CHAPTER 1

INTRODUCTION

The notion of harmonic maps between Riemannian manifolds can be viewed as
the generalization of the classical notion of harmonic functions between Euclidean
spaces. A harmonic function from a bounded open set Q2 C R™ into R* is a
C? function u : Q — RF which is a critical point of the “energy” functional
E(u) = 5 [, |Du*de. Tt then follows that u must satisfy the following Euler-

Lagrange equation

for all ¢ € C5°(Q, R). This implies —Au=—3""_, g%%f =0 on €.

By the theorem of H. Weyl that any weakly harmonic map (i.e. weakly dif-
ferentiable function verified (1)) is harmonie, it motivates the following definition
of harmonic maps. A harmonic map from a bounded open set 2 C R" into a
smooth compact Riemannian manifold N, which can be assumed to be isometri-
cally embedded in some R*, is a weakly differentiable function u : Q — R* such
that u(z) € N for a.e. x € Q (with respect to the Lebesgue measure on 2) and it
is a critical point of the “energy” functional F(u) =% [, [Dul*dx.

The Euler-Lagrange equation of harmonic maps are the following nonlinear

partial differential equation

—Au = Z AU(D]‘U, DjU),

J=1

where A, is the second fundamental form of N in R¥. In particular, for harmonic

maps into spheres u : Q — S*~1, the Euler-Lagrange equation have the following



form

—Au = u|Dul?. (ii)

Here, u weakly solves (ii) in the sense that [, > " Dju-D;j¢dx = [qu-(|Dul*dx
for all ¢ € C5°(Q,R*). The extension from Q C R™ to be arbitrary smooth
compact Riemannian manifolds involves simple technical modifications.

Harmonic functions have very nice differentiable properties, in fact any har-
monic functions are smooth. But in contrast, general harmonic maps do have
singular points, that is they have only partial regularity properties. In some ex-
treme cases, there is an example of everywhere discontinuous harmonic map due
to T. Riviére. For general harmonic maps it is of great interest to study both
analytic and geometrie properties of the sets of singular points.

The harmonic maps that we defined above is often called weakly harmonic
map. There are also the stationary and minimizing harmonic maps. In our work,
we are mainly concerned with the minimizing harmonic maps. Though we also

derive the variational identities for each types of harmonic maps in chapter 3.
The Existence Questions:

There is an important question, since the beginning of harmonic maps, about the
existence of certain harmonic maps. The goal is to find whether there exists a
harmonic map in a given homotopy class of a smooth map. A technique used to
solve this question is to study the harmonic map flow equation. This is the heat

equation associated with certain harmonic map equation.
The Regularity Questions:

This question involves both interior and boundary regularity properties. Since
the equation of harmonic maps is of quasilinear elliptic type, the main tools for

analyzing interior regularity come from the theory of elliptic partial differential



equations. For interior regularity, the harmonic maps of stationary and minimizing
types yield similar results. In fact they have quite similar criterion for a point to

be regular, the small energy regularity theorem (also called e-regularity theorem).

In this work, we shall mainly concerned with the interior regularity question.
In addition, we only restrict our maps to the case that targets are the standard
spheres. Our main result is an alternative proof of the small energy regularity
theorem. The approach is to use penalized energy functional of the functional £
indirectly. In the process we obtain a smooth minimizing harmonic map associated
with a given minimizing harmonic map. Finally we get the theorem by applying
the Bochner identity to the obtained smooth map and its corresponding gradient
estimate. At the intermediate step before we can get the smooth minimizing
map there is a question about the existence of the map minimizing the penalized
energy subjected to certain boundary conditions. We will treat this point in the
preliminary chapter.

Our work are organized into five chapters as follows.

In chapter II, we introduce fundamental facts from Functional Analysis, the
theory of Sobolev spaces, and the Calculus of Variations. We begin formulating
the harmonic maps problems in the chapter III. This include the derivation of
the Euler-Lagrange equations for each types of harmonic:maps. In chapter IV,
we introduce the regularity theory of Elliptic Differential Equations. Chapter
V contains our main results about the partial regularity of harmonic maps to

spheres.



CHAPTER II

PRELIMINARIES

In this chapter we introduce various tools from the Theory of Partial Differential
Equations and the Calculus of Variations which are needed in the sequel. Most
propositions are supplied with proofs, since they can illustrate the techniques used

in the subjects.

2.1 Introduction

In modern PDE theory, we tackle an equation in two steps, first determine the
existence of solutions, then investigate the regularity of solutions. In the existence
part, appropriate underlying function spaces must be chosen, and this turns out
to be Sobolev spaces. We introduce an elementary theory of Sobolev spaces in the
next section via the notion of weak partial derivatives. Three important properties
of Sobolev functions: (1) Sobolev embedding theorem, (2) Rellich compactness
Lemma and (3) Poincaré inequality are discuss in the section (2.3). They are
essential tools in the regularity theory.

Since harmonic maps are defined to be minimizers (or critical points) of certain
energy functionals (i.e. harmonic maps is a Geometric Variational Problem), we
need to introduce some terminologies and results from the Calculus of Variation.
We will discuss the direct method in the Calculus of Variations in section (2.4). In
section (2.5) we propose the penalty approximation method for solving constrained

minimization problems.



2.2 Sobolev Spaces

Nowadays, Sobolev spaces became the appropriate setting in modern theory of
partial differential equations. The underlying success is the generalized notion of
differentiation. So we begin with the definition of weak derivatives. (There is also
an alternative approach via Fourier transformation.)

We assume throughout this work that {2 denotes an open subset of R"™ for
some n > 2. In what follows, unless otherwise explicitly stated, we use the n-

dimensional Lebesgue measure for all measure-theoretic notions.

Weak Partial Derivatives

If ue L (Q) we call v; € Li (), 1 < j <, the j"-weak (partial) derivative of

Toc Toc
u provided
/uchpdx:—/ngod:v, Ve Cye(2).
Q Q
In this case we simply write v; = Dju (more explicitly, D, u(z) if z; is the 5th
coordinate of z), so the identity take the familiar Gauss identity. It is easy to
verify that such v; is unique (almost everywhere).

Note that if u € C'(Q) then the above identity, with v; coincides with the j™
classical partial derivative, is a consequence of the integration by parts formula.
So the notion of weak derivatives is indeed “weaker” than the classical notion.

In general, for a multi-index a = (a4, ..., a,), (o € NU{0}), we say that a
function v € Li () is the o -weak (partial) derivative of a function u € LL ()

loc loc

provided

/uDo‘godx = (—1)'0‘/00‘3061% Vi € C°(Q),
0 0

here |a| = 37, ;. Note carefully that D% on the left is the o™ classical derivative

of . As above, we denote v® = D%u and if such v® exists then it is unique. Also,



if u € Cl°(Q) then v* is just the classical derivative

lot]
Doy - 9 D ... Doy,

a1

Sobolev Spaces: Scalar-Valued

Let m € Nand 1 <p < oco. A function u € LP(?) is called a Sobolev function if
D%y exist, for all |a| < m, and they lie in LP(2). Let W™P(Q) denote the space
of all such functions u, and it is called a Sobolev space. As in LP spaces, any two
functions in W™P(Q) are identified if they are equal almost everywhere.
In the following we list some basic facts about Sobolev spaces, and leave more
involved concepts to the next section.
The space W™P(§) is a Banach space under the norm
lllygmap =4 3% / |Dau|pdx}1/p'
0<]aj<m ¢
Note that u; — uw in W™2(Q) if and only if Du; — D*u in LP(2) as i — oo for
all 0 < |a] < m. If p =2 we particularly use H™(2) = W™2(Q). H™(Q) is a
Hilbert space under the inner product
(U;0) gy = Z /Do‘u D%v dz.
0<|aj<m Y
We also use W;""(Q) (and HJ"(2)) to denote the closure of C§2(Q2) in W™P(Q)
(and in H™(9), respectively). The space Hi(€2) has the following equivalent inner

product
(u, ) ga) = Z/ DjuDjvdzx,
j=1"¢

(for a proof see Rellich compactness lemma in the next section). By mollification,
it can be shown that the smooth functions in W"P({2) are dense in the space

W™P(Q). Furthermore, ¢ € C§°(Q2) and u € W™P(Q), then Cu € W ().



The space LP(Q2) is separable if 1 < p < oo and is reflexive if 1 < p < 0.
W™P(Q)), which can be identified as a closed subspace of certain product space
[LP(Q)]Y, also has the inherited properties from LP(€). Thus W™P?(Q) is separable
if 1 < p < oo and isreflexive if 1 < p < co. In partial differential equations theory,

we mainly interest in the case where 1 < p <n (see Sobolev embedding theorem).

Sobolev Spaces: Vector-Valued

Let u:Q — RF, u=(uly.. ju¥). We say that u € W™P(Q, RF) if u* € W™P(Q)
for all 1 < i < k. W™P(Q,R¥) is called a Sobolev space. By the definition,
Wm™P(Q, RF) can be identified with the product space [W™P(2)]*.

For each u € W'2(Q, R"), we regard Du as an k x n matrix (D;u’) with a

matrix norm

|Duff=>"% (Dju')?

i=1 j=1

We also define | Du|P = (| Du|?)P/2. This notion can be generalized to higher order
in a similar manner, i.e. for u € W™P(Q, R¥), we regard D™u as an array {Du'}
over all |a| =m, 1 <4 < k, and define |D™ul?> = S°_| D lafem (DU,

We will use the vector notation D;u - D;v to denote S°F | Dju Djv', and
D% - D% = Zle Dy! D% for each multi-index a.

Many properties in the scalar case are carried over to this case by trivial

modifications. For example, we define the norm on W ({2, R¥) by

(— Z 3 /wa Pary”.

i=1 0<|a|<m

It is easy to show that W™P(Q, R¥) is a Banach space under this norm. Similar
to the real-valued Sobolev spaces, H™ (€2, R¥) is a Hilbert space under the inner

product

(u, V) gm0, ¥y = Z /Dau D% dx.

0<|a|<m



The smooth functions in W™? (2, R¥) are dense in this space. There is also an

equivalent inner product for HJ (2, R¥) (& [Hé(Q)}k) given by

(U, V) 3 o,rE) = Z/ Dju - Djvdz.
=179

The separability and reflexivity of W™P(Q2, R¥) are exactly the same as in scalar

case. Lastly, if ¢ € C§°(Q2) then Cu € W"P(Q, RF) for all u € W™P(Q, RF).

