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CHAPTER 1
INTRODUCTION

Graph structures and algebraic structures are closely related. For example, an
element a and a nonzero element b, which are distinct, of a commutative ring R
can be regarded as two vertices in a graph G and they can have an edge connecting
between them whenever ab = 0, that is, a is a zero-divisor of R (a is allowed to
be zero). This graph G is called a zero-divisor graph which has been extensively
studied. According to Beck [2], the definition of zero-divisor graph was first in-
troduced and the coloring and clique of such graphs were studied. Anderson and
Livingston [1] changed the vertex set of the zero-divisor graph into the set of all
nonzero zero-divisors of a commutative ring and investigated the completeness and
automorphisms of such graph.

Later, researchers generalized the idea of a graph into a hypergraph. Chelvam
et al. [4] said that Eslahchi and Rahimi were the first who defined the notion of
k-zero-divisor and its k-zero-divisor hypergraph. In there, Chelvam et al. studied
the planarity of k-zero-divisor hypergraphs.

In this thesis, we investigate the relationships between ring-theoretic prop-
erties of a commutative ring and graph-theoretic properties of its k-zero-divisor
hypergraph.

We study the concept of k-zero-divisors of a commutative ring and k-zero-
divisor hypergraphs in Chapter II. In the first part of that chapter, some definitions
in ring theory and some interesting properties are mentioned. For the second part,
we introduce the definition of k-zero-divisors of a commutative ring. Finally, we
provide definitions of hypergraphs and k-zero-divisor hypergraphs along with some
of their basic properties in the third section. Throughout this thesis, let k be a

natural number that is greater than 1, R be a principal ideal domain and I be an



ideal of R. Then, R / I is a commutative ring with nonzero identity. For certain
ideals I of R, we give the necessary properties of R / I to prove the desired results.

In Chapter III, the method to construct complete k-zero-divisor hyper-
graphs is provided. We also give examples of such hypergraphs.

After that, the necessary condition of commutative rings that implies k-
partite k-zero-divisor hypergraphs can be seen in Chapter IV. The completeness
of the constructed k-partite k-zero-divisor hypergraphs is also proved. Moreover,
examples of such hypergraphs are given.

Next, in Chapter V, we consider k-partite o-zero-divisor hypergraphs with
the integer o > k. Then, we show how to construct k-partite o-zero-divisor hyper-
graphs and examples of such hypergraphs are given.

Note that, the definition of k-partite hypergraph in Chapter IV is according
to Kuhl and Schroeder [9] and in Chapter V is according to Jirimutu and Wang
[8] which are a little bit different.

For each constructed hypergraph in Chapters III, IV and V, we determine
its diameter, which is the maximum of distance between any two vertices, and its
minimum length of all cycles.

Finally, we give conclusions and discussions on the future researches in Chapter

VL



CHAPTER 11
PRELIMINARIES

We separate this chapter into three sections. In the first section, we review some
definitions and some properties of the related algebraic structures. Then, we give
the definition of k-zero-divisors of commutative rings in the second section. Af-
ter that, we introduce hypergraph structures including k-zero-divisor hypergraphs

with some relevant definitions in the last section.

2.1 Algebraic Structures

The algebraic structures studied in this thesis involve mainly with commutative
rings. The study of rings deals with objects possessing two binary operations,

called an addition (4) and a multiplication (x), related by the distributive laws.

Definition 2.1. ([5]) A ring (R, +, X) is a set together with two binary opera-
tions + and X, called an addition and a multiplication, respectively, satisfying the

following axioms:
(i) (R,+) is an abelian group,
(ii) x is associative: (a X b) x ¢ =a x (b x ¢) for all a,b,c € R,

(iii) the distributive laws hold in R: (a+b) xc= (axc)+(bxc¢)and ax (b+c¢) =
(a x b)+ (a x ¢) for all a,b,c € R.

Remark. (i) The additive identity of a ring R is always denoted by 0.

(ii) We shall usually write simply ab rather than a x b for any elements a,b of a

ring.



(i) A ring R is said to have an identity (or contain 1) if there is an element

1 € R with la=al =a for all a € R.

(iv) Let R be a ring with nonzero identity. An element u of R is called a unit of
R if there is an element v of R such that uv = vu = 1. The set of all units

of R is denoted by U(R).
(v) A ring is commutative if the multiplication is commutative.
(vi) A subring of a ring R is a subgroup of R that is closed under multiplication.
(vii) r+1 ={r+alacl},rl ={ra|acl}and Ir={ar|ac I} for any
element r and ideal I of a ring R.

In this thesis, we consider one special type of subrings of a commutative ring

which is called an ideal.
Definition 2.2. ([5]) Let R be a ring, I be a nonempty subset of R and r € R.

(i) A subset I of R is a left (right) ideal of R if

e [ is a subring of R, and

e [ is closed under left (right) multiplication by elements of R, i.e., rl C I
for all € R (Ir C I for all r € R).

(ii) A subset I of R that is both a left ideal and a right ideal of R is called an
ideal (or a two-sided ideal) of R.

Note that, for commutative rings, the notions of left, right and two-sided ideals

coincide.

Definition 2.3. ([5]) Let R be a commutative ring with a nonzero identity and
a be any element of R. Let Ra = {ra | r € R} denote the smallest ideal of R

containing a, called the ideal generated by a or a principal ideal.

Some special types of rings are the following. Instead of considering any com-
mutative rings R, we study the quotient ring R/I = {r + I | r € R} for any ideal
I of R.



Proposition 2.4. (/5]) Let R be a ring and I be an ideal of R. Then, the (additive)
quotient group R/I ={r+1|r € R} is a ring under the binary operations:

(r+0)+(s+1)=(r+s)+Land (r+1)x(s+1)=(rs)+1

for all r,s € R. The ring R/I with the prescribe operations is called the quotient
ring of R by I.

Proposition 2.5. Let A be any nonempty set. Let I be an ideal of a ring R and
{JO‘}QEA be a collection of ideals of a ring R such that I C J, for alla € A. Then,

for each o € A,

/0= U /=

BeA,f#a

acl.— | Jﬁ}.

BeA, fF#a

Proof. First, let « € A and = € J, be such that v + I ¢ UﬁeAﬁ?éa(Jﬁ/[). Then,

x+1 ¢ Jg/I forall B # a. Thus, z ¢ Js for all § # a. Hence, z € Jo—Upen pza J5-
Conversely, let © € Jo — Ugep pra Js- Then, z + 1 € Jo/I. Since z ¢

Upea pra /5, We obtain o ¢ Jg so that x + I ¢ Ja/I for all B # a. Therefore,

x+1¢ UﬁeAﬂ#a(Jg/I). Hence, z + I € (Ja/[) —U5€A75¢Q(J5/I). O

Definition 2.6. ([5]) An ideal M of a ring R is called a mazimal ideal it M # R
and the only ideals containing M are M and R.

Definition 2.7. ([5]) Assume that R is a commutative ring. An ideal P of R is
called a prime ideal if P # R and whenever the product ab of two elements a,b € R

is an element of P, then at least one of a and b is an element of P.

Definition 2.8. ([5]) Let R; and Ry be rings. We shall denote by R; x Ry their
direct product (as rings), that is, the set of ordered pairs (r1,79) with 1 € R; and

ry € Ry where addition and multiplication are performed componentwise:
(i) (r1,72) + (81, 82) = (r1 + s1,72 + S2); and
(ii) (r1,72)(51,82) = (1151,7282)

for all r,s1 € Ry and ry, 59 € R».



Definition 2.9. ([5]) Let R be a commutative ring with nonzero identity. Then,
the distinct ideals A and B of R are said to be comazimal if A+ B = R.

Proposition 2.10. If A and B are distinct mazimal ideals of a commutative ring

with nonzero identity, then A and B are comazimal.

Proof. Assume that A and B are maximal ideals of R. We know that A C A+ B,
B C A+ B. Since A and B are maximal ideals, A + B = R. O

Theorem 2.11. ([5/) (Chinese Remainder Theorem) Let R be a commutative
ring with nonzero identity and Ay, As, As, ..., Ag be ideals of R. The map R —
R/A;x RJ/Ayx RJA3x---x R/Ay, defined by r — (r+ Ay, r+As, v+ Az, ..., 7+ Ax)
is a ring homomorphism with kernel AyNAsNA3N---NAy. If foreach1 <i,j <k
with 1 # j, the ideals A; and A; are comaximal, then this map is surjective and
AINANAsN- - NA, = A1 As Az -+ Ay, thus, R/ (A1 AsAs - Ay) = R/(A1N AN
AsN---MAy) 2 R/A; X RJAy X RJA3 X -+ X RJA.

Next, we introduce zero-divisors of a ring and some definitions involving zero-

divisors as follows. In this thesis, we follow the definition of zero-divisors given by

Bourbaki [3].

Definition 2.12. ([3]) Let R be a ring. An element a of R is called a zero-divisor

if there is a nonzero element b in R such that either ab = 0 or ba = 0.

Definition 2.13. ([5]) A commutative ring with identity 1 # 0 is called an integral

domain if it has no zero-divisors.

Definition 2.14. ([5]) A principal ideal domain (PID) is an integral domain in

which every ideal is principal.

Example 2.15. The set Z of all integers and the set Z[i] = {a + bi | a,b € Z} of

all Gaussian integers are PIDs.

There are some additional algebraic definitions and properties that are needed

throughout this thesis.



Definition 2.16. ([5]) Let R be a commutative ring and let a,b € R with b # 0.

(i) An element a is said to be a multiple of b if there exists an element x € R
with @ = bz. In this case b is said to divide a or to be a divisor of a, written

as b | a.
(ii) A greatest common divisor of a and b is a nonzero element d such that

e d|aandd|b, and

e if d |aand d | b, then d' | d for any nonzero element d’ € R.
A greatest common divisor of a and b is denoted by ged(a, b).

Note that, b | a in a commutative ring with a nonzero identity R if and only
if a € Rb if and only if Ra C Rb. In particular, if d is any divisor of both a and
b, then there exist r,s € R such that a = rd and b = sd. Thus, Rd must contain
both a and b, and hence, it must contain the ideal generated by a and the ideal

generated by b.

Proposition 2.17. ([5]) If a and b are nonzero elements of a commutative ring R
such that the ideal generated by a and b is a principal ideal Rd, then d is a greatest

common divisor of a and b.

Proposition 2.18. (/5]) Let R be an integral domain. If two elements d and d' of
R generate the same principal ideal, i.e., Rd = Rd', then d' = ud for some unit u
of R. In particular, if d and d' are both greatest common divisors of a and b, then

d' = ud for some unit u.

Proposition 2.19. (/5]) Let R be a PID and let a and b be nonzero elements of

R. Moreover, let d be a generator of the principal ideal containing a and b. Then,

(i) d =gcd(a,b);

(ii) d can be written as an R-linear combination of a and b, i.e., there are ele-

ments x and y of R such that d = ax + by; and



(1) d is unique up to multiplication by a unit of R.