2.3 Properties of Sobolev Functions

In this section we introduce Sobolev embedding theorem, Rellich compactness
lemma, and Poincaré inequality. These propositions are the essential tools in the

theory of partial differential equations. See Chapter (4) for some applications.

Sobolev Embedding Theorem

Recall a normed linear space X is continuously embedded in a normed linear space
Y, written X — Y, if (1) X can be identified as a linear subspace of Y and
(2) there is a constant C' such that ||ully < Cl|u||x for all w € X. By compact
embedding, we mean that every bounded sequence in X contains a convergent

subsequence in Y.

Theorem 2.1 (SOBOLEV _EMBEDDING THEOREM). Suppose (2 is a bounded

open subset of R" and it has a C' boundary. Let m € N'and 1 < p < 0.

1. If mp < n then W™P(Q2) — L1(2) for all 1 < ¢ < —E-. Moreover, it is a

n—mp "’

np
n—mp "’

compact embedding if 1 < ¢ <

2. If there is an integer d > 0 such that d <m — 2 < d+1 then WmP(Q) is
continuously embedded in Cd’a(ﬁ) forall0<a<m— % — [ and the embedding

is compact ifoz<m—%—l.



This theorem says roughly that weakly differentiable LP functions are in higher
order L? spaces or in Hoélder spaces. By interpolation, it is well-known that any
LP function over a bounded domain is in lower order L? spaces. Thus Sobolev
embedding theorem gives a reverse interpolation for W™P functions. The key for

proving part 1 is the corollary of the following inequality.

Lemma 2.2 (GAGLIARDO-NIRENBURG-SOBOLEV INEQUALITY). Let 1 < p < n.

There is a constant C" depends only on n and p such that

{/n Ju 2" dx}l/p* < C’{ /}Rn | DulP da:}l/p,

for all uw € C}(R™), where p* = 2.

s

Proof. First we prove for p = 1, that

/]u|nn1dx§{/ |Du|dx}m

Fixed = (%4, ...,%,). Since u has a compact support, u(z f Dy udxj. So

lu(z)| < fj;o |Dufdx; for all 1 < j < n, and hence

=i li[ (/ \Duyd;cj)

This holds for all £ so we can omit the tilde. Recall the following version of Hélder

1

inequality: [ fy <« frl|M =0 < H?:_ll{f |£31114= 1) for all measurable functions
f1, .+ fx. Integrate over-a; from —oo to-oo-and note that (fjozo | Dul| dzy )/ (1)
can be moved out of the integral, we then apply Holder inequality to the remaining

n — 1 terms and we obtain that

+o0 n +oo P 1 n +oo +0o0
/ |u|"—T dx; < (/ |Du|dx1 H / / |Du|d:v1dxj>
_ Cw i

o

Again, integrating over x5 and note that the term (fj;o fj;o | Du| dayday)"/ =1

can be moved out of the integral, we can apply Holder inequality to the remaining
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n — 1 terms and so that

+o0 +o0 n +0o0 +0o0 %
/ / |u| "7 dzydxs §</ / | D dmldx2>
B B B n B +o0 +o0 +o0 %1
I1 (/ / / \Du|dx1dx2da:j)” .

Jj=3

By continuing the procedure with x3, ..., x, respectively, we get the desired in-
equality.
Now consider for general p > 1. Let A > 1 be a constant to be chosen later.

Apply the result for p =1 to the function |u|* one obtains that

</ |u|% dm)T < A/ lu|* | Du| de.
n Rn

A-1)p p—1

p—1 1
Jul T )T (fo | Dul? d)

n

u|l* | Duldx < (.

By Holder’s inequality, |; )

Now choose A so that % = (A:ll)p = p*. Then
p—1 1

p
(/n\u”*dw)n;l gC’(/n|u\p*d1’)p(/Rn ]Du\pdx>;,

this implies the theorem. O

Corollary 2.3 (SOBOLEV INEQUALITY). Let 1 < p < n. Then there is a constant

C = C(n,p) such that

(s

for all u € Wy ().

x 1/p* 1/p
P dx} < C{/ ]Du|pd:c} :
Q

Proof. Take a sequence u; € C§°(£2) such thatu; — w in W'2(€). This implies
u; — w strongly in LP(Q2) hence there is a subsequence u; such that u; — u
pointwise a.e. on (). Extend each u; to a smooth function on R" by setting

uy = 0 on Q°. By the previous lemma, uj satisfies

. 1/
(e
Q

The right hand side converges to C||Dul|rr(q). Apply Fatou’s lemma to the left

*

1/
<coupf [ 1Duwpasy”
Q

hand side, and we are done. U
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Corollary 2.4. If Q C R" is a bounded C! domain and 1 < p < n, then there is

a constant C' depends only on n,p and €2 such that
lull 1o* @) < Cllullwrr),

for all u € WhHr(Q).
We omit the proof here. Roughly speaking, the idea is to extend W'? functions

on Q to W, functions over R™. Under the smoothness assumption of 2, we can

apply the Sobolev inequality. Now by interpolation, ||u|| ) < C|Q|(§_z%*) ullwre ),
for all 1 < ¢ < p*.

Additionally, if the domain 2 possesses certain symmetry, then we can remove
the dependence on 2 out of the constant C'. This is the case for domain that is

a ball, i.e. Br(xg) = xo + RB,(0). For elliptic (interior) regularity theory, we can

always restrict the domain to a ball. In particular, we have the following lemma.

Lemma 2.5. Let R > 0, 1 < p < n. Then there is a constant C' depends only on

n and p such that

]| L (Br(zo)) < CR|ullwir(Baizo))

for all w € WP(Bg(z)).

Proof. By interpolation, there is Cy such that

1/p 1
{ ]w|pdx} < Col Bu(O)[= [|w e (540))
By (0)

for all w € W'?(B;(0)). For each u € W'P(Bg(zy)), we define w(z) = u(zy +
Rzx). Thus w € W'?(B;(0)) and satisfies the inequality above. By the change of

variables y = xg + Rz, we see that

— 1/p 1 1— l/p
ronf [ upda} < comi©) R, [ D}
Br(0) Br(0)

This proves the assertion. Also, note that Cy depends only on n and p. Il
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By the same argument as above, we can split the dependence on the domain

of multiplier constant in Poincaré inequality for the domain that is a ball.

Rellich Compactness Lemma

First we introduce the equivalent norm for I/VO1 P space. The proof is just the

application of Sobolev inequality and interpolation of L” functions.

Lemma 2.6. Suppose 2 € R” is open, 1 < p < n. Then W,”(Q) has the

following equivalent norm

2 1/p
fiitnoy = {30 [ 1Dz} "
j=1

Now we describe Rellich Compactness Lemma. It is a direct consequence of
Sobolev Embedding Theorem and general theorems from Functional Analysis (see

section(2.4) for the details definition of weak convergence “—7).

Lemma 2.7 (RELLICH COMPACTNESS LEMMA). Let 2 C R™ be a bounded
domain with a C' boundary and 1 < p < n. If {u;} is a bounded sequence in

WHP(Q) then there is a subsequence {uj;} and u € WP(Q) such that
(1) uy — w'in WP(Q), and
(2)"uy — u in LP(€Q),
(3) 1Dl oy < lim nf [ Dy 10

Proof. (1) follows from reflexivity of W?(2). By Sobolev Embedding Theorem,
Whr(Q) — LP(Q) is compact, so there is a subsequence of {u;} that converges
strongly in LP(Q2) to some u. But strong convergence implies weak convergence,

thus @ = w. This proves (2) by choosing this subsequence of uy instead. The
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assertion (3) follows from the previous lemma and the weak lower semi-continuity

of norms. O

Poincaré Inequality

The Poincaré inequality gives the bound for the mean-square oscillation by norm
of the gradient. Using it with Campanato lemma (see the next chapter) we can

prove Holder continuity of solutions of second order elliptic equations.

Lemma 2.8 (POINCARE INEQUALITY). Let Q € R" be a bounded connected
domain with a C*' boundary. Then there is a constant C' depends only on n and

Q such that every u € H'(Q) satisfies

/|u— (Wol2d< c/ \Dufdz,
Q Q

where (u)q = |Q|7' [,u. In particular, Q is an open ball Br(zy) we have the
following more explicit estimate
/ lu — (u) pp(zo) "z < CRQ/ | Du|?dx,
Br(wo) Br(ao)
for all w € H'(Bg(x¢)), where C' depends only on n.
Proof. We prove by contradiction.  Suppose the-assertion fails, i.e. there is a

sequence {u;} C H'(§2) such that

/ |uj— (Uj)Q'de > / ]Dujlzdx,
Q Q

for each j. Define v; = {u; — (u;)a}/||u; — (u;)all2@) € L*(Q) for each j. Then
each v; satisfies (vj)o = 0, [[v)llz2) = 1, and [, [Dv;]* < 7. Apply Rellich
Compactness Lemma to {v;}, we can find vy — v in H*(Q2) and vy — v in L*(Q)
and || Dv||r2(0) < liminf; o || Dvj |12y = 0. The later implies v is constant a.e.

on 2, but the former implies ||v[|2() = 1 so (v)q # 0. By weak convergence, we
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get (v)g = limj o (v;)o = 0, which is a contradiction. For the domain that is a

ball, we apply the argument of lemma (2.5). O

2.4 The Direct Methods in The Calculus of Variations

A typical problem in the Calculus of Variations concerns with minimizing (or
finding critical points) of a functional over a carefully chosen function space. The
problem may subject to topological constraints (such as functions are subjected
to certain boundary conditions) or geometric constraints (such as functions have
image in manifolds). In this section we ourselves restrict to the unconstrained
minimization problems and discuss the direct methods. Then in the next section

we will consider the penalty approximation approach to the constrained problems.

Unconstrained Minimization Problems

Suppose we need to minimize a functional £ : X — R over a Banach space X.

That is, we want to see whether there exists a u € X such that

E(u) = inf E(w).

weX

The basic example is the following: given a function f QxR x R" — R and let

E(w):/Qf(x,w(x),Dw(x))d:c.

For instance, if f = |Dw|? we have the standard Dirichlet problem, and if f =
| Dw|? — G(z)w we obtain the Poisson problem. If we let f = /1 + [Dw|? we get
the classical minimal surface problem.

The space X and the functional £ must have certain properties, to guarantee

the existence of such u.
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Before proceeding further, we recall some basic facts and results from Func-
tional Analysis.

1. If X is a normed linear space, then there is a canonical injection ¢z : X — X**
given by i(u)(v*) = v*(u) (v* € X*) for each u € X. Clearly, i is a bounded linear
operator. Moreover, |i(u)|| = |lu|| for all w € X. The space X is said to be
reflexive if ¢ is an isometric isomorphism from X onto X**.

2. Let X be a normed linear space. A sequence {u;} in X is said to converge
weakly to u € X, and write u; — w in X, if for all v* € X*, v*(u;) — v*(u). For a
reflexive Banach space X, every bounded sequence contains a weakly convergent
subsequence.

3. Let 1 < p < ooand Q C R" Then u; — u in LP(Q2) if and only if
Jquv — [yuv for all v € LP(Q), where p = p/(p — 1). We say that u; — u in

Wte(Q) if u; — w in LP(Q) and Du; — Du in LP(Q).

The Direct Methods

Definition. A functional £ : X — R on a normed linear space X is said to be
coercive if for any sequence {u;} in X with |ju;||x — oo then E(u;) — +o0.

Let {u;} be a minimizing sequence, i.e. E(u;) — inf £ as j — oo. Since
inf £ < 400, if F is coercive then {u,} must-be bounded in X.

The next definition provides an additional condition on the functional £ and
the space X that guarantee the existence of minimizers.
Definition. A functional £ : X — R is said to be (weakly) lower semi-continuous
if the following assertion holds: if u; converges (weakly) to w in X then E(u) <
liminf, . E(u;).

Note that if E is continuous with respect to the norm (or weak) topology of X

then liminf; .o E(u;) = E(u) = limsup;_, . E(u;) if u; converge (weakly, resp.)
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to u in X. An example of weakly lower semi-continuous functional on any Banach
space X is its norm. That is if u; — v in X then ||ul|x < liminf; . ||u;|x.
Now we return to the discussion of the minimization problem. Given a reflexive
Banach space X and assume that the functional F is coercive and weakly lower
semi-continuous. Let {u;} be a minimizing sequence. By the boundedness of
{u;}, there is a subsequence uj — w in X for some u € X. Hence, by weakly

lower semi-continuous of F

FE(u) < lim E(uy) = inf E(w).

31— weX

This established a minimizer v of £ in X. For convenience, we state this result

as a lemma.

Lemma 2.9. Let X be a reflexive Banach space. Let £ : X — R be a coer-
cive, weakly lower semi-continuous functional on X. Then E attains at least one

minimizer in X.

2.5 Penalized Approximation

In this section we introduce the penalty approximation technique to tackle mini-
mization problems with constraints. To minimize a functional subjected to certain
constraints are difficult. This means in particular that now we are minimizing the
functional over nonlinear space.

The idea of penalization approximation technique is to replace a functional
with constraints by approximated constraint-free functionals over a Banach space.
Afterward, we solve the approximated minimization problems by the direct method,
and expect that the sequence of the associated minimizers may converge to a min-

imizer of the original functional.
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Constrained Minimization Problems

Assumptions: Given X is a reflexive Banach space, F/,G : X — R are nonneg-
ative weakly lower semicontinuous functionals, E is coercive, and G attains zero
in X. We wish to minimize the functional £ subjected to the constraint G, that

is to determine whether there exists v € X satisfying G(u) = 0 and

E(uw)= mf E(w).

weX, G(w)=0

Penalized Approximation Approach

For each € > 0, we define the functional
1
B.(w) = E(w) + - G(w)
and the corresponding relaxed minimization problem
Tt = uirelg( E.(w).

By the direct method, we immediately have the following conclusion: under the
above assumptions on X, F and G, then there exists at least one minimizer u, € X
for each E..

Now choose a minimizer u. for each E. and let k() = E.(u.). The map
e — E.(w) is non-increasing for each w € X. Also, we observe that ¢ — k(e) is

non-increasing. In fact, if 0 < €, < &5 then

K(e2) < E(w) + iG(w) < E(w) + 8—11G(w),

for all w € X. Hence k(g2) < k(e1). Since k(e) is locally Lipschitz except a null

set, k(e) is differentiable almost everywhere by Rademacher’s theorem.

Theorem 2.10. Under the above assumption on X, E and G. Then x(¢) is

bounded and there is a sequence €; — 0 and minimizers u.; for each F., and a



18
minimizer v € X of E satisfying G'(u) = 0 such that u., — u in X and
£;'G(u.,) < Cllng;| ™,
for some constant C' > 0.

Proof. We have k(c) < E.(v) = E(v) for all v satisfying G(v) = 0 and all ¢; in
particular, s(e) < infgy=g £(v). Thus s(e) is bounded.

Consider for each ¢ such that « is differentiable, we have

OE. |
e )

il E (u.) = Eo(u.) < lim E.(u.) — Eo(ue)

g/ —et g —¢ g/—et g —ec

= |K'(e)]-

Note also that ' < 0. If 0 < &; < &, then

) €2 1
k(1) —k(eg) :/ |k'(e)| de > essinf g|r’(e |/ —de.

- e1<e<en

The term on the left is bounded and the term f:f 1 de = In(ey/e1). Thus after

dividing by |Ine;| and sending €; — 0, we conclude that

G (u).

Cllng|™" > limiélfdfi( e)| > hmlnfa

=

e—0

So there is a sequence €; — 0 such that
eF1G @) K |C) lagg]

for all minimizers u. . of L. . In particular liminf; .., G(u.,) =0.

By coercivity of E, since E(u.;) < E.,(u;;) = r(c;) and the right hand side
is bounded, {u.,} must be bounded. The reflexivity of X implies, by considering
subsequences if necessary, that there is a sequence {u.,} and u € X such that
u., = uin X. As E,G are weakly lower semicontinuous, we have G(u) = 0 and

E(u) < liminf;_ ., (u.;) < infgu)—o £(v). This completes the proof. O



CHAPTER III

HARMONIC MAPS

This chapter is a detailed introduction to harmonic maps. They are purely varia-
tional objects. We study the case when the target spaces be any smooth compact
Riemannian manifolds. We also derive the corresponding variational identities,
i.e. the Euler-Lagrange equations. In the remaining section the penalized approx-

imation of harmonic maps to spheres problem is formulated.

3.1 Introduction

Roughly speaking, a harmonic map between two spaces is a critical point of certain
“energy” functional, among the maps with the same boundary values. In Physics,
harmonic maps are viewed as the direct generalization of the usual Laplace or
wave operators to nonlinear fields, i.e. fields that take values in curved manifold
not in Euclidean space. We remark here that, in the recent years, there are many
research papers related to harmonic maps in Mathematics or in Physics.

First of all we state our setting and give some conventions. We shall consider
harmonic maps which have the domain {2 that is an open subset of a Euclidean
space R"™, where n > 2. The target space N of harmonic maps is assumed to be a
smooth compact Riemannian manifold. By Nash isometric embedding theorem,
N can be isometrically embedded in some Euclidean space R* where k > 2. For
a map u from  “into” N, we do not require u(2) C N but use the minimal

assumption that u(x) € N for almost every x € . This is done in order to put
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the harmonic maps problem into the framework of modern PDE theory. Thus by
amap u: Q — N, we mean u = (ul,...,u*) : Q — R¥ such that u(z) € N for
almost every x € ). Note that we have used the n-dimensional Lebesgue measure
on Q. We say u € H'(Q, N) if u : Q — N in the above sense and v’ € H* () for
all 1 <4 < k. Recall H'(Q) denotes the Sobolev space of those L? functions on ()
which have L? gradients. Finally, we say u € H._(Q, N) if u € Hl(ﬁ, N) for all

loc

open set ) € (i.e. Q) has compact support in 0).

3.2 Classification of Harmonic Maps

Generally, harmonic maps can be classified into three types based on certain
variational conditions.

For u € HL (Q, N) and Q € Q, we define the energy E(u, Q) of u on Q by

~ 1
E(u,Q) = = | |Dul’dz,
2 Ja

where | Duf? = Y20, S (Dyu ).

1. Minimizing Harmonic Maps

A map u € HL_(Q, N) is called an (energy) minimizing harmonic map if for any
open set Q € Q and-allw e HE (4 N) with w= uon Q\ 0

loc
E(u,Q) < E(w,Q).

To analyze interior regularity property, it is enough to assume that €2 is bounded,
and the definition becomes simpler. We say that v € H'(2, N) is a minimizing
harmonic map if

E(u,Q) < E(w,Q),

for all w € HY(Q, N) such that w = u on a neighborhood of 9.
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2. Weakly Harmonic Maps

Suppose € is bounded. A map u € H*(2, N) is said to be a weakly harmonic map
if it is a “weak” solution of the following system of nonlinear partial differential
equation

Au + Z A, (Dju,Dju) =0 on 2,
j=1

where A, denotes the second fundamental form at the point u of N in RF (see
the details below). By a weak solution «, we mean that u satisfies the following

integral equation

/jS1 {Dju -D;¢ — ¢ - Au(Dju, Dju)}dx —0,

for all ¢ € C5°(Q, RF), where v - w = Y.*_ v'w’ denotes the usual dot product of
vectors v, w in R*.

We will show in the next section that the above equation of weakly harmonic
maps is the Euler-Lagrange equation of the energy functional E(u) = [, |Dul? dz

(under small perturbations on the image).
3. Stationary Harmonic Maps

Suppose 2 is bounded. A map v € H'(Q, N) is said to be a stationary harmonic

map if it is weakly harmonic and satisfies

Du|*;; — 2Dyu - D;wt D;(?dx = 0,
j J
Q.

ij=1

for all ¢ ‘€ C§°(Q,R"). We will see that every ‘minimizing harmonic map is
stationary harmonic.

Being stationary gives the monotonicity formula for harmonic maps. We will
also encounter the monotonicity identity in our penalized approximation set-
ting. In the next section, we will show in full details how to derive this iden-
tity. Roughly speaking, it is the Euler-Lagrange equation of the energy functional

E(u) = 5 [, |Dul*dz (under perturbations on the domain Q).



22

Some Known Results of Harmonic Maps

Before proceeding further, let us discuss here some known results of harmonic
maps about their regularity properties. For a good survey see ([5]).

In case the domain has dimension n = 2, every harmonic map is smooth. This
was established for the minimizing harmonic case by C.E.B. Morrey in 1948, for
the stationary harmonic case by R. Schoen in 1983, and for the weakly harmonic
case by F. Hélein in 1991. Note here that by a map to be smooth, we do not mean
that it is smooth almost everywhere, but it must have a smooth representative
(in some Sobolev space).