By Proposition 2.19, ged(a,b) = ax + by for some z,y € R, we have that if
a is a nonzero element of R and ged(a,b) = 1, then 1 = ax + by € ax + Rb =
(a + Rb)(x + Rb). That is, a + Rb is a unit of the quotient ring R/Rb.

Definition 2.20. ([5]) Let R be an integral domain. A nonzero element p € R is
called prime in R if the ideal Rp generated by p is a prime ideal. In other words, a
nonzero element p is prime if it is not a unit and whenever p | ab for any a,b € R,

then either p | a or p | b.
Example 2.21. The prime integers in Z are prime elements.
Example 2.22. ([6]) The prime elements in Z[i] are of the forms
(i) a+ bi, where a,b # 0 and a® + b*> = p where p is a prime element of Z,

(ii) up, where u is a unit of Z[i] and p is a prime element of Z such that p =

3 (mod 4).

Definition 2.23. ([5]) The Euler ¢-function is defined as follows: for n € N, let
©(n) be the number of positive integers a < n with a relatively prime to n, i.e.,

ged(a,n) = 1.

For primes p, ¢(p) = p — 1, and more generally, for all @ > 1, we have formula
o(p®) = p* — p®t = p*~(p — 1). The function ¢ is multiplicative in the sense
that p(ab) = p(a)e(b) if ged(a,b) = 1. Therefore, if n = pi'py?ps? - - - p%, then

p(n) = p(p")p(p2?)p(P5?) - - - (ps*).

Definition 2.24. ([5]) Let R be an integral domain. Two elements a and b of R

differing by a unit (i.e., @ = ub for some unit v in R) are said to be associate in R.

Definition 2.25. ([5]) A field is a set F' together with two commutative binary
operations + and - on F' such that (F,+) is an abelian group and (F' — {0},-) is
also an abelian group, a-0=0=0-a for all a € F', and the following distributive

law holds:



a-(b+c)=(a-b)+ (a-c), forall a,b,ce F.

Proposition 2.26. ([5]) Let R be a commutative ring with nonzero identity. The
ideal M is a mazximal ideal if and only if the quotient ring R/M s a field.

Corollary 2.27. ([5]) Every nonzero prime ideal in a PID is a mazimal ideal.
By Corollary 2.26 and Corollary 2.27, we obtain the following result.
Corollary 2.28. Let R be a PID with a prime element p. Then, R/Rp 1$ a field.
Proposition 2.29. ([5]) Let I be an ideal of a ring R with nonzero identity.
(i) I = R if and only if I contains a unit.

(i1) If R is a commutative ring, then R is a field if and only if its only ideals are

{0} and R, that is, R contains only the zero element and unit elements.

2.2 k-Zero-Divisors of a Commutative Ring

In the previous section, zero-divisors of a ring are recalled. Chelvam et. al. [4]
extended the definition of zero-divisors to k-zero-divisors where k is an integer such

that & > 2.

Definition 2.30. ([4]) Let R be a commutative ring with nonzero identity. A
nonzero and nonunit element z; of R is called a k-zero-divisor of R if there ex-
ist k£ — 1 distinct nonunit elements 29, 23, 24, . . ., 25 differ from z; and satisfy the

following statements:
(1) 212923+ 2z = 0; and

(ii) the products of all elements of any (k — 1)-subsets of {z1, 22, 23, ..., 2} are

NnOoNnzero.

Moreover, we use Z(R, k) to denote the set of all k-zero-divisors of R. Note that

the elements 2o, 23, 24, . . ., 2 in Definition 2.30 must be nonzero elements.
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Example 2.31. Consider the ring Zsy. Since 2-3 -5 = 0 € Zsy and the products
of any 2 elements of {2,3,5} are nonzero, 2 is one of the 3-zero-divisors of Zs.

Actually,

We can see that 2-zero-divisors imply zero-divisors but not vice versa. For

instance, 2 is a zero-divisor of Z,, but it is not a 2-zero-divisor of Zj,.

2.3 Hypergraph Structures

Definition 2.32. ([10]) A hypergraph H(V,E) or H consists of a set of vertices or
vertex set V.= V(H) = {v1,v9,v3,...,v,}, and a set of (hyper)edge or edge set
E=EMH) ={E\ Es, Es,...,E,} where E; CV and |E;| > 0 for all n > 1 and
1 < < m. Furthermore, let [ > 0 be a fixed integer. If |F;| = for all E; € £, we

say that H is an [-uniform hypergraph.

Example 2.33. Consider the vertex set V' = {1,2,3,4}. The edge set £ of all
3-subsets of V' is

{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}

Such vertex set and edge set form a hypergraph H(V, &) which is a 3-uniform
hypergraph.

Chelvam et al. link the idea between k-zero-divisors of a commutative ring R
and k-uniform hypergraphs. Then, they can define k-zero-divisor hypergraphs of

a commutative ring as follows.

Definition 2.34. ([4]) Let £ > 2 be a fixed positive integer. A k-zero-divisor
hypergraph of a commutative ring R with nonzero identity, denoted by H(R),
is defined as a k-uniform hypergraph whose vertex set is Z(R, k) and the set

{a1,as,a3,...,a} € Z(R, k) is an edge if it satisfies the following statements:

(i) ayasas---ap = 0; and
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(ii) the products of all elements of any (k — 1)-subsets of {ay, as,as,...,a;} are

Nnonzero.

Example 2.35. Consider the ring Zs,. We know from Example 2.31 that 2 is

a 3-zero-divisor of Zsy. Not only 2-3-5 = 0 in Zsg, but also 2-3-25, 2-5-9,
2.9.25,2-5-21,2-21-25,2-5-27, and 2 - 25 - 27 equal zero of Zs,. We can
construct edges between such elements as {2, 3,5}, {2, 3,25}, {2,5,9}, {2,9,25},
{2,5,21}, {2,21,25}, {2,5,27}, and {2,25,27}. These edges are some of all edges

of the hypergraph H3(Zsg). Later, in Chapter IV, we show all edges of H3z(Z3).

To investigate a relationship between ring-theoretic properties of a commutative
ring and graph-theoretic properties of its k-zero-divisor hypergraph, we introduce

some interesting definitions of a hypergraph.

Definition 2.36. ([10]) Let [ > 2 be an integer. The complete l-uniform hyper-
graph on n vertices is an [-uniform hypergraph which has all [-subsets of the n-set

of vertices as edges.
Example 2.37. H(V,E) in Example 2.33 is a complete 3-uniform hypergraph.

Since hypergraph is still a new topic in mathematics, there are some researchers
who gave slightly different definitions of the term k-partite hypergraph. Here, we
use two definitions based on Kuhl and Schroeder [9], and Jirimutu and Wang [§]
which are Definition 2.38 and Definition 2.40, respectively.

Definition 2.38. ([9]) Let £ > 2 be a fixed positive integer. A k-uniform k-partite
hypergraph has a vertex set V partitioned into k£ subsets Vi, V5, Vs, ..., Vi, and the
edge set &€ such that & = {{Ul,vg,?}37...,vk} | v; € Vyforall 1 < j < k} A

k-uniform k-partite hypergraph is said to be complete it V; = {v] , v] , U e ‘V l}
for all 1 < j < k, and € = {{v}',v2,v¥,...,v}*} | v;j € Viforall 1 < j <

kand 1 <i; < |Vj|}.

Example 2.39. Let V = V; UV, U V3 where V; = {a,b,c}, Vo = {d',V/, ¢} and
Vs = {a,b,¢} are mutually disjoint. The complete 3-uniform 3-partite hypergraph
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given by Kuhl and Schroeder constructed from V' has edges as follows.
{a,d’,a},{a,d b}, {a,d e}, {a,V,a},{a,b, b}, {a, b c} {a,c,a},{a,c, b}, {a,c, ¢},
{b,d',a}, {b,d,b},{b,a’,c},{b,0/,a},{b,V/, b}, {b,¥/,c},{b,c,a},{b,¢ b}, {b,c,c},
{c,d',a},{c,a' b}, {c,d e} {c,¥,a}, {c, b, b}, {c ¥, e} {c ,a},{c, b}, {c, c}.

Definition 2.40. ([8]) Let & > 2 and o be fixed integers with ¢ > k. A
o-uniform k-partite hypergraph has the vertex set V partitioned into k£ subsets

Vi, Vo, V3,..., Vi and E is an edge if

|E|=cand |[ENV;| <oforalll<i<k

and there exist 1 < m # n < k such that ENV,, #@ and ENV, # 2. (*)

A o-uniform k-partite hypergraph is said to be complete if the edge set £ contains
all edges satisfying ().

Example 2.41. Let V = V; UV, where V} = {a,b,c¢} and V5, = {d/,/,c} and
are mutually disjoint. The 3-uniform 2-partite hypergraph given by Jirimutu and
Wang has edges as follows.
{a,b,d'},{a,c,d’}, {b,c,a'},{a,b,b'}, {a,c,b'},{b,c, 0}, {a,b,}, {a,c },
{b,c,d},{d bV, a},{d  a}, {V,c a},{a b, b} {d, b}, {V, b}, {d,V, c},
{d,,c},{V,c,c}.

Example 2.42. Let V = V; UV, U V3 where V; = {a,b,c}, Vo = {d',V/, ¢} and
Vs = {@,b,¢} are mutually disjoint. The 3-uniform 3-partite hypergraph given by
Jirimutu and Wang has edges as follows.

{a,d’,a},{a,d b}, {a,d ¢}, {a,VV,a},{a, b, b}, {a, b, c} {a,c, a},{a,c, b}, {a,c, ¢},
{b,d',a},{b,a’ b}, {b,a e}, {b,b,a},{b,b b}, {b¥ e} {bc, a},{bc, b}, {bc, e},
{c,d',a},{c,a' b}, {c,a e} {c,V,a},{c, b, b} {c, ¥, e {cc, a} {cc b} {c, c},
{a,b,d'},{a,c,a’},{b,c,a'}, {a,b,b'},{a,c,b'},{b,c, b}, {a,b,}, {a,c,d}, {b e},
{a,b,a},{a,c,a},{b,c,a},{a,b,b},{a,c, b}, {b,c,b},{a,b,c},{a,c,c},{b,c,c}.

Example 2.39 is an example of Definition 2.40.
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In order to determine the diameter of each hypergraph, a path in a hypergraph

and its length are needed.

Definition 2.43. ([12]) A path P in a hypergraph H from z; to x4 is a vertex-
edge alternative sequence x1, Fy, xo, Es, ..., x5, Fs, 2511 such that {z;, 2,41} C F;
for all 1 <¢ < s and x; # x;, E; # E; with ¢ # j, and s is called the length of the
path P.

Example 2.44. From Example 2.41, some examples of paths from a to b are
(i) a,{a,b,a’},b,
(i) a,{a,c,da'},d',{a,b,a'},b,
(iii) a,{a,c,d'},c,{a,c,},d, {b,c,},b.
Their lengths are 1, 2, and 3, respectively.