Among the three types of harmonic maps, the weakly harmonic maps can have
the worst regularity properties. In fact, in 1995, T. Riviére proposed an example
of everywhere discontinuous weakly harmonic map from B;(0) C R? to S2.

In general, for minimizing harmonic maps, a very important work of R. Schoen
and K. Uhlenbeck (see [7]) shows that if the domain has dimension n = 3, then any
minimizing harmonic maps are smooth away from a discrete set. If n > 4, they
are smooth away from a (relatively) closed set of Hausdorff dimension < n — 3.
The key ingredients in the proof are the minimality assumption of the harmonic
maps and the so called small energy reqularity theorem.

There is a similar small energy regularity theorem for stationary harmonic
maps.. In 1991, L.C. Evans proved the regularity. in the case that targets are

spheres. For general target manifold, it was developed by F. Bethuel in 1993.

3.3 The Euler-Lagrange Equations

In this section we will derive the variational equations which are the consequences

of minimizing assumption on harmonic maps.
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Assume (2 is a bounded open subset of R™ (n > 2) and N is a manifold which
is isometrically embedded in R* (k > 2). Recall E(u) = 3 [, |Dul*dz for all
w€ H' (Q,N). Amap ue H(Q,N) is a critical point of E if for any variation
us € HY(Q, N) (—e < s < €) such that uy = u, us = u on 99 for all s, the map
s — F(uy) is critical at s = 0. Thus, we have

d
— | Ed =0,
ds ls=0 (U)

provided the differentiation exists.
We begin with the identity for weakly harmonic maps. They are the result of

variations in the target spaces.

The First Variational Identity

Let u € H'Y(Q2, N) be a minimizing harmonic map. Therefore u is a critical point
of the functional £ by the definition of minimizing harmonic maps.

Consider the variation us € H' (2, N) (=0 < s < &) defined by
us(z) = o (u(x) + s¢(x)) 7€,

for a given ¢ € Cg°(Q, R¥), where I is the nearest point projection of R* onto N.
Since N is compact, I1is well-defined and smooth on some tabular neighborhood
UcC RFof N,ie. U= {r € RF . dist(z, N) < &} for some e > 0. It follows
that uy € H' (2, N) is a well-defined variation of u for each ¢, provided J is small

enough. By the assumption that u is energy minimizing, we have

£E(u) = 0. (i)

s=0
We will see that the differentiation exists in the weak sense. The derivation of
the Euler-Lagrange equation will be split into several parts to make it easier to

follow.
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Step 1. We expand u, with respect to the parameter s. By using the Taylor

series and the chain rules, we get

Ou,

2y _ 2
s S:0+O(s)—u+sdHuOC+O(s ).

Us = U+ S

Thus

Djus = Dju+ s{dll, o D;¢ + D;(dIL,) o ¢} + O(s?).

The term D;(dIl,) is just the array {9*112/0270u”}, where 1 < a, 3 < k. By the

chain rule, each term equals

S\ I

= ou OuP Oz

k
= E Dju”’Dmugﬂﬁ,
7=1

Y

Therefore we obtain
Dju, = Dju + s{dll, o D;¢ +HessIL,(D;u, ()} + O(s*),

where Hess f,(u,v) := 3, ;40! Dy, f

Step 2. By simple geometric reasoning, we see that dII, is the orthogonal
projection from the tangent space 7, R* = R* onto 1j niy) N, for each y € U. Recall
that in the Euclidean space R* we have the standard identification of tangent
spaces by the parallel translation. Now each vector v € T, yRk can be written as
v =T + vt where v’ = dIl,(v) and v+ ="v —v’. Thus dIl, o D;¢ = (D;¢)7, i.e.
the projection of D;¢ on T),N.

Step 3. Now from the equation (i), we have

0 - 0
0= [ =—| |Du,*= D.u - —=—D;uyg
/Q@s s:0| sl /Q; 74 s

Combine this with the first two steps, we obtain

s=0

/Qz_: {Dju . (ng)T + Dju - Hess I, (Dju, C)} = 0. (ii)

Since D;ju € T,,N, the first term on the left is equal D;u - D;(.
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Step 4. Recall that the second fundamental form A of N in R* is define for
each y € N to be the symmetric bilinear map A, : T,N x T, N — TyLN (the space

of vectors in R* orthogonal to T, N) which is given by
A, (" 0" = — (D", u,v € RF.

On the right hand side u,v are extended to C> maps R*¥ — R that take the
values u, v respectively at the point y. D,» = u’ - D is the directional derivative
in the direction u?. (It can be verified by direct computations that the definition
of A, is independent of choices of u,v and their extensions to smooth maps.) By

simple calculation, we obtain the following two important identities
HessIT, (u”,v") = <A (u”,v"), and HessI,(u”",v) = —vt- A, ().

The second identity is just the short form of w-Hess IT, (u”, v*) = —v*- A, (u”', w?)
for all w € Ty]Rk’.

Step 5. The second term on the left of (ii) is equal to
Dju - Hess I, (Dju, ¢7) 4+ Dju - Hess H (Dju, ¢ ) = ¢ - Hess IL,(Dju, Dju).

Note that the first term vanishes since Dju € T,N and HessII,(D;u, (") =

—Au(Dju, ") € T.EN. Therefore we conclude that
/;)Z {DJU . D]C — g . Au(Dj’LL, D]U)} = 0,
j=1

and this holds for all ¢ € C3°(Q, R¥).

The Second Variational Identity

Again assume u € H'(€, N) is an energy minimizing map. Consider the variation

u, € HY(Q, N) (=6 < s < §) defined by

us() = u(z + s((x)),
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for a given ¢ € C°(Q2, R"). Clearly, ug = u and uy = u on a neighborhood of 9f2.
Note that if § is small enough then u, is admissible, for each such (. Now by the

minimizing assumption of u, we have

d .
EE(uS) T 0. (i)

We split the derivation of the Euler-Lagrange equation into several steps.
Step 1. By chain rule we have
Diug(z ZDuzc—l—s(){dZ]%—quj( N
7=1

= Dyu(z + sC) +SZD4 ) Dju(z + s¢).

=i\

Let £ = o+ s¢. Note that & gives a C* diffeomorphism on € if s is small enough.

2 | det <g‘§> ‘ de.

By the change of variables formula,

Bluy= [ 1D

Step 2. Applying the chain rule, we get

] 8@ a7 ol
Dic?(w Ot Z ol Oxt
= Z Di¢I(€)(6a + 5D;¢M(2)) = Did? (&) +5 > D (€)Di(l (x),
=1 =1
and hence

Diug(z) = Dyul€) + s Z D¢ (§)Dju(€) + O(s?).
Thus

| Duy(2)]* = |Du(§)* + 25 Y Diul§) - Dju(&) D’ () + O(s?).

ij=1
Step 3. By Taylor series expansion,

o’
oxd

= 8;j + sD;¢'(z).
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Using the previous step, we have

det(a))—1~l— ZDCZ (s2).

ox 0&
det (85)‘ det <8m>

Step 4. Finally, we have

Therefore,

—1—s5 Z Di¢ (&) + O(s?).

| Du ()]

dor( SN =iDuo - s{\Du<5>\2d1v<<s>

~ 23" Dul€) - Dyule) Dici(©)} + O(s).

45 =

Thus the equation (i) gives

/ > {|Dul?s;; = 2Dsu - Dju} Di¢? =0,

i.j=1

as required. Note that this holds for all ¢ € C5°(Q2, R").

3.4 Penalization Approach for Harmonic Maps to Spheres

In this section we derive the Euler-Lagrange equation for harmonic maps to
spheres directly without using the result of previous section. We also consider

the penalized approximation of harmonic maps to spheres.

The Euler-Lagrange Equation

Suppose 2 is a bounded open subset of R™ and S*~! denotes the standard sphere
in R*. Here we assume n, k > 2.
By definition, a harmonic map to sphere u € H*(€, S¥71) is a critical point of

the energy integral

1
E(u) = §/Q|Du|2dx.
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This means that for any (admissible) variation ugs (=9 < s < ) of u, the map
s — FE(ug) is critical at s = 0. That is %LZOE(“S) = 0 if the differentiation
exists. Recall u, : Q — R* (= < s < §) will be called an admissible variation of
u if u, € HY(2, Sk71) for each s, ug = u, and u,|pq = u for all s.

Specifically, consider the 1-parameter family of maps us = (u + sC)/|u + s¢|,

where ¢ € C5°(Q, R¥). Clearly, u, is an admissible variation of u for each ( if s is

D(u—i—sC)Qd _9
lwtscl)| T

small enough. Thus

0
s:OE(US) 4 /Q —a—g

By straightforward computation, we have

d

ds

s=0

D. ( u+ s¢ ) (Dau+ sDiC)|u + s¢| — (u+ sO)|u + s¢|H(u + s¢) - (Dju + sDC)

|u+ sC| lu+ s¢|?
_ (DiutsDig) - (u+sC) (Diut+sDi¢) _ ,
TR L T s T

Next, we compute

0
% 5:0A1 = DZC o Dl'LL(U q C)

By noting that v+ D;u = D;(|u|?*/2) = 0, we have

% ZOAQ:U(C-Diquu-Di()—l—C(u-Diu)—u(u-Diu)(u-C)
=u(C - Diu+u-D;¢) =uD;(u-().
Thus
0 u+ sC 2_ = 0 u+s¢
Dsls=o D(\u+s(\>‘ _Q;Diu.as_o (]u+s<|)

Therefore, we obtain

/QZ{DZUDZC—DZUDZU(UC)} =0, (i)
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and this holds for all ¢ € C°(€2, RF). In the terminology of partial differential
equation theory, we call a function v which satisfies the equation (i), for all €

Cs(Q, R¥), a weak solution of the following equation
—Au = u|Dul. (ii)

Note that if u € C? then (i) follows from (ii) by integration by parts. So we have

the equation (ii) as a necessary condition for harmonic maps to spheres.

Penalization Approach

Suppose ) is a bounded open subset of R” and S*' the sphere in R¥, where
n,k > 2. For each € > 0, we define for every u € H*(Q, R*) the energy functional

1 1
E.(u) = 5. | Du|*da 4 = Q(1 — |ul*)?dz.

Let E denote the usual Dirichlet integral

Efu) = %/Q|Du|2da7,
and
Glu) = /(1 ~ uf?)2de
Q
represented the deviation of images of u from. the sphere S¥~1.