Definition 2.45. ([12]) The distance of distinct vertices x and y of a hypergraph,

denoted by d(x,y), is the minimum length of a path that connects z and y.

Example 2.46. From Example 2.41, we see that d(a,b) = 1 because in Example
2.44, we can find a path of length 1.

Definition 2.47. ([12]) The diameter of H(V, &), denoted by d(#), is defined as
d(H) = maz{d(z,y) | z,y € V and z # y}.

Finally, we need to introduce the definition of cycles to determine the minimum

length of cycles.

Definition 2.48. ([7]) Let s > 2 be an integer. An s-cycle of a hypergraph is an al-
ternating sequence, C' = xq, 1, 29, F», . . ., xs, E, of distinct vertices x1, 2o, x3, ..., T
and distinct edges Fy, Es, Es, ..., Es such that xy,z, € F, and z;, ;11 € E; for all
1 <i<s—1and s is called the length of cycle C. If hypergraph has no cycles,
we say that this hypergraph has a 0-cycle or a cycle of length 0.

Example 2.49. From Example 2.39, some examples of cycles that containing a

are



i) a,{a,d,a},a,{a,V,a},

(i) a,{a, a’,l_)}, a,{b,d, Z_)}, b,{a,b,a},

(iii) a,{a,d,c},d,{b, e}, ¢, {b,¥ e}, 0, {a,l a}.

Their lengths are 2, 3, and 4, respectively.

14



CHAPTER I11
COMPLETE k-ZERO-DIVISOR HYPERGRAPHS

Let k£ > 2 be a fixed integer. Our main objective of this chapter is to find a
necessary condition of a commutative ring that implies completeness of its k-zero-
divisor hypergraph.

Let R be a PID. Assume that R has a prime element, say p. Then, Rp* is an
ideal and, consequently, R / Rp* is a commutative ring with nonzero identity.

By Proposition 2.5, we obtain the following result.

Proposition 3.1. Let R be a commutative ring containing a prime element p and

k > 2 be a fixed integer. Then,
(Rp/Rp*) — (Rp? | Rp¥) = {a + Rp* ‘ a € Rp — RpQ}.

Next, under some conditions on R / RpF, we can determine the set of all k-zero-

divisors of the ring R/Rpk, that is Z(R/Rpk, k).

Proposition 3.2. Let R be a PID containing a prime element p and k > 2 be a
fized integer. Assume that R/Rpk 18 finite and ’Rp/Rpk — sz/Rpk’ > k. Then,
Z(R/Rp* k) = (Rp/Rp*) — (Rp* | Rp").

Proof. Let z; € R be such that z; + Rp* € (Rp/Rp*) — (Rp?/Rp"*). Since
)Rp/ Rp* — Rp? / Rpk‘ > k, we can find distinct nonzero nonunit elements x, +
Rp*, x5+ Rp*, xy + Rp*, ..., xx + Rp* € (Rp/Rp*) — (Rp? / Rp*) which differ from
x1+ Rp* such that p | a;, but p? { a; forall 1 < i < k. Since p | x; forall 1 < i < k,
(x1 + Rp¥)(x2 + Rp*)(ws + Rp*) - - - (x1, + Rp*) = [\, : + Rp* = 0+ Rp". Since
PPt forall 1 < i <k, (i, + Rp*)(wi, + Rp*)(wiy + RP®) -+ (xi,_, + Rp*) =
Hf;ll z;; + Rp* # 0+ RpF where {z;, | 1 < j < k—1} is any (k — 1)-subsets of
{z; | 1 <i < k}. Consequently, z1 + Rp* is a k-zero-divisor of R/Rp*. Then,
z1 + Rp* € Z(R/Rp*, k).
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We need to show that Z(R/Rp*, k) C (Rp/Rp*) — (Rp? /Rp¥). First, let
x1 + Rp* € Z(R/Rp*, k). Then,

(i) 21+ Rp* # 0+ Rp* and z; + Rp* ¢ U(R/Rp);

(i) there exist k—1 distinct nonzero nonunit elements o+ Rp*, 3+ Rp*, x4+ RpF,
.. oy, + RpF of R/Rpk, which differ from z; + Rp* such that (z; + Rp¥)
(zo+Rp*)(x5+Rp¥) - - - (x4 Rp*) = [1_, 24+ Rp* = 0+ Rp* and the products
of all elements of any (k — 1)-subsets of {x; + Rp*, zo + Rp*, x5 + Rp*, ...,

7y, + Rp*} are nonzero.

From (i), we have []\_, #; € Rp". Since z; + Rp* ¢ U(R/Rp*), by the conse-
quence of Proposition 2.19, ged(x1, p*¥) # 1. Thus, there exists d; € R — {1} such
that ged(xy,p*) = d;. Note that, since z; + Rp* is a nonzero element of R/Rpk,
we obtain d; # p*. There are two possible cases for d; as follows.

Case 1. d; = p. Then, z; € Rp — Rp?. By Proposition 3.1, z; + Rp* €
(Rp/Rp*) — (Rp®/ Rp*).

Case 2. d; = p’ for some 2 < j < k —1. We have z; € Rp’. Since z; + Rp*
is not a unit of R / Rp* for all 2 < I < k, by the consequence of Proposition 2.19,
ged(zy, p¥) # 1, that is, there exist d; € R — {1} such that ged(z;, p*¥) = d; for any
2 <[ < k. Note that, the prime element p must divide d; for all 2 <[ < k. As
a result, 2; € Rp for all 2 < [ < k. Therefore, [[*_] x, € Rp/ Rp*~2. Since j > 2,
H]:;ll 1, € RpRpF=2 = RpP2Rp* C Rp* which implies that (x; + Rp*)(xy + Rp®)
(v3+ Rp*) -+ (xp_1 + Rp*) = [['Z} xs + Rp* = 0+ Rp* and contradicts the fact
that z1 + Rp* is a k-zero-divisor of R/Rp".

Thus, the only possible case is that d; = p. Hence, z; + RpF € (Rp/Rpk) —
(Rp?/ Rp*) and we can determine Z(R/Rp", k) by (Rp/Rp"*) — (Rp® /Rp").

0

Now, we know all elements in Z(R / Rp*, k). Then, we use Proposition 3.2 to
prove the completeness of the k-zero-divisor hypergraph Hy (R / Rp"). Since each
element in R/Rp* needs the other k — 1 elements in R/Rp" to be vertices, the set

of all k-zero-divisors of R / Rp* must have at least k elements.
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Theorem 3.3. Let k > 2 be a fized integer. Assume that R is a PID containing
a prime element p such that R/Rpk is finite and ‘Z(R/Rpk,k)‘ > k. Then,
Hk(R/ Rp") is a complete k-zero-divisor hypergraph.

Proof. By Proposition 3.2, all elements in the vertex set are in the ring (Rp / Rp*)—
(Rp? / Rp"). Then, p* divides the product of any k elements of Z(R / Rp*, k) but pk
does not divide the product of any k& — 1 elements of such k elements. Therefore,
all k-subsets of the vertex set form edges of Hy(R/Rp*). Hence, Hy(R/Rp") is a
complete k-uniform hypergraph. O

Corollary 3.4. Let R be a PID containing a prime element p and k > 2 be a fixed
integer. Then, R/ Rp* can be separated into four disjoint subsets: U (R/ Rp"),
{0+ Rp*}, Z(R/Rp"*, k) and Rp* /Rp* — {0 + Rp"}.

Proof. Let Ay = U(R/Rp*), A, = {0+ Rp*}, A; = Z(R/Rp* k) and A, =
Rp?/Rp* — {0 + Rp*}. Obviously, A, Ay, A3, and A, are mutually disjoint sets.

We need to show that Ule A; = R/Rp".

Since A; C /R’/Rp’C forall 1 <i <4, UL A C R/Rpk.

Let a+ Rp* € R/Rpk. Asuume that a + Rp* # 0+ Rp*. Then, ged(a, p*) # p.
There are two possible cases.

Case 1. ged(a, p*) = 1. By consequence of Proposition 2.19, we have a + Rp*
is a unit of R/Rp*. Thus, a + Rp* € U(R/Rp"*) = A;.

Case 2. ged(a, p¥) # 1. Then, p’a. There are two subcases:

(i) p* f a. Then, @ = p. We have a + Rp* € (Rp/Rp*) — (Rp*/Rp*) =
Z(R/Rpk,k) = As; or

(ii) p?|a. Then, a + Rp* € Rp*/Rp* — {0+ Rp*} = As.
]

From Corollary 3.4, |R/Rp"*| = |U(R/Rp*)| + [{0 + Rp"}| + | Z(R/Rp*, k)| +
|Rp?/ Rp* — {0+ Rp*}|.



18

If R = 7Z, then |U(Z/ka)| = ¢(p*) and ‘pQZ/p’fZ — {0 _|_ka}‘ — 21,
Thus, Z/ka’ = gp(pk)—i—ljt}Z(Z/ka, k)|+(pk_2—1). Therefore, |Z(Z/ka,k)‘ =
Z/p"Z| — o(p") — 1 — ("2 - 1).

We give an example of complete 3-uniform hypergraphs.

Example 3.5. Consider Zy; = Z/3%Z. We have |U(Z/3°Z)| = ¢(3) and [3°Z /33Z—
{04 33Z}| = 3*72—1. By previous remark, |Z(Z/3%Z,3)| = |Z/3%Z| — ¢(3%) — 1 —
(3372 —1). Then, |Z(Z/3%Z,3)| = 27— 18 — 1 — 2 = 6. Moreover, Z(Z/3Z,3) =

Besides k = 3, we give an example of complete k-uniform hypergraphs when

k=4.

Example 3.6. Consider Zg; = Z/34Z. By Corollary 3.4, ‘Z(Z/34Z,4)‘ = ‘Z/34Z‘—
@(3%) — 1 — (32 = 1). We have |Z(Z/3'Z,4)| =81 — 54 — 1 — 8 = 18. Further-

The cardinality of the edge set, &(Ha(Zs1)), is ('}) = 3,060. These are some ex-

amples of elements of £(H4(Zs1)),

Remark. The condition ’Z (R/ Rpk,k)’ > k is necessary. For examples, since
Z(Z)2*Z,2) = @, we cannot construct the 2-uniform hypergraph H»(Z/2?Z) (in



19

fact, the hypergraph H whose vertex set is Z / 227, does not exist) and since only 2, 6
are candidates to be 3-zero-divisors of Z / 237, we cannot construct the 3-uniform

hypergraph Hs(Z /2%7).

Here, we would like to determine the diameter and the minimum length of all

cycles of the constructed complete k-zero-divisor hypergraph.

Proposition 3.7. Let R be a PID containing a prime element p and k > 2 be a
fized integer. Then, the diameter of H(R/Rp") is 1.

Proof. Let x,y € Z(R/Rpk,k) be distinct. Since ’Hk(R/Rpk) is complete, there
exists an edge F such that z,y € E. A path z, F, y is obtained. Then, d(z,y) = 1.
Therefore, d(Hy(R/Rp*)) = 1. O

In fact, the diameter of any complete hypergraphs is 1.