Let g € H'(€,S*71) be given and u. be a minimizer of E. subjected to the
Dirichlet boundary condition u.|pg = g. We are now concerning with the min-
imization problem of E. over the closed affine subspace g + H(Q,R¥) of the
Sobolev space H(2,IR¥). In this case the direct method still applicable. We will
see later that F. is coercive and weakly lower semi-continuous. Therefore, there
is at least one such minimizer ..

By the minimality of u., as € — 0, the term (4&?)7'G(u.) must be bounded.

This in turn forces u. to have images close to S*~!. The coercivity of E. implies



30

that u., — u for some sequence u., and some u € H'({, R*). By weak lower semi-
continuity of E., we conclude that u € H'(Q, S*71), u|sq = g, and F(u) < E(g).

The proof of above statements involve trivial modifications of the theorems in
chapter 2. In the remaining, we will show that F. is coercive and weakly lower

semi-continuous.

E. is coercive: Suppose {v;} is a sequence in H'!(2, R¥) such that ||v;|| g — oo.

Since || Dvj|| 2 goes to infinity as j — oo, we get
1 2
Ea(’Uj) Z 5 |D?le dx — -+00.
Q

Hence E. is coercive as claimed.

E. is weakly lower semi-continuous: Suppose v; — v in H'(Q,RF), ie.

v; = v in L*(Q,RF) and Dv; — Do in L*(©, R¥). This implies that
otlze < diminf|v;.e,

and

| Dollz2 < i nf || Doyl ()

We also note that {v;} is bounded in H'. Thus, by Rellich Compactness Lemma,
there is a subsequence v;; — v’ strongly in L* for some v/ € L*(Q,R*). Since
strong convergence implies weak convergence, we must have v' = v.

By considering a subsequence if necessary, we can assume that vy — v point-

wise almost everywhere. By observing that

/ (1 - |oP)de = / (1= 20of? + [u]*) de,
Q Q

and by Fatou’s lemma, we have

/|v|4d$§liminf/|vj/|4das.
Q 7= Ja
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Thus
/(1 Py < liminf/(l o) (i)
Q i'—=eo Jo

Combine (i) and (ii), we conclude that E. is weakly lower semi-continuous.

AOUUINBUINT )
ANRINTUNINEAE



CHAPTER IV

REGULARITY THEORY FOR ELLIPTIC SYSTEMS

This chapter shows some techniques used in the regularity theory for elliptic sys-
tems. Although the equation considered may not the most general one, but it

illustrates various aspects of the theory.

4.1 Introduction

In this chapter we deal with the interior regularity theory of elliptic systems. The

model elliptic systems are of the following forms
AN in Q,
in the sense that
LiDjU-Dj¢dx:[2f-¢d$ for all ¢ € H3(Q,R¥),
j=1

where f € L4(Q,RF) is given for some ¢ > 1. We assume that the solution
u : 0 — R* belongs to the Sobolev space H'(£2;R*) and  CR" is open. The
solution w is often called a weak solution.

The main regularity result of this chapter is that if ¢ > n then, locally, v and its
weak derivative Du are Holder continuous with exponent v for all 0 < v <1 — %.
In particular, this implies that u is C'. We will use this result in the next chapter
in order to show that the weak solutions for the penalized approximate equations

of harmonic maps to spheres are smooth.
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It is important to note here that for the general elliptic systems, in contrast
to elliptic equations, the weak solutions are assumed only partial reqularity; i.e..
they are regular on the whole domain except a small (relatively) closed set. This
is particularly true for minimizing harmonic maps. We will show this phenomena

in our main results.

4.2 Holder Continuity

Let Q be an open subset of R”, ¥ € N, and 0 < v < 1. A function v : Q — RF is
said to be Holder continuous with exponent + on §2 (or simply v-Hélder continuous

on (), provided there is a constant C' > 0 such that
lu(z) —u(y)| < Cle —yl|”, for all z,y € Q. (i)

The least such constant C' (if exists) is denoted [u], . If ¥ = 1 we say that u is
Lipschitz continuous on €). Note that Holder continuity implies uniform continuity.

Let C%7(Q,R¥) be the space of all bounded ~-Hélder continuous functions
u: Q — R*. Tt is a Banach space with respect to the norm ||ul| go. gy = [[ullze0)+
[u].o. This can be easily checked by using the Arzéla-Ascoli theorem. Similarly,
we let C%7(Q, R¥) be the space of those u : 2 — R¥ such that (1) D% € L* for
all o] < 1 and (2) D*u are y-Holder continuous for all |a| = [. It is a Banach

space equipped with the following norm

lullnsy = D7 1Dtz + Y D%l a:

0<lal<t lor|=l
4.3 Campanato and Morrey Lemmas
The following lemmas are fundamental to prove Hélder continuity of solutions (and

of their derivatives) for both elliptic equations and systems. They characterize

those L? functions which are Holder continuous by the decay of their oscillations.



34

For a domain Q@ C R” with Q| # 0, we set (u)q := [Q™" [, udz. Here Q] is
the n-dimensional Lebesgue measure of 2. In case of a ball B.(z) C R", we will

use

1
z,r 20) — 1o 7.\ dx.
u s <u>Br( 0) |BT(:L‘)| /B7(m) uaxr

Note that |B,(xy)| = w,r™ where w, = [B1(0)|.

Lemma 4.1 (CAMPANATO). Let 2o € R™ (n > 2). Suppose u € L?(By,(70), R¥)

and there are v € (0, 1] and a constant M > 0 such that

/ |t — wy p[de < M2 (i)
By(v)

for all y € B,(xp) and 0 < p < r. Then u is y-Holder continuous on B, (x),
i.e. there is a y-Holder continuous function w on B, (x() such that u = @ a.e. on
B, (x). Moreover there is a constant C' = C'(n,v) such that [u], B, () < CM.

Proof. By the inequality |a —b[* < 2|¢ —a|®> + 2|c — b, if 0 < 0 < p < r then

wno” |uy,P - uy,cr’2 < / {2’U = uy,p|2 -+ 2’u — uy,a’P}dx < 4M2pn+2'y

B (y)
where w,, = |B1(0)]. In particular if ¢ = p/2 then |, , — uy /2| < 2wy P M7,
Let pr, = r/2%, k € {0,1,2,...}. The simple estimate gives
|uy,pk - uy,Pk+1| < C(OJ\47“’y 2—k:'y’ (11)

/

where Cy = 27w, '/*. This implies that Uy, converges to a finite limit as k — oo.

Let @(y) denote the limit. Furthermore, by (ii) we have

o
|ty — U(y)| < Z |Uyp; = Uypiia | < CyMr727%7, (iii)
i=k

where C; = Cy(n, 7).
Note that u(y) is independent of the choice py N\, 0. In fact for ; \, 0, for each
2 n+2y
R

[ take k such that pry1 < 07 < pi we obtain that wy,pjl |y, o, —Uy.0, | < 4M?p

Hence |u, ,, — ty.q,| < CoMr?27%. Thus u,,, — u(y) as | — oc.
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Next we show that u = @ a.e. on B,(x¢). By (i) when p = p; and (iii), we have

1 = T(y)Pdz < 2(C2 + 1) M2 927 (iv)
Pr JB,, (y)
As k — o0, the right hand side goes to zero. Thus we can conclude that v = @
a.e. on B, (xg) by Lebesgue differentiation lemma.

Now we will show that @ is y-Holder continuous on B, (xg). First we assume

that z,y € B,(ro) and d = |z — y| < r/4. Take ky € N such that 2751y < d <

27%0r, By (iv) when k= kg — 1 and the fact that By, (x) C B, _,(y), we get

1

7
Pko—1

/ lu —u(y)|2de < CoM?r? 272ko—D7 < ) M2
BPkO (@)

where Cy = 2(C? +1). Observe that the inequality still holds if we change the
role of x, y. Thus by summing the two inequalities and applying |a — b|* <

2lc — al* + 2|c — bJ?, we obtain w,2"|u(x) — u(y)|* < 4CoM?*2Y7d*". Therefore
|u(z) — aly)} < CsMd = CsM|x — y|?,

where C'3 depends only on n, 7.
For arbitrary =,y € B,.(x), let z; (i = 0,...,8) be such that zp = z,25 =y,
z; lie on the line segment joining z,y and |z; — z;11| = | — y|/8 < r/4. Applying
the result above to each pair z;; z; {1 and summing, we obtain
7
(@) = a(y)l < D ai= 2] < 8Cs8 Mz — gyl = Cln,7) Mz -yl
i=0
So wu is Holder continuous with exponent v on B,.(xg) as claimed. O

Remark. It is easy to see that

/ lu — u, ,*dr < / lu — A*dz,
Bp(y) Bp(y)

for all A € RF.

Combining the lemma of Campanato with Poincaré inequality, we obtain:
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Lemma 4.2 (MORREY). Suppose u € Hl(Bgr(:co), ]Rk) satisfies
/ |Du‘2dx < M2pn72+2'y’
By(y)

for all y € B,(z9) and all 0 < p < r, where v € (0,1] and M > 0 is a constant.
Then u is y-Holder continuous on B, (z) and [u]y B, () < CM for some constant
C depending only on n, 7.

Proof. By Poincaré inequality and the lemma of Campanato, we get

/ |u' =, |2 ds < C(n)p2/ |\ Duldz < CM?p"+?7.
By(y) By (y)

Thus this proves the assertion. O

4.4 Elliptic Estimation

First, we discuss in some details the concept of difference quotients. This is an
indispensable tool in regularity theory of linear equations. Afterward, the C17

regularity of solutions for the equation —Awu = f will be derived.

Difference Quotients

For most of partial differential equations, we cannot differentiate the equations
directly, so we are forced to use difference quotient. It can be seen that taking
difference quotient is almost the same as taking differentiation. So the ability to
take difference quotient becomes very useful, especially for the linear equations.
In such case, we can prove higher differentiability for weak solutions.

Let  be an open subset of R™, h # 0, j € {1,2,...,n}, and z € Q with
dist(z,08) > |h|. Suppose u :  — R*. We define the difference quotient of u at
x in the direction e; = (0, ..., ({), ...,0) by

u(x + hej) —u(x) |

D u(z) == h

J
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Clearly, it is a linear operator. Moreover, it has the following properties. Suppose

p € C°(RY) and u € LL . (Q,RF). Then for all sufficiently small |h| > 0

loc

(precisely, dist( supp ¢, 9€2) > |h|), we have

[ @) pds = [[w0]%)

Lemma 4.3. Let U C Q. If u € W'?(Q,RF) where 1 < p < oo, then for all j

and all 0 < h < dist(U, 992) there holds
1D} all o)y < 1Djull o).