Proposition 3.8. The minimum length of all cycles of Hk(R/Rpk) I8

(

0, if

Z(R/ Ry, k)| =k,

2, if k>3 and ‘Z(R/Rp’“,k:)‘ > k41,

3, ifk=2and ’Z(R/RpQ,Q)‘ > 3.

Proof. First, we consider the case when ‘Z(R/Rpk, k’)‘ = k. Since Hy(R/Rp¥) is
a k-uniform hypergraph, H;(R/Rp") has only one edge. Then, H,(R/Rp*) has
no cycles. Therefore, the minimum length of all cycles is 0.

After that, we consider |Z(R/Rp", k)’ > k+ 1. Since Hy(R/Rp*) has at least

two edges and Hy (R / Rp*) is complete, the desired hypergraph must have at least
one cycle.

Next, assume that £ > 3 and

Z(R/Rpk,k:)‘ > k+ 1. Let x; be a vertex of
Hi(R/Rp*). Since Hy(R/Rp") is complete and ‘Z(R/Rpk7 k:)) > k+1, there exist
a vertex xy differ from z, and two distinct edges E; = {z1,x2,23,..., 2} and
Ey = {xy, 29,24, ..., 2.} where z; # 2} for some 3 < i < k. That is, we have a
cycle C = x1, E, 2o, 5 of length 2 which is a possible smallest cycle. Thus, the

minimum length of all cycles is 2.
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Finally, assume that & = 2 and ’Z(R/Rp2,2)‘ > 3. Let 2y € Z(R/Rp*2).
Suppose that Ha(R / Rp?) has a 2-cycle. There exist distinct edges E; and Ey with
a vertex xo differ from z; such that z;,29 € E; and x1,25 € Es. Since k = 2,
we have E; = E,, which is a contradiction. Then, Ho(R/Rp*) has no 2-cycles.
Since ‘Z (R / Rp?, 2)) > 3 and Ha(R / Rp?) is complete, there exist distinct vertices
x9 and x3 and three edges Ey = {1, 22}, Ey = {x1,23} and E3 = {x9,x3}, which
leads to a cycle C' = x1, E1, 2o, E3, 23, F5 of length 3. Then, the minimum length
of all cycles is 3.

]

Remark. Since Z(Z/3%Z,2) = {3,6}, the hypergraph H(Z/3%Z) has only one

edge which is an example of the first case in Proposition 3.8.



CHAPTER IV
COMPLETE k-PARTITE k-ZERO-DIVISOR
HYPERGRAPHS

Let £ > 2 be a fixed integer. Our main objective of this chapter is to find
a necessary condition of a commutative ring that implies the ability to partition
its set of all k-zero-divisors into k partite sets and the completeness of that k-
partite k-zero-divisor hypergraph. Note that, the definition of k-uniform k-partite
hypergraph used in this chapter follows from Kuhl and Schroeder [9].

First, we recall the k-uniform k-partite hypergraph. The edge set £ of a com-
plete k-uniform k-partite hypergraph consists of all k-subsets of V' such that each
of those k-subsets of V' contains exactly one element from each Vj for all 1 < j < k.

Now, throughout this chapter, let R be a PID containing at least k nonassociate
distinct prime elements, say py, ps, ps, - . . , Pr; moreover, let v = pipaps - - - pr. We
consider R / R~ and use Chinese Remainder Theorem to explain how to construct
k partite sets and a complete k-partite k-zero-divisor hypergraph, respectively.

Now, we consider the ring R / R~. Since py,ps, ps3, ..., pr are nonassociate dis-
tinct prime elements, p; + Rvy,ps + Rv,ps + Ry, ...,pr + Ry are all distinct el-
ements. Then, for each nonzero nonunit element p;, + Ry where 1 < ¢ < k,
p1+RYy,pa+ Ry, p3+Ry, ..., pio1+ Ry, pix1 - .., pr+ Ry which differ from p;+ R~ are
k —1 distinct nonunit elements such that (p; + Rv)(pa+ R7y)(ps+ RY) - - - (pr. + R7y)
is a zero element of R/ R~, the products of all elements of £ — 1 subsets of
{pl + Rvy,ps + Ry,ps + Ry, ...,pr + Rv} are nonzero. It follows that p; + Ry
is a k-zero-divisor of R / R~ for all 1 <i < k. Thus, R / R~ has at least k k-zero-
divisors. Under some conditions on R / R~, we can partition Z (R / R, k:) into k
partite sets.

For each 1 < ¢ < k, since p; is a prime element of R , Rp; is a prime ideal
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of R. By Corollary 2.27, Rp; is a maximal ideal. By Proposition 2.10, Rp,, and
Rp,, are comaximal for all 1 < m # n < k. By Theorem 2.11 (Chinese Remainder
Theorem), we have R/R’y = R/Rp1 X R/Rp2 X R/Rp3 X o X R/Rpk whose each
component is a field which contains either the zero element or unit elements by
Corollary 2.28 and Proposition 2.29.

We know that R[z] /(2?2 + 1) = C. Then, R[z]/(2? + 1) is an infinitely quotient
ring, but the vertex set in considered hypergraph structures has to be finite. Thus,
the considered quotient ring R / I needs to be finite, for example, Z / n.

We know that R/R7 = R/Rp1 X R/sz X R/Rp3 X+ X R/Rpk. Then, we can
consider each element in R/R’y as the form (ay + Rp1, as + Rps, a3+ Rps, . .., ar +
Rpy) where a; + Rp; € R/sz- forall 1 < <k.

Proposition 4.1. Let k > 2 be a fized integer and R be a PID containing at least
k nonassociate distinct prime elements, say pi,p2,Ps, .- -, Pk Assume that R/R7
1s finite. Then, Z(R/R’y, k) can be partitioned into k partite sets Vi, Vo, V3, ..., V},

where

Vi = {(u1 + Rp1,us + Rpa,us + Rps, ... ,ui—1 + Rpi—1,0 + Rp;, w1 +
Rpiv1, ..., ux + Rpy) { u;j + Rp; € U(R/Rpj) where j # @} forall 1 <i<k.

Proof. Since (1 + Rpy,1+4 Rpa, 1+ Rps,..., 14+ Rp;—1,0+ Rp;, 1 + Rpiyq,..., 1+
Rpy) € Vi for all 1 <i <k, V; # &. It is clear that V,, and V,, are disjoint for any
m # n from the definition of V;

First, we show that U;?:lvj C Z(R/Rv,k). Let 21 + Ry € Uf:lVJ Then,
x1 + Ry € V; for some 1 < j < k. Without loss of generality, assume that j = 1.
Thus, we can write x1 + Ry = (0 + Rpy,us + Rpe,us + Rps, ..., ur + Rpy). For
each 2 < m < k, we can choose any z,, € V,, such that (z1 + Rvy)(xs + Rv)(z3 +
Ry) - (xx + Ry) = (0+ Rp1,0+ Rpsy, 0+ Rps,...,0+ Rpi). Next, we delete one
element from {z, + Ry, x5+ Ry, 23+ R, ...,z + Ry}. Without loss of generality,
we delete xp+ Ry. Then, (z1+Ry)(z2+RYy)(x3+RY) - - - (xxg_1+Rvy) = (0+Rpy, 0+
Rps,0+ Rps,...,0+ Rpg_1,a+ Rpy) where a+ Rpy, = H;:ll(ul + Rpr) # 0+ Rpg.
We can conclude that Ule V; C Z(R/Rv, k).
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Next, we need to show that Z(R/Rv7 k) C U§:1 V;. Let x4+ Ry € Z(R/R% k).
Then,

(i) @1 + Ry is a nonzero and nonunit element.

(ii) there exist distinct nonzero nonunit elements zo+ Ry, 3+ Ry, x4+ R, ..., x5+
Ry € R/Ry which differ from z; + Ry such that (z1 + Rv)(z2 + Ry)(zs +
Ry)---(zx + Ry) = 0+ R~ and the products of all elements of any (k — 1)-
subsets of {x1 + Rvy,zy + Ry,x3 + Ry, ...,xx + Ry} are nonzero.

Since x1 + Ry € R/R7 = R/Rp1 X R/Rpg X R/Rp3 X e X R/Rpk, we write
r1+Ry = (a11+Rp1, a1 2+ Rp2, a1 3+Rps, . . ., a1 x+Rpi) where a; s+ Rps € R/Rps
forall 1 < s < k. For each 1 < j <k, since R/Rpj is a field, a; j + Rp; is the zero
element or a unit element of R / Rp;. Since x; + R7 is not a unit element, there
exist 1 <m < k such that a;,, + Rp,, = 0+ Rp,,. Without loss of generality, let
m=1

Case 1. a;; + Rp; is the unique element in {am + Rpi,a12 + Rpa,a13 +
Rps,...,a1x + Rpk} such that a1; + Rpy = 0+ Rp;. Then, z; + Ry = (0 +
Rpi,a12 + Rpa, a1 3+ Rps, ..., a1 + Rp) € V1.

Case 2. there exist 2 <[ < k such that a;; + Rp; = 0+ Rp;. Without loss of
generality, [ = 2. Thus, 1+ Ry = (0+ Rp1,0+ Rps, a1 3+ Rps, . .., a1+ Rpy). We
have for each 2 < ¢ < k, g+ Ry = (a1 +Rp1, ag2+ Rp2, ag3+ Rps, . . ., ag i+ Rpy)
forall1 <s<k,a,, + Rps € R / Rps. Since z, + Ry is not a unit element, there
exist 1 < m, < k such that ay,,, + Bpm, = 0 + Rpp,. Then, For each 3 < 5 <
k, there exist at least one element of {z1 + Ry, x5 + Ry, 23+ Rv,...,xx + Ry}
having an entry which is the zero element in the s‘*-component. The maximum
number of distinct chosen elements which have desired properties in such k£ — 2
components is k — 2, say zo + Rvy,x3 + Ry,x4 + Rvy...,xx_1 + R7vy. Therefore,
(z1+Ry) (22 + Ry)(w3+Ry) - - - (vp1 +Ry) = (0+Rp1, 0+ Rpy, 0+ Rps, ..., 0+ Rpy,)
which is a contradiction.

Hence, Case 1 is the only possible case. Thus, x1 + Ry € Ule V;. Therefore,
Z(R/R% k) can be partitioned into k partite sets. O
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Finally, we can use the partite sets obtained from Proposition 4.1 to construct
our k-partite k-zero-divisor hypergraph of the ring R / R~ via its k-zero-divisors.
Under the same assumptions as in Proposition 4.1, we can also prove that our

constructed k-uniform k-partite k-zero-divisor hypergraph is complete.