Proof. Without loss of generality assume & = 1. First assume u € C*°(€2). Since

Dhu(z) = & foh Dju(x +te;) dt for (x € U), by the Hélder inequality we get

1 h
Dy < 5 [ 1Drule wte)r

Integrating over U, we obtain

1 h
/ |D§‘u(m)|p dx < —/ / |Dju(z)P dedt < / |DjulP dz,
U h J By, (U) Q

where By, (U) = U, ey Bu()-
Now for arbitrary u, let u; — u in W1P(Q) where each u; are smooth. Note

that Du; — D7u in LP(2), and also in LP(U). Hence
| Dl ul| oy, = lim D oy < L[| Di] o ) = || Djeffs 0)-
This proves the claim. O

Lemma 4.4. Let u € LP(Q,R*¥), 1 < p < co. If there are constants C,hy > 0
such that || D}ul|r@y < C for all U € Q', 0 < h < hy satisfying dist(U, 0Q2) > h,

then the weak derivative D;u exists in LP(€2, R¥); moreover || D;ul|1r@) < C.

'this means U is a compact subset of Q.
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Proof. Assume without loss of generality £k = 1. Extend any function D;-‘u on
U to § by setting its values outside U to be zero. For a sequence {D;lu} where
hi \, 0, we can assume (by weak compactness of LP(£2)) that D;‘u — v in LP(Q2)

for some function v € LP(§2). This implies that ||v]|zr) < C and

/(D;-”u)apdx%/vgpdx,
Q 0

for all ¢ € C§°(£2). Now for all large i such that dist(supp ¢, dQ) > h;, we have

that
/(D?u)@ du= / uD;higp dx — = / uDjpdr asi— oo.
Q Q Q
Thus [, uDjpdr = — [, vpdz forall ¢ € Cg°(2). So Dju = v. O
Remark. As a consequence, we can say that the process of taking derivatives and
of taking difference quotients on 7 ? functions are the same thing. The point is

that if a function u has the bounded difference quotients then it also has the weak

derivatives.

C'7 Regularity for the Equation —Awu = f

Let © C R"™ be open. We consider the following system of partial differential
equation:

—Au=f on {2, (i)

where u, f:  — R*. This equation is just the Poisson equation if the function
f is continuous. But now we assume only that f € L? for some ¢ > n and

u € HY(Q,RF) is a “weak” solution of above equation in the following sense

/ZDiu-Dicpdx:/f-gpdx (ii)
Qi Q

for all v € Hy(Q,R*). We will show that u is in fact C'7 for all 0 <y <1 - 2.
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The method of putting partial differential equations into “weak” form, as we
dis in (ii), and analyzing in a priori the regularity of the weak solutions has
shown to be very successful. The pioneering works of De Giorgi, independently
by J. Nash, and putting forward by J. K. Moser, are very important to the later
development.

First we derive the decay estimates for solutions of the homogeneous equation.

We recall some elementary inequalities. Let 1 < p,q < oo with p~! + ¢! = 1.

P . b
(1) Young inequality with e: if a,b > 0, & > 0 then ab < L +er—.
p q

(2) Holder inequality: if w,v : Q@ — RF are (Lebesgue) measurable functions,

then |lu - v||zy@) < [Jullp@)llvllra)- (“u - v” means the dot product.)

Lemma 4.5. Let Q C R". Suppose u € H'(Q,RF) is a weak solution of the

system: —Awu = 0, i.e.

/ZDiwDiapd:c:O, Yo e Hy(Q,RM. (i)
Q=1

Then w satisfies

/ | Dul*dz < C(B)n/ |Dul?dz,
Bp(y) 7 JBs(y)

and

n+2
| o=@, Pan < 6 (L) o [Pus(Du)a s
By(y) Ul

Bo (y)

for all 0 < p < 0, B,(y) C 2, where C is a constant depending only on n, k.
Proof. Let u(z) = u(y + ox). The above inequalities in terms of @ are the same
just by changing 0 — 1, p — p/o and y — 0. Therefore we will assume that y = 0
and ¢ = 1. Furthermore, we can assume p < 1/2 (otherwise choose C' = 2"+2),
First we prove that u € H?(Bj 2, R¥) (By /2 := Bi/2(0)). Putting Dj_hgo (h >0,

j€{l,...,n}) for ¢ in (i), we have

/ > " Di(D') - Dipdx = / N Diu- Dy(D;"p)da = 0.
21 Q=1
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Let ¢ € C3°(B;) with h < dist(supp (,0B;). Now by setting ¢ = CQD?U, we get

CID}(Du)|de = =2 | Y ¢Di(Dju) - (Di¢ Dju)d.
By

Bi =1
Using Schwartz inequality, | a;b;] < (3 a2)V?(3_b2)Y/2, and Young inequality

with & (p = ¢ = 2) to the right, we find that

2 h 2 2 h 2 -1 2 h_ |2
¢ D (Du)Pdr < g/B DD+ [ |DCPID .
iy

Bl Bl

Note that [, |DCP?| D ulda < 5, |DC*|Dju)?dx. If € is small enough, we have

¢GIDj(Du)PPdx < Cy | |DCPIDjul*de,
B1

By
for some universal constant €y > 0. This inequality is often called a Caccioppoli

type inequality. Now fix a ¢ with ( =1 on B, then for all h small enough

/ | D} (Du)|?da < C’(’)/ |Dul*dz = const.

By B

Thus Du € H' on By 2. Therefore, we can conclude that u € H? on By; as
claimed and || D?ul 125, ) < V/2Col|Dull2(s,)-

If we restrict. domain to the ball B/, then by applying the same argument
to each Dju (which now is in H' and weakly solves (i)), we can conclude that
Du € H?. Hence u € H?, and |D%u| 12(5, ,) <0*>C3|Dul|12(5,). Continuing in
this way, we have that u € H™(Bj, R¥) for all m € N, and D™l 12, ) <
Cr(n,m)|| Dul|r2z,)-

By Sobolev Embedding Theorem, there is an'integer m for which H™ — C*.

Fixing this value of m, Du is C* on By, and we get

1 DUl 5,y + 1Dl < Coll Dl

where Cy > 0 is a constant depending only on n, k. Thus

/B | Dul?dx < wnp”HDuH%oo(Bl/Q) < Cowpp" ; | Du|?dx,
P 1
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where w,, = |B1(0)|. This is the first inequality. By Poincaré inequality, we obtain

that

|Du — (Du),*dx < C(n)p* | |D*ul*dz < CoC(n)p™™* | |Dul?dx.
B, B, B

Hence by using Du — (Du); in place of Du and the remark after lemma (4.1), we
get the second inequality. O
Remark. The lemma also proves that every “weakly” harmonic function, i.e.

4

that u € H! which solves the Laplace equation —Awu = 0 in the “weak” sense (i),
is in fact a harmonie funection. In fact, by proving that v € H™ for all m, the
Sobolev Embedding Theorem implies that w € C?. Hence u satisfies the usual
Laplace equation.

The next lemma will be employed in the proof of our main regularity result.

It is also useful for the decay estimate for the general elliptic regularity theory.

Lemma 4.6 (A TECHNICAL LEMMA ). Suppose f : [0,r] — [0, 00) is nondecreas-

ing and for any 0 < p < ¢ < r there holds

f(p)ﬁA[(?)a+€]f(a)+Baﬁ, (e >0)

for some constants A, B, a, 3 > 0 with 8 < a. Then for each v € [, «) there is

an g9 = £9(A; @, 7). > 0such that if & < ey then forall0 <p <o <r

7o) < ¢|(2) o) #B0),

where C' is a constant depending only on A, «, 7, (3.
Proof. Let 7 € (0,1). For each i € N, f(ri0) < A(7® +¢) f(r" o) + B(ri10)?,

hence by induction, we have for each k € N
k—1
f(rFo) < AR+ e)f f(o) + B(r* o) Y Al(r* +o)ir P
i=0
1
1—A(ro+e)r’

< AX7* + )" f(o) + B(T" o)’
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provided A(7% +¢)777 < 1.
Let g9 < 7%, where 7 is chosen to satisfy 2A47* = 77/2. Clearly 7 and &

depend only on A, a, . So, if € < gq then

1

f(TkU) < 7k f(o) + 728(1 — 7158 /2)

B(Tkﬂa)ﬁ.

For 0 < p < o, let k € NU {0} be such that 7*"'c < p < 7%¢. Thus

77 \Oo

10) < fa) < = (&) T e =g B

“ 2
This proves the lemma, by letting C' > max {T_V’ m} U

Now we come to the main regularity result of this chapter.

Theorem 4.7. Let © C R” be open. Suppose f € L4(Q2, R¥) for some ¢ > n and

u € HY(Q,RF) is a weak solution of the system: —Au = f, i.e.
/ZDju~ng0dx:/f-g0dx, Yo e Hi(Q,RF).
Q= Q

Then u € C'7(B,(z), R¥) for all By, (29) € Q and all 0 <y <1 -2,
Proof. Fix a ball By, (zy) € Q. Assume y € B,.(zg) and 0 < p < 0 < r. Let
X1 := HY(B,(y), R¥) and X} := H}(B,(y), R).

Step 1. First we prove that there is a unique w € X' such that w —u € X,

i.e. w=u— vforsomev € Xy, and
—Aw =0, on By.(x). (i)

Note that (g,h)y = de(y) > -1 Djg+ Djhdr is-an equivalent inner product of
the Hilbert space X}. Equation (i) is equivalent to that (u — v,¢)o = 0. Hence
(v,0)0 = [g, () f - dx, for all p € Xg. Since p — [, - f - pdz is a bounded
linear functional on XJ, by Riesz theorem? we can conclude that there exists a

unique such function v € X.