Proposition 4.2. Let k > 2 be a fized integer and R be a PID containing at least
k nonassociate distinct prime elements, say p1,p2, D3, - .., Pk Assume that R/Rv

1s finite. Then, we can construct a complete k-partite k-zero-divisor hypergraph

whose vertex set is Z(R/R’y, k)

Proof. By Proposition 4.1, we can partition Z(R/Rv, k‘) into k partite sets V7, V5, V3,
..+, V. Then, without loss of generality, consider element x; + Ry € Vi, we can
find zo + Ry € Vo, 23+ Ry € V3, 24+ Ry € Vy, ...,z + Ry € Vi, which cause (z; +
Ry)(wo+Ry)(x3+Ry) - - - (xx+Ry) = (0+Rp1, 0+ Rpy, 0+ Rps, . . ., 0+ Rpy) and the
product of all elements of k — 1 subsets of {x; + Ry, xo+ Ry, 23+ Ry, ...,z + Ry}
are nonzero. Therefore, {x1 + Ry, xo + Rvy,z3+ Ry, ...,z + Ry} is an edge, that
is, we can connect k elements from £ partite sets. Next, we prove that no k-subsets
in each partite set V; form an edge.

Fix 1 <i¢ < k. Let o1 + Ry,zo + Rvy,x3 + Ry,...,xx + Ry € V;. Hence,
zj + Ry = (uj1 + Rp1,u;2 + Rpa,ujs + Rps, ..., uj,—1 + Rpi—1,0 + Rp;, ujit1 +
Rpii1, ..., u; + Rpy) where u;, + Rp, € U(R/Rpr) foreach 1 <j <k 1<r<k
and then, (x; + Rv)(xe + Ry)(z3 + Ry) -+ (xr + Rvy) = (a1 + Rp1, a2 + Rps, a3 +
Rps,...,a;1 + Rp;i_1,0 + Rp;, a;n1 + Rpiya, ..., ar + Rpg) where a,, + Rp,, =
Hle(u&m + Rpm) # 0+ Rp,, for all 1 < m # i < k. Thus, HL(% + Ry) #
(04 Rp1,0+4 Rp2, 0+ Rps, ..., 0+ Rp;—1,0+ Rp;, 0+ Rp;11,...,0+ Rpg). Then, this
hypergraph has no edge containing any k elements of V;. Now, we have a k-partite
k-zero-divisor hypergraph ’Hk(R/ R~y) whose vertex set is Z (R/ R, k:) and each
edge is of the form {x; + Ry, o+ Ry, x5+ R, ...,z + Ry}, where x; + Ry € V;
forall 1 <j <k.

It remains to show that H (R / R~) is complete. By the proof of Proposition 4.1,

for each element z; + Ry in V; with 1 <4 < k, there exists an element x; + Ry from



25

each partite set V; for which 1 < j < k and j # ¢ such that {z; + Ry, zo+ Ry, 3+
Ry,...,x;+ Rv,...,x; + Ry} is an edge of H. Since V; and V; are disjoint sets
when i # j, such edge contains exactly one element from each V; with 1 <1 < k.

Therefore, we obtain a complete k-partite k-zero-divisor hypergraph. O
In summary, we rephrase Proposition 4.2 and obtain the following result:

Theorem 4.3. If k is a positive integer greater than 1 and R is a PID containing at
least k monassociate distinct prime elements, say p1, P2, P3, - - - » Pk, Such that R/Rfy
1S finite where v = Hle pi, then there exists a complete k-partite k-zero-divisor

hypergraph whose vertez set is Z(R/R77 k)

Finally, we provide examples of finite commutative rings that imply a complete

3-partite 3-zero-divisor hypergraph as follows.

Example 4.4. Consider the ring Zzy =~ Z/(2 - 3 - 5)Z. By Theorem 2.11 (Chinese
Remainder Theorem), Z/(2 -3 5)Z = 7./27 x 7./3Z x Z/5Z. From Proposition
4.1 and |U(Z/piZ)| = |Z/p:iZ| — 1, we obtain

Vi = {(0,u,u3) | 0 € Z/2Z,u; € U(Z/3Z),u5 € U(Z/5Z)} with |Vi| =
1-3-1)-(5-1) =8,

Vo = {(u1,0,u3) | 0 € Z/3Z,uy € U(Z/2Z),u5 € U(Z/5Z)} with |Va| =
2-1)-1-(5—1) =4,

Vs = {(u1,u2,0) | 0 € Z/5Z,uy € U(Z/2Z),u3 € U(Z/3Z)} with |V3] =
2-1)-B3-1)-1=2.

In fact, V; = {(0,1,1), (0,1,2), (0,1,3), (0, 1,9), (0,

2|

and V3 = {(1, 1, 0) ( )} & {5 25}. Then, there exists a complete 3-partite 3-
zero-divisor hypergraph whose vertex set is Z(Z/ (2-3-5)Z, 3) =1V1uVyUVs and

edges are as follows.



Besides the examples of the integer modulo n (Z,), we give the example of
the set of all Gaussian integers, Z[i]. Recall that the Gaussian integer Z[i] is
a PID, which has a set of prime elements of the form up, where u is a unit of
Z[i] and p is a prime element of Z such that p = 3 (mod 4). Since there are
infinitely many primes p such that p = 3 (mod 4), we can find k prime numbers
D1, P2, D3y - - -, Pk € Z where p; = 3 (mod 4) for all k£ > 2,1 < i < k. Then, this ring
has at least k nonassociate distinct primes , see [5]. If u =1 and 8 = pipaps - - - pr,
where p; are all nonassociate distinct primes such that p; = 3 (mod 4) for all

1 < j <k, then we can see that Z[i]/BZ[i] = {a+ bi | a,b € Zg} is finite.

Example 4.5. Consider Z[i|/(—231i)Z[i] = Z[i]/(3i - 7i - 11i)Z[i]. By Theo-
rem 2.11 (Chinese Remainder Theorem), Z[i]/(3i - 7i - 11i)Z[i] = Z[i] /(3i)Z]i] x
Z[i) / (7i)Z[i) x Z[i]/(114)Z[i). By Proposition 4.1 and same idea as Example 4.4,
we obtain

Vi = {(0, 1z + uhi, Uz + uhi) | 0 € Z[i]/(30)Z[i), w3 + i € U(Z[i] /(70)Z[3)), w5 +
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ubi € (Zm/(m) [i])} with [V4] = 1-((7—1)-(7—1))-((11—1)-(11-1)) = 3,600,
= { (T + 44, 0,03 +u/30) | 0 € Z[i] /(i) Z]d], ur+uli € U(Z[6] /(30)Z]i]), uz +
ubi € (Z[z}/(nz) [i])} with [Vo| =1-((3—1)-(3—1))-((11—1)-(11—-1)) = 400,
= {(w +uli,uz+ubi,0) | 0 € Z[i] /(114)Z]i], ur +uji € U( [z]/( i)Zd]), uz+
uli € U(Z[z}/( )Z[i])} with |[V5| =1-((3-1)-(3-1)) - ((7T— —1)) = 144.
In fact,
Vi 2 {3a+3bi | a € Zyy — (TZyy U11Z17),b € Zgy — (TZgy U 11Z47) },
Vo =2 {Ta+7bi | a € Zss — (3Zs3 U 11Z33),b € Zss — (3Zsz U 11Z33) },
Vs = {1la+ 11bi | a € Zoy — (3% U TZn), b € Loy — (3Zpy U 7o) }.
The cardinality of edge set, &(H3(Z[i]/(—2314)Z[i])), is 3,600 x 400 x 144 =
207,360, 000. These are some edges of Hs(Z[i] /(—2314)Z[1]),

(3,7, 11}, {3, =7, 11}, {3,730, 11}, {3, —7i, 11}, {3,7 + 7i, 11}, {3,7 — 7i, 11},

{3, =7+ 7,11}, {3, =7 — 7i,11}, {3,14,11}, {3, 14,11}, {3,144, 11},

{3, =140, 11}, {3, 7+14i, 11}, {3,7—14i, 11}, {3, —=7+144, 11}, {3, —7—14i, 11},

{3,14 + 70,11}, {3,14 — 7i,11}, {3, =14 + 7i,11}, and {3, —14 — 74, 11}.

Finally, we compute the diameter of H(R / R~) and the minimum length of its

cycles.

Proposition 4.6. Let k > 2 be a fized integer and R be a PID containing at least

k monassociate distinct prime elements, say pi,p2,p3,--.,Pk. Lhen, the diameter

of Hi(R/Ry) is 2.

Proof. Let x and y be distinct vertices of Hy(R / Ry).
Case 1. x and y are in different partite sets. By the completeness of such
hypergraph, there exists an edge F such that z,y € E. Then, z, F, y forms a path.

As a result, the distance between x and y is 1.
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Case 2. r and y are in the same partite set. By the definition of Hk(R/Rv),
there is no edge F such that z,y € E. However, there exist two distinct edges F;
and Ey such that z € E; and y € E,. Since Hy(R / R~) is complete, there exists a
vertex v in the other partite sets such that v € E;NE5. Then, a path x, Ey, v, Es,y
is obtained. Therefore, d(x,y) = 2.

From these two cases, the maximum distance between x and y is 2, that is, the

diameter of H,(R/Ry) is 2. O

We need to seperate the possible cases to find the minimum length of all cycles

in Hy(R/R~) into two cases by size of Z(R/Ry).

Proposition 4.7. The minimum length of all cycles in Hk(R/Rfy) is 0 when
’Z(R/Ry, k)‘ — k.

Proof. Since Hy(R/Rv) has only one edge, it has no cycles. O
Next, we split the second possible case into two cases with £ = 2 and k > 3.

Proposition 4.8. The minimum length of all cycles in Hk(R/Rv) 1s 2 when k > 3
and ‘Z(R/R% k:)‘ >k+1.

Proof. Since each partite set is a nonempty set, there exists at least one element
in each set. Since ’Z(R/Rfy, k)‘ >k + 1 and ”Hk(R/R’y) has k partite sets, there
are at least two elements z; and x| in one of the partite sets, say V;. By the
completeness of Hk(R/Ry), there exist two distinct edges Fy = {x1, x2, 23, ..., 2%}
and Ey = {2, 2, 23,...,21}. Thus, Hy(R/R7) has at least one cycle. One of the
constructed cycles is a cycle C' = xy, Fy, x3, F5 of length 2. Then, the minimum

length of all cycles is 2. m

Proposition 4.9. Assume that ’Z(R/R’y, 2)‘ > 3. The minimum length of all
cycles in Ha(R/Ry) is

0, if there exists one partite set that has only one element,

4, if each partite set has more than one element.
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Proof. We consider all possible cases in each partite set.

Case 1. Let V] be a partite set such that ‘Vl‘ = 1. Suppose that Hg(R/Rw)
has a cycle, say xy, Ey, x9, Fo, x3, ..., 2,1, F), where r > 2.

If x; € Vi, then from a cycle C, we have x3 = 1. Since k = 2, By = {z1, 25}
and Fy = {5, x3}. Since x1 = 3, F} = E», which is a contradiction.

If 1 is in another partite set rather than V;, then we have zo, € V. By the
same argument, we obtain Ey = F3 which is also a contradiction.

Therefore, Ho(R/R) has no cycles.

Case 2. Each partite set has more than one element. Since HQ(R/ Ry) is
complete, there are at least one cycle. In this case, we have ‘Z (R/ R, 2)‘ > 4.
Let z; be a vertex of ’HQ(R/Rv) and V; be a partite set containing ;. Suppose
that HQ(R/ Ry) has 2-cycle. There exist two distinct edges E; and Fy and a
vertex xo differ from x; such that xy,29 € E; and z1,25 € E5. Since k = 2, we
have F; = FE5, which is a contradiction. Thus, Ha(R / R~) does not have any 2-
cycles. By the definition of 2-partite hypergraph in Definition 2.38, it is a bipartite
graph. We know that bipartite graphs have no odd cycles, see [11]. Since k = 2,
’Z (R/R~, 2)‘ > 4 and the completeness of Hy(R/Ry), there exist three distinct
vertices x9,x3 and x4 with zo € V; and 3, x4 are in other partite set such that
Ey = {xy, 23}, By = {1,24}, B3 = {2,23} and E; = {xo, x4} form edges. We
have a cycle C' = w1, Fq, x3, F3, 2o, E4, x4, F5 of length 4. Then, the minimum of

length of all cycles is 4. m



CHAPTER V
E-PARTITE 0-ZERO-DIVISOR HYPERGRAPHS

First of all, let £ > 2 be a fixed integer. Throughout this chapter, let R be
a PID with at least k£ nonassociate distinct prime elements, say p1,p2,ps3, - - ., Pk
and let o; € N for all 1 < i < k. Then, we consider R / Rp{' p3?ps?® - - - pp* and its
Zle a;-zero-divisors are considered. Throughout this chapter, let ¢ = Zle o
and 7= T

The definition of o-partite hypergraph used in this chapter differs from the
definition used in Chapter IV. From Jirimutu and Wang [8], a k-partite o-uniform
hypergraph with ¢ is a fixed integer greater or equal k£ consists of the vertex set
V' partitioned into k subsets Vi, V5, V3, ..., Vi and E is an edge if |E| = o and
|[ENV;| <o forall 1 <i<kand there exist 1 < m # n < k such that ENV,, #
@ and ENYV, # @. With this definition, each edge of such k-partite hypergraph
can have more or equal one element from some partite sets, but no more than o
elements from such partite sets.

We can generalize Proposition 2.5 to the following propositions.

Proposition 5.1. We have
k k
(Rpi/Rr) — | (Rpy/Rr) = {a+R7r ‘ achp— | Rpj}.
=1 =1,

Next, we use the idea of Proposition 3.1 to obtain the following result.

Proposition 5.2. We have
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(Rp;/Rm) — ((Rp?/Rﬂ) U U (Rpi/Rﬁ)>
J=1,j#i
a € Rp; — (Rp?U U Rpj)}.

= {a + Rm
j=1,j#i

Next, under some conditions on R / Rm, we can separate the set of all o-zero-

divisors of R / Rm into k partite sets.

Proposition 5.3. Let k > 2 be a fixed integer and R be a PID containing at least k
nonassociate distinct prime elements, say p1,p2, P3, - - -, Pr- Assume that R/Rﬂ' 18
finite and for all1 < i <k, |(Rp;/Rr) — <(Rpjz/R7r) U Ule,#i(Rpj/Rﬁ)) ‘ > .
Then, Z(R/Rm, o) = U§:1 V; where

p

k
(Rp;/Rm)— | (Rpi/Rr), if a; =1,
V}' — I=1,l#7 i
(Rp;/Rm) — ((Rp?/RW) U U Rp;/Rw) iy > 2,
\ I=1,l#j

and {V; | 1 < j <k} is mutually disjoint.

Proof. Let x1 + Rm € U§:1 V;. Then, x; + Rm € V; for some 1 < j < k. Without
loss of generality, assume that j = 1.
Case 1. Assume that a; = 1. Then, 2, € Rp; — Uf:u# Rp;.
We choose xy + Rm, 23+ Rm, x4+ Rm, ..., 24,41 + Rm € V3,
Tagto + BT, Toot3 + R, Xopya + R, .00 Zagtras+1 + RT € V5,0,
Tagtagttan 142 T BT, Tagtast+tap_143 T BT, Tastagttap_ 44 + B, ..,
Togtasttan_+apt1 + BT € Vi
For each 2 < 3 < k, since zj, +Rm € Vp forall g +ag+---+ag_1+2 < jg <

ag + a3+ -+ -+ ag + 1, we obtain

k k
js € Bpg — UZy 128 i1 0T 7, € Rps— (Rp% U U125 Rpl)-

az+1
mo=2

(1 + Rm)(z2 + Rm)(xs + Rm) - -+ (vo + Rm) = [ _, *m + Rm = 0+ Rm.

Since x1 € Rpy, [] Tmy, € Rp32, ..., H;kzzk—liz o, 42 Tmy € Rp.*, we have



32

After that, we delete one element z, + Rm for some 1 < s < ¢. Without loss
of generality, assume that x, + Rm € V, for some 1 < ¢’ < k.

If z,+ R € Vi, then .+ Rr = z1+ Rr and py { [[},_, 71, Thus, %;%2 ot T,
¢ Rr. Thus, [} _, 21, + Rm # 0+ Rr.

If s+ Rm €V, for some t # 1, in either case of V;, we have pft_l ‘ Hle’l#s x,
but p { [[Zy st Thus, [[2, ., 2 ¢ B and (21 + Rr)(z2 + Br)(zs + Rr)

(Tso1 + Rr) (x50 + Brr) -+ (2, + Rr) = [, ., + R # 0 + R

That is, x1 + R7 is a o-zero-divisor of R/Rw.

Case 2. Assume that a; > 2. Then, z; € Rp; — [Rp? U Ule,l# Rpi].

We choose xy + Rm,x3 + Rm,x4+ Rm, ..., x4, + RT € V),

Tog+1 + B, 20,40 + R, Toy43 + R0, .00, Toy a0y, + B € Vo,

Togtas+l + BT, Taytanto + BT, Toytants + BT, .00, Ty vastas T BT E V5, oo

Loy +ontasttap_1+1 T BT, Tay tastagttap_1+2 T BT, oy yastag+tar_+3 + BT,

ooy Loy tantasttop_i+ap T BT € V.

For each 2 < B < k, since zj,+Rm € Vj forall oy + g +ag+---+ag_1+1<
Jg < a1+ ay +az + - + ag, we obtain x;, € Rpg — Ule,l# Rp, or aj, €
Rps — (RP% UU1izs Rpl)-

Since ], _y 2m, € RpY", H?j;flﬂ Tm, € Rpy*,... ’H;kzz’;n*,; a,+1Tmy, €
Rpp*, we have (z1+Rm)(xo+Rm)(z3+Rm) - - - (xo+Rm) =[] _; Tm+Rr = 0+Rm.

After that, we delete one element z; + Rm for some 1 < s < ¢. Without
loss of generality, assume that x, + Rm € V; for some 1 < ¢t < k. In either case
of V;, we have pf~" | [1 e, but pi* { TI @ Thus, [[Z) . 2 ¢ R
and (z1 + Rm)(xe + Rm)(xzs + Rm) -+ (xs-1 + Rm)(xs41 + R7) -+ (z, + Rm) =
[I., .2+ Rr # 0+ Rr. We can conclude that U§:1 V; € Z(R/Rm, o).

On the other hand, let z; + R7 € Z(R/Rw, o). Then,

(i) @1+ Rm # 0+ Rr and z; + Rr ¢ U(R/Rm).

(ii) there exist nonzero nonunit distinct elements zy + Rm, x3 + Rm, x4+ Rm, .. .,

T, + Rm € R/R?T which differ from z; + Rx such that (z1 + Rm)(zy + Rm)
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(z3+ Rm) -+ (x, + Rm) =[[),_, m + R = 0+ Rm, and the products of all

elements of any (o0 — 1)-subsets of {x1 + Rm, 29+ Rm, 3+ Rm, ..., 2, + Rr}

are nonzero.

Since x; + Rm is not a unit of R / Rm, by the consequence of Proposition 2.19,
ged(zq,m) # 1. There exists d; € R — {1} such that ged(zy,7) = dy. Therefore,
we consider the possible cases for d; as follows.

Case 1. d; = p; for some 1 <i < k. Then,

( k
Rp;— | Rpjifa;=1
o € J=1,5#i .
Rp; — (Rpfu U Rpj> Jif a; > 2
j=1,j#i

By Proposition 5.1 and Proposition 5.2, x1 + Rm € V.

\

Case 2. d; = pg forsome 1 <i < kand 2 < j < «;. Without loss of generality,
assume that ¢ = 1. For all 1 <t < k, let ny(x) be the maximum power of prime
pe such that pr® | . For each 2 < s < o, since z, + Rt ¢ U(R/Rm), by the
consequence of Proposition 2.19, ged(zs, m) # 1. There exists ds € R — {1} such
that ged(zs, m) = ds.

Case 2.1. ) 7 ,ni(dy) < ay—j. Then, pi* { [[;,_; dm. Thus, [} _, m ¢ Rr.
Therefore, (z1 + Rm)(xs + Rr)(xs+ Rn) -+ - (v, + Rm) = [ _, # + Rm # 0+ Rm,
which is a contradiction.

Case 2.2. > 7 ,mi(dy) > o1 — j.

Case 2.2.1. There exist 2 < 7 < k such that > 7 ,n,(d;) < a,. Then,
per 4 11— dm. Thus, [[7 _, zm ¢ Rm. Therefore, (1 + Rm)(ze + Rm)(xs + Rm)
o (zy + Rr) =[] _; xm + Rm # 0+ R, which is a contradiction.

Case 2.2.2. ) " ,n,(dy) > a, for all 2 <r < k. Let I' = {z9, 13,24, ..., 70 }.

Since ZZ:Q ni(d,) > a;—jand j > 2, we can choose I'y C I" with ’F1| =a;—2
and z1 - [

(51
7'1€F1 7“1 6 Rpl .

Since ZZZQ na(d,) > ao, we can choose I'y C I' — I'y with |I‘2} = ay and

HTQGFQ T2 S Rng
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Since » 7 ,n3(dy) > a3, we can choose I'; C I' — (I'y UT') with ITs| = a3 and
I1,er, s € Rp5°.

In general, for each 2 < s < k, since 2222 ns(dy) > as, we can choose I's C
I — )T, with |T| = o and ], o, rs € Rp2.

Therefore, z1 - [, ¢t r, 7 € Rmand ‘ U]jy:1 I,|=0-2.
-

Notice that U5=1 ", misses one element out from I". Without loss of generality,
let x, be the missing element. Thus, H?,_:ll zy € Rm and consequently, (z7 +
Rr)(xe + Rm) (z3+ Rm) -+ (2,1 + Rm) = H;’,_:ll rjy + Rm = 0 4 Rm, which is a
contradiction.