2Every bounded linear functional on a Hilbert space is an inner product by a
fixed element.
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Step 2. Next we employ lemma (4.5) to derive two preliminary estimates.
Recall the inequality (a + b)? < 2a? + 2b? for all real numbers a,b. By direct

computation and using lemma (4.5), we have

/ | Dul*dx < 2/ | Dw|*dx + 2/ | Dv|*dx
By (y) By (y) By(y)

< 20(3)"/ |Dw|2dx+2/ | Do|2dz.
* Bs (y) B (y)

Substituting w = v — v, we find that

/ | Duf?dz < 4c(ﬁ)"/ |Duf2dz + (2 + 40)/
By(y) I Ba(y) Bo(

AY)

< 01{(5)"/30@) \Dudz + /Ba(y) |Dofdz}, (i)

where C = 2 + 4C" depends only on n, k.

| Dv|*dx
)

By noting that

/ |Dv—(Dv)y o [2dw < / | Dv|*dx
B (y) Bo(y)

(see the remark after lemma (4.1)), in the same way as above we get
5 p n+2 9
/ D~ (Du)y, [Pz < C{ (£) / |Du — (Du),,|*dx
Bp(y) 2 B (y)

+/ \Dv\zdaz}, (iii)
Bo(y)
for some constant Cs depending only on n, k.

Step 3. Next we estimate the term de(y) |Dv|?dz. Note that v € X} also
satisfies fBa(y) Y Div | Diyldx.= fBg(y) [ @dz for all p € XJ. Setting p = v

and apply Holder inequality and Sobolev inequality, we get

1/2*
[ Dol < 1l { [ dx} 1B, ()|
Bs(y) B (y)

1/2
n+2_n
SC(n)IlfllmBa(y)){ / |Dv|2dx} e

Bos(y)

1
_27)

S

< 5/ " | Dv|?dz + C(n, 5)Hfuiq(Ba(y))aW*?%”).
B (y
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Here we used Sobolev inequality in the second inequality and Young’s inequality,
ab < da® + ﬁbz for all a,b,0 > 0, in the last inequality. Choosing a small 9, then

we obtain that

/ \Dof2dz < CF20™ %42, (iv)
Bs(y)

where F' = || f|| a(B, (z0)) and C'is a constant depending only on n.
Step 4. By (ii) and (iv) together with the fact —27” +2 > —2+4 27 for all

0 <~v <1, we have

/, n n—2+2
/ | Du*dz < Cy {(£> / |Duf’dz + CF?"2at? (g> 7} ’
Bolv) y B (y) r

for all 0 < v < 1, since o /r < 1. Thus by the technical lemma we see that

1 n
/ | Dul?dz < Cy {—_23/ | Du|*dx + F2T4_2(q+7)} Piantt
By (y) 0" S Ba(y)

g/ {/ | Dul?dz + F2} Pl (v)
Br(-l‘o)

where C' = C(n, k,q,r). Therefore we can conclude that u is y-Holder continuous
on B,.(zg) by Morrey’s lemma.

Also, by (iii), (iv) and the argument as above, we have

1
|Du — (Du), ,f?dx < Cg{ / Du — (Du), ,|*dx
/Bp(y) o T g

L@ A2 }p(n+2'y)

sO(n,k,q,m{ / |Du|2dx+F2}p”+2n (vi)
By (o)

for all 0 <y <1—2. Thus Du € C7 on B,(zp) by Campanato’s lemma. O
Remark. If f € L=(92, R¥) we can also verify that u € C*'(B,(x), R¥) for all

By, (x9) € Q. Further, we have by (vi) and Campanato’s lemma that

[Dul1,B,(z0) < C(n, k) {1 Dull 28, (20)) + 1| 2508, (20)) }-



CHAPTER V

MAIN THEOREMS

This chapter contains the main results of our work. In the first theorem we show
that any weak solutions of the penalized approximate equations are smooth. This
nice property is used in the second theorem to prove the monotonicity identity
(a similar analogue of the monotonicity identity occurred in stationary harmonic
maps). Afterward, we give the gradient estimate for penalized approximate solu-
tions in the third theorem. Finally, the last theorem is another proof of the small

enerqy reqularity theorem for minimizing harmonic maps.

5.1 Smoothness of Solutions for Penalized Approximate
Equations
One advantage of the penalized approximation approach is that solutions to the

approximate equations are smooth. More precisely, we will show in this section

that any weak solution u. € H'(92, R¥) of the following system of nonlinear PDE
1 o
—Nu, = 32 (1'—"ue|?) in Q

is smooth. Recall that u. is a weak solution of the system if

i 1
|3 DDy = 5 [ et = uft) e
Qi € Ja

for all p € H}(Q, RF). Here Q is an open subset of R", k € N.
Also, recall that the difference quotient D;LU for a function v : Q — RF has

the following properties (see section (4.4) for details)
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e if v € H'(Q, RF) then ||D}vl|2(q) < [[Djv| 2o for all small k> 0;

e conversely, if || Dv||;2(q) < C for some fixed constant C for all small i > 0,

then v has the weak derivative D;v in L*(Q, R¥).

Theorem 5.1. If u € H'(Q,R*) is a locally bounded weak solution of the fol-
lowing system

1
—Au, = guga — Jue|?), (%)

then u, is smooth.

Proof. Denote by fy the right hand side of (x). Since fy is clearly bounded on
By, (1) € Q, the remark after theorem (4.7) gives u. € C*! on B, (xg). This is
true for all By, (7)) € 2, 80 u. is also C* on (.

We claim that u. € C™! on B,(x¢) for all m € N and for all By,.(zo) € Q. To
this end we will use a “bootstrap” argument (. assuming by induction that w, is
C™! on B,.(xy) (m € N) for all By, (z9) € €2, we will show that u. € C™"4! on
B,(x0)).

Fix By (z0) € Q. Let f = D}(D™ ' fy) and v" = D"(D™ 'u.). Then v" is a

weak solution of the following equation
aAv*aft in; By (20)-

By induction hypothesis u, is C™ on 2. Hence D™ 1f; is C* on Q. By the
mean-value theorem, we have
sup |fnl < sup  |D(D™7Hfo)| = Ch < oo,
Bar(wo) Barng (%0)
if 0 < h < hy < dist(Ba,(xg),0%2), where C is independent of h.
By the remark after theorem (4.7), we conclude that v" is C'' on B, ().

Again by induction hypothesis u. is C™! on B,(zy). Hence on B, (7o) for a
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small hg. Therefore, we have that

sup |Dv"| = sup |Dh(DmuE)| < [D™ueli B, 4 (wo) = C2 < +00,
Br(zo) Br(20)

if 0 < h < hg < r, where (5 is independent of h. Furthermore

[Dv™)1 B, (20) < Cnyky 1) LDV || 228, (w0)) + | fonll 220 (B 2o }

< C(n,k,r){w,r"Cy+C1}.

Thus for all sufficiently small A~ > 0, Dv" are bounded and equicontinuous in
C(B,(z0),R¥). By Arzéla-Ascoli theorem, we can conclude that there is a se-
quence h; \, 0 such that w; = lim; D;”(Dmus) is in C(B, (7o), R¥) for each j.
Therefore w; is C%" on B,(1). Now by Rademacher’s theorem D™u, is differ-
entiable almost everywhere, and D;(D™u.) = w; almost everywhere on B, (zy).

Therefore u. € C™ 4 on B, (x0). O

5.2 Monotonicity Identity

Theorem 5.2. Let u, : © — R” be a smooth solution of the system

1 .
~Bu, = <5 (L - Jucf?). (i)

Then u. satisfies the following identity: if B, (zo) C Qand0<p <o <r

u, |*
0'2”/ e.(ue) d:z:'—pZ"/ e (u.) de :/ & Y d¢
By (z0) B, (o) Bo (20) \Bp(xo k3
1
+2 tln — (1 — |u.f*)?d

Bi(zo)
Here £ = |z — x| and

1

4—52(1 — Ju:*)?.

1
e(u:) = §|Du5|2 +

Z.
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Proof. Without loss of generality, assume x¢ = 0. Let B; := B;(0). Multiply (i)

by z;D;u. and integrate over B;(0), we have

,

Integrating by parts, we see that the term on the left is

/ Z D;(z;Dju.) - Dju. do— / Z x;Dju, - Diuov; d€
B 0

z:ac]Dug-(DDuE de = — / X:Qr:jDu6 (1 — |u*) dz. (i)

tg,5=1

t g j=1 Btzg 1
O |?
/ZDa;]DuE) Diu. dv — / = de
Bi i1 oB, | 08

where v = x/t. The first term on the right can be expanded as follows. By

differentiating and multiplying out we get

J

ZD (x;Djue) - Duadx—/ Z (0ijDju. + x;D;Dju.) - Diu. dz

B

tg,5=1 LAg=d1.

|Du5\ dr + Z z;D;D;u.) - Dyu. dx.

Btzj 1

Again by integration by parts, we obtain

= Du.|? n t
Du, 2d:c+/ xD(‘ z )dx: (1——)/ Du, 2dx—|——/ Du.|*dz.
/. 1D >t 5) | (Ducrart s [ D

Therefore we have the left hand side of (ii) equals to

t
(1 - E) |Du€|2dx+—/ IDu5|2dx—t/
27 Jp, 2" Jon, OB,

Next we compute the term on the right hand side of (ii). Notice that it is

ou, |2
73

de. (iii)

equal to
LS, (o) = 2 [ ool [ cwpyas
52 B = I 4 ¢ 462 By © 482 9B, ¢ '

Combining (iii) and (iv), we obtain

2

Oue de.

23

OBy

2
t/ ee(us)de = —(2 — n)/ ec(ues) de + =, (1 — |ue|?)?dx —l—t/
8Bt Bt
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This implies that

%(ﬂ—n /B | eg(ug)dx) — (2 — )t /B

e (ue) dr + t2_”/ e(u.) dr

t 0By
2 8u 2
- —tl_"/ 1 — |u.l? 2dw+t2_”/ =l de.
4e? Bt< fuel”) 0B e/
Finally, by integrating from p to o, we obtain the identity. |

Remarks. 1. An immediate consequence of the theorem is the monotonicity
inequality for the energy functional E. (u., B,(xo)) = p* ™ |, B, (o) e (us) dz. That

is, if 0 < p <o <7 (B.(x) € Q) and u. is a smooth solution of (i), then

p2_"/ e (u.)dr < 02_”/ e.(ue) de.
Bp(:ro) Ba(zo)

Clearly lim, ¢ [ B, (o) ee(uz) dx = 0 for all zy € € since u,. is smooth. We say that
u. has no energy concentration at any point zy € 2.

2. A stationary (hence minimizing) harmonic map u also enjoys this phenom-
ena. There is a monotonicity inequality for the energy functional F (u, By(xg)) =
p> pr(:ro) | Dul?dx, and a regular point o € Q of u i.e. a point for which v is

smooth in a neighborhood, is a point which « has no energy concentration.