Case 3. d; = p{lpézpés . ~pi where 0 < j,, < a,, for all 1 < m < k with at
least nonzero j, and j. (b # ¢). If j, = a, for all 1 < v < k, then d; = w. Then,
x1 + Rm is a zero element of R / Rm which is a contradiction. Otherwise, we split
our considerations into two cases.

Case 3.1. there exist 1 <7 < k such that >_7_,n,(d;) < a, — j. Without
loss of generality, assume that r = 1. Then, p{* { [[] _, d». Thus, [[ _, ., ¢ Rm.
Therefore, (z1 + Rm)(xo + Rr)(xs+ Rn) - -+ (x5 + Rm) = [ _, & + Rm # 0+ Rm,
which is a contradiction.

Case 3.2. 2312 ny(dy) > o, — j, for all 1 <r < k. Without loss of generality,
assume that pips ‘ dy. Let I' = {zy, 23,24, ..., 25}

Since ZZZQ ni(dy,) > oy — ji, we can choose I'y C I' with |F1| = a; — 1 and
o1 [l er, 71 € Rpy™.

Since ZZ:Q na(dy) > ag — j2, we can choose I'y C I' — I'y with |F2‘ =9 — 1
and 21 - [ ], er,

Since 2222 ns(d,) > as — js, we can choose I's C I' — (I'y UTy) with |F3} = a3

r9 € Rpy*®.

and [[,,cr, 73 € Rps®.
Since ZZZQ n4(dy) > a4 — ja, we can choose I'y C I' — (I UTy UT'3) with

}F4‘ =y and [] ry € Rpj*.

ra€ly
In general, for each 3 < s < k, since 23:2 ns(dy) > as — js, we can choose
I, CT— )T, with T, = o, and [[, p. 7s € RpS-.

k
Ui FV‘ =0 —2.

Therefore, z1 - [[,¢o_ r, 7 € R and
N
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Notice that ngl ', misses one element out from I'. Without loss of generality,

o—1

212y € Rm and consequently, (z1 + Rm)

(29 + Rm)(x3+ Rm) - -+ (xo—1 + Rm) = H;’;ll xj + Rm = 0+ Rm, which is a contra-

let z, be the missing element. Thus, ]

diction.

Hence, the Case 1 is the only possible case for d;. Thus, 1+ Rm € U?:l V;. o

Proposition 5.4. Let k > 2 be a fixed integer and R be a PID containing at least k
nonassociate distinct prime elements, say p1,p2, D3, - - -, Pr. Assume that R/R?T 18

finite. Then, we can construct a k-partite o-zero-divisor hypergraph whose vertex

set is Z(R/Rm, o).

Proof. By Proposition 5.3, we can partition the vertex set into k partite sets, say
Vi, Vo, Vs, ..., Vi. Then, for each element v; € V;, we can find

U1, V2, V3, ..., Vo, € VI,

Vay+15 Va1 425 Var+3s - - > Vay +as € Va,

Vo +as+1s Vag+as+2s Var+as+3s - -+ » Vag+astas € V3, « -

USi—t 15 Usni=t g g0y USSizt g qgs e Usnict g g € Vi, oo, Ustkd g1

US40 Ukt g g5 Vo € Vi
which {vy, vg,v3,...,0;,...,0,} forms an edge.

We need to prove that no o-subsets in each partite set V; form an edge.

Fix 1 <j <k. Let 2y + Rm, 29 + Rm,z3 + Rm,...,2, + R € V.

If aj =1, then, for all 1 <1 < o, 2, € Rp; —U,,; Rpr. Therefore, [[; _, z. €
Rp; — Rr and thus, (x4 Rn) (xa+ Rm)(zs+Rn) -+ (v +Rr) = [ _, xm+ Rm #
0 4+ Rm. We cannot obtain an edge constructed by any o elements from V;. Now,
we have a k-partite o-zero-divisor hypergraph H, (R / Rm).

If a; > 2, then, for all 1 <1 <o, 2, € Rp; — (Rp? U Uy, Rpl/). Therefore,
I[),—; zm € Rp; — Rm and thus, (z1 + Rm)(ze + Rm)(z3 + Rm)--- (z, + Rm) =
[I0,—, m+Rm # 0+ Rr. We cannot obtain an edge constructed by any o elements
from V;. Now, we have a k-partite o-zero-divisor hypergraph H,(R / Rm). ]

In summary, we rephrase Proposition 5.4 as follows.
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Theorem 5.5. If k is a positive integer greater than 1 and R is a PID containing
at least k monassociate distinct prime elements, say p1, P2, D3, - -, Pk, Such that
R/Rr is finite with oy € N for all 1 < i < k where 7 = Hle pit, then there

exists a k-partite o-zero-divisor hypergraph whose vertex set is Z(R/R?T, a) where

0=

In this chapter, any k-partite o-zero-divisor hypergraph is not complete because
we have only the edge of the form {ay1,a12,a13,...,01,0,,021,022,023,-..,02.4,,
31,032,033, - - Q3,055 - - - s A1, A2, Ak 3, - - -, Aoy } Where a; ; € Viforalll <i <k
and 1 < j < ;. However, we cannot find the edge of the form {a;1,a12,a13,...,
a17a1+1, CLQJ, a2 2, a273, P ,a27a2, a371, CL372, a3,3, P ,a,g,a:,’, Ce ,ak,l, a2, ak73, Ce ,ak@k_l}
where a;,; € V; forall 1 <i<kand1<j<a;+1from HU(R/RW), that is, if
such hypergraph is complete, we need to construct an edge by «,, vertices from

Vi, ayp, vertices from Vs, auy,, vertices from Vs, ..., a,,, vertices from V} for all

k

1<i<k 1<m; <k

Example 5.6. Consider the ring Zg, = Z/(22 -3 +5)Z. We can compute

Vs = {5,25,35,55}. Then, there exist a 3-partite 4-zero-divisor hypergraph whose
vetex set is Z(Z/(2%-3-5)Z,4) = V; UV, U V5. The cardinality of the edge set,
E(H4(Zgp)), is 256. These are some examples of E(H4(Zgo)),
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(3,14,

|
\]
t
——

We consider an example of the Gaussian integers in Z][i].

Example 5.7. Consider Z[i] /(693)Z[i] = Z[i] /((3i)?-7i-11i) Z[i]. We can compute
Vi ={3a+3bi | a € Zog — (3Za31 U 7231 U 11Z231),b € Loz —
(38Zas1 U 7231 U 11Z031) },
= {Ta+ Tbi | a € Zgg — (3Zgg U 11Zgg),b € Zgg — (3Zgg U 11Zg9) },
= {1la+ 11bi | a € Zgz — (3Ze3 U TZg3), b € Zgz — (3Zg3 U TZsg3) }-
We have |V;| = (231 — (ZBL 4 2L 4 B 21 281 381 4 BL))2 _ 14 4,

Vol = (99 — (2 + %2 — 92))® = 3,600, and |V5| = (63 — (% 4 & — 63))* = 1,296.

21

The cardinality of the edge set, £(H4(Z[i] /(693)Z[i])), is 14,400 x 3,600 x 1,296 =
67,184, 640, 000. Here are some examples of &(H4(Z[i]/(693)Z]i])),
(3,6,7,11}, {3,6, 7,11}, {3,6,7i,11}, {36, —7i, 11}, {3,6,7 + 7i, 11},

{3,6,7—7i, 11}, {3,6, =7+ 73,11}, {3,6,—7 — 74,11}, {3,6,14, 11},
{3,6,—14, 11}, {3,6,14i, 11}, {3,6, 144,11}, {3,6,7 + 14i, 11},
{3,6,7 — 144,11}, {3,6, —7 + 144,11}, {3,6, —7 — 144, 11},

{3,6,14 4+ 7i, 11}, {3,6,14 — 7,11}, {3,6, —14 + 74,11}, and

(3,6, —14 — 7i, 11}.

Remark 1. Let 1 < ¢ # j < k and p; and p, are nonassociate distinct prime
element. Since ged(p;,p;) = 1, by Proposition 2.19, there exist nonzero element
a,b € R such that 1 = ap; + bp; € Rp; + Rp;. By Proposition 2.29, Rp; + Rp; =
R, that is, Rp;, and Rp; are comaximal. By Theorem 2.11 (Chinese Remainder
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Theorem), R/Rp$'p3?ps® - -+ ppt = R/Rp{* x R/Rp3* x R/Rp$® x -+ x R/Rpj-.

Then, we can define

Vi = {(u1+ RpS"*, uy+ Rp3? ,us+ Rps®, ..., 0+ Rp;’ ... up+ Rpp*) ‘ U, + RpSm €
U(R/Rpgr) for all m # j}, if oy =1,
Vi = {(u1+Rp{" ups+ Rps? us+ RpS?, ... a;+ Rp}7, ..., up~+ Rpy*) | wm+ Rp2 €
U(R/Rp%r) for all m # j and a; + Rpa’ e Z( R/Rp?j,aj)}, if a; > 2.

When R = Z, we can compute the number of elements in V.

(i) If a; > 2, then by Corollary 3.4, we obtain |U(Z/pZ)| = ¢(p) and
2@/ 0)| = |2/ - 0) — 1 = (2 = )

(ii) If a; = 1, then by Corollary 3.4, we obtain ‘U(Z/piZ)| = |Z/piZ‘ —1

Remark 2. We know that Z / (2%)Z has no 2-zero-divisors. If one component of
R/Rp‘f‘1 X R/Rpg‘2 X R/Rp§‘3 X+ X R/szk is Z/(22)Z & Z,, we define the partite
set corresponding to Z, by

Vi = {(ur + RS us + BpS% us + RpS®, .2, g + Rp(Y) | + Rpon €
U<R/Rpg{”) for all m # j and 2 € Z,}.

Example 5.8.

(i) From Example 5.6, in Z/60Z = Z /(2% - 3 - 5)Z, we compute
\Vi| = |2(2/2*Z,2)|-|U(Z/3Z)|-|U(Z/5Z)| = (4—2—1-0)-(3—1)-(5—1) =
1-2:4 =8, |V3| = |U(Z/2*Z)|-1-|U(Z)Z)| = (4=2)-1-(5—1) =2-1-4 =38,
and |V3| = |U(Z/2°Z)|-|U(Z/3Z)|-1 = (4=2)-(3—1)-1 = 2-2-1 = 4. Then,
1Z(2/(2%-3-5)Z,4)| =8+ 8+4 =20 and |E(Ha(Zeo))| =884 = 256.

(ii) From Example 5.7, in Z[4]/(693)Z[i] = Z[i] /((3)* - 7i - 114)Z[i], we compute

[
il = (|2@0/ Gz, 2)] - |2(2l/ G0zl 2)) - ((U@E/ (Thzi)] -
\U [(t)z))]) - (|U(Z]i /(m )| - |UZ[i)/ (A1) Z[)|) = ((9— 6 —
(9-6—-1-0))-((7 -1))-((11-1)- 11—1)_14400
Nl !U /< D°Z)]) - 1- (|2l A)Zl))] -

]
i, 2
Zli)
—0)-
\V2\ = (lv(zli]/ @i’z
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\U(Z[1)/(11)Z[i]))]) = ((9—3)-(9—3))-1-((11—1)-(11—1)) = 36-1-100 =

3,600, and

V| = (|U(Z[3)/ (30 ZLa) |- |U(Z[a) / (30)*Z[a))|) - (|U(Z[d] / (7)) Z[a)) |- U (Z[i] / (T Z[i)) )
1=(9-3)-(9-3))-((7—1)-(7—1))-1=36-36-1=1,296.