5.3 Gradient Estimation

We begin with a Bochner type identity.

Lemma 5.3. Let u.: Q — R be a.smooth solution of the following system
1 9 :
—Au, = ?ue(l — Jue|?). (i)
Then we have the following Bochner type inequality,

Age(u:) = 0,

where g.(u.) = %|Du€]2dx — 4ELQ(l — |uc)?)2
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Proof. Differentiating (i) by D;, multiplying by Dju. and summing over j =

1,...,n, we have that
_nDA AD. —lD 2(1 — Q_EH D.u.|? i
Z jUe jUe = €2| el (1 — Jue|”) €QZIU5' el (i)
=1 j=1

Also, observe that

=
and
| Du|? = RN
A g = Z | Dl e 5 Z Dju. - ADju,. (iii)
JLi Ve
On the other hand
Do (1 Jue 2] = ~ e - D1 — )
j 12 € = =2 3 j Ue el )»

and

1 2\2 1 2 2 2 - 2
5 (gt - ) 2= {gww (1)~ 53 lue - Dy

Jj=1

1
= ?us WATH |u5|2).

Note that Su. - Aug(1 = |uc|?) = —|Au.]?. By (ii), (iii), we find that
| Du.|? - 2 1 212 2
By noting that Y .., |D;Dju.|* — [Au.|* > 0, we obtain the claim. O

1,7=1

Theorem 5.4. Suppose €2 is an open subset of R”, k > 2. There exists g =

do(n, k) > 0 such that if u. : Q — R” is a smooth solution of the system

1 .
—Au, = gua(l — ul?) in €,
and 77" [ o ec(ue) dr < &y (By(20) € Q), then

r sup |[Du| <C,
B, 2(z0)
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where C'= C(dy) — 0 as dy — 0.
Proof. First we transform the above equation into a more manageable one.

Choose 0 < r; < r such that

)2 } (2
max {(r ) ax ec(ue) ¢ = (r —r1) max ee(ue),

and z;, € B,,(70) to satisfy

Bffllzgg) ec(u:) = ec(u:)(x1).

Let m? = e.(u.)(z1). Since By (21) C Biririy (o), we have
2 2

max e (u.) £  max e (u.)
B<r—r1 )(1'1) B<r+r1 )(530)
2 2

+ 71 2
f— gl =52 - o
<(r—r) Brrri?;é)ee(ug) i 5 m

Let R = (5*)m. If we set v(z) = u-(x; + ) on Bg(0) and &’ = me, then we

find that the smooth function v satisfies

Ay = 6—%271(1 — v on Br(0), (i)

and

max e./(v) <4, () (0) = 1. ii
i c./(v) e (0)(0) (i

Claim R < 1: We prove the claim by contradiction, that is assume R > 1. We
restrict the domain to the ball B1(0). We will show that this implies the existence

of a universal constant ¢ > 0, independent of v, &’ such that

1< c/ e (v), (iii)
BBy (0

for any pair v, €’ satisfying (i) and (ii).
Under the assumption R > 1, suppose that the assertion is false. We have

that there are sequences €; — 0 and {v;} such that each €}, v; verify (i), (ii) on
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Bl (0) but

/ e« (vj) — 0, as j — 00.
B1(0)

By the previous lemma we conclude that 9e! (v;) are subharmonic functions on
B1(0) for all j. This implies, by Moser’s Harnack inequality, that there is a

constant ¢ > 0 depending only on n, k such that

g (w3)0) <e [

g/ (vj)dz < c/ e (vj) dw
B1(0) B1(0)

for all j. As j — oo, &) =0, we have
ger (v3)(0) = ee (v;)(0) = 1.

But [, B1(0) € (vj)dz — 0, so we get a contradiction. This prove (iii).
Next we will show that the assumption R > 1 leads to a contradiction. By

(iii), we have a constant ¢ such that

1< c/ e (v) dx.
By (0)

Substituting R = (5 )m back into the definition of v ,¢" and applying the mono-

(- |U|2)2} dx
1

tonicity inequality, we get

1< c/ ezr(v)de< cRQ_”/ {—|Dv|2
B1(0) BR(O

<er* / ee(ue) de.
By (z0)

This cannot be true since r?~" [ By () e.(ue) dz is assumed to have any arbitrary
small value. So we have proved the claim. Now by the definition of ry, z;, we see
that

2
(r - —> max e, (u.) < (r —ry)*m? = 4R%.

B, j2(0)
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Therefore we obtain r sup B, (o) |Du.| < 16R?. Notice that the claim above also
true if we replace 1 by any 0 < o < 1. Hence, for each 0 < o« < 1, thereisa >0
such that R < « if 69 < . Thus R — 0 if 9 — 0. O

We will use this gradient estimate for proving the next theorem. Notice that
the theorem asserts that if the energy =" [ (20) e.(u.) dz is small enough then

the gradient Du in the smaller ball 5, /5(x) is controlled by C/r.

5.4 Small Energy Regularity Theorem

In this section we give an alternative proof for the small energy regularity theorem
(also called the e-regularity theorem) for minimizing harmonic maps to spheres.

We shall use the penalty approximation method developed before.

Theorem 5.5. Suppose ) is an open subset of R™, £ > 2. Then there is a
constant &y = do(n, k) > 0 such that if u € H'(Q, R*) is a minimizing harmonic
map to the sphere S*~! and 72" 161653 S|Dul?dx < 6y (B,(z0) € ), then
r sup |Dul<C,
By 2(x0)
where C'= C(dp) — 0 as dp — 0.
Proof. By re-scaling we can assume that » = 1 and xy = 0. For each £ > 0, let

. : B1(0) \ B1/2(0) — RF be a minimizer of the penalized energy functional

1 1
E.(v.) = / Do P+ — [ (1= ),
T2 4e? |

over H(T,R¥) subjected to the Dirichlet boundary condition v, = u on OT. Here
T = B1(0) \ B1/2(0). The existence of v, follows from theorems of chapter 2 and

the final section of chapter 3. In fact, the problem is reduced to minimize E. over

the closed affine subspace u + Hg (T, R*) of H (T, R").
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We can also conclude that there are sequences ¢; — 0 and v; = v., € H'(T, R¥)
such that v; — v* strongly in H'(T, R¥) for some v* : T'— S*~! where v*|sr = u
and E.(v*) < E.(u).

We define the function v : By(0) — S*~! by

U(l‘) if x € Bl/?:
v(z) =

Therefore, v € H'(By(0),8*!) and v = u on B;(0). Since E.(v*) < E.(u) and

u is a minimizing harmonic map, we conclude that

/ |Dv(2dx:/ |\ Dufda.
Bi1(0) B1(0)

Hence v is a minimizing harmonic map.
As v; minimizes E.,, B, (v;) < [|Dul*dz < dy. By the monotonicity identity,
we have

7'2”/ e, (vj) dx < &g
Br(y)

for all |y| = 3/4 and all 0 < < 1/8. If 0y is sufficiently small, we then obtain by
the gradient estimate that
resup |Dv;| < C(dy).
B j2(y)
Recall C'(0g) — 0 as 69 — 0. By considering a subsequence if necessary, we have
that ‘Dv; — Dv* pointwise almost everywhere. So rsupy () [Dv*] < C(d). By

simple calculation, we obtain that

osc |v*| < C(do).
lyl=%

By the theorem due to J.Jost, we get Bos% : |v| < C(dg) provided dy is sufficiently
3/4(0

small. Also, by the theorem of ([6]), we can conclude that v is smooth on Bs,4(0)

if dp is small enough (so that the oscillation of v is small).
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By Bochner type identity for harmonic maps to spheres (under the assumption
that the maps are smooth), and the the corresponding gradient estimate, we can
show that rsupp, ) [Dul = rsupg, @) |Dv| < C(do) as we require. O

For a minimizing harmonic map u : Q — S*!, we define the regular set of u

(i.e. the set of regular point) by
Reg(u) = {x € Q : u is smooth in a nbd of z},

and the singular set of u, defined by Sing(u), to be the complement 2\ Reg(u).
A consequence of the small energy regularity theorem is the following criterion

for regular points of harmonic maps.

Corollary 5.6. A point zy € 2 is a regular point of a minimizing harmonic map
u: Q — S*1if and only if lim, g r*™ fBr(-TO) | Dul*dx = 0.

By the above corollary, we can estimate the size of the singular set of u. In
fact, it can be shown that for n-dimensional €2, the Hausdorff dimension of the

singular set is at most n — 2. For details, see ([8]).



REFERENCES

Adams, R.A. Sobolev spaces. New York: Academic Press, 1975.

Chen, Y.M. and Lin, F.H. Remarks on approximate harmonic maps.
Comment. Math. Helv. 70 (1995), no. 1: 161-169.

Evans, L.C. Partial differential equations. Providence, Rhode Island:
American Mathematics Society, 1998.

Han, Q. and Lin, F.H. Elliptic partial differential equations.
Providence, Rhode Island: American Mathematics Society, 1997.

Hardt, R. Singularities of harmonic maps. Bull. Amer. Math. Soc.
(N.S.) 34 (1997), no. 1: 15-34.

Hildebrant, S.; Kaul, H.; and Widman, K.-O. An existence theorem for
harmonic maps of Riemannian manifolds. Acta. Math. 138(1977),
no. 1-2: 1-16.

Schoen, R. and Uhlenbeck, K. A regularity theory for harmonic maps.

J. Differential Geom. 17 (1982): 307-335.

Simon, L. Theorems on regularity and singularity of energy
minimizing maps: Lecture in Math ETH Ziirich. Berlin:
Birkhauser, 1996.

Struwe, M. Geometric evolution problems: Nonlinear partial diff. equations
in differential geom:, IAS/Park City Math. Series. Providence, Rhode
Island: American Mathematics Society, 1997.

Struwe, M. Variational methods. Berlin: Springer-Verlag, 1996.

Wang, C.Y. Limits of solutions to the generalized Ginzburg-Landau

functional. University of Kentucky, preprint.



57

VITA

Mr. Sujin Khomrutai was born on July 11, 1977 in Nakhonratchasima
Thailand. While studied in high school he participated in the 36th Interna-
tional Mathematical Olympiad, hosted by Canada in 1995, and received a silver
medal. He graduated with a Bachelor Degree in Electrical Engineering from Chu-
lalongkorn University, Bangkok Thailand in 2001. For his master degree program,

he has studied mathematics at the Faculty of Science, Chulalongkorn University.