Then, |Z(Z/(2*-3-5)Z,4)| = 14,4004-3, 60041, 296 = 19, 296 and |£(H4(Zg))| =
14,400 x 3,600 x 1,296 = 67,184, 640, 000.

Now, we consider H, (R / Rm) with its diameter and its minimum length of all

cycles.

Proposition 5.9. Let k > 2 be a fized integer and R be a PID containing at least
k monassociate distinct prime elements, say py,p2,D3,---,Pk. Lhen, the diameter

of Ho(R/Rm) is 2.

Proof. Let x and y be distinct vertices of H,(R / R).

Case 1. z and y are in different partites. By definition of o-uniform k-partite
hypergraph, there exists an edge F such that z,y € E. A path z, E, y is obtained.
Then, the distance between z and y is 1.

Case 2. x and y are in the same partite V; with o; = 1. By the definition of
Ho(R / Rm), there are no edges E such that z,y € E. However, there exist edges
FE, and E, such that x € E; and y € E,. By the definition of ’H(,(R/RW), there
exists a vertex v in the other partite sets such that v € Ey N Ey. Then, a path
x, B, v, By, y is obtained. Therefore, d(x,y) = 2.

Case 3. x and y are in the same partite V; with o; > 2. By the definition of
HU(R/RW), there exists an edge F such that z,y € E. We have a path z, F, y.
Then, d(x,y) = 1.

From these three cases, the maximum of distance between x and y is 2, that

is, the diameter of H,(R/Rm) is 2. O

To consider the minimum length of all cycles, we need to split into two cases

of ‘Z(R/Rw, o) Z(R/Rr,0)| = o and ‘Z(R/Rﬂ, a)‘ > o+ 1, which can

, that is,

be seperated into two subcases with cases of k.
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Proposition 5.10. The minimum length of all cycles in H,(R/Rm) is 0 when
)Z(R/Rﬁ,a)’ =o.

Proof. Since H,(R / Rm) has only one edge, such hypergraph has no cycles. O
Next, we consider the case ‘Z(R/Rﬂ', U)’ >0+ 1

Proposition 5.11. The minimum length of all cycles in H,(R/Rm) is 2 when
k>3 and ‘Z(R/Rma)’ > o+ 1.

Proof. We separate into two cases.

Case 1. o; = 1 forall 1 <17 < k. Since each partite set is a nonempty set, there
exists at least one element in each set. Since ‘Z(R/RT[‘, 0)‘ >o+1= Zle 1+1 =
k+1 and there are k partite sets in H, (R / Rm), there are at least two elements, say
x1 and 2], in one of the partite sets, say V. By the definition of HO(R/RW), there
exist two distinct edges Fy = {x1,%9,23,...,7,} and Fy = {2}, z,23,...,2,}.
Thus, HU(R/RW) has a 2-cycle C' = x9, F1, 23, F5. Then, the minimum length of
all cycles is 2.

Case 2. There exists 1 < ¢ < k such that a; > 2. Without loss of generality,
aq > 2. Then, V1| > 2.

(i) if ’V1| = 2, say Vi = {xy, 2]}, then there exists one of the other partite
sets has two elements x5 and 7, say Vo. We have two distinct edges E; =
{z1, 2,29, 23,...,2,} and Fy = {xy, 2], 25, x3,...,2,}. Thus, we obtain one
cycle. That is, we have a 2-cycle C' = zy, By, 2}, E5. Then, the minimum

length of all cycles is 2.

(i) if [Vi| > 3, say Vi = {1, 2}, 2, ...} then there exist two distinct edges F; =
{z1,2), w0, 23,...,2,} and Ey = {1, 2], x9,23,...,2,}. Thus, there exists
one cycle in HU(R/RT('). Therefore, we have a 2-cycle C' = xq, Ey, x9, F».

Then, the minimum length of all cycles is 2.

From these two cases, the minimum length of all cycles is 2. O]
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Proposition 5.12. Assume that k = 2 and )Z(R/RW,OQ +ag)| > +ag + 1.
The minimum length of all cycles is

0, if|[Vi]=1anday=1,

2, if [Vi|=1and ay > 2,

2, if |Vi| > 2 for all i € {1,2} and there exists ¢ € {1,2} such that oy > 2,

4, if |Vi| = 2 with a; = 1 for all i € {1,2}.

Proof. The four possible cases are considered as follows. Let Vi and V5 be partite
sets of Ha, 1o, (R/RT).

Case 1. |V1} =1 and ay = 1. Suppose that HQ(R/RW) has a cycle C' =
x1, B, 29, B, 23, ..., 2,_1, F, where r > 2.

If x; € Vi, then from a cycle C, we have x3 = 1. Since k = 2, By = {z1, 25}
and Fy = {9, x3}. Since z1 = x3, £y = E,, which is a contradiction.

If z; is in another partite set rather than Vj, then we have x5 € V;. By the
same argument, we obtain Ey = Fj3, which is also a contradiction.

Therefore, Ha(R / Rm) has no cycles.

Case 2. |V1‘ =1 and ay > 2. Let 2; € V;. Since ’Z(R/RW,OQ + an)

> a1+

Oég—i—l,

‘/2‘ > 3. There exist two distinct edges Fy = {1, 22, 23,...,Ta,1a,} and
Ey = {z1,2),33,...,Tay+a,} Where T9, @), 25, ..., Za, 40, € Vo. Thus, H,(R/Rn)
has a 2-cycle C' = x4, E1, x3, F5. Then, the minimum length of all cycles is 2.
Case 3. |Vi| > 2 for all i € {1,2} and there exists i € {1,2}, a; > 2.
Without loss of generality, let a; > 2. Since ’Z (R/ Rm, oy + o)

> oa;+as+ 1,
we have |Vi| > 3, say V = {zy,2],2{,...}. There exist two distinct edges E; =
{Z1,2),29,. .., Ta 40y} and Ey = {x1,2],29,23,...,Ta 10y} Thus, HU(R/RT(')
has a cycle, that is, C' = x1, Fy, x9, E5 of length 2. Then, the minimum length of
all cycles is 2.

Case 4. |V;| > 2 with o; = 1 forall i € {1,2}. Let x; be a vertex of Hy(R/Rr)
and V] be a partite set containing x;. Since |M| > 2 with o; = 1 for all i € {1,2},
there are at least distinct four edges in Ha(R / Rm) which form one cycle. Suppose
that Ho(R/Rm) has a 2-cycle. There exist two distinct edges By and E, and a
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vertex o differ from x; such that x1, x5 € E7 and x1, 29 € E5. Since k = 2, we have
E, = FE,, which is a contradiction. Since o; = 1 for all ¢ € {1,2}, HQ(R/R']T) is a
bipartite graph. We know that bipartite graphs have no odd cycle, see [11]. There
exist distinct vertices x5, x3 and x4 with x5 € V; and z3, x4 are in other partite
set such that Fy = {z, 23}, Es = {x1, 24}, B3 = {22, 23} and E; = {x9, 24} form
edges. We have a 4-cycle C' = z1, Fh, x3, F3, 2o, E4, x4, F5. Then, the minimum of

length of all cycles is 4. m



CHAPTER VI
CONCLUSION AND DISCUSSION

We can see throughout this thesis that instead of considering directly a com-
mutative ring R, we consider a commutative ring R / I where R is a PID and [
is an appropriate ideal of R. First, in Chapter I1I, we assume that the existence
of prime element p and the finiteness of R / Rp* together with the cardinality of
(Rp/Rp*) — (Rp* / Rp¥) to be greater or equal to k. We can construct Hy(R/Rp*)
and it is complete. We can compute |Z(R/Rp*,k)| = |Z/p"Z| — o(p*) — 1 —
(p"=2 — 1). By the completeness, the diameter of ’Hk(R/Rpk) is 1. However, k
and the cardinality of Z(R / Rp*, k) determine the minimum length of all cycles of
Hi(R/Rp*) which can be either 3,2 or 0.

Next, in Chapter IV, we assume that the existence of nonassociate distinct
prime elements pi, p2, p3, ..., pr and the finiteness of R/RV where v = Hle Di-
Instead of considering directly a commutative ring R/ R~, by the Chinese Re-
mainder Theorem, we consider R/ Rp, x R/ Rpy X R/ Rps x -+ x R/ Rp,.. We
can partition Z(R/R’y, k) into k partite sets and then, ’Hk(R/Rv) is a k-partite
hypergraph which is complete according to Kuhl and Schroeder [9]. Moreover,
|Z(R/Ry. k)| = S |Vi| where |V;| = Hf:L#i |U(R/Rp;)|. By the complete-
ness, we can easily obtain its diameter as 2. Similar to the previous constructed
hypergraph, the minimum length of all cycles of Hy(R / R~) depend on k and the
cardinality of Z(R/R~, k). However, for Hy(R/R~), the cardinality of each partite
set also an important factor to determine its minimum length of all cycles which
can be either 4,2 or 0.

Finally, by using the idea in Chapter III, we assume again that the existence
of nonassociate distinct prime elements p1, po, ps3, ..., Pk, the finiteness of R / R,

where 7 = Hle pi* and o; € Nfor all 1 < ¢ <k, and the cardinality of (Rp; / Rm)—
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J=Lg

can partition Z(R / Rm, o), where o = Zle «;, into k partite sets and from these

<(Rp?/R7T) ulJ! (RpMRW)) to be greater or equal to a; forall 1 <i < k. We

partite sets, we can construct k-partite o-zero-divisor hypergraph of Z(R / Rm, o)

according to Jirimutu and Wang [8].

I

Moreover, by the Chinese Remainder Theorem, we can see that R/ R
R/Rpi"1 X R/Rp§‘2 X R/Rp§3 X e X R/sz’“ and we can compute ’Z(R/Rﬂ', O')’ =
Zle |Vi| where |V;| = |Z(R/Rp{", o) -H?zld#i \U(R/Rpj)| if o; > 2 or
15 1,2 |UR/Rp))| if a; = 1.

Unfortunately, according to Jirimutu and Wang [8], our constructed k-partite
hypergraph is not complete. We, then, find the diameter of H,(R / Rm) to be 2.

Here, o, the cardinality of Z(R / Rm,0) and the cardinality of each partition
set determines the minimum length of all cycles of H,(R/Rm) which can be either
4,2 or 0.

As for the future research, we suggest one to investigate the way to construct
k-partite o-zero-divisor hypergraphs to be a complete k-partite o-uniform hyper-

graph according to Jirimutu and Wang’s definition [§].
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